HWPOISON: Add soft page offline support
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21 struct rlimit;
22
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
26
27 extern unsigned long num_physpages;
28 extern unsigned long totalram_pages;
29 extern void * high_memory;
30 extern int page_cluster;
31
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /* to align the pointer to the (next) page boundary */
45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
46
47 /*
48 * Linux kernel virtual memory manager primitives.
49 * The idea being to have a "virtual" mm in the same way
50 * we have a virtual fs - giving a cleaner interface to the
51 * mm details, and allowing different kinds of memory mappings
52 * (from shared memory to executable loading to arbitrary
53 * mmap() functions).
54 */
55
56 extern struct kmem_cache *vm_area_cachep;
57
58 #ifndef CONFIG_MMU
59 extern struct rb_root nommu_region_tree;
60 extern struct rw_semaphore nommu_region_sem;
61
62 extern unsigned int kobjsize(const void *objp);
63 #endif
64
65 /*
66 * vm_flags in vm_area_struct, see mm_types.h.
67 */
68 #define VM_READ 0x00000001 /* currently active flags */
69 #define VM_WRITE 0x00000002
70 #define VM_EXEC 0x00000004
71 #define VM_SHARED 0x00000008
72
73 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
74 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
75 #define VM_MAYWRITE 0x00000020
76 #define VM_MAYEXEC 0x00000040
77 #define VM_MAYSHARE 0x00000080
78
79 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
80 #define VM_GROWSUP 0x00000200
81 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
82 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
83
84 #define VM_EXECUTABLE 0x00001000
85 #define VM_LOCKED 0x00002000
86 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
87
88 /* Used by sys_madvise() */
89 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
90 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
91
92 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
93 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
94 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
95 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
96 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
97 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
98 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
99 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
100 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
101 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
102
103 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
104 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
105 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
106 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
107 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
108
109 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
111 #endif
112
113 #ifdef CONFIG_STACK_GROWSUP
114 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
115 #else
116 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #endif
118
119 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
120 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
121 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
122 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
123 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
124
125 /*
126 * special vmas that are non-mergable, non-mlock()able
127 */
128 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
129
130 /*
131 * mapping from the currently active vm_flags protection bits (the
132 * low four bits) to a page protection mask..
133 */
134 extern pgprot_t protection_map[16];
135
136 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
137 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
138 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
139
140 /*
141 * This interface is used by x86 PAT code to identify a pfn mapping that is
142 * linear over entire vma. This is to optimize PAT code that deals with
143 * marking the physical region with a particular prot. This is not for generic
144 * mm use. Note also that this check will not work if the pfn mapping is
145 * linear for a vma starting at physical address 0. In which case PAT code
146 * falls back to slow path of reserving physical range page by page.
147 */
148 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
149 {
150 return (vma->vm_flags & VM_PFN_AT_MMAP);
151 }
152
153 static inline int is_pfn_mapping(struct vm_area_struct *vma)
154 {
155 return (vma->vm_flags & VM_PFNMAP);
156 }
157
158 /*
159 * vm_fault is filled by the the pagefault handler and passed to the vma's
160 * ->fault function. The vma's ->fault is responsible for returning a bitmask
161 * of VM_FAULT_xxx flags that give details about how the fault was handled.
162 *
163 * pgoff should be used in favour of virtual_address, if possible. If pgoff
164 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
165 * mapping support.
166 */
167 struct vm_fault {
168 unsigned int flags; /* FAULT_FLAG_xxx flags */
169 pgoff_t pgoff; /* Logical page offset based on vma */
170 void __user *virtual_address; /* Faulting virtual address */
171
172 struct page *page; /* ->fault handlers should return a
173 * page here, unless VM_FAULT_NOPAGE
174 * is set (which is also implied by
175 * VM_FAULT_ERROR).
176 */
177 };
178
179 /*
180 * These are the virtual MM functions - opening of an area, closing and
181 * unmapping it (needed to keep files on disk up-to-date etc), pointer
182 * to the functions called when a no-page or a wp-page exception occurs.
183 */
184 struct vm_operations_struct {
185 void (*open)(struct vm_area_struct * area);
186 void (*close)(struct vm_area_struct * area);
187 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
188
189 /* notification that a previously read-only page is about to become
190 * writable, if an error is returned it will cause a SIGBUS */
191 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
192
193 /* called by access_process_vm when get_user_pages() fails, typically
194 * for use by special VMAs that can switch between memory and hardware
195 */
196 int (*access)(struct vm_area_struct *vma, unsigned long addr,
197 void *buf, int len, int write);
198 #ifdef CONFIG_NUMA
199 /*
200 * set_policy() op must add a reference to any non-NULL @new mempolicy
201 * to hold the policy upon return. Caller should pass NULL @new to
202 * remove a policy and fall back to surrounding context--i.e. do not
203 * install a MPOL_DEFAULT policy, nor the task or system default
204 * mempolicy.
205 */
206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
207
208 /*
209 * get_policy() op must add reference [mpol_get()] to any policy at
210 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
211 * in mm/mempolicy.c will do this automatically.
