Merge tag 'for-linus-4.2-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / mfd / cros_ec_commands.h
1 /*
2 * Host communication command constants for ChromeOS EC
3 *
4 * Copyright (C) 2012 Google, Inc
5 *
6 * This software is licensed under the terms of the GNU General Public
7 * License version 2, as published by the Free Software Foundation, and
8 * may be copied, distributed, and modified under those terms.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * The ChromeOS EC multi function device is used to mux all the requests
16 * to the EC device for its multiple features: keyboard controller,
17 * battery charging and regulator control, firmware update.
18 *
19 * NOTE: This file is copied verbatim from the ChromeOS EC Open Source
20 * project in an attempt to make future updates easy to make.
21 */
22
23 #ifndef __CROS_EC_COMMANDS_H
24 #define __CROS_EC_COMMANDS_H
25
26 /*
27 * Current version of this protocol
28 *
29 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
30 * determined in other ways. Remove this once the kernel code no longer
31 * depends on it.
32 */
33 #define EC_PROTO_VERSION 0x00000002
34
35 /* Command version mask */
36 #define EC_VER_MASK(version) (1UL << (version))
37
38 /* I/O addresses for ACPI commands */
39 #define EC_LPC_ADDR_ACPI_DATA 0x62
40 #define EC_LPC_ADDR_ACPI_CMD 0x66
41
42 /* I/O addresses for host command */
43 #define EC_LPC_ADDR_HOST_DATA 0x200
44 #define EC_LPC_ADDR_HOST_CMD 0x204
45
46 /* I/O addresses for host command args and params */
47 /* Protocol version 2 */
48 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
49 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
50 * EC_PROTO2_MAX_PARAM_SIZE */
51 /* Protocol version 3 */
52 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
53 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
54
55 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
56 * and they tell the kernel that so we have to think of it as two parts. */
57 #define EC_HOST_CMD_REGION0 0x800
58 #define EC_HOST_CMD_REGION1 0x880
59 #define EC_HOST_CMD_REGION_SIZE 0x80
60
61 /* EC command register bit functions */
62 #define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */
63 #define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */
64 #define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */
65 #define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */
66 #define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */
67 #define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */
68 #define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */
69
70 #define EC_LPC_ADDR_MEMMAP 0x900
71 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
72 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
73
74 /* The offset address of each type of data in mapped memory. */
75 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
76 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
77 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
78 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
79 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
80 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
81 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
82 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
83 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
84 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
85 /* Unused 0x28 - 0x2f */
86 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
87 /* Unused 0x31 - 0x33 */
88 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */
89 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
90 /* Battery values are all 32 bits */
91 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
92 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
93 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
94 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */
95 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
96 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
97 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
98 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
100 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
101 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
102 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
103 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
104 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
105 /* Unused 0x84 - 0x8f */
106 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
107 /* Unused 0x91 */
108 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometer data 0x92 - 0x9f */
109 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
110 /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */
111
112
113 /* Define the format of the accelerometer mapped memory status byte. */
114 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
115 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4)
116 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7)
117
118 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
119 #define EC_TEMP_SENSOR_ENTRIES 16
120 /*
121 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
122 *
123 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
124 */
125 #define EC_TEMP_SENSOR_B_ENTRIES 8
126
127 /* Special values for mapped temperature sensors */
128 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff
129 #define EC_TEMP_SENSOR_ERROR 0xfe
130 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd
131 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
132 /*
133 * The offset of temperature value stored in mapped memory. This allows
134 * reporting a temperature range of 200K to 454K = -73C to 181C.
135 */
136 #define EC_TEMP_SENSOR_OFFSET 200
137
138 /*
139 * Number of ALS readings at EC_MEMMAP_ALS
140 */
141 #define EC_ALS_ENTRIES 2
142
143 /*
144 * The default value a temperature sensor will return when it is present but
145 * has not been read this boot. This is a reasonable number to avoid
146 * triggering alarms on the host.
147 */
148 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
149
150 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
151 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
152 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
153
154 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
155 #define EC_BATT_FLAG_AC_PRESENT 0x01
156 #define EC_BATT_FLAG_BATT_PRESENT 0x02
157 #define EC_BATT_FLAG_DISCHARGING 0x04
158 #define EC_BATT_FLAG_CHARGING 0x08
159 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
160
161 /* Switch flags at EC_MEMMAP_SWITCHES */
162 #define EC_SWITCH_LID_OPEN 0x01
163 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
164 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
165 /* Was recovery requested via keyboard; now unused. */
166 #define EC_SWITCH_IGNORE1 0x08
167 /* Recovery requested via dedicated signal (from servo board) */
168 #define EC_SWITCH_DEDICATED_RECOVERY 0x10
169 /* Was fake developer mode switch; now unused. Remove in next refactor. */
170 #define EC_SWITCH_IGNORE0 0x20
171
172 /* Host command interface flags */
173 /* Host command interface supports LPC args (LPC interface only) */
174 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
175 /* Host command interface supports version 3 protocol */
176 #define EC_HOST_CMD_FLAG_VERSION_3 0x02
177
178 /* Wireless switch flags */
179 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
180 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
181 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
182 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
183 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
184
185 /*
186 * This header file is used in coreboot both in C and ACPI code. The ACPI code
187 * is pre-processed to handle constants but the ASL compiler is unable to
188 * handle actual C code so keep it separate.
189 */
190 #ifndef __ACPI__
191
192 /*
193 * Define __packed if someone hasn't beat us to it. Linux kernel style
194 * checking prefers __packed over __attribute__((packed)).
195 */
196 #ifndef __packed
197 #define __packed __attribute__((packed))
198 #endif
199
200 /* LPC command status byte masks */
201 /* EC has written a byte in the data register and host hasn't read it yet */
202 #define EC_LPC_STATUS_TO_HOST 0x01
203 /* Host has written a command/data byte and the EC hasn't read it yet */
204 #define EC_LPC_STATUS_FROM_HOST 0x02
205 /* EC is processing a command */
206 #define EC_LPC_STATUS_PROCESSING 0x04
207 /* Last write to EC was a command, not data */
208 #define EC_LPC_STATUS_LAST_CMD 0x08
209 /* EC is in burst mode. Unsupported by Chrome EC, so this bit is never set */
210 #define EC_LPC_STATUS_BURST_MODE 0x10
211 /* SCI event is pending (requesting SCI query) */
212 #define EC_LPC_STATUS_SCI_PENDING 0x20
213 /* SMI event is pending (requesting SMI query) */
214 #define EC_LPC_STATUS_SMI_PENDING 0x40
215 /* (reserved) */
216 #define EC_LPC_STATUS_RESERVED 0x80
217
218 /*
219 * EC is busy. This covers both the EC processing a command, and the host has
220 * written a new command but the EC hasn't picked it up yet.
221 */
222 #define EC_LPC_STATUS_BUSY_MASK \
223 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
224
225 /* Host command response codes */
226 enum ec_status {
227 EC_RES_SUCCESS = 0,
228 EC_RES_INVALID_COMMAND = 1,
229 EC_RES_ERROR = 2,
230 EC_RES_INVALID_PARAM = 3,
231 EC_RES_ACCESS_DENIED = 4,
232 EC_RES_INVALID_RESPONSE = 5,
233 EC_RES_INVALID_VERSION = 6,
234 EC_RES_INVALID_CHECKSUM = 7,
235 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
236 EC_RES_UNAVAILABLE = 9, /* No response available */
237 EC_RES_TIMEOUT = 10, /* We got a timeout */
238 EC_RES_OVERFLOW = 11, /* Table / data overflow */
239 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
240 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
241 EC_RES_RESPONSE_TOO_BIG = 14 /* Response was too big to handle */
242 };
243
244 /*
245 * Host event codes. Note these are 1-based, not 0-based, because ACPI query
246 * EC command uses code 0 to mean "no event pending". We explicitly specify
247 * each value in the enum listing so they won't change if we delete/insert an
248 * item or rearrange the list (it needs to be stable across platforms, not
249 * just within a single compiled instance).
250 */
251 enum host_event_code {
252 EC_HOST_EVENT_LID_CLOSED = 1,
253 EC_HOST_EVENT_LID_OPEN = 2,
254 EC_HOST_EVENT_POWER_BUTTON = 3,
255 EC_HOST_EVENT_AC_CONNECTED = 4,
256 EC_HOST_EVENT_AC_DISCONNECTED = 5,
257 EC_HOST_EVENT_BATTERY_LOW = 6,
258 EC_HOST_EVENT_BATTERY_CRITICAL = 7,
259 EC_HOST_EVENT_BATTERY = 8,
260 EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
261 EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
262 EC_HOST_EVENT_THERMAL = 11,
263 EC_HOST_EVENT_USB_CHARGER = 12,
264 EC_HOST_EVENT_KEY_PRESSED = 13,
265 /*
266 * EC has finished initializing the host interface. The host can check
267 * for this event following sending a EC_CMD_REBOOT_EC command to
268 * determine when the EC is ready to accept subsequent commands.
269 */
270 EC_HOST_EVENT_INTERFACE_READY = 14,
271 /* Keyboard recovery combo has been pressed */
272 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
273
274 /* Shutdown due to thermal overload */
275 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
276 /* Shutdown due to battery level too low */
277 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
278
279 /* Suggest that the AP throttle itself */
280 EC_HOST_EVENT_THROTTLE_START = 18,
281 /* Suggest that the AP resume normal speed */
282 EC_HOST_EVENT_THROTTLE_STOP = 19,
283
284 /* Hang detect logic detected a hang and host event timeout expired */
285 EC_HOST_EVENT_HANG_DETECT = 20,
286 /* Hang detect logic detected a hang and warm rebooted the AP */
287 EC_HOST_EVENT_HANG_REBOOT = 21,
288
289 /*
290 * The high bit of the event mask is not used as a host event code. If
291 * it reads back as set, then the entire event mask should be
292 * considered invalid by the host. This can happen when reading the
293 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
294 * not initialized on the EC, or improperly configured on the host.
295 */
296 EC_HOST_EVENT_INVALID = 32
297 };
298 /* Host event mask */
299 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
300
301 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
302 struct ec_lpc_host_args {
303 uint8_t flags;
304 uint8_t command_version;
305 uint8_t data_size;
306 /*
307 * Checksum; sum of command + flags + command_version + data_size +
308 * all params/response data bytes.
