mm: move definition for LRU isolation modes to a header
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16
17 struct mempolicy;
18 struct anon_vma;
19 struct file_ra_state;
20 struct user_struct;
21 struct writeback_control;
22
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
26
27 extern unsigned long num_physpages;
28 extern unsigned long totalram_pages;
29 extern void * high_memory;
30 extern int page_cluster;
31
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /* to align the pointer to the (next) page boundary */
45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
46
47 /*
48 * Linux kernel virtual memory manager primitives.
49 * The idea being to have a "virtual" mm in the same way
50 * we have a virtual fs - giving a cleaner interface to the
51 * mm details, and allowing different kinds of memory mappings
52 * (from shared memory to executable loading to arbitrary
53 * mmap() functions).
54 */
55
56 extern struct kmem_cache *vm_area_cachep;
57
58 #ifndef CONFIG_MMU
59 extern struct rb_root nommu_region_tree;
60 extern struct rw_semaphore nommu_region_sem;
61
62 extern unsigned int kobjsize(const void *objp);
63 #endif
64
65 /*
66 * vm_flags in vm_area_struct, see mm_types.h.
67 */
68 #define VM_READ 0x00000001 /* currently active flags */
69 #define VM_WRITE 0x00000002
70 #define VM_EXEC 0x00000004
71 #define VM_SHARED 0x00000008
72
73 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
74 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
75 #define VM_MAYWRITE 0x00000020
76 #define VM_MAYEXEC 0x00000040
77 #define VM_MAYSHARE 0x00000080
78
79 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
80 #define VM_GROWSUP 0x00000200
81 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
82 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
83
84 #define VM_EXECUTABLE 0x00001000
85 #define VM_LOCKED 0x00002000
86 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
87
88 /* Used by sys_madvise() */
89 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
90 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
91
92 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
93 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
94 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
95 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
96 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
97 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
98 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
99 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
100 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
101 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
102
103 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
104 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
105 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
106 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
107 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
108
109 /* Bits set in the VMA until the stack is in its final location */
110 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
111
112 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
113 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
114 #endif
115
116 #ifdef CONFIG_STACK_GROWSUP
117 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
118 #else
119 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
120 #endif
121
122 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
123 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
124 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
125 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
126 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
127
128 /*
129 * special vmas that are non-mergable, non-mlock()able
130 */
131 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
132
133 /*
134 * mapping from the currently active vm_flags protection bits (the
135 * low four bits) to a page protection mask..
136 */
137 extern pgprot_t protection_map[16];
138
139 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
140 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
141 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
142
143 /*
144 * This interface is used by x86 PAT code to identify a pfn mapping that is
145 * linear over entire vma. This is to optimize PAT code that deals with
146 * marking the physical region with a particular prot. This is not for generic
147 * mm use. Note also that this check will not work if the pfn mapping is
148 * linear for a vma starting at physical address 0. In which case PAT code
149 * falls back to slow path of reserving physical range page by page.
150 */
151 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
152 {
153 return (vma->vm_flags & VM_PFN_AT_MMAP);
154 }
155
156 static inline int is_pfn_mapping(struct vm_area_struct *vma)
157 {
158 return (vma->vm_flags & VM_PFNMAP);
159 }
160
161 /*
162 * vm_fault is filled by the the pagefault handler and passed to the vma's
163 * ->fault function. The vma's ->fault is responsible for returning a bitmask
164 * of VM_FAULT_xxx flags that give details about how the fault was handled.
165 *
166 * pgoff should be used in favour of virtual_address, if possible. If pgoff
167 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
168 * mapping support.
169 */
170 struct vm_fault {
171 unsigned int flags; /* FAULT_FLAG_xxx flags */
172 pgoff_t pgoff; /* Logical page offset based on vma */
173 void __user *virtual_address; /* Faulting virtual address */
174
175 struct page *page; /* ->fault handlers should return a
176 * page here, unless VM_FAULT_NOPAGE
177 * is set (which is also implied by
178 * VM_FAULT_ERROR).