212 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
213 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
214 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
215 * must return NULL--i.e., do not "fallback" to task or system default
216 * policy.
217 */
218 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
219 unsigned long addr);
220 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
221 const nodemask_t *to, unsigned long flags);
222 #endif
223 };
224
225 struct mmu_gather;
226 struct inode;
227
228 #define page_private(page) ((page)->private)
229 #define set_page_private(page, v) ((page)->private = (v))
230
231 /*
232 * FIXME: take this include out, include page-flags.h in
233 * files which need it (119 of them)
234 */
235 #include <linux/page-flags.h>
236
237 /*
238 * Methods to modify the page usage count.
239 *
240 * What counts for a page usage:
241 * - cache mapping (page->mapping)
242 * - private data (page->private)
243 * - page mapped in a task's page tables, each mapping
244 * is counted separately
245 *
246 * Also, many kernel routines increase the page count before a critical
247 * routine so they can be sure the page doesn't go away from under them.
248 */
249
250 /*
251 * Drop a ref, return true if the refcount fell to zero (the page has no users)
252 */
253 static inline int put_page_testzero(struct page *page)
254 {
255 VM_BUG_ON(atomic_read(&page->_count) == 0);
256 return atomic_dec_and_test(&page->_count);
257 }
258
259 /*
260 * Try to grab a ref unless the page has a refcount of zero, return false if
261 * that is the case.
262 */
263 static inline int get_page_unless_zero(struct page *page)
264 {
265 return atomic_inc_not_zero(&page->_count);
266 }
267
268 /* Support for virtually mapped pages */
269 struct page *vmalloc_to_page(const void *addr);
270 unsigned long vmalloc_to_pfn(const void *addr);
271
272 /*
273 * Determine if an address is within the vmalloc range
274 *
275 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
276 * is no special casing required.
277 */
278 static inline int is_vmalloc_addr(const void *x)
279 {
280 #ifdef CONFIG_MMU
281 unsigned long addr = (unsigned long)x;
282
283 return addr >= VMALLOC_START && addr < VMALLOC_END;
284 #else
285 return 0;
286 #endif
287 }
288 #ifdef CONFIG_MMU
289 extern int is_vmalloc_or_module_addr(const void *x);
290 #else
291 static inline int is_vmalloc_or_module_addr(const void *x)
292 {
293 return 0;
294 }
295 #endif
296
297 static inline struct page *compound_head(struct page *page)
298 {
299 if (unlikely(PageTail(page)))
300 return page->first_page;
301 return page;
302 }
303
304 static inline int page_count(struct page *page)
305 {
306 return atomic_read(&compound_head(page)->_count);
307 }
308
309 static inline void get_page(struct page *page)
310 {
311 page = compound_head(page);
312 VM_BUG_ON(atomic_read(&page->_count) == 0);
313 atomic_inc(&page->_count);
314 }
315
316 static inline struct page *virt_to_head_page(const void *x)
317 {
318 struct page *page = virt_to_page(x);
319 return compound_head(page);
320 }
321
322 /*
323 * Setup the page count before being freed into the page allocator for
324 * the first time (boot or memory hotplug)
325 */
326 static inline void init_page_count(struct page *page)
327 {
328 atomic_set(&page->_count, 1);
329 }
330
331 void put_page(struct page *page);
332 void put_pages_list(struct list_head *pages);
333
334 void split_page(struct page *page, unsigned int order);
335
336 /*
337 * Compound pages have a destructor function. Provide a
338 * prototype for that function and accessor functions.
339 * These are _only_ valid on the head of a PG_compound page.
340 */
341 typedef void compound_page_dtor(struct page *);
342
343 static inline void set_compound_page_dtor(struct page *page,
344 compound_page_dtor *dtor)
345 {
346 page[1].lru.next = (void *)dtor;
347 }
348
349 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
350 {
351 return (compound_page_dtor *)page[1].lru.next;
352 }
353
354 static inline int compound_order(struct page *page)
355 {
356 if (!PageHead(page))
357 return 0;
358 return (unsigned long)page[1].lru.prev;
359 }
360
361 static inline void set_compound_order(struct page *page, unsigned long order)
362 {
363 page[1].lru.prev = (void *)order;
364 }
365
366 /*
367 * Multiple processes may "see" the same page. E.g. for untouched
368 * mappings of /dev/null, all processes see the same page full of
369 * zeroes, and text pages of executables and shared libraries have
370 * only one copy in memory, at most, normally.
371 *
372 * For the non-reserved pages, page_count(page) denotes a reference count.
373 * page_count() == 0 means the page is free. page->lru is then used for
374 * freelist management in the buddy allocator.
375 * page_count() > 0 means the page has been allocated.
376 *
377 * Pages are allocated by the slab allocator in order to provide memory
378 * to kmalloc and kmem_cache_alloc. In this case, the management of the
379 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
380 * unless a particular usage is carefully commented. (the responsibility of
381 * freeing the kmalloc memory is the caller's, of course).