309 */
310 uint8_t checksum;
311 } __packed;
312
313 /* Flags for ec_lpc_host_args.flags */
314 /*
315 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
316 * params.
317 *
318 * If EC gets a command and this flag is not set, this is an old-style command.
319 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
320 * unknown length. EC must respond with an old-style response (that is,
321 * withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
322 */
323 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
324 /*
325 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
326 *
327 * If EC responds to a command and this flag is not set, this is an old-style
328 * response. Command version is 0 and response data from EC is at
329 * EC_LPC_ADDR_OLD_PARAM with unknown length.
330 */
331 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02
332
333 /*****************************************************************************/
334 /*
335 * Byte codes returned by EC over SPI interface.
336 *
337 * These can be used by the AP to debug the EC interface, and to determine
338 * when the EC is not in a state where it will ever get around to responding
339 * to the AP.
340 *
341 * Example of sequence of bytes read from EC for a current good transfer:
342 * 1. - - AP asserts chip select (CS#)
343 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
344 * 3. - - EC starts handling CS# interrupt
345 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
346 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
347 * bytes looking for EC_SPI_FRAME_START
348 * 6. - - EC finishes processing and sets up response
349 * 7. EC_SPI_FRAME_START - AP reads frame byte
350 * 8. (response packet) - AP reads response packet
351 * 9. EC_SPI_PAST_END - Any additional bytes read by AP
352 * 10 - - AP deasserts chip select
353 * 11 - - EC processes CS# interrupt and sets up DMA for
354 * next request
355 *
356 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
357 * the following byte values:
358 * EC_SPI_OLD_READY
359 * EC_SPI_RX_READY
360 * EC_SPI_RECEIVING
361 * EC_SPI_PROCESSING
362 *
363 * Then the EC found an error in the request, or was not ready for the request
364 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
365 * because the EC is unable to tell when the AP is done sending its request.
366 */
367
368 /*
369 * Framing byte which precedes a response packet from the EC. After sending a
370 * request, the AP will clock in bytes until it sees the framing byte, then
371 * clock in the response packet.
372 */
373 #define EC_SPI_FRAME_START 0xec
374
375 /*
376 * Padding bytes which are clocked out after the end of a response packet.
377 */
378 #define EC_SPI_PAST_END 0xed
379
380 /*
381 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects
382 * that the AP will send a valid packet header (starting with
383 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
384 */
385 #define EC_SPI_RX_READY 0xf8
386
387 /*
388 * EC has started receiving the request from the AP, but hasn't started
389 * processing it yet.
390 */
391 #define EC_SPI_RECEIVING 0xf9
392
393 /* EC has received the entire request from the AP and is processing it. */
394 #define EC_SPI_PROCESSING 0xfa
395
396 /*
397 * EC received bad data from the AP, such as a packet header with an invalid
398 * length. EC will ignore all data until chip select deasserts.
399 */
400 #define EC_SPI_RX_BAD_DATA 0xfb
401
402 /*
403 * EC received data from the AP before it was ready. That is, the AP asserted
404 * chip select and started clocking data before the EC was ready to receive it.
405 * EC will ignore all data until chip select deasserts.
406 */
407 #define EC_SPI_NOT_READY 0xfc
408
409 /*
410 * EC was ready to receive a request from the AP. EC has treated the byte sent
411 * by the AP as part of a request packet, or (for old-style ECs) is processing
412 * a fully received packet but is not ready to respond yet.
413 */
414 #define EC_SPI_OLD_READY 0xfd
415
416 /*****************************************************************************/
417
418 /*
419 * Protocol version 2 for I2C and SPI send a request this way:
420 *
421 * 0 EC_CMD_VERSION0 + (command version)
422 * 1 Command number
423 * 2 Length of params = N
424 * 3..N+2 Params, if any
425 * N+3 8-bit checksum of bytes 0..N+2
426 *
427 * The corresponding response is:
428 *
429 * 0 Result code (EC_RES_*)
430 * 1 Length of params = M
431 * 2..M+1 Params, if any
432 * M+2 8-bit checksum of bytes 0..M+1
433 */
434 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
435 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
436 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
437 EC_PROTO2_REQUEST_TRAILER_BYTES)
438
439 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
440 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
441 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
442 EC_PROTO2_RESPONSE_TRAILER_BYTES)
443
444 /* Parameter length was limited by the LPC interface */
445 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
446
447 /* Maximum request and response packet sizes for protocol version 2 */
448 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
449 EC_PROTO2_MAX_PARAM_SIZE)
450 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
451 EC_PROTO2_MAX_PARAM_SIZE)
452
453 /*****************************************************************************/
454
455 /*
456 * Value written to legacy command port / prefix byte to indicate protocol
457 * 3+ structs are being used. Usage is bus-dependent.
458 */
459 #define EC_COMMAND_PROTOCOL_3 0xda
460
461 #define EC_HOST_REQUEST_VERSION 3
462
463 /* Version 3 request from host */
464 struct ec_host_request {
465 /* Struct version (=3)
466 *
467 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
468 * version it doesn't know how to parse.
469 */
470 uint8_t struct_version;
471
472 /*
473 * Checksum of request and data; sum of all bytes including checksum
474 * should total to 0.
475 */
476 uint8_t checksum;
477
478 /* Command code */
479 uint16_t command;
480
481 /* Command version */
482 uint8_t command_version;
483
484 /* Unused byte in current protocol version; set to 0 */
485 uint8_t reserved;
486
487 /* Length of data which follows this header */
488 uint16_t data_len;
489 } __packed;
490
491 #define EC_HOST_RESPONSE_VERSION 3
492
493 /* Version 3 response from EC */
494 struct ec_host_response {
495 /* Struct version (=3) */
496 uint8_t struct_version;
497
498 /*
499 * Checksum of response and data; sum of all bytes including checksum
500 * should total to 0.
501 */
502 uint8_t checksum;
503
504 /* Result code (EC_RES_*) */
505 uint16_t result;
506
507 /* Length of data which follows this header */
508 uint16_t data_len;
509
510 /* Unused bytes in current protocol version; set to 0 */
511 uint16_t reserved;
512 } __packed;
513
514 /*****************************************************************************/
515 /*
516 * Notes on commands:
517 *
518 * Each command is an 16-bit command value. Commands which take params or
519 * return response data specify structs for that data. If no struct is
520 * specified, the command does not input or output data, respectively.
521 * Parameter/response length is implicit in the structs. Some underlying
522 * communication protocols (I2C, SPI) may add length or checksum headers, but
523 * those are implementation-dependent and not defined here.
524 */
525
526 /*****************************************************************************/
527 /* General / test commands */
528
529 /*
530 * Get protocol version, used to deal with non-backward compatible protocol
531 * changes.
532 */
533 #define EC_CMD_PROTO_VERSION 0x00
534
535 struct ec_response_proto_version {
536 uint32_t version;
537 } __packed;
538
539 /*
540 * Hello. This is a simple command to test the EC is responsive to
541 * commands.
542 */
543 #define EC_CMD_HELLO 0x01
544
545 struct ec_params_hello {
546 uint32_t in_data; /* Pass anything here */
547 } __packed;
548
549 struct ec_response_hello {
550 uint32_t out_data; /* Output will be in_data + 0x01020304 */
551 } __packed;
552
553 /* Get version number */
554 #define EC_CMD_GET_VERSION 0x02
555
556 enum ec_current_image {
557 EC_IMAGE_UNKNOWN = 0,
558 EC_IMAGE_RO,
559 EC_IMAGE_RW
560 };
561
562 struct ec_response_get_version {
563 /* Null-terminated version strings for RO, RW */
564 char version_string_ro[32];
565 char version_string_rw[32];
566 char reserved[32]; /* Was previously RW-B string */
567 uint32_t current_image; /* One of ec_current_image */
568 } __packed;
569
570 /* Read test */
571 #define EC_CMD_READ_TEST 0x03
572
573 struct ec_params_read_test {
574 uint32_t offset; /* Starting value for read buffer */
575 uint32_t size; /* Size to read in bytes */
576 } __packed;
577
578 struct ec_response_read_test {
579 uint32_t data[32];
580 } __packed;
581
582 /*
583 * Get build information
584 *
585 * Response is null-terminated string.
586 */
587 #define EC_CMD_GET_BUILD_INFO 0x04
588
589 /* Get chip info */
590 #define EC_CMD_GET_CHIP_INFO 0x05
591
592 struct ec_response_get_chip_info {
593 /* Null-terminated strings */
594 char vendor[32];
595 char name[32];
596 char revision[32]; /* Mask version */
597 } __packed;
598
599 /* Get board HW version */
600 #define EC_CMD_GET_BOARD_VERSION 0x06
601
602 struct ec_response_board_version {
603 uint16_t board_version; /* A monotonously incrementing number. */
604 } __packed;
605
606 /*
607 * Read memory-mapped data.
608 *
609 * This is an alternate interface to memory-mapped data for bus protocols
610 * which don't support direct-mapped memory - I2C, SPI, etc.
611 *
612 * Response is params.size bytes of data.
613 */
614 #define EC_CMD_READ_MEMMAP 0x07
615
616 struct ec_params_read_memmap {
617 uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */
618 uint8_t size; /* Size to read in bytes */
619 } __packed;
620
621 /* Read versions supported for a command */
622 #define EC_CMD_GET_CMD_VERSIONS 0x08
623
624 struct ec_params_get_cmd_versions {
625 uint8_t cmd; /* Command to check */
626 } __packed;
627
628 struct ec_response_get_cmd_versions {
629 /*
630 * Mask of supported versions; use EC_VER_MASK() to compare with a
631 * desired version.
632 */
633 uint32_t version_mask;
634 } __packed;
635
636 /*
637 * Check EC communcations status (busy). This is needed on i2c/spi but not
638 * on lpc since it has its own out-of-band busy indicator.
639 *
640 * lpc must read the status from the command register. Attempting this on
641 * lpc will overwrite the args/parameter space and corrupt its data.