179 */
180 };
181
182 /*
183 * These are the virtual MM functions - opening of an area, closing and
184 * unmapping it (needed to keep files on disk up-to-date etc), pointer
185 * to the functions called when a no-page or a wp-page exception occurs.
186 */
187 struct vm_operations_struct {
188 void (*open)(struct vm_area_struct * area);
189 void (*close)(struct vm_area_struct * area);
190 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
191
192 /* notification that a previously read-only page is about to become
193 * writable, if an error is returned it will cause a SIGBUS */
194 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
195
196 /* called by access_process_vm when get_user_pages() fails, typically
197 * for use by special VMAs that can switch between memory and hardware
198 */
199 int (*access)(struct vm_area_struct *vma, unsigned long addr,
200 void *buf, int len, int write);
201 #ifdef CONFIG_NUMA
202 /*
203 * set_policy() op must add a reference to any non-NULL @new mempolicy
204 * to hold the policy upon return. Caller should pass NULL @new to
205 * remove a policy and fall back to surrounding context--i.e. do not
206 * install a MPOL_DEFAULT policy, nor the task or system default
207 * mempolicy.
208 */
209 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
210
211 /*
212 * get_policy() op must add reference [mpol_get()] to any policy at
213 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
214 * in mm/mempolicy.c will do this automatically.
215 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
216 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
217 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
218 * must return NULL--i.e., do not "fallback" to task or system default
219 * policy.
220 */
221 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
222 unsigned long addr);
223 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
224 const nodemask_t *to, unsigned long flags);
225 #endif
226 };
227
228 struct mmu_gather;
229 struct inode;
230
231 #define page_private(page) ((page)->private)
232 #define set_page_private(page, v) ((page)->private = (v))
233
234 /*
235 * FIXME: take this include out, include page-flags.h in
236 * files which need it (119 of them)
237 */
238 #include <linux/page-flags.h>
239
240 /*
241 * Methods to modify the page usage count.
242 *
243 * What counts for a page usage:
244 * - cache mapping (page->mapping)
245 * - private data (page->private)
246 * - page mapped in a task's page tables, each mapping
247 * is counted separately
248 *
249 * Also, many kernel routines increase the page count before a critical
250 * routine so they can be sure the page doesn't go away from under them.
251 */
252
253 /*
254 * Drop a ref, return true if the refcount fell to zero (the page has no users)
255 */
256 static inline int put_page_testzero(struct page *page)
257 {
258 VM_BUG_ON(atomic_read(&page->_count) == 0);
259 return atomic_dec_and_test(&page->_count);
260 }
261
262 /*
263 * Try to grab a ref unless the page has a refcount of zero, return false if
264 * that is the case.
265 */
266 static inline int get_page_unless_zero(struct page *page)
267 {
268 return atomic_inc_not_zero(&page->_count);
269 }
270
271 extern int page_is_ram(unsigned long pfn);
272
273 /* Support for virtually mapped pages */
274 struct page *vmalloc_to_page(const void *addr);
275 unsigned long vmalloc_to_pfn(const void *addr);
276
277 /*
278 * Determine if an address is within the vmalloc range
279 *
280 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
281 * is no special casing required.