382 *
383 * A page may be used by anyone else who does a __get_free_page().
384 * In this case, page_count still tracks the references, and should only
385 * be used through the normal accessor functions. The top bits of page->flags
386 * and page->virtual store page management information, but all other fields
387 * are unused and could be used privately, carefully. The management of this
388 * page is the responsibility of the one who allocated it, and those who have
389 * subsequently been given references to it.
390 *
391 * The other pages (we may call them "pagecache pages") are completely
392 * managed by the Linux memory manager: I/O, buffers, swapping etc.
393 * The following discussion applies only to them.
394 *
395 * A pagecache page contains an opaque `private' member, which belongs to the
396 * page's address_space. Usually, this is the address of a circular list of
397 * the page's disk buffers. PG_private must be set to tell the VM to call
398 * into the filesystem to release these pages.
399 *
400 * A page may belong to an inode's memory mapping. In this case, page->mapping
401 * is the pointer to the inode, and page->index is the file offset of the page,
402 * in units of PAGE_CACHE_SIZE.
403 *
404 * If pagecache pages are not associated with an inode, they are said to be
405 * anonymous pages. These may become associated with the swapcache, and in that
406 * case PG_swapcache is set, and page->private is an offset into the swapcache.
407 *
408 * In either case (swapcache or inode backed), the pagecache itself holds one
409 * reference to the page. Setting PG_private should also increment the
410 * refcount. The each user mapping also has a reference to the page.
411 *
412 * The pagecache pages are stored in a per-mapping radix tree, which is
413 * rooted at mapping->page_tree, and indexed by offset.
414 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
415 * lists, we instead now tag pages as dirty/writeback in the radix tree.
416 *
417 * All pagecache pages may be subject to I/O:
418 * - inode pages may need to be read from disk,
419 * - inode pages which have been modified and are MAP_SHARED may need
420 * to be written back to the inode on disk,
421 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
422 * modified may need to be swapped out to swap space and (later) to be read
423 * back into memory.
424 */
425
426 /*
427 * The zone field is never updated after free_area_init_core()
428 * sets it, so none of the operations on it need to be atomic.
429 */
430
431
432 /*
433 * page->flags layout:
434 *
435 * There are three possibilities for how page->flags get
436 * laid out. The first is for the normal case, without
437 * sparsemem. The second is for sparsemem when there is
438 * plenty of space for node and section. The last is when
439 * we have run out of space and have to fall back to an
440 * alternate (slower) way of determining the node.
441 *
442 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
443 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
444 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
445 */
446 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
447 #define SECTIONS_WIDTH SECTIONS_SHIFT
448 #else
449 #define SECTIONS_WIDTH 0
450 #endif
451
452 #define ZONES_WIDTH ZONES_SHIFT
453
454 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
455 #define NODES_WIDTH NODES_SHIFT
456 #else
457 #ifdef CONFIG_SPARSEMEM_VMEMMAP
458 #error "Vmemmap: No space for nodes field in page flags"
459 #endif
460 #define NODES_WIDTH 0
461 #endif
462
463 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
464 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
465 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
466 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
467
468 /*
469 * We are going to use the flags for the page to node mapping if its in
470 * there. This includes the case where there is no node, so it is implicit.
471 */
472 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
473 #define NODE_NOT_IN_PAGE_FLAGS
474 #endif
475
476 #ifndef PFN_SECTION_SHIFT
477 #define PFN_SECTION_SHIFT 0
478 #endif
479
480 /*
481 * Define the bit shifts to access each section. For non-existant
482 * sections we define the shift as 0; that plus a 0 mask ensures
483 * the compiler will optimise away reference to them.
484 */
485 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
486 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
487 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
488
489 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
490 #ifdef NODE_NOT_IN_PAGEFLAGS
491 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
492 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
493 SECTIONS_PGOFF : ZONES_PGOFF)
494 #else
495 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
496 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
497 NODES_PGOFF : ZONES_PGOFF)
498 #endif
499
500 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
501
502 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
503 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
504 #endif
505
506 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
507 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
508 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
509 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
510
511 static inline enum zone_type page_zonenum(struct page *page)
512 {
513 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
514 }
515
516 /*
517 * The identification function is only used by the buddy allocator for
518 * determining if two pages could be buddies. We are not really
519 * identifying a zone since we could be using a the section number
520 * id if we have not node id available in page flags.
521 * We guarantee only that it will return the same value for two
522 * combinable pages in a zone.