642 */
643 #define EC_CMD_GET_COMMS_STATUS 0x09
644
645 /* Avoid using ec_status which is for return values */
646 enum ec_comms_status {
647 EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */
648 };
649
650 struct ec_response_get_comms_status {
651 uint32_t flags; /* Mask of enum ec_comms_status */
652 } __packed;
653
654 /* Fake a variety of responses, purely for testing purposes. */
655 #define EC_CMD_TEST_PROTOCOL 0x0a
656
657 /* Tell the EC what to send back to us. */
658 struct ec_params_test_protocol {
659 uint32_t ec_result;
660 uint32_t ret_len;
661 uint8_t buf[32];
662 } __packed;
663
664 /* Here it comes... */
665 struct ec_response_test_protocol {
666 uint8_t buf[32];
667 } __packed;
668
669 /* Get prococol information */
670 #define EC_CMD_GET_PROTOCOL_INFO 0x0b
671
672 /* Flags for ec_response_get_protocol_info.flags */
673 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
674 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
675
676 struct ec_response_get_protocol_info {
677 /* Fields which exist if at least protocol version 3 supported */
678
679 /* Bitmask of protocol versions supported (1 << n means version n)*/
680 uint32_t protocol_versions;
681
682 /* Maximum request packet size, in bytes */
683 uint16_t max_request_packet_size;
684
685 /* Maximum response packet size, in bytes */
686 uint16_t max_response_packet_size;
687
688 /* Flags; see EC_PROTOCOL_INFO_* */
689 uint32_t flags;
690 } __packed;
691
692
693 /*****************************************************************************/
694 /* Get/Set miscellaneous values */
695
696 /* The upper byte of .flags tells what to do (nothing means "get") */
697 #define EC_GSV_SET 0x80000000
698
699 /* The lower three bytes of .flags identifies the parameter, if that has
700 meaning for an individual command. */
701 #define EC_GSV_PARAM_MASK 0x00ffffff
702
703 struct ec_params_get_set_value {
704 uint32_t flags;
705 uint32_t value;
706 } __packed;
707
708 struct ec_response_get_set_value {
709 uint32_t flags;
710 uint32_t value;
711 } __packed;
712
713 /* More than one command can use these structs to get/set paramters. */
714 #define EC_CMD_GSV_PAUSE_IN_S5 0x0c
715
716
717 /*****************************************************************************/
718 /* Flash commands */
719
720 /* Get flash info */
721 #define EC_CMD_FLASH_INFO 0x10
722
723 /* Version 0 returns these fields */
724 struct ec_response_flash_info {
725 /* Usable flash size, in bytes */
726 uint32_t flash_size;
727 /*
728 * Write block size. Write offset and size must be a multiple
729 * of this.
730 */
731 uint32_t write_block_size;
732 /*
733 * Erase block size. Erase offset and size must be a multiple
734 * of this.
735 */
736 uint32_t erase_block_size;
737 /*
738 * Protection block size. Protection offset and size must be a
739 * multiple of this.
740 */
741 uint32_t protect_block_size;
742 } __packed;
743
744 /* Flags for version 1+ flash info command */
745 /* EC flash erases bits to 0 instead of 1 */
746 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
747
748 /*
749 * Version 1 returns the same initial fields as version 0, with additional
750 * fields following.
751 *
752 * gcc anonymous structs don't seem to get along with the __packed directive;
753 * if they did we'd define the version 0 struct as a sub-struct of this one.
754 */
755 struct ec_response_flash_info_1 {
756 /* Version 0 fields; see above for description */
757 uint32_t flash_size;
758 uint32_t write_block_size;
759 uint32_t erase_block_size;
760 uint32_t protect_block_size;
761
762 /* Version 1 adds these fields: */
763 /*
764 * Ideal write size in bytes. Writes will be fastest if size is
765 * exactly this and offset is a multiple of this. For example, an EC
766 * may have a write buffer which can do half-page operations if data is
767 * aligned, and a slower word-at-a-time write mode.
768 */
769 uint32_t write_ideal_size;
770
771 /* Flags; see EC_FLASH_INFO_* */
772 uint32_t flags;
773 } __packed;
774
775 /*
776 * Read flash
777 *
778 * Response is params.size bytes of data.
779 */
780 #define EC_CMD_FLASH_READ 0x11
781
782 struct ec_params_flash_read {
783 uint32_t offset; /* Byte offset to read */
784 uint32_t size; /* Size to read in bytes */
785 } __packed;
786
787 /* Write flash */
788 #define EC_CMD_FLASH_WRITE 0x12
789 #define EC_VER_FLASH_WRITE 1
790
791 /* Version 0 of the flash command supported only 64 bytes of data */
792 #define EC_FLASH_WRITE_VER0_SIZE 64
793
794 struct ec_params_flash_write {
795 uint32_t offset; /* Byte offset to write */
796 uint32_t size; /* Size to write in bytes */
797 /* Followed by data to write */
798 } __packed;
799
800 /* Erase flash */
801 #define EC_CMD_FLASH_ERASE 0x13
802
803 struct ec_params_flash_erase {
804 uint32_t offset; /* Byte offset to erase */
805 uint32_t size; /* Size to erase in bytes */
806 } __packed;
807
808 /*
809 * Get/set flash protection.
810 *
811 * If mask!=0, sets/clear the requested bits of flags. Depending on the
812 * firmware write protect GPIO, not all flags will take effect immediately;
813 * some flags require a subsequent hard reset to take effect. Check the
814 * returned flags bits to see what actually happened.
815 *
816 * If mask=0, simply returns the current flags state.
817 */
818 #define EC_CMD_FLASH_PROTECT 0x15
819 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
820
821 /* Flags for flash protection */
822 /* RO flash code protected when the EC boots */
823 #define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0)
824 /*
825 * RO flash code protected now. If this bit is set, at-boot status cannot
826 * be changed.
827 */
828 #define EC_FLASH_PROTECT_RO_NOW (1 << 1)
829 /* Entire flash code protected now, until reboot. */
830 #define EC_FLASH_PROTECT_ALL_NOW (1 << 2)
831 /* Flash write protect GPIO is asserted now */
832 #define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3)
833 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
834 #define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4)
835 /*
836 * Error - flash protection is in inconsistent state. At least one bank of
837 * flash which should be protected is not protected. Usually fixed by
838 * re-requesting the desired flags, or by a hard reset if that fails.
839 */
840 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
841 /* Entile flash code protected when the EC boots */
842 #define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6)
843
844 struct ec_params_flash_protect {
845 uint32_t mask; /* Bits in flags to apply */
846 uint32_t flags; /* New flags to apply */
847 } __packed;
848
849 struct ec_response_flash_protect {
850 /* Current value of flash protect flags */
851 uint32_t flags;
852 /*
853 * Flags which are valid on this platform. This allows the caller
854 * to distinguish between flags which aren't set vs. flags which can't
855 * be set on this platform.
856 */
857 uint32_t valid_flags;
858 /* Flags which can be changed given the current protection state */
859 uint32_t writable_flags;
860 } __packed;
861
862 /*
863 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
864 * write protect. These commands may be reused with version > 0.
865 */
866
867 /* Get the region offset/size */
868 #define EC_CMD_FLASH_REGION_INFO 0x16
869 #define EC_VER_FLASH_REGION_INFO 1
870
871 enum ec_flash_region {
872 /* Region which holds read-only EC image */
873 EC_FLASH_REGION_RO = 0,
874 /* Region which holds rewritable EC image */
875 EC_FLASH_REGION_RW,
876 /*
877 * Region which should be write-protected in the factory (a superset of
878 * EC_FLASH_REGION_RO)
879 */
880 EC_FLASH_REGION_WP_RO,
881 /* Number of regions */
882 EC_FLASH_REGION_COUNT,
883 };
884
885 struct ec_params_flash_region_info {
886 uint32_t region; /* enum ec_flash_region */
887 } __packed;
888
889 struct ec_response_flash_region_info {
890 uint32_t offset;
891 uint32_t size;
892 } __packed;
893
894 /* Read/write VbNvContext */
895 #define EC_CMD_VBNV_CONTEXT 0x17
896 #define EC_VER_VBNV_CONTEXT 1
897 #define EC_VBNV_BLOCK_SIZE 16
898
899 enum ec_vbnvcontext_op {
900 EC_VBNV_CONTEXT_OP_READ,
901 EC_VBNV_CONTEXT_OP_WRITE,
902 };
903
904 struct ec_params_vbnvcontext {
905 uint32_t op;
906 uint8_t block[EC_VBNV_BLOCK_SIZE];
907 } __packed;
908
909 struct ec_response_vbnvcontext {
910 uint8_t block[EC_VBNV_BLOCK_SIZE];
911 } __packed;
912
913 /*****************************************************************************/
914 /* PWM commands */
915
916 /* Get fan target RPM */
917 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
918
919 struct ec_response_pwm_get_fan_rpm {
920 uint32_t rpm;
921 } __packed;
922
923 /* Set target fan RPM */
924 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
925
926 struct ec_params_pwm_set_fan_target_rpm {
927 uint32_t rpm;
928 } __packed;
929
930 /* Get keyboard backlight */
931 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
932
933 struct ec_response_pwm_get_keyboard_backlight {
934 uint8_t percent;
935 uint8_t enabled;
936 } __packed;
937
938 /* Set keyboard backlight */
939 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
940
941 struct ec_params_pwm_set_keyboard_backlight {
942 uint8_t percent;
943 } __packed;
944
945 /* Set target fan PWM duty cycle */
946 #define EC_CMD_PWM_SET_FAN_DUTY 0x24
947
948 struct ec_params_pwm_set_fan_duty {
949 uint32_t percent;
950 } __packed;
951
952 /*****************************************************************************/
953 /*
954 * Lightbar commands. This looks worse than it is. Since we only use one HOST
955 * command to say "talk to the lightbar", we put the "and tell it to do X" part
956 * into a subcommand. We'll make separate structs for subcommands with
957 * different input args, so that we know how much to expect.
958 */
959 #define EC_CMD_LIGHTBAR_CMD 0x28
960
961 struct rgb_s {
962 uint8_t r, g, b;
963 };
964
965 #define LB_BATTERY_LEVELS 4
966 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
967 * host command, but the alignment is the same regardless. Keep it that way.