282 */
283 static inline int is_vmalloc_addr(const void *x)
284 {
285 #ifdef CONFIG_MMU
286 unsigned long addr = (unsigned long)x;
287
288 return addr >= VMALLOC_START && addr < VMALLOC_END;
289 #else
290 return 0;
291 #endif
292 }
293 #ifdef CONFIG_MMU
294 extern int is_vmalloc_or_module_addr(const void *x);
295 #else
296 static inline int is_vmalloc_or_module_addr(const void *x)
297 {
298 return 0;
299 }
300 #endif
301
302 static inline struct page *compound_head(struct page *page)
303 {
304 if (unlikely(PageTail(page)))
305 return page->first_page;
306 return page;
307 }
308
309 static inline int page_count(struct page *page)
310 {
311 return atomic_read(&compound_head(page)->_count);
312 }
313
314 static inline void get_page(struct page *page)
315 {
316 page = compound_head(page);
317 VM_BUG_ON(atomic_read(&page->_count) == 0);
318 atomic_inc(&page->_count);
319 }
320
321 static inline struct page *virt_to_head_page(const void *x)
322 {
323 struct page *page = virt_to_page(x);
324 return compound_head(page);
325 }
326
327 /*
328 * Setup the page count before being freed into the page allocator for
329 * the first time (boot or memory hotplug)
330 */
331 static inline void init_page_count(struct page *page)
332 {
333 atomic_set(&page->_count, 1);
334 }
335
336 void put_page(struct page *page);
337 void put_pages_list(struct list_head *pages);
338
339 void split_page(struct page *page, unsigned int order);
340
341 /*
342 * Compound pages have a destructor function. Provide a
343 * prototype for that function and accessor functions.
344 * These are _only_ valid on the head of a PG_compound page.
345 */
346 typedef void compound_page_dtor(struct page *);
347
348 static inline void set_compound_page_dtor(struct page *page,
349 compound_page_dtor *dtor)
350 {
351 page[1].lru.next = (void *)dtor;
352 }
353
354 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
355 {
356 return (compound_page_dtor *)page[1].lru.next;
357 }
358
359 static inline int compound_order(struct page *page)
360 {
361 if (!PageHead(page))
362 return 0;
363 return (unsigned long)page[1].lru.prev;
364 }
365
366 static inline void set_compound_order(struct page *page, unsigned long order)
367 {
368 page[1].lru.prev = (void *)order;
369 }
370
371 /*
372 * Multiple processes may "see" the same page. E.g. for untouched
373 * mappings of /dev/null, all processes see the same page full of
374 * zeroes, and text pages of executables and shared libraries have
375 * only one copy in memory, at most, normally.
376 *
377 * For the non-reserved pages, page_count(page) denotes a reference count.
378 * page_count() == 0 means the page is free. page->lru is then used for
379 * freelist management in the buddy allocator.
380 * page_count() > 0 means the page has been allocated.
381 *
382 * Pages are allocated by the slab allocator in order to provide memory
383 * to kmalloc and kmem_cache_alloc. In this case, the management of the
384 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
385 * unless a particular usage is carefully commented. (the responsibility of
386 * freeing the kmalloc memory is the caller's, of course).
387 *
388 * A page may be used by anyone else who does a __get_free_page().
389 * In this case, page_count still tracks the references, and should only
390 * be used through the normal accessor functions. The top bits of page->flags
391 * and page->virtual store page management information, but all other fields
392 * are unused and could be used privately, carefully. The management of this
393 * page is the responsibility of the one who allocated it, and those who have
394 * subsequently been given references to it.
395 *
396 * The other pages (we may call them "pagecache pages") are completely
397 * managed by the Linux memory manager: I/O, buffers, swapping etc.
398 * The following discussion applies only to them.
399 *
400 * A pagecache page contains an opaque `private' member, which belongs to the
401 * page's address_space. Usually, this is the address of a circular list of
402 * the page's disk buffers. PG_private must be set to tell the VM to call
403 * into the filesystem to release these pages.
404 *
405 * A page may belong to an inode's memory mapping. In this case, page->mapping
406 * is the pointer to the inode, and page->index is the file offset of the page,
407 * in units of PAGE_CACHE_SIZE.
408 *
409 * If pagecache pages are not associated with an inode, they are said to be
410 * anonymous pages. These may become associated with the swapcache, and in that
411 * case PG_swapcache is set, and page->private is an offset into the swapcache.
412 *
413 * In either case (swapcache or inode backed), the pagecache itself holds one
414 * reference to the page. Setting PG_private should also increment the
415 * refcount. The each user mapping also has a reference to the page.