523 */
524 static inline int page_zone_id(struct page *page)
525 {
526 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
527 }
528
529 static inline int zone_to_nid(struct zone *zone)
530 {
531 #ifdef CONFIG_NUMA
532 return zone->node;
533 #else
534 return 0;
535 #endif
536 }
537
538 #ifdef NODE_NOT_IN_PAGE_FLAGS
539 extern int page_to_nid(struct page *page);
540 #else
541 static inline int page_to_nid(struct page *page)
542 {
543 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
544 }
545 #endif
546
547 static inline struct zone *page_zone(struct page *page)
548 {
549 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
550 }
551
552 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
553 static inline unsigned long page_to_section(struct page *page)
554 {
555 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
556 }
557 #endif
558
559 static inline void set_page_zone(struct page *page, enum zone_type zone)
560 {
561 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
562 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
563 }
564
565 static inline void set_page_node(struct page *page, unsigned long node)
566 {
567 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
568 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
569 }
570
571 static inline void set_page_section(struct page *page, unsigned long section)
572 {
573 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
574 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
575 }
576
577 static inline void set_page_links(struct page *page, enum zone_type zone,
578 unsigned long node, unsigned long pfn)
579 {
580 set_page_zone(page, zone);
581 set_page_node(page, node);
582 set_page_section(page, pfn_to_section_nr(pfn));
583 }
584
585 /*
586 * Some inline functions in vmstat.h depend on page_zone()
587 */
588 #include <linux/vmstat.h>
589
590 static __always_inline void *lowmem_page_address(struct page *page)
591 {
592 return __va(page_to_pfn(page) << PAGE_SHIFT);
593 }
594
595 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
596 #define HASHED_PAGE_VIRTUAL
597 #endif
598
599 #if defined(WANT_PAGE_VIRTUAL)
600 #define page_address(page) ((page)->virtual)
601 #define set_page_address(page, address) \
602 do { \
603 (page)->virtual = (address); \
604 } while(0)
605 #define page_address_init() do { } while(0)
606 #endif
607
608 #if defined(HASHED_PAGE_VIRTUAL)
609 void *page_address(struct page *page);
610 void set_page_address(struct page *page, void *virtual);
611 void page_address_init(void);
612 #endif
613
614 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
615 #define page_address(page) lowmem_page_address(page)
616 #define set_page_address(page, address) do { } while(0)
617 #define page_address_init() do { } while(0)
618 #endif
619
620 /*
621 * On an anonymous page mapped into a user virtual memory area,
622 * page->mapping points to its anon_vma, not to a struct address_space;
623 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
624 *
625 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
626 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
627 * and then page->mapping points, not to an anon_vma, but to a private
628 * structure which KSM associates with that merged page. See ksm.h.
629 *
630 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
631 *
632 * Please note that, confusingly, "page_mapping" refers to the inode
633 * address_space which maps the page from disk; whereas "page_mapped"
634 * refers to user virtual address space into which the page is mapped.
635 */
636 #define PAGE_MAPPING_ANON 1
637 #define PAGE_MAPPING_KSM 2
638 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
639
640 extern struct address_space swapper_space;
641 static inline struct address_space *page_mapping(struct page *page)
642 {
643 struct address_space *mapping = page->mapping;
644
645 VM_BUG_ON(PageSlab(page));
646 if (unlikely(PageSwapCache(page)))
647 mapping = &swapper_space;
648 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
649 mapping = NULL;
650 return mapping;
651 }
652
653 /* Neutral page->mapping pointer to address_space or anon_vma or other */
654 static inline void *page_rmapping(struct page *page)
655 {
656 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
657 }
658
659 static inline int PageAnon(struct page *page)
660 {
661 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
662 }
663
664 /*
665 * Return the pagecache index of the passed page. Regular pagecache pages
666 * use ->index whereas swapcache pages use ->private
667 */
668 static inline pgoff_t page_index(struct page *page)
669 {
670 if (unlikely(PageSwapCache(page)))
671 return page_private(page);
672 return page->index;
673 }
674
675 /*
676 * The atomic page->_mapcount, like _count, starts from -1:
677 * so that transitions both from it and to it can be tracked,
678 * using atomic_inc_and_test and atomic_add_negative(-1).
679 */
680 static inline void reset_page_mapcount(struct page *page)
681 {
682 atomic_set(&(page)->_mapcount, -1);
683 }
684
685 static inline int page_mapcount(struct page *page)
686 {
687 return atomic_read(&(page)->_mapcount) + 1;
688 }
689
690 /*
691 * Return true if this page is mapped into pagetables.
692 */
693 static inline int page_mapped(struct page *page)
694 {
695 return atomic_read(&(page)->_mapcount) >= 0;
696 }
697
698 /*
699 * Different kinds of faults, as returned by handle_mm_fault().
700 * Used to decide whether a process gets delivered SIGBUS or
701 * just gets major/minor fault counters bumped up.
702 */
703
704 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
705
706 #define VM_FAULT_OOM 0x0001
707 #define VM_FAULT_SIGBUS 0x0002
708 #define VM_FAULT_MAJOR 0x0004
709 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
710 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
711
712 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
713 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
714
715 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
716
717 /*
718 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
719 */
720 extern void pagefault_out_of_memory(void);
721
722 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
723
724 extern void show_free_areas(void);
725
726 int shmem_lock(struct file *file, int lock, struct user_struct *user);
727 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
728 int shmem_zero_setup(struct vm_area_struct *);
729
730 #ifndef CONFIG_MMU
731 extern unsigned long shmem_get_unmapped_area(struct file *file,
732 unsigned long addr,
733 unsigned long len,
734 unsigned long pgoff,
735 unsigned long flags);
736 #endif
737
738 extern int can_do_mlock(void);
739 extern int user_shm_lock(size_t, struct user_struct *);
740 extern void user_shm_unlock(size_t, struct user_struct *);
741
742 /*
743 * Parameter block passed down to zap_pte_range in exceptional cases.