968 */
969 struct lightbar_params_v0 {
970 /* Timing */
971 int32_t google_ramp_up;
972 int32_t google_ramp_down;
973 int32_t s3s0_ramp_up;
974 int32_t s0_tick_delay[2]; /* AC=0/1 */
975 int32_t s0a_tick_delay[2]; /* AC=0/1 */
976 int32_t s0s3_ramp_down;
977 int32_t s3_sleep_for;
978 int32_t s3_ramp_up;
979 int32_t s3_ramp_down;
980
981 /* Oscillation */
982 uint8_t new_s0;
983 uint8_t osc_min[2]; /* AC=0/1 */
984 uint8_t osc_max[2]; /* AC=0/1 */
985 uint8_t w_ofs[2]; /* AC=0/1 */
986
987 /* Brightness limits based on the backlight and AC. */
988 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
989 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
990 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
991
992 /* Battery level thresholds */
993 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
994
995 /* Map [AC][battery_level] to color index */
996 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
997 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
998
999 /* Color palette */
1000 struct rgb_s color[8]; /* 0-3 are Google colors */
1001 } __packed;
1002
1003 struct lightbar_params_v1 {
1004 /* Timing */
1005 int32_t google_ramp_up;
1006 int32_t google_ramp_down;
1007 int32_t s3s0_ramp_up;
1008 int32_t s0_tick_delay[2]; /* AC=0/1 */
1009 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1010 int32_t s0s3_ramp_down;
1011 int32_t s3_sleep_for;
1012 int32_t s3_ramp_up;
1013 int32_t s3_ramp_down;
1014 int32_t tap_tick_delay;
1015 int32_t tap_display_time;
1016
1017 /* Tap-for-battery params */
1018 uint8_t tap_pct_red;
1019 uint8_t tap_pct_green;
1020 uint8_t tap_seg_min_on;
1021 uint8_t tap_seg_max_on;
1022 uint8_t tap_seg_osc;
1023 uint8_t tap_idx[3];
1024
1025 /* Oscillation */
1026 uint8_t osc_min[2]; /* AC=0/1 */
1027 uint8_t osc_max[2]; /* AC=0/1 */
1028 uint8_t w_ofs[2]; /* AC=0/1 */
1029
1030 /* Brightness limits based on the backlight and AC. */
1031 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1032 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1033 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1034
1035 /* Battery level thresholds */
1036 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1037
1038 /* Map [AC][battery_level] to color index */
1039 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1040 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1041
1042 /* Color palette */
1043 struct rgb_s color[8]; /* 0-3 are Google colors */
1044 } __packed;
1045
1046 struct ec_params_lightbar {
1047 uint8_t cmd; /* Command (see enum lightbar_command) */
1048 union {
1049 struct {
1050 /* no args */
1051 } dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1052 version, get_brightness, get_demo;
1053
1054 struct {
1055 uint8_t num;
1056 } set_brightness, seq, demo;
1057
1058 struct {
1059 uint8_t ctrl, reg, value;
1060 } reg;
1061
1062 struct {
1063 uint8_t led, red, green, blue;
1064 } set_rgb;
1065
1066 struct {
1067 uint8_t led;
1068 } get_rgb;
1069
1070 struct lightbar_params_v0 set_params_v0;
1071 struct lightbar_params_v1 set_params_v1;
1072 };
1073 } __packed;
1074
1075 struct ec_response_lightbar {
1076 union {
1077 struct {
1078 struct {
1079 uint8_t reg;
1080 uint8_t ic0;
1081 uint8_t ic1;
1082 } vals[23];
1083 } dump;
1084
1085 struct {
1086 uint8_t num;
1087 } get_seq, get_brightness, get_demo;
1088
1089 struct lightbar_params_v0 get_params_v0;
1090 struct lightbar_params_v1 get_params_v1;
1091
1092 struct {
1093 uint32_t num;
1094 uint32_t flags;
1095 } version;
1096
1097 struct {
1098 uint8_t red, green, blue;
1099 } get_rgb;
1100
1101 struct {
1102 /* no return params */
1103 } off, on, init, set_brightness, seq, reg, set_rgb,
1104 demo, set_params_v0, set_params_v1;
1105 };
1106 } __packed;
1107
1108 /* Lightbar commands */
1109 enum lightbar_command {
1110 LIGHTBAR_CMD_DUMP = 0,
1111 LIGHTBAR_CMD_OFF = 1,
1112 LIGHTBAR_CMD_ON = 2,
1113 LIGHTBAR_CMD_INIT = 3,
1114 LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1115 LIGHTBAR_CMD_SEQ = 5,
1116 LIGHTBAR_CMD_REG = 6,
1117 LIGHTBAR_CMD_SET_RGB = 7,
1118 LIGHTBAR_CMD_GET_SEQ = 8,
1119 LIGHTBAR_CMD_DEMO = 9,
1120 LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1121 LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1122 LIGHTBAR_CMD_VERSION = 12,
1123 LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1124 LIGHTBAR_CMD_GET_RGB = 14,
1125 LIGHTBAR_CMD_GET_DEMO = 15,
1126 LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1127 LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1128 LIGHTBAR_NUM_CMDS
1129 };
1130
1131 /*****************************************************************************/
1132 /* LED control commands */
1133
1134 #define EC_CMD_LED_CONTROL 0x29
1135
1136 enum ec_led_id {
1137 /* LED to indicate battery state of charge */
1138 EC_LED_ID_BATTERY_LED = 0,
1139 /*
1140 * LED to indicate system power state (on or in suspend).
1141 * May be on power button or on C-panel.
1142 */
1143 EC_LED_ID_POWER_LED,
1144 /* LED on power adapter or its plug */
1145 EC_LED_ID_ADAPTER_LED,
1146
1147 EC_LED_ID_COUNT
1148 };
1149
1150 /* LED control flags */
1151 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1152 #define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */
1153
1154 enum ec_led_colors {
1155 EC_LED_COLOR_RED = 0,
1156 EC_LED_COLOR_GREEN,
1157 EC_LED_COLOR_BLUE,
1158 EC_LED_COLOR_YELLOW,
1159 EC_LED_COLOR_WHITE,
1160
1161 EC_LED_COLOR_COUNT
1162 };
1163
1164 struct ec_params_led_control {
1165 uint8_t led_id; /* Which LED to control */
1166 uint8_t flags; /* Control flags */
1167
1168 uint8_t brightness[EC_LED_COLOR_COUNT];
1169 } __packed;
1170
1171 struct ec_response_led_control {
1172 /*
1173 * Available brightness value range.
1174 *
1175 * Range 0 means color channel not present.
1176 * Range 1 means on/off control.
1177 * Other values means the LED is control by PWM.
1178 */
1179 uint8_t brightness_range[EC_LED_COLOR_COUNT];
1180 } __packed;
1181
1182 /*****************************************************************************/
1183 /* Verified boot commands */
1184
1185 /*
1186 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1187 * reused for other purposes with version > 0.
1188 */
1189
1190 /* Verified boot hash command */
1191 #define EC_CMD_VBOOT_HASH 0x2A
1192
1193 struct ec_params_vboot_hash {
1194 uint8_t cmd; /* enum ec_vboot_hash_cmd */
1195 uint8_t hash_type; /* enum ec_vboot_hash_type */
1196 uint8_t nonce_size; /* Nonce size; may be 0 */
1197 uint8_t reserved0; /* Reserved; set 0 */
1198 uint32_t offset; /* Offset in flash to hash */
1199 uint32_t size; /* Number of bytes to hash */
1200 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
1201 } __packed;
1202
1203 struct ec_response_vboot_hash {
1204 uint8_t status; /* enum ec_vboot_hash_status */
1205 uint8_t hash_type; /* enum ec_vboot_hash_type */
1206 uint8_t digest_size; /* Size of hash digest in bytes */
1207 uint8_t reserved0; /* Ignore; will be 0 */
1208 uint32_t offset; /* Offset in flash which was hashed */
1209 uint32_t size; /* Number of bytes hashed */
1210 uint8_t hash_digest[64]; /* Hash digest data */
1211 } __packed;
1212
1213 enum ec_vboot_hash_cmd {
1214 EC_VBOOT_HASH_GET = 0, /* Get current hash status */
1215 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
1216 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
1217 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
1218 };
1219
1220 enum ec_vboot_hash_type {
1221 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1222 };
1223
1224 enum ec_vboot_hash_status {
1225 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1226 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1227 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1228 };
1229
1230 /*
1231 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1232 * If one of these is specified, the EC will automatically update offset and
1233 * size to the correct values for the specified image (RO or RW).
1234 */
1235 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1236 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
1237
1238 /*****************************************************************************/
1239 /*
1240 * Motion sense commands. We'll make separate structs for sub-commands with
1241 * different input args, so that we know how much to expect.
1242 */
1243 #define EC_CMD_MOTION_SENSE_CMD 0x2B
1244
1245 /* Motion sense commands */
1246 enum motionsense_command {
1247 /*
1248 * Dump command returns all motion sensor data including motion sense
1249 * module flags and individual sensor flags.
1250 */
1251 MOTIONSENSE_CMD_DUMP = 0,
1252
1253 /*
1254 * Info command returns data describing the details of a given sensor,
1255 * including enum motionsensor_type, enum motionsensor_location, and
1256 * enum motionsensor_chip.
1257 */
1258 MOTIONSENSE_CMD_INFO = 1,
1259
1260 /*
1261 * EC Rate command is a setter/getter command for the EC sampling rate
1262 * of all motion sensors in milliseconds.
1263 */
1264 MOTIONSENSE_CMD_EC_RATE = 2,
1265
1266 /*
1267 * Sensor ODR command is a setter/getter command for the output data
1268 * rate of a specific motion sensor in millihertz.
1269 */
1270 MOTIONSENSE_CMD_SENSOR_ODR = 3,
1271
1272 /*
1273 * Sensor range command is a setter/getter command for the range of
1274 * a specified motion sensor in +/-G's or +/- deg/s.
1275 */
1276 MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1277
1278 /*
1279 * Setter/getter command for the keyboard wake angle. When the lid
1280 * angle is greater than this value, keyboard wake is disabled in S3,
1281 * and when the lid angle goes less than this value, keyboard wake is
1282 * enabled. Note, the lid angle measurement is an approximate,
1283 * un-calibrated value, hence the wake angle isn't exact.