416 *
417 * The pagecache pages are stored in a per-mapping radix tree, which is
418 * rooted at mapping->page_tree, and indexed by offset.
419 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
420 * lists, we instead now tag pages as dirty/writeback in the radix tree.
421 *
422 * All pagecache pages may be subject to I/O:
423 * - inode pages may need to be read from disk,
424 * - inode pages which have been modified and are MAP_SHARED may need
425 * to be written back to the inode on disk,
426 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
427 * modified may need to be swapped out to swap space and (later) to be read
428 * back into memory.
429 */
430
431 /*
432 * The zone field is never updated after free_area_init_core()
433 * sets it, so none of the operations on it need to be atomic.
434 */
435
436
437 /*
438 * page->flags layout:
439 *
440 * There are three possibilities for how page->flags get
441 * laid out. The first is for the normal case, without
442 * sparsemem. The second is for sparsemem when there is
443 * plenty of space for node and section. The last is when
444 * we have run out of space and have to fall back to an
445 * alternate (slower) way of determining the node.
446 *
447 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
448 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
449 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
450 */
451 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
452 #define SECTIONS_WIDTH SECTIONS_SHIFT
453 #else
454 #define SECTIONS_WIDTH 0
455 #endif
456
457 #define ZONES_WIDTH ZONES_SHIFT
458
459 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
460 #define NODES_WIDTH NODES_SHIFT
461 #else
462 #ifdef CONFIG_SPARSEMEM_VMEMMAP
463 #error "Vmemmap: No space for nodes field in page flags"
464 #endif
465 #define NODES_WIDTH 0
466 #endif
467
468 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
469 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
470 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
471 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
472
473 /*
474 * We are going to use the flags for the page to node mapping if its in
475 * there. This includes the case where there is no node, so it is implicit.
476 */
477 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
478 #define NODE_NOT_IN_PAGE_FLAGS
479 #endif
480
481 #ifndef PFN_SECTION_SHIFT
482 #define PFN_SECTION_SHIFT 0
483 #endif
484
485 /*
486 * Define the bit shifts to access each section. For non-existant
487 * sections we define the shift as 0; that plus a 0 mask ensures
488 * the compiler will optimise away reference to them.
489 */
490 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
491 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
492 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
493
494 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
495 #ifdef NODE_NOT_IN_PAGEFLAGS
496 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
497 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
498 SECTIONS_PGOFF : ZONES_PGOFF)
499 #else
500 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
501 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
502 NODES_PGOFF : ZONES_PGOFF)
503 #endif
504
505 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
506
507 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
508 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
509 #endif
510
511 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
512 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
513 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
514 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
515
516 static inline enum zone_type page_zonenum(struct page *page)
517 {
518 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
519 }
520
521 /*
522 * The identification function is only used by the buddy allocator for
523 * determining if two pages could be buddies. We are not really
524 * identifying a zone since we could be using a the section number
525 * id if we have not node id available in page flags.
526 * We guarantee only that it will return the same value for two
527 * combinable pages in a zone.