744 */
745 struct zap_details {
746 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
747 struct address_space *check_mapping; /* Check page->mapping if set */
748 pgoff_t first_index; /* Lowest page->index to unmap */
749 pgoff_t last_index; /* Highest page->index to unmap */
750 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
751 unsigned long truncate_count; /* Compare vm_truncate_count */
752 };
753
754 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
755 pte_t pte);
756
757 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
758 unsigned long size);
759 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
760 unsigned long size, struct zap_details *);
761 unsigned long unmap_vmas(struct mmu_gather **tlb,
762 struct vm_area_struct *start_vma, unsigned long start_addr,
763 unsigned long end_addr, unsigned long *nr_accounted,
764 struct zap_details *);
765
766 /**
767 * mm_walk - callbacks for walk_page_range
768 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
769 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
770 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
771 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
772 * @pte_hole: if set, called for each hole at all levels
773 * @hugetlb_entry: if set, called for each hugetlb entry
774 *
775 * (see walk_page_range for more details)
776 */
777 struct mm_walk {
778 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
779 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
780 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
781 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
782 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
783 int (*hugetlb_entry)(pte_t *, unsigned long, unsigned long,
784 struct mm_walk *);
785 struct mm_struct *mm;
786 void *private;
787 };
788
789 int walk_page_range(unsigned long addr, unsigned long end,
790 struct mm_walk *walk);
791 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
792 unsigned long end, unsigned long floor, unsigned long ceiling);
793 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
794 struct vm_area_struct *vma);
795 void unmap_mapping_range(struct address_space *mapping,
796 loff_t const holebegin, loff_t const holelen, int even_cows);
797 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
798 unsigned long *pfn);
799 int follow_phys(struct vm_area_struct *vma, unsigned long address,
800 unsigned int flags, unsigned long *prot, resource_size_t *phys);
801 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
802 void *buf, int len, int write);
803
804 static inline void unmap_shared_mapping_range(struct address_space *mapping,
805 loff_t const holebegin, loff_t const holelen)
806 {
807 unmap_mapping_range(mapping, holebegin, holelen, 0);
808 }
809
810 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
811 extern int vmtruncate(struct inode *inode, loff_t offset);
812 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
813
814 int truncate_inode_page(struct address_space *mapping, struct page *page);
815 int generic_error_remove_page(struct address_space *mapping, struct page *page);
816
817 int invalidate_inode_page(struct page *page);
818
819 #ifdef CONFIG_MMU
820 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
821 unsigned long address, unsigned int flags);
822 #else
823 static inline int handle_mm_fault(struct mm_struct *mm,
824 struct vm_area_struct *vma, unsigned long address,
825 unsigned int flags)
826 {
827 /* should never happen if there's no MMU */
828 BUG();
829 return VM_FAULT_SIGBUS;
830 }
831 #endif
832
833 extern int make_pages_present(unsigned long addr, unsigned long end);
834 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
835
836 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
837 unsigned long start, int nr_pages, int write, int force,
838 struct page **pages, struct vm_area_struct **vmas);
839 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
840 struct page **pages);
841 struct page *get_dump_page(unsigned long addr);
842
843 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
844 extern void do_invalidatepage(struct page *page, unsigned long offset);
845
846 int __set_page_dirty_nobuffers(struct page *page);
847 int __set_page_dirty_no_writeback(struct page *page);
848 int redirty_page_for_writepage(struct writeback_control *wbc,
849 struct page *page);
850 void account_page_dirtied(struct page *page, struct address_space *mapping);
851 int set_page_dirty(struct page *page);
852 int set_page_dirty_lock(struct page *page);
853 int clear_page_dirty_for_io(struct page *page);
854
855 extern unsigned long move_page_tables(struct vm_area_struct *vma,
856 unsigned long old_addr, struct vm_area_struct *new_vma,
857 unsigned long new_addr, unsigned long len);
858 extern unsigned long do_mremap(unsigned long addr,
859 unsigned long old_len, unsigned long new_len,
860 unsigned long flags, unsigned long new_addr);
861 extern int mprotect_fixup(struct vm_area_struct *vma,
862 struct vm_area_struct **pprev, unsigned long start,
863 unsigned long end, unsigned long newflags);
864
865 /*
866 * doesn't attempt to fault and will return short.
867 */
868 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
869 struct page **pages);
870
871 /*
872 * A callback you can register to apply pressure to ageable caches.
873 *
874 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
875 * look through the least-recently-used 'nr_to_scan' entries and
876 * attempt to free them up. It should return the number of objects
877 * which remain in the cache. If it returns -1, it means it cannot do
878 * any scanning at this time (eg. there is a risk of deadlock).