1284 */
1285 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
1286
1287 /* Number of motionsense sub-commands. */
1288 MOTIONSENSE_NUM_CMDS
1289 };
1290
1291 enum motionsensor_id {
1292 EC_MOTION_SENSOR_ACCEL_BASE = 0,
1293 EC_MOTION_SENSOR_ACCEL_LID = 1,
1294 EC_MOTION_SENSOR_GYRO = 2,
1295
1296 /*
1297 * Note, if more sensors are added and this count changes, the padding
1298 * in ec_response_motion_sense dump command must be modified.
1299 */
1300 EC_MOTION_SENSOR_COUNT = 3
1301 };
1302
1303 /* List of motion sensor types. */
1304 enum motionsensor_type {
1305 MOTIONSENSE_TYPE_ACCEL = 0,
1306 MOTIONSENSE_TYPE_GYRO = 1,
1307 };
1308
1309 /* List of motion sensor locations. */
1310 enum motionsensor_location {
1311 MOTIONSENSE_LOC_BASE = 0,
1312 MOTIONSENSE_LOC_LID = 1,
1313 };
1314
1315 /* List of motion sensor chips. */
1316 enum motionsensor_chip {
1317 MOTIONSENSE_CHIP_KXCJ9 = 0,
1318 };
1319
1320 /* Module flag masks used for the dump sub-command. */
1321 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
1322
1323 /* Sensor flag masks used for the dump sub-command. */
1324 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
1325
1326 /*
1327 * Send this value for the data element to only perform a read. If you
1328 * send any other value, the EC will interpret it as data to set and will
1329 * return the actual value set.
1330 */
1331 #define EC_MOTION_SENSE_NO_VALUE -1
1332
1333 struct ec_params_motion_sense {
1334 uint8_t cmd;
1335 union {
1336 /* Used for MOTIONSENSE_CMD_DUMP. */
1337 struct {
1338 /* no args */
1339 } dump;
1340
1341 /*
1342 * Used for MOTIONSENSE_CMD_EC_RATE and
1343 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1344 */
1345 struct {
1346 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1347 int16_t data;
1348 } ec_rate, kb_wake_angle;
1349
1350 /* Used for MOTIONSENSE_CMD_INFO. */
1351 struct {
1352 /* Should be element of enum motionsensor_id. */
1353 uint8_t sensor_num;
1354 } info;
1355
1356 /*
1357 * Used for MOTIONSENSE_CMD_SENSOR_ODR and
1358 * MOTIONSENSE_CMD_SENSOR_RANGE.
1359 */
1360 struct {
1361 /* Should be element of enum motionsensor_id. */
1362 uint8_t sensor_num;
1363
1364 /* Rounding flag, true for round-up, false for down. */
1365 uint8_t roundup;
1366
1367 uint16_t reserved;
1368
1369 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1370 int32_t data;
1371 } sensor_odr, sensor_range;
1372 };
1373 } __packed;
1374
1375 struct ec_response_motion_sense {
1376 union {
1377 /* Used for MOTIONSENSE_CMD_DUMP. */
1378 struct {
1379 /* Flags representing the motion sensor module. */
1380 uint8_t module_flags;
1381
1382 /* Flags for each sensor in enum motionsensor_id. */
1383 uint8_t sensor_flags[EC_MOTION_SENSOR_COUNT];
1384
1385 /* Array of all sensor data. Each sensor is 3-axis. */
1386 int16_t data[3*EC_MOTION_SENSOR_COUNT];
1387 } dump;
1388
1389 /* Used for MOTIONSENSE_CMD_INFO. */
1390 struct {
1391 /* Should be element of enum motionsensor_type. */
1392 uint8_t type;
1393
1394 /* Should be element of enum motionsensor_location. */
1395 uint8_t location;
1396
1397 /* Should be element of enum motionsensor_chip. */
1398 uint8_t chip;
1399 } info;
1400
1401 /*
1402 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
1403 * MOTIONSENSE_CMD_SENSOR_RANGE, and
1404 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1405 */
1406 struct {
1407 /* Current value of the parameter queried. */
1408 int32_t ret;
1409 } ec_rate, sensor_odr, sensor_range, kb_wake_angle;
1410 };
1411 } __packed;
1412
1413 /*****************************************************************************/
1414 /* USB charging control commands */
1415
1416 /* Set USB port charging mode */
1417 #define EC_CMD_USB_CHARGE_SET_MODE 0x30
1418
1419 struct ec_params_usb_charge_set_mode {
1420 uint8_t usb_port_id;
1421 uint8_t mode;
1422 } __packed;
1423
1424 /*****************************************************************************/
1425 /* Persistent storage for host */
1426
1427 /* Maximum bytes that can be read/written in a single command */
1428 #define EC_PSTORE_SIZE_MAX 64
1429
1430 /* Get persistent storage info */
1431 #define EC_CMD_PSTORE_INFO 0x40
1432
1433 struct ec_response_pstore_info {
1434 /* Persistent storage size, in bytes */
1435 uint32_t pstore_size;
1436 /* Access size; read/write offset and size must be a multiple of this */
1437 uint32_t access_size;
1438 } __packed;
1439
1440 /*
1441 * Read persistent storage
1442 *
1443 * Response is params.size bytes of data.
1444 */
1445 #define EC_CMD_PSTORE_READ 0x41
1446
1447 struct ec_params_pstore_read {
1448 uint32_t offset; /* Byte offset to read */
1449 uint32_t size; /* Size to read in bytes */
1450 } __packed;
1451
1452 /* Write persistent storage */
1453 #define EC_CMD_PSTORE_WRITE 0x42
1454
1455 struct ec_params_pstore_write {
1456 uint32_t offset; /* Byte offset to write */
1457 uint32_t size; /* Size to write in bytes */
1458 uint8_t data[EC_PSTORE_SIZE_MAX];
1459 } __packed;
1460
1461 /*****************************************************************************/
1462 /* Real-time clock */
1463
1464 /* RTC params and response structures */
1465 struct ec_params_rtc {
1466 uint32_t time;
1467 } __packed;
1468
1469 struct ec_response_rtc {
1470 uint32_t time;
1471 } __packed;
1472
1473 /* These use ec_response_rtc */
1474 #define EC_CMD_RTC_GET_VALUE 0x44
1475 #define EC_CMD_RTC_GET_ALARM 0x45
1476
1477 /* These all use ec_params_rtc */
1478 #define EC_CMD_RTC_SET_VALUE 0x46
1479 #define EC_CMD_RTC_SET_ALARM 0x47
1480
1481 /*****************************************************************************/
1482 /* Port80 log access */
1483
1484 /* Maximum entries that can be read/written in a single command */
1485 #define EC_PORT80_SIZE_MAX 32
1486
1487 /* Get last port80 code from previous boot */
1488 #define EC_CMD_PORT80_LAST_BOOT 0x48
1489 #define EC_CMD_PORT80_READ 0x48
1490
1491 enum ec_port80_subcmd {
1492 EC_PORT80_GET_INFO = 0,
1493 EC_PORT80_READ_BUFFER,
1494 };
1495
1496 struct ec_params_port80_read {
1497 uint16_t subcmd;
1498 union {
1499 struct {
1500 uint32_t offset;
1501 uint32_t num_entries;
1502 } read_buffer;
1503 };
1504 } __packed;
1505
1506 struct ec_response_port80_read {
1507 union {
1508 struct {
1509 uint32_t writes;
1510 uint32_t history_size;
1511 uint32_t last_boot;
1512 } get_info;
1513 struct {
1514 uint16_t codes[EC_PORT80_SIZE_MAX];
1515 } data;
1516 };
1517 } __packed;
1518
1519 struct ec_response_port80_last_boot {
1520 uint16_t code;
1521 } __packed;
1522
1523 /*****************************************************************************/
1524 /* Thermal engine commands. Note that there are two implementations. We'll
1525 * reuse the command number, but the data and behavior is incompatible.
1526 * Version 0 is what originally shipped on Link.
1527 * Version 1 separates the CPU thermal limits from the fan control.
1528 */
1529
1530 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50
1531 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51
1532
1533 /* The version 0 structs are opaque. You have to know what they are for
1534 * the get/set commands to make any sense.
1535 */
1536
1537 /* Version 0 - set */
1538 struct ec_params_thermal_set_threshold {
1539 uint8_t sensor_type;
1540 uint8_t threshold_id;
1541 uint16_t value;
1542 } __packed;
1543
1544 /* Version 0 - get */
1545 struct ec_params_thermal_get_threshold {
1546 uint8_t sensor_type;
1547 uint8_t threshold_id;
1548 } __packed;
1549
1550 struct ec_response_thermal_get_threshold {
1551 uint16_t value;
1552 } __packed;
1553
1554
1555 /* The version 1 structs are visible. */
1556 enum ec_temp_thresholds {
1557 EC_TEMP_THRESH_WARN = 0,
1558 EC_TEMP_THRESH_HIGH,
1559 EC_TEMP_THRESH_HALT,
1560
1561 EC_TEMP_THRESH_COUNT
1562 };
1563
1564 /* Thermal configuration for one temperature sensor. Temps are in degrees K.
1565 * Zero values will be silently ignored by the thermal task.
1566 */
1567 struct ec_thermal_config {
1568 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
1569 uint32_t temp_fan_off; /* no active cooling needed */
1570 uint32_t temp_fan_max; /* max active cooling needed */
1571 } __packed;
1572
1573 /* Version 1 - get config for one sensor. */
1574 struct ec_params_thermal_get_threshold_v1 {
1575 uint32_t sensor_num;
1576 } __packed;
1577 /* This returns a struct ec_thermal_config */
1578
1579 /* Version 1 - set config for one sensor.