528 */
529 static inline int page_zone_id(struct page *page)
530 {
531 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
532 }
533
534 static inline int zone_to_nid(struct zone *zone)
535 {
536 #ifdef CONFIG_NUMA
537 return zone->node;
538 #else
539 return 0;
540 #endif
541 }
542
543 #ifdef NODE_NOT_IN_PAGE_FLAGS
544 extern int page_to_nid(struct page *page);
545 #else
546 static inline int page_to_nid(struct page *page)
547 {
548 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
549 }
550 #endif
551
552 static inline struct zone *page_zone(struct page *page)
553 {
554 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
555 }
556
557 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
558 static inline unsigned long page_to_section(struct page *page)
559 {
560 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
561 }
562 #endif
563
564 static inline void set_page_zone(struct page *page, enum zone_type zone)
565 {
566 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
567 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
568 }
569
570 static inline void set_page_node(struct page *page, unsigned long node)
571 {
572 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
573 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
574 }
575
576 static inline void set_page_section(struct page *page, unsigned long section)
577 {
578 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
579 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
580 }
581
582 static inline void set_page_links(struct page *page, enum zone_type zone,
583 unsigned long node, unsigned long pfn)
584 {
585 set_page_zone(page, zone);
586 set_page_node(page, node);
587 set_page_section(page, pfn_to_section_nr(pfn));
588 }
589
590 /*
591 * Some inline functions in vmstat.h depend on page_zone()
592 */
593 #include <linux/vmstat.h>
594
595 static __always_inline void *lowmem_page_address(struct page *page)
596 {
597 return __va(page_to_pfn(page) << PAGE_SHIFT);
598 }
599
600 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
601 #define HASHED_PAGE_VIRTUAL
602 #endif
603
604 #if defined(WANT_PAGE_VIRTUAL)
605 #define page_address(page) ((page)->virtual)
606 #define set_page_address(page, address) \
607 do { \
608 (page)->virtual = (address); \
609 } while(0)
610 #define page_address_init() do { } while(0)
611 #endif
612
613 #if defined(HASHED_PAGE_VIRTUAL)
614 void *page_address(struct page *page);
615 void set_page_address(struct page *page, void *virtual);
616 void page_address_init(void);
617 #endif
618
619 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
620 #define page_address(page) lowmem_page_address(page)
621 #define set_page_address(page, address) do { } while(0)
622 #define page_address_init() do { } while(0)
623 #endif
624
625 /*
626 * On an anonymous page mapped into a user virtual memory area,
627 * page->mapping points to its anon_vma, not to a struct address_space;
628 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
629 *
630 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
631 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
632 * and then page->mapping points, not to an anon_vma, but to a private
633 * structure which KSM associates with that merged page. See ksm.h.
634 *
635 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
636 *
637 * Please note that, confusingly, "page_mapping" refers to the inode
638 * address_space which maps the page from disk; whereas "page_mapped"
639 * refers to user virtual address space into which the page is mapped.
640 */
641 #define PAGE_MAPPING_ANON 1
642 #define PAGE_MAPPING_KSM 2
643 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
644
645 extern struct address_space swapper_space;
646 static inline struct address_space *page_mapping(struct page *page)
647 {
648 struct address_space *mapping = page->mapping;
649
650 VM_BUG_ON(PageSlab(page));
651 if (unlikely(PageSwapCache(page)))
652 mapping = &swapper_space;
653 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
654 mapping = NULL;
655 return mapping;
656 }
657
658 /* Neutral page->mapping pointer to address_space or anon_vma or other */
659 static inline void *page_rmapping(struct page *page)
660 {
661 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
662 }
663
664 static inline int PageAnon(struct page *page)
665 {
666 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
667 }
668
669 /*
670 * Return the pagecache index of the passed page. Regular pagecache pages
671 * use ->index whereas swapcache pages use ->private
672 */
673 static inline pgoff_t page_index(struct page *page)
674 {
675 if (unlikely(PageSwapCache(page)))
676 return page_private(page);
677 return page->index;
678 }
679
680 /*
681 * The atomic page->_mapcount, like _count, starts from -1:
682 * so that transitions both from it and to it can be tracked,
683 * using atomic_inc_and_test and atomic_add_negative(-1).
684 */
685 static inline void reset_page_mapcount(struct page *page)
686 {
687 atomic_set(&(page)->_mapcount, -1);
688 }
689
690 static inline int page_mapcount(struct page *page)
691 {
692 return atomic_read(&(page)->_mapcount) + 1;
693 }
694
695 /*
696 * Return true if this page is mapped into pagetables.
697 */
698 static inline int page_mapped(struct page *page)
699 {
700 return atomic_read(&(page)->_mapcount) >= 0;
701 }
702
703 /*
704 * Different kinds of faults, as returned by handle_mm_fault().