879 *
880 * The 'gfpmask' refers to the allocation we are currently trying to
881 * fulfil.
882 *
883 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
884 * querying the cache size, so a fastpath for that case is appropriate.
885 */
886 struct shrinker {
887 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
888 int seeks; /* seeks to recreate an obj */
889
890 /* These are for internal use */
891 struct list_head list;
892 long nr; /* objs pending delete */
893 };
894 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
895 extern void register_shrinker(struct shrinker *);
896 extern void unregister_shrinker(struct shrinker *);
897
898 int vma_wants_writenotify(struct vm_area_struct *vma);
899
900 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
901
902 #ifdef __PAGETABLE_PUD_FOLDED
903 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
904 unsigned long address)
905 {
906 return 0;
907 }
908 #else
909 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
910 #endif
911
912 #ifdef __PAGETABLE_PMD_FOLDED
913 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
914 unsigned long address)
915 {
916 return 0;
917 }
918 #else
919 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
920 #endif
921
922 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
923 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
924
925 /*
926 * The following ifdef needed to get the 4level-fixup.h header to work.
927 * Remove it when 4level-fixup.h has been removed.
928 */
929 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
930 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
931 {
932 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
933 NULL: pud_offset(pgd, address);
934 }
935
936 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
937 {
938 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
939 NULL: pmd_offset(pud, address);
940 }
941 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
942
943 #if USE_SPLIT_PTLOCKS
944 /*
945 * We tuck a spinlock to guard each pagetable page into its struct page,
946 * at page->private, with BUILD_BUG_ON to make sure that this will not
947 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
948 * When freeing, reset page->mapping so free_pages_check won't complain.
949 */
950 #define __pte_lockptr(page) &((page)->ptl)
951 #define pte_lock_init(_page) do { \
952 spin_lock_init(__pte_lockptr(_page)); \
953 } while (0)
954 #define pte_lock_deinit(page) ((page)->mapping = NULL)
955 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
956 #else /* !USE_SPLIT_PTLOCKS */
957 /*
958 * We use mm->page_table_lock to guard all pagetable pages of the mm.
959 */
960 #define pte_lock_init(page) do {} while (0)
961 #define pte_lock_deinit(page) do {} while (0)
962 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
963 #endif /* USE_SPLIT_PTLOCKS */
964
965 static inline void pgtable_page_ctor(struct page *page)
966 {
967 pte_lock_init(page);
968 inc_zone_page_state(page, NR_PAGETABLE);
969 }
970
971 static inline void pgtable_page_dtor(struct page *page)
972 {
973 pte_lock_deinit(page);
974 dec_zone_page_state(page, NR_PAGETABLE);
975 }
976
977 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
978 ({ \
979 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
980 pte_t *__pte = pte_offset_map(pmd, address); \
981 *(ptlp) = __ptl; \
982 spin_lock(__ptl); \
983 __pte; \
984 })
985
986 #define pte_unmap_unlock(pte, ptl) do { \
987 spin_unlock(ptl); \
988 pte_unmap(pte); \
989 } while (0)
990
991 #define pte_alloc_map(mm, pmd, address) \
992 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
993 NULL: pte_offset_map(pmd, address))
994
995 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
996 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
997 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
998
999 #define pte_alloc_kernel(pmd, address) \
1000 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1001 NULL: pte_offset_kernel(pmd, address))
1002
1003 extern void free_area_init(unsigned long * zones_size);
1004 extern void free_area_init_node(int nid, unsigned long * zones_size,
1005 unsigned long zone_start_pfn, unsigned long *zholes_size);
1006 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1007 /*
1008 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1009 * zones, allocate the backing mem_map and account for memory holes in a more
1010 * architecture independent manner. This is a substitute for creating the
1011 * zone_sizes[] and zholes_size[] arrays and passing them to
1012 * free_area_init_node()
1013 *
1014 * An architecture is expected to register range of page frames backed by
1015 * physical memory with add_active_range() before calling
1016 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1017 * usage, an architecture is expected to do something like
1018 *
1019 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1020 * max_highmem_pfn};
1021 * for_each_valid_physical_page_range()
1022 * add_active_range(node_id, start_pfn, end_pfn)
1023 * free_area_init_nodes(max_zone_pfns);
1024 *
1025 * If the architecture guarantees that there are no holes in the ranges
1026 * registered with add_active_range(), free_bootmem_active_regions()
1027 * will call free_bootmem_node() for each registered physical page range.
1028 * Similarly sparse_memory_present_with_active_regions() calls
1029 * memory_present() for each range when SPARSEMEM is enabled.