1580 * Use read-modify-write for best results! */
1581 struct ec_params_thermal_set_threshold_v1 {
1582 uint32_t sensor_num;
1583 struct ec_thermal_config cfg;
1584 } __packed;
1585 /* This returns no data */
1586
1587 /****************************************************************************/
1588
1589 /* Toggle automatic fan control */
1590 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
1591
1592 /* Get TMP006 calibration data */
1593 #define EC_CMD_TMP006_GET_CALIBRATION 0x53
1594
1595 struct ec_params_tmp006_get_calibration {
1596 uint8_t index;
1597 } __packed;
1598
1599 struct ec_response_tmp006_get_calibration {
1600 float s0;
1601 float b0;
1602 float b1;
1603 float b2;
1604 } __packed;
1605
1606 /* Set TMP006 calibration data */
1607 #define EC_CMD_TMP006_SET_CALIBRATION 0x54
1608
1609 struct ec_params_tmp006_set_calibration {
1610 uint8_t index;
1611 uint8_t reserved[3]; /* Reserved; set 0 */
1612 float s0;
1613 float b0;
1614 float b1;
1615 float b2;
1616 } __packed;
1617
1618 /* Read raw TMP006 data */
1619 #define EC_CMD_TMP006_GET_RAW 0x55
1620
1621 struct ec_params_tmp006_get_raw {
1622 uint8_t index;
1623 } __packed;
1624
1625 struct ec_response_tmp006_get_raw {
1626 int32_t t; /* In 1/100 K */
1627 int32_t v; /* In nV */
1628 };
1629
1630 /*****************************************************************************/
1631 /* MKBP - Matrix KeyBoard Protocol */
1632
1633 /*
1634 * Read key state
1635 *
1636 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
1637 * expected response size.
1638 */
1639 #define EC_CMD_MKBP_STATE 0x60
1640
1641 /* Provide information about the matrix : number of rows and columns */
1642 #define EC_CMD_MKBP_INFO 0x61
1643
1644 struct ec_response_mkbp_info {
1645 uint32_t rows;
1646 uint32_t cols;
1647 uint8_t switches;
1648 } __packed;
1649
1650 /* Simulate key press */
1651 #define EC_CMD_MKBP_SIMULATE_KEY 0x62
1652
1653 struct ec_params_mkbp_simulate_key {
1654 uint8_t col;
1655 uint8_t row;
1656 uint8_t pressed;
1657 } __packed;
1658
1659 /* Configure keyboard scanning */
1660 #define EC_CMD_MKBP_SET_CONFIG 0x64
1661 #define EC_CMD_MKBP_GET_CONFIG 0x65
1662
1663 /* flags */
1664 enum mkbp_config_flags {
1665 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
1666 };
1667
1668 enum mkbp_config_valid {
1669 EC_MKBP_VALID_SCAN_PERIOD = 1 << 0,
1670 EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1,
1671 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3,
1672 EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4,
1673 EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5,
1674 EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6,
1675 EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7,
1676 };
1677
1678 /* Configuration for our key scanning algorithm */
1679 struct ec_mkbp_config {
1680 uint32_t valid_mask; /* valid fields */
1681 uint8_t flags; /* some flags (enum mkbp_config_flags) */
1682 uint8_t valid_flags; /* which flags are valid */
1683 uint16_t scan_period_us; /* period between start of scans */
1684 /* revert to interrupt mode after no activity for this long */
1685 uint32_t poll_timeout_us;
1686 /*
1687 * minimum post-scan relax time. Once we finish a scan we check
1688 * the time until we are due to start the next one. If this time is
1689 * shorter this field, we use this instead.
1690 */
1691 uint16_t min_post_scan_delay_us;
1692 /* delay between setting up output and waiting for it to settle */
1693 uint16_t output_settle_us;
1694 uint16_t debounce_down_us; /* time for debounce on key down */
1695 uint16_t debounce_up_us; /* time for debounce on key up */
1696 /* maximum depth to allow for fifo (0 = no keyscan output) */
1697 uint8_t fifo_max_depth;
1698 } __packed;
1699
1700 struct ec_params_mkbp_set_config {
1701 struct ec_mkbp_config config;
1702 } __packed;
1703
1704 struct ec_response_mkbp_get_config {
1705 struct ec_mkbp_config config;
1706 } __packed;
1707
1708 /* Run the key scan emulation */
1709 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
1710
1711 enum ec_keyscan_seq_cmd {
1712 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
1713 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
1714 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
1715 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
1716 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
1717 };
1718
1719 enum ec_collect_flags {
1720 /*
1721 * Indicates this scan was processed by the EC. Due to timing, some
1722 * scans may be skipped.
1723 */
1724 EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0,
1725 };
1726
1727 struct ec_collect_item {
1728 uint8_t flags; /* some flags (enum ec_collect_flags) */
1729 };
1730
1731 struct ec_params_keyscan_seq_ctrl {
1732 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
1733 union {
1734 struct {
1735 uint8_t active; /* still active */
1736 uint8_t num_items; /* number of items */
1737 /* Current item being presented */
1738 uint8_t cur_item;
1739 } status;
1740 struct {
1741 /*
1742 * Absolute time for this scan, measured from the
1743 * start of the sequence.
1744 */
1745 uint32_t time_us;
1746 uint8_t scan[0]; /* keyscan data */
1747 } add;
1748 struct {
1749 uint8_t start_item; /* First item to return */
1750 uint8_t num_items; /* Number of items to return */
1751 } collect;
1752 };
1753 } __packed;
1754
1755 struct ec_result_keyscan_seq_ctrl {
1756 union {
1757 struct {
1758 uint8_t num_items; /* Number of items */
1759 /* Data for each item */
1760 struct ec_collect_item item[0];
1761 } collect;
1762 };
1763 } __packed;
1764
1765 /*****************************************************************************/
1766 /* Temperature sensor commands */
1767
1768 /* Read temperature sensor info */
1769 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
1770
1771 struct ec_params_temp_sensor_get_info {
1772 uint8_t id;
1773 } __packed;
1774
1775 struct ec_response_temp_sensor_get_info {
1776 char sensor_name[32];
1777 uint8_t sensor_type;
1778 } __packed;
1779
1780 /*****************************************************************************/
1781
1782 /*
1783 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
1784 * commands accidentally sent to the wrong interface. See the ACPI section
1785 * below.
1786 */
1787
1788 /*****************************************************************************/
1789 /* Host event commands */
1790
1791 /*
1792 * Host event mask params and response structures, shared by all of the host
1793 * event commands below.
1794 */
1795 struct ec_params_host_event_mask {
1796 uint32_t mask;
1797 } __packed;
1798
1799 struct ec_response_host_event_mask {
1800 uint32_t mask;
1801 } __packed;
1802
1803 /* These all use ec_response_host_event_mask */
1804 #define EC_CMD_HOST_EVENT_GET_B 0x87
1805 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88
1806 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89
1807 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
1808
1809 /* These all use ec_params_host_event_mask */
1810 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a
1811 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b
1812 #define EC_CMD_HOST_EVENT_CLEAR 0x8c
1813 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
1814 #define EC_CMD_HOST_EVENT_CLEAR_B 0x8f
1815
1816 /*****************************************************************************/
1817 /* Switch commands */
1818
1819 /* Enable/disable LCD backlight */
1820 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
1821
1822 struct ec_params_switch_enable_backlight {
1823 uint8_t enabled;
1824 } __packed;
1825
1826 /* Enable/disable WLAN/Bluetooth */
1827 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
1828 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
1829
1830 /* Version 0 params; no response */
1831 struct ec_params_switch_enable_wireless_v0 {
1832 uint8_t enabled;
1833 } __packed;
1834
1835 /* Version 1 params */
1836 struct ec_params_switch_enable_wireless_v1 {
1837 /* Flags to enable now */
1838 uint8_t now_flags;
1839
1840 /* Which flags to copy from now_flags */
1841 uint8_t now_mask;
1842
1843 /*
1844 * Flags to leave enabled in S3, if they're on at the S0->S3
1845 * transition. (Other flags will be disabled by the S0->S3
1846 * transition.)
1847 */
1848 uint8_t suspend_flags;
1849
1850 /* Which flags to copy from suspend_flags */
1851 uint8_t suspend_mask;
1852 } __packed;
1853
1854 /* Version 1 response */
1855 struct ec_response_switch_enable_wireless_v1 {
1856 /* Flags to enable now */
1857 uint8_t now_flags;
1858
1859 /* Flags to leave enabled in S3 */
1860 uint8_t suspend_flags;
1861 } __packed;
1862
1863 /*****************************************************************************/
1864 /* GPIO commands. Only available on EC if write protect has been disabled. */
1865
1866 /* Set GPIO output value */
1867 #define EC_CMD_GPIO_SET 0x92
1868
1869 struct ec_params_gpio_set {
1870 char name[32];
1871 uint8_t val;
1872 } __packed;
1873
1874 /* Get GPIO value */
1875 #define EC_CMD_GPIO_GET 0x93
1876
1877 /* Version 0 of input params and response */
1878 struct ec_params_gpio_get {
1879 char name[32];
1880 } __packed;
1881 struct ec_response_gpio_get {
1882 uint8_t val;
1883 } __packed;
1884
1885 /* Version 1 of input params and response */
1886 struct ec_params_gpio_get_v1 {
1887 uint8_t subcmd;
1888 union {
1889 struct {
1890 char name[32];
1891 } get_value_by_name;
1892 struct {
1893 uint8_t index;
1894 } get_info;
1895 };
1896 } __packed;
1897
1898 struct ec_response_gpio_get_v1 {
1899 union {
1900 struct {
1901 uint8_t val;
1902 } get_value_by_name, get_count;
1903 struct {
1904 uint8_t val;
1905 char name[32];
1906 uint32_t flags;
1907 } get_info;
1908 };
1909 } __packed;
1910
1911 enum gpio_get_subcmd {
1912 EC_GPIO_GET_BY_NAME = 0,
1913 EC_GPIO_GET_COUNT = 1,
1914 EC_GPIO_GET_INFO = 2,
1915 };
1916
1917 /*****************************************************************************/
1918 /* I2C commands. Only available when flash write protect is unlocked. */
1919
1920 /*
1921 * TODO(crosbug.com/p/23570): These commands are deprecated, and will be
1922 * removed soon. Use EC_CMD_I2C_XFER instead.
1923 */
1924
1925 /* Read I2C bus */
1926 #define EC_CMD_I2C_READ 0x94
1927
1928 struct ec_params_i2c_read {
1929 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1930 uint8_t read_size; /* Either 8 or 16. */
1931 uint8_t port;
1932 uint8_t offset;
1933 } __packed;
1934 struct ec_response_i2c_read {
1935 uint16_t data;
1936 } __packed;
1937
1938 /* Write I2C bus */
1939 #define EC_CMD_I2C_WRITE 0x95
1940
1941 struct ec_params_i2c_write {
1942 uint16_t data;
1943 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1944 uint8_t write_size; /* Either 8 or 16. */
1945 uint8_t port;
1946 uint8_t offset;
1947 } __packed;
1948
1949 /*****************************************************************************/
1950 /* Charge state commands. Only available when flash write protect unlocked. */
1951
1952 /* Force charge state machine to stop charging the battery or force it to
1953 * discharge the battery.