705 * Used to decide whether a process gets delivered SIGBUS or
706 * just gets major/minor fault counters bumped up.
707 */
708
709 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
710
711 #define VM_FAULT_OOM 0x0001
712 #define VM_FAULT_SIGBUS 0x0002
713 #define VM_FAULT_MAJOR 0x0004
714 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
715 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
716
717 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
718 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
719
720 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
721
722 /*
723 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
724 */
725 extern void pagefault_out_of_memory(void);
726
727 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
728
729 extern void show_free_areas(void);
730
731 int shmem_lock(struct file *file, int lock, struct user_struct *user);
732 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
733 int shmem_zero_setup(struct vm_area_struct *);
734
735 #ifndef CONFIG_MMU
736 extern unsigned long shmem_get_unmapped_area(struct file *file,
737 unsigned long addr,
738 unsigned long len,
739 unsigned long pgoff,
740 unsigned long flags);
741 #endif
742
743 extern int can_do_mlock(void);
744 extern int user_shm_lock(size_t, struct user_struct *);
745 extern void user_shm_unlock(size_t, struct user_struct *);
746
747 /*
748 * Parameter block passed down to zap_pte_range in exceptional cases.
749 */
750 struct zap_details {
751 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
752 struct address_space *check_mapping; /* Check page->mapping if set */
753 pgoff_t first_index; /* Lowest page->index to unmap */
754 pgoff_t last_index; /* Highest page->index to unmap */
755 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
756 unsigned long truncate_count; /* Compare vm_truncate_count */
757 };
758
759 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
760 pte_t pte);
761
762 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
763 unsigned long size);
764 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
765 unsigned long size, struct zap_details *);
766 unsigned long unmap_vmas(struct mmu_gather **tlb,
767 struct vm_area_struct *start_vma, unsigned long start_addr,
768 unsigned long end_addr, unsigned long *nr_accounted,
769 struct zap_details *);
770
771 /**
772 * mm_walk - callbacks for walk_page_range
773 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
774 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
775 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
776 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
777 * @pte_hole: if set, called for each hole at all levels
778 * @hugetlb_entry: if set, called for each hugetlb entry
779 *
780 * (see walk_page_range for more details)
781 */
782 struct mm_walk {
783 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
784 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
785 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
786 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
787 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
788 int (*hugetlb_entry)(pte_t *, unsigned long,
789 unsigned long, unsigned long, struct mm_walk *);
790 struct mm_struct *mm;
791 void *private;
792 };
793
794 int walk_page_range(unsigned long addr, unsigned long end,
795 struct mm_walk *walk);
796 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
797 unsigned long end, unsigned long floor, unsigned long ceiling);
798 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
799 struct vm_area_struct *vma);
800 void unmap_mapping_range(struct address_space *mapping,
801 loff_t const holebegin, loff_t const holelen, int even_cows);
802 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
803 unsigned long *pfn);
804 int follow_phys(struct vm_area_struct *vma, unsigned long address,
805 unsigned int flags, unsigned long *prot, resource_size_t *phys);
806 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
807 void *buf, int len, int write);
808
809 static inline void unmap_shared_mapping_range(struct address_space *mapping,
810 loff_t const holebegin, loff_t const holelen)
811 {
812 unmap_mapping_range(mapping, holebegin, holelen, 0);
813 }
814
815 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
816 extern int vmtruncate(struct inode *inode, loff_t offset);
817 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
818
819 int truncate_inode_page(struct address_space *mapping, struct page *page);
820 int generic_error_remove_page(struct address_space *mapping, struct page *page);
821
822 int invalidate_inode_page(struct page *page);
823
824 #ifdef CONFIG_MMU
825 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
826 unsigned long address, unsigned int flags);