1030 *
1031 * See mm/page_alloc.c for more information on each function exposed by
1032 * CONFIG_ARCH_POPULATES_NODE_MAP
1033 */
1034 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1035 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1036 unsigned long end_pfn);
1037 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1038 unsigned long end_pfn);
1039 extern void remove_all_active_ranges(void);
1040 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1041 unsigned long end_pfn);
1042 extern void get_pfn_range_for_nid(unsigned int nid,
1043 unsigned long *start_pfn, unsigned long *end_pfn);
1044 extern unsigned long find_min_pfn_with_active_regions(void);
1045 extern void free_bootmem_with_active_regions(int nid,
1046 unsigned long max_low_pfn);
1047 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1048 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1049 extern void sparse_memory_present_with_active_regions(int nid);
1050 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1051
1052 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1053 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1054 static inline int __early_pfn_to_nid(unsigned long pfn)
1055 {
1056 return 0;
1057 }
1058 #else
1059 /* please see mm/page_alloc.c */
1060 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1061 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1062 /* there is a per-arch backend function. */
1063 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1064 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1065 #endif
1066
1067 extern void set_dma_reserve(unsigned long new_dma_reserve);
1068 extern void memmap_init_zone(unsigned long, int, unsigned long,
1069 unsigned long, enum memmap_context);
1070 extern void setup_per_zone_wmarks(void);
1071 extern void calculate_zone_inactive_ratio(struct zone *zone);
1072 extern void mem_init(void);
1073 extern void __init mmap_init(void);
1074 extern void show_mem(void);
1075 extern void si_meminfo(struct sysinfo * val);
1076 extern void si_meminfo_node(struct sysinfo *val, int nid);
1077 extern int after_bootmem;
1078
1079 #ifdef CONFIG_NUMA
1080 extern void setup_per_cpu_pageset(void);
1081 #else
1082 static inline void setup_per_cpu_pageset(void) {}
1083 #endif
1084
1085 extern void zone_pcp_update(struct zone *zone);
1086
1087 /* nommu.c */
1088 extern atomic_long_t mmap_pages_allocated;
1089
1090 /* prio_tree.c */
1091 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1092 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1093 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1094 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1095 struct prio_tree_iter *iter);
1096
1097 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1098 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1099 (vma = vma_prio_tree_next(vma, iter)); )
1100
1101 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1102 struct list_head *list)
1103 {
1104 vma->shared.vm_set.parent = NULL;
1105 list_add_tail(&vma->shared.vm_set.list, list);
1106 }
1107
1108 /* mmap.c */
1109 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1110 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1111 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1112 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1113 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1114 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1115 struct mempolicy *);
1116 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1117 extern int split_vma(struct mm_struct *,
1118 struct vm_area_struct *, unsigned long addr, int new_below);
1119 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1120 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1121 struct rb_node **, struct rb_node *);
1122 extern void unlink_file_vma(struct vm_area_struct *);
1123 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1124 unsigned long addr, unsigned long len, pgoff_t pgoff);
1125 extern void exit_mmap(struct mm_struct *);
1126
1127 extern int mm_take_all_locks(struct mm_struct *mm);
1128 extern void mm_drop_all_locks(struct mm_struct *mm);
1129
1130 #ifdef CONFIG_PROC_FS
1131 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1132 extern void added_exe_file_vma(struct mm_struct *mm);
1133 extern void removed_exe_file_vma(struct mm_struct *mm);
1134 #else
1135 static inline void added_exe_file_vma(struct mm_struct *mm)
1136 {}
1137
1138 static inline void removed_exe_file_vma(struct mm_struct *mm)
1139 {}
1140 #endif /* CONFIG_PROC_FS */
1141
1142 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1143 extern int install_special_mapping(struct mm_struct *mm,
1144 unsigned long addr, unsigned long len,
1145 unsigned long flags, struct page **pages);
1146
1147 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1148
1149 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1150 unsigned long len, unsigned long prot,
1151 unsigned long flag, unsigned long pgoff);
1152 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1153 unsigned long len, unsigned long flags,
1154 unsigned int vm_flags, unsigned long pgoff);
1155
1156 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1157 unsigned long len, unsigned long prot,
1158 unsigned long flag, unsigned long offset)
1159 {
1160 unsigned long ret = -EINVAL;
1161 if ((offset + PAGE_ALIGN(len)) < offset)
1162 goto out;
1163 if (!(offset & ~PAGE_MASK))
1164 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1165 out:
1166 return ret;
1167 }
1168
1169 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1170
1171 extern unsigned long do_brk(unsigned long, unsigned long);
1172
1173 /* filemap.c */
1174 extern unsigned long page_unuse(struct page *);
1175 extern void truncate_inode_pages(struct address_space *, loff_t);
1176 extern void truncate_inode_pages_range(struct address_space *,
1177 loff_t lstart, loff_t lend);
1178
1179 /* generic vm_area_ops exported for stackable file systems */
1180 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1181
1182 /* mm/page-writeback.c */