1954 */
1955 #define EC_CMD_CHARGE_CONTROL 0x96
1956 #define EC_VER_CHARGE_CONTROL 1
1957
1958 enum ec_charge_control_mode {
1959 CHARGE_CONTROL_NORMAL = 0,
1960 CHARGE_CONTROL_IDLE,
1961 CHARGE_CONTROL_DISCHARGE,
1962 };
1963
1964 struct ec_params_charge_control {
1965 uint32_t mode; /* enum charge_control_mode */
1966 } __packed;
1967
1968 /*****************************************************************************/
1969 /* Console commands. Only available when flash write protect is unlocked. */
1970
1971 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
1972 #define EC_CMD_CONSOLE_SNAPSHOT 0x97
1973
1974 /*
1975 * Read next chunk of data from saved snapshot.
1976 *
1977 * Response is null-terminated string. Empty string, if there is no more
1978 * remaining output.
1979 */
1980 #define EC_CMD_CONSOLE_READ 0x98
1981
1982 /*****************************************************************************/
1983
1984 /*
1985 * Cut off battery power immediately or after the host has shut down.
1986 *
1987 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
1988 * EC_RES_SUCCESS if the command was successful.
1989 * EC_RES_ERROR if the cut off command failed.
1990 */
1991
1992 #define EC_CMD_BATTERY_CUT_OFF 0x99
1993
1994 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0)
1995
1996 struct ec_params_battery_cutoff {
1997 uint8_t flags;
1998 } __packed;
1999
2000 /*****************************************************************************/
2001 /* USB port mux control. */
2002
2003 /*
2004 * Switch USB mux or return to automatic switching.
2005 */
2006 #define EC_CMD_USB_MUX 0x9a
2007
2008 struct ec_params_usb_mux {
2009 uint8_t mux;
2010 } __packed;
2011
2012 /*****************************************************************************/
2013 /* LDOs / FETs control. */
2014
2015 enum ec_ldo_state {
2016 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
2017 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
2018 };
2019
2020 /*
2021 * Switch on/off a LDO.
2022 */
2023 #define EC_CMD_LDO_SET 0x9b
2024
2025 struct ec_params_ldo_set {
2026 uint8_t index;
2027 uint8_t state;
2028 } __packed;
2029
2030 /*
2031 * Get LDO state.
2032 */
2033 #define EC_CMD_LDO_GET 0x9c
2034
2035 struct ec_params_ldo_get {
2036 uint8_t index;
2037 } __packed;
2038
2039 struct ec_response_ldo_get {
2040 uint8_t state;
2041 } __packed;
2042
2043 /*****************************************************************************/
2044 /* Power info. */
2045
2046 /*
2047 * Get power info.
2048 */
2049 #define EC_CMD_POWER_INFO 0x9d
2050
2051 struct ec_response_power_info {
2052 uint32_t usb_dev_type;
2053 uint16_t voltage_ac;
2054 uint16_t voltage_system;
2055 uint16_t current_system;
2056 uint16_t usb_current_limit;
2057 } __packed;
2058
2059 /*****************************************************************************/
2060 /* I2C passthru command */
2061
2062 #define EC_CMD_I2C_PASSTHRU 0x9e
2063
2064 /* Read data; if not present, message is a write */
2065 #define EC_I2C_FLAG_READ (1 << 15)
2066
2067 /* Mask for address */
2068 #define EC_I2C_ADDR_MASK 0x3ff
2069
2070 #define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */
2071 #define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */
2072
2073 /* Any error */
2074 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
2075
2076 struct ec_params_i2c_passthru_msg {
2077 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
2078 uint16_t len; /* Number of bytes to read or write */
2079 } __packed;
2080
2081 struct ec_params_i2c_passthru {
2082 uint8_t port; /* I2C port number */
2083 uint8_t num_msgs; /* Number of messages */
2084 struct ec_params_i2c_passthru_msg msg[];
2085 /* Data to write for all messages is concatenated here */
2086 } __packed;
2087
2088 struct ec_response_i2c_passthru {
2089 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
2090 uint8_t num_msgs; /* Number of messages processed */
2091 uint8_t data[]; /* Data read by messages concatenated here */
2092 } __packed;
2093
2094 /*****************************************************************************/
2095 /* Power button hang detect */
2096
2097 #define EC_CMD_HANG_DETECT 0x9f
2098
2099 /* Reasons to start hang detection timer */
2100 /* Power button pressed */
2101 #define EC_HANG_START_ON_POWER_PRESS (1 << 0)
2102
2103 /* Lid closed */
2104 #define EC_HANG_START_ON_LID_CLOSE (1 << 1)
2105
2106 /* Lid opened */
2107 #define EC_HANG_START_ON_LID_OPEN (1 << 2)
2108
2109 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
2110 #define EC_HANG_START_ON_RESUME (1 << 3)
2111
2112 /* Reasons to cancel hang detection */
2113
2114 /* Power button released */
2115 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
2116
2117 /* Any host command from AP received */
2118 #define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9)
2119
2120 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
2121 #define EC_HANG_STOP_ON_SUSPEND (1 << 10)
2122
2123 /*
2124 * If this flag is set, all the other fields are ignored, and the hang detect
2125 * timer is started. This provides the AP a way to start the hang timer
2126 * without reconfiguring any of the other hang detect settings. Note that
2127 * you must previously have configured the timeouts.
2128 */
2129 #define EC_HANG_START_NOW (1 << 30)
2130
2131 /*
2132 * If this flag is set, all the other fields are ignored (including
2133 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer
2134 * without reconfiguring any of the other hang detect settings.
2135 */
2136 #define EC_HANG_STOP_NOW (1 << 31)
2137
2138 struct ec_params_hang_detect {
2139 /* Flags; see EC_HANG_* */
2140 uint32_t flags;
2141
2142 /* Timeout in msec before generating host event, if enabled */
2143 uint16_t host_event_timeout_msec;
2144
2145 /* Timeout in msec before generating warm reboot, if enabled */
2146 uint16_t warm_reboot_timeout_msec;
2147 } __packed;
2148
2149 /*****************************************************************************/
2150 /* Commands for battery charging */
2151
2152 /*
2153 * This is the single catch-all host command to exchange data regarding the
2154 * charge state machine (v2 and up).
2155 */
2156 #define EC_CMD_CHARGE_STATE 0xa0
2157
2158 /* Subcommands for this host command */
2159 enum charge_state_command {
2160 CHARGE_STATE_CMD_GET_STATE,
2161 CHARGE_STATE_CMD_GET_PARAM,
2162 CHARGE_STATE_CMD_SET_PARAM,
2163 CHARGE_STATE_NUM_CMDS
2164 };
2165
2166 /*
2167 * Known param numbers are defined here. Ranges are reserved for board-specific
2168 * params, which are handled by the particular implementations.
2169 */
2170 enum charge_state_params {
2171 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */
2172 CS_PARAM_CHG_CURRENT, /* charger current limit */
2173 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */
2174 CS_PARAM_CHG_STATUS, /* charger-specific status */
2175 CS_PARAM_CHG_OPTION, /* charger-specific options */
2176 /* How many so far? */
2177 CS_NUM_BASE_PARAMS,
2178
2179 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
2180 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
2181 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
2182
2183 /* Other custom param ranges go here... */
2184 };
2185
2186 struct ec_params_charge_state {
2187 uint8_t cmd; /* enum charge_state_command */
2188 union {
2189 struct {
2190 /* no args */
2191 } get_state;
2192
2193 struct {
2194 uint32_t param; /* enum charge_state_param */
2195 } get_param;
2196
2197 struct {
2198 uint32_t param; /* param to set */
2199 uint32_t value; /* value to set */
2200 } set_param;
2201 };
2202 } __packed;
2203
2204 struct ec_response_charge_state {
2205 union {
2206 struct {
2207 int ac;
2208 int chg_voltage;
2209 int chg_current;
2210 int chg_input_current;
2211 int batt_state_of_charge;
2212 } get_state;
2213
2214 struct {
2215 uint32_t value;
2216 } get_param;
2217 struct {
2218 /* no return values */
2219 } set_param;
2220 };
2221 } __packed;
2222
2223
2224 /*
2225 * Set maximum battery charging current.
2226 */
2227 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
2228
2229 struct ec_params_current_limit {
2230 uint32_t limit; /* in mA */
2231 } __packed;
2232
2233 /*
2234 * Set maximum external power current.
2235 */
2236 #define EC_CMD_EXT_POWER_CURRENT_LIMIT 0xa2
2237
2238 struct ec_params_ext_power_current_limit {
2239 uint32_t limit; /* in mA */
2240 } __packed;
2241
2242 /*****************************************************************************/
2243 /* Smart battery pass-through */
2244
2245 /* Get / Set 16-bit smart battery registers */
2246 #define EC_CMD_SB_READ_WORD 0xb0
2247 #define EC_CMD_SB_WRITE_WORD 0xb1
2248
2249 /* Get / Set string smart battery parameters
2250 * formatted as SMBUS "block".
2251 */
2252 #define EC_CMD_SB_READ_BLOCK 0xb2
2253 #define EC_CMD_SB_WRITE_BLOCK 0xb3
2254
2255 struct ec_params_sb_rd {
2256 uint8_t reg;
2257 } __packed;
2258
2259 struct ec_response_sb_rd_word {
2260 uint16_t value;
2261 } __packed;
2262
2263 struct ec_params_sb_wr_word {
2264 uint8_t reg;
2265 uint16_t value;
2266 } __packed;
2267
2268 struct ec_response_sb_rd_block {
2269 uint8_t data[32];
2270 } __packed;
2271
2272 struct ec_params_sb_wr_block {
2273 uint8_t reg;
2274 uint16_t data[32];
2275 } __packed;
2276
2277 /*****************************************************************************/
2278 /* Battery vendor parameters
2279 *
2280 * Get or set vendor-specific parameters in the battery. Implementations may
2281 * differ between boards or batteries. On a set operation, the response
2282 * contains the actual value set, which may be rounded or clipped from the
2283 * requested value.