827 #else
828 static inline int handle_mm_fault(struct mm_struct *mm,
829 struct vm_area_struct *vma, unsigned long address,
830 unsigned int flags)
831 {
832 /* should never happen if there's no MMU */
833 BUG();
834 return VM_FAULT_SIGBUS;
835 }
836 #endif
837
838 extern int make_pages_present(unsigned long addr, unsigned long end);
839 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
840
841 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
842 unsigned long start, int nr_pages, int write, int force,
843 struct page **pages, struct vm_area_struct **vmas);
844 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
845 struct page **pages);
846 struct page *get_dump_page(unsigned long addr);
847
848 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
849 extern void do_invalidatepage(struct page *page, unsigned long offset);
850
851 int __set_page_dirty_nobuffers(struct page *page);
852 int __set_page_dirty_no_writeback(struct page *page);
853 int redirty_page_for_writepage(struct writeback_control *wbc,
854 struct page *page);
855 void account_page_dirtied(struct page *page, struct address_space *mapping);
856 int set_page_dirty(struct page *page);
857 int set_page_dirty_lock(struct page *page);
858 int clear_page_dirty_for_io(struct page *page);
859
860 extern unsigned long move_page_tables(struct vm_area_struct *vma,
861 unsigned long old_addr, struct vm_area_struct *new_vma,
862 unsigned long new_addr, unsigned long len);
863 extern unsigned long do_mremap(unsigned long addr,
864 unsigned long old_len, unsigned long new_len,
865 unsigned long flags, unsigned long new_addr);
866 extern int mprotect_fixup(struct vm_area_struct *vma,
867 struct vm_area_struct **pprev, unsigned long start,
868 unsigned long end, unsigned long newflags);
869
870 /*
871 * doesn't attempt to fault and will return short.
872 */
873 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
874 struct page **pages);
875 /*
876 * per-process(per-mm_struct) statistics.
877 */
878 #if defined(SPLIT_RSS_COUNTING)
879 /*
880 * The mm counters are not protected by its page_table_lock,
881 * so must be incremented atomically.
882 */
883 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
884 {
885 atomic_long_set(&mm->rss_stat.count[member], value);
886 }
887
888 unsigned long get_mm_counter(struct mm_struct *mm, int member);
889
890 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
891 {
892 atomic_long_add(value, &mm->rss_stat.count[member]);
893 }
894
895 static inline void inc_mm_counter(struct mm_struct *mm, int member)
896 {
897 atomic_long_inc(&mm->rss_stat.count[member]);
898 }
899
900 static inline void dec_mm_counter(struct mm_struct *mm, int member)
901 {
902 atomic_long_dec(&mm->rss_stat.count[member]);
903 }
904
905 #else /* !USE_SPLIT_PTLOCKS */
906 /*
907 * The mm counters are protected by its page_table_lock,
908 * so can be incremented directly.
909 */
910 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
911 {
912 mm->rss_stat.count[member] = value;
913 }
914
915 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
916 {
917 return mm->rss_stat.count[member];
918 }
919
920 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
921 {
922 mm->rss_stat.count[member] += value;
923 }
924
925 static inline void inc_mm_counter(struct mm_struct *mm, int member)
926 {
927 mm->rss_stat.count[member]++;
928 }
929
930 static inline void dec_mm_counter(struct mm_struct *mm, int member)
931 {
932 mm->rss_stat.count[member]--;
933 }
934
935 #endif /* !USE_SPLIT_PTLOCKS */
936
937 static inline unsigned long get_mm_rss(struct mm_struct *mm)
938 {
939 return get_mm_counter(mm, MM_FILEPAGES) +
940 get_mm_counter(mm, MM_ANONPAGES);
941 }
942
943 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
944 {
945 return max(mm->hiwater_rss, get_mm_rss(mm));
946 }
947
948 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
949 {
950 return max(mm->hiwater_vm, mm->total_vm);
951 }
952
953 static inline void update_hiwater_rss(struct mm_struct *mm)
954 {
955 unsigned long _rss = get_mm_rss(mm);
956
957 if ((mm)->hiwater_rss < _rss)
958 (mm)->hiwater_rss = _rss;
959 }
960
961 static inline void update_hiwater_vm(struct mm_struct *mm)
962 {
963 if (mm->hiwater_vm < mm->total_vm)
964 mm->hiwater_vm = mm->total_vm;
965 }
966
967 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
968 struct mm_struct *mm)
969 {
970 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
971
972 if (*maxrss < hiwater_rss)
973 *maxrss = hiwater_rss;
974 }
975
976 #if defined(SPLIT_RSS_COUNTING)
977 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
978 #else
979 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
980 {
981 }
982 #endif
983
984 /*
985 * A callback you can register to apply pressure to ageable caches.