1183 int write_one_page(struct page *page, int wait);
1184 void task_dirty_inc(struct task_struct *tsk);
1185
1186 /* readahead.c */
1187 #define VM_MAX_READAHEAD 128 /* kbytes */
1188 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1189
1190 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1191 pgoff_t offset, unsigned long nr_to_read);
1192
1193 void page_cache_sync_readahead(struct address_space *mapping,
1194 struct file_ra_state *ra,
1195 struct file *filp,
1196 pgoff_t offset,
1197 unsigned long size);
1198
1199 void page_cache_async_readahead(struct address_space *mapping,
1200 struct file_ra_state *ra,
1201 struct file *filp,
1202 struct page *pg,
1203 pgoff_t offset,
1204 unsigned long size);
1205
1206 unsigned long max_sane_readahead(unsigned long nr);
1207 unsigned long ra_submit(struct file_ra_state *ra,
1208 struct address_space *mapping,
1209 struct file *filp);
1210
1211 /* Do stack extension */
1212 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1213 #ifdef CONFIG_IA64
1214 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1215 #endif
1216 extern int expand_stack_downwards(struct vm_area_struct *vma,
1217 unsigned long address);
1218
1219 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1220 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1221 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1222 struct vm_area_struct **pprev);
1223
1224 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1225 NULL if none. Assume start_addr < end_addr. */
1226 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1227 {
1228 struct vm_area_struct * vma = find_vma(mm,start_addr);
1229
1230 if (vma && end_addr <= vma->vm_start)
1231 vma = NULL;
1232 return vma;
1233 }
1234
1235 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1236 {
1237 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1238 }
1239
1240 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1241 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1242 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1243 unsigned long pfn, unsigned long size, pgprot_t);
1244 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1245 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1246 unsigned long pfn);
1247 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1248 unsigned long pfn);
1249
1250 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1251 unsigned int foll_flags);
1252 #define FOLL_WRITE 0x01 /* check pte is writable */
1253 #define FOLL_TOUCH 0x02 /* mark page accessed */
1254 #define FOLL_GET 0x04 /* do get_page on page */
1255 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1256 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1257
1258 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1259 void *data);
1260 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1261 unsigned long size, pte_fn_t fn, void *data);
1262
1263 #ifdef CONFIG_PROC_FS
1264 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1265 #else
1266 static inline void vm_stat_account(struct mm_struct *mm,
1267 unsigned long flags, struct file *file, long pages)
1268 {
1269 }
1270 #endif /* CONFIG_PROC_FS */
1271
1272 #ifdef CONFIG_DEBUG_PAGEALLOC
1273 extern int debug_pagealloc_enabled;
1274
1275 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1276
1277 static inline void enable_debug_pagealloc(void)
1278 {
1279 debug_pagealloc_enabled = 1;
1280 }
1281 #ifdef CONFIG_HIBERNATION
1282 extern bool kernel_page_present(struct page *page);
1283 #endif /* CONFIG_HIBERNATION */
1284 #else
1285 static inline void
1286 kernel_map_pages(struct page *page, int numpages, int enable) {}
1287 static inline void enable_debug_pagealloc(void)
1288 {
1289 }
1290 #ifdef CONFIG_HIBERNATION
1291 static inline bool kernel_page_present(struct page *page) { return true; }
1292 #endif /* CONFIG_HIBERNATION */
1293 #endif
1294
1295 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1296 #ifdef __HAVE_ARCH_GATE_AREA
1297 int in_gate_area_no_task(unsigned long addr);
1298 int in_gate_area(struct task_struct *task, unsigned long addr);
1299 #else
1300 int in_gate_area_no_task(unsigned long addr);
1301 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1302 #endif /* __HAVE_ARCH_GATE_AREA */
1303
1304 int drop_caches_sysctl_handler(struct ctl_table *, int,
1305 void __user *, size_t *, loff_t *);
1306 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1307 unsigned long lru_pages);
1308
1309 #ifndef CONFIG_MMU
1310 #define randomize_va_space 0
1311 #else
1312 extern int randomize_va_space;
1313 #endif
1314
1315 const char * arch_vma_name(struct vm_area_struct *vma);
1316 void print_vma_addr(char *prefix, unsigned long rip);
1317
1318 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1319 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1320 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1321 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1322 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1323 void *vmemmap_alloc_block(unsigned long size, int node);
1324 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1325 int vmemmap_populate_basepages(struct page *start_page,
1326 unsigned long pages, int node);
1327 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1328 void vmemmap_populate_print_last(void);
1329
1330 extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
1331 size_t size);
1332 extern void refund_locked_memory(struct mm_struct *mm, size_t size);
1333
1334 enum mf_flags {
1335 MF_COUNT_INCREASED = 1 << 0,
1336 };
1337 extern void memory_failure(unsigned long pfn, int trapno);
1338 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1339 extern int unpoison_memory(unsigned long pfn);
1340 extern int sysctl_memory_failure_early_kill;
1341 extern int sysctl_memory_failure_recovery;
1342 extern void shake_page(struct page *p, int access);
1343 extern atomic_long_t mce_bad_pages;
1344 extern int soft_offline_page(struct page *page, int flags);
1345
1346 #endif /* __KERNEL__ */
1347 #endif /* _LINUX_MM_H */
This page took 0.060546 seconds and 5 git commands to generate.