2284 */
2285
2286 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
2287
2288 enum ec_battery_vendor_param_mode {
2289 BATTERY_VENDOR_PARAM_MODE_GET = 0,
2290 BATTERY_VENDOR_PARAM_MODE_SET,
2291 };
2292
2293 struct ec_params_battery_vendor_param {
2294 uint32_t param;
2295 uint32_t value;
2296 uint8_t mode;
2297 } __packed;
2298
2299 struct ec_response_battery_vendor_param {
2300 uint32_t value;
2301 } __packed;
2302
2303 /*****************************************************************************/
2304 /* System commands */
2305
2306 /*
2307 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
2308 * necessarily reboot the EC. Rename to "image" or something similar?
2309 */
2310 #define EC_CMD_REBOOT_EC 0xd2
2311
2312 /* Command */
2313 enum ec_reboot_cmd {
2314 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
2315 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
2316 EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */
2317 /* (command 3 was jump to RW-B) */
2318 EC_REBOOT_COLD = 4, /* Cold-reboot */
2319 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
2320 EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */
2321 };
2322
2323 /* Flags for ec_params_reboot_ec.reboot_flags */
2324 #define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */
2325 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */
2326
2327 struct ec_params_reboot_ec {
2328 uint8_t cmd; /* enum ec_reboot_cmd */
2329 uint8_t flags; /* See EC_REBOOT_FLAG_* */
2330 } __packed;
2331
2332 /*
2333 * Get information on last EC panic.
2334 *
2335 * Returns variable-length platform-dependent panic information. See panic.h
2336 * for details.
2337 */
2338 #define EC_CMD_GET_PANIC_INFO 0xd3
2339
2340 /*****************************************************************************/
2341 /*
2342 * ACPI commands
2343 *
2344 * These are valid ONLY on the ACPI command/data port.
2345 */
2346
2347 /*
2348 * ACPI Read Embedded Controller
2349 *
2350 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2351 *
2352 * Use the following sequence:
2353 *
2354 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
2355 * - Wait for EC_LPC_CMDR_PENDING bit to clear
2356 * - Write address to EC_LPC_ADDR_ACPI_DATA
2357 * - Wait for EC_LPC_CMDR_DATA bit to set
2358 * - Read value from EC_LPC_ADDR_ACPI_DATA
2359 */
2360 #define EC_CMD_ACPI_READ 0x80
2361
2362 /*
2363 * ACPI Write Embedded Controller
2364 *
2365 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2366 *
2367 * Use the following sequence:
2368 *
2369 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
2370 * - Wait for EC_LPC_CMDR_PENDING bit to clear
2371 * - Write address to EC_LPC_ADDR_ACPI_DATA
2372 * - Wait for EC_LPC_CMDR_PENDING bit to clear
2373 * - Write value to EC_LPC_ADDR_ACPI_DATA
2374 */
2375 #define EC_CMD_ACPI_WRITE 0x81
2376
2377 /*
2378 * ACPI Query Embedded Controller
2379 *
2380 * This clears the lowest-order bit in the currently pending host events, and
2381 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
2382 * event 0x80000000 = 32), or 0 if no event was pending.
2383 */
2384 #define EC_CMD_ACPI_QUERY_EVENT 0x84
2385
2386 /* Valid addresses in ACPI memory space, for read/write commands */
2387
2388 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
2389 #define EC_ACPI_MEM_VERSION 0x00
2390 /*
2391 * Test location; writing value here updates test compliment byte to (0xff -
2392 * value).
2393 */
2394 #define EC_ACPI_MEM_TEST 0x01
2395 /* Test compliment; writes here are ignored. */
2396 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
2397
2398 /* Keyboard backlight brightness percent (0 - 100) */
2399 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
2400 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
2401 #define EC_ACPI_MEM_FAN_DUTY 0x04
2402
2403 /*
2404 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
2405 * independent thresholds attached to them. The current value of the ID
2406 * register determines which sensor is affected by the THRESHOLD and COMMIT
2407 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
2408 * as the memory-mapped sensors. The COMMIT register applies those settings.
2409 *
2410 * The spec does not mandate any way to read back the threshold settings
2411 * themselves, but when a threshold is crossed the AP needs a way to determine
2412 * which sensor(s) are responsible. Each reading of the ID register clears and
2413 * returns one sensor ID that has crossed one of its threshold (in either
2414 * direction) since the last read. A value of 0xFF means "no new thresholds
2415 * have tripped". Setting or enabling the thresholds for a sensor will clear
2416 * the unread event count for that sensor.
2417 */
2418 #define EC_ACPI_MEM_TEMP_ID 0x05
2419 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
2420 #define EC_ACPI_MEM_TEMP_COMMIT 0x07
2421 /*
2422 * Here are the bits for the COMMIT register:
2423 * bit 0 selects the threshold index for the chosen sensor (0/1)
2424 * bit 1 enables/disables the selected threshold (0 = off, 1 = on)
2425 * Each write to the commit register affects one threshold.
2426 */
2427 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
2428 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
2429 /*
2430 * Example:
2431 *
2432 * Set the thresholds for sensor 2 to 50 C and 60 C:
2433 * write 2 to [0x05] -- select temp sensor 2
2434 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
2435 * write 0x2 to [0x07] -- enable threshold 0 with this value
2436 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
2437 * write 0x3 to [0x07] -- enable threshold 1 with this value
2438 *
2439 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
2440 * write 2 to [0x05] -- select temp sensor 2
2441 * write 0x1 to [0x07] -- disable threshold 1
2442 */
2443
2444 /* DPTF battery charging current limit */
2445 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08
2446
2447 /* Charging limit is specified in 64 mA steps */
2448 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
2449 /* Value to disable DPTF battery charging limit */
2450 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
2451
2452 /* Current version of ACPI memory address space */
2453 #define EC_ACPI_MEM_VERSION_CURRENT 1
2454
2455
2456 /*****************************************************************************/
2457 /*
2458 * Special commands
2459 *
2460 * These do not follow the normal rules for commands. See each command for
2461 * details.
2462 */
2463
2464 /*
2465 * Reboot NOW
2466 *
2467 * This command will work even when the EC LPC interface is busy, because the
2468 * reboot command is processed at interrupt level. Note that when the EC
2469 * reboots, the host will reboot too, so there is no response to this command.
2470 *
2471 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
2472 */
2473 #define EC_CMD_REBOOT 0xd1 /* Think "die" */
2474
2475 /*
2476 * Resend last response (not supported on LPC).
2477 *
2478 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
2479 * there was no previous command, or the previous command's response was too
2480 * big to save.
2481 */
2482 #define EC_CMD_RESEND_RESPONSE 0xdb
2483
2484 /*
2485 * This header byte on a command indicate version 0. Any header byte less
2486 * than this means that we are talking to an old EC which doesn't support
2487 * versioning. In that case, we assume version 0.
2488 *
2489 * Header bytes greater than this indicate a later version. For example,
2490 * EC_CMD_VERSION0 + 1 means we are using version 1.
2491 *
2492 * The old EC interface must not use commands 0xdc or higher.
2493 */
2494 #define EC_CMD_VERSION0 0xdc
2495
2496 #endif /* !__ACPI__ */
2497
2498 /*****************************************************************************/
2499 /*
2500 * PD commands
2501 *
2502 * These commands are for PD MCU communication.
2503 */
2504
2505 /* EC to PD MCU exchange status command */
2506 #define EC_CMD_PD_EXCHANGE_STATUS 0x100
2507
2508 /* Status of EC being sent to PD */
2509 struct ec_params_pd_status {
2510 int8_t batt_soc; /* battery state of charge */
2511 } __packed;
2512
2513 /* Status of PD being sent back to EC */
2514 struct ec_response_pd_status {
2515 int8_t status; /* PD MCU status */
2516 uint32_t curr_lim_ma; /* input current limit */
2517 } __packed;
2518
2519 /* Set USB type-C port role and muxes */
2520 #define EC_CMD_USB_PD_CONTROL 0x101
2521
2522 enum usb_pd_control_role {
2523 USB_PD_CTRL_ROLE_NO_CHANGE = 0,
2524 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
2525 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
2526 USB_PD_CTRL_ROLE_FORCE_SINK = 3,
2527 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
2528 };
2529
2530 enum usb_pd_control_mux {
2531 USB_PD_CTRL_MUX_NO_CHANGE = 0,
2532 USB_PD_CTRL_MUX_NONE = 1,
2533 USB_PD_CTRL_MUX_USB = 2,
2534 USB_PD_CTRL_MUX_DP = 3,
2535 USB_PD_CTRL_MUX_DOCK = 4,
2536 USB_PD_CTRL_MUX_AUTO = 5,
2537 };
2538
2539 struct ec_params_usb_pd_control {
2540 uint8_t port;
2541 uint8_t role;
2542 uint8_t mux;
2543 } __packed;
2544
2545 /*****************************************************************************/
2546 /*
2547 * Passthru commands
2548 *
2549 * Some platforms have sub-processors chained to each other. For example.
2550 *
2551 * AP <--> EC <--> PD MCU
2552 *
2553 * The top 2 bits of the command number are used to indicate which device the
2554 * command is intended for. Device 0 is always the device receiving the
2555 * command; other device mapping is board-specific.
2556 *
2557 * When a device receives a command to be passed to a sub-processor, it passes
2558 * it on with the device number set back to 0. This allows the sub-processor
2559 * to remain blissfully unaware of whether the command originated on the next
2560 * device up the chain, or was passed through from the AP.
2561 *
2562 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
2563 * AP sends command 0x4002 to the EC
2564 * EC sends command 0x0002 to the PD MCU
2565 * EC forwards PD MCU response back to the AP
2566 */
2567
2568 /* Offset and max command number for sub-device n */
2569 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
2570 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
2571
2572 /*****************************************************************************/
2573 /*
2574 * Deprecated constants. These constants have been renamed for clarity. The
2575 * meaning and size has not changed. Programs that use the old names should
2576 * switch to the new names soon, as the old names may not be carried forward
2577 * forever.
2578 */
2579 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
2580 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
2581 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
2582
2583 #endif /* __CROS_EC_COMMANDS_H */
This page took 0.084233 seconds and 6 git commands to generate.