986 *
987 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
988 * look through the least-recently-used 'nr_to_scan' entries and
989 * attempt to free them up. It should return the number of objects
990 * which remain in the cache. If it returns -1, it means it cannot do
991 * any scanning at this time (eg. there is a risk of deadlock).
992 *
993 * The 'gfpmask' refers to the allocation we are currently trying to
994 * fulfil.
995 *
996 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
997 * querying the cache size, so a fastpath for that case is appropriate.
998 */
999 struct shrinker {
1000 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
1001 int seeks; /* seeks to recreate an obj */
1002
1003 /* These are for internal use */
1004 struct list_head list;
1005 long nr; /* objs pending delete */
1006 };
1007 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1008 extern void register_shrinker(struct shrinker *);
1009 extern void unregister_shrinker(struct shrinker *);
1010
1011 int vma_wants_writenotify(struct vm_area_struct *vma);
1012
1013 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
1014
1015 #ifdef __PAGETABLE_PUD_FOLDED
1016 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1017 unsigned long address)
1018 {
1019 return 0;
1020 }
1021 #else
1022 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1023 #endif
1024
1025 #ifdef __PAGETABLE_PMD_FOLDED
1026 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1027 unsigned long address)
1028 {
1029 return 0;
1030 }
1031 #else
1032 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1033 #endif
1034
1035 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1036 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1037
1038 /*
1039 * The following ifdef needed to get the 4level-fixup.h header to work.
1040 * Remove it when 4level-fixup.h has been removed.
1041 */
1042 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1043 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1044 {
1045 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1046 NULL: pud_offset(pgd, address);
1047 }
1048
1049 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1050 {
1051 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1052 NULL: pmd_offset(pud, address);
1053 }
1054 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1055
1056 #if USE_SPLIT_PTLOCKS
1057 /*
1058 * We tuck a spinlock to guard each pagetable page into its struct page,
1059 * at page->private, with BUILD_BUG_ON to make sure that this will not
1060 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1061 * When freeing, reset page->mapping so free_pages_check won't complain.
1062 */
1063 #define __pte_lockptr(page) &((page)->ptl)
1064 #define pte_lock_init(_page) do { \
1065 spin_lock_init(__pte_lockptr(_page)); \
1066 } while (0)
1067 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1068 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1069 #else /* !USE_SPLIT_PTLOCKS */
1070 /*
1071 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1072 */
1073 #define pte_lock_init(page) do {} while (0)
1074 #define pte_lock_deinit(page) do {} while (0)
1075 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1076 #endif /* USE_SPLIT_PTLOCKS */
1077
1078 static inline void pgtable_page_ctor(struct page *page)
1079 {
1080 pte_lock_init(page);
1081 inc_zone_page_state(page, NR_PAGETABLE);
1082 }
1083
1084 static inline void pgtable_page_dtor(struct page *page)
1085 {
1086 pte_lock_deinit(page);
1087 dec_zone_page_state(page, NR_PAGETABLE);
1088 }
1089
1090 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1091 ({ \
1092 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1093 pte_t *__pte = pte_offset_map(pmd, address); \
1094 *(ptlp) = __ptl; \
1095 spin_lock(__ptl); \
1096 __pte; \
1097 })
1098
1099 #define pte_unmap_unlock(pte, ptl) do { \
1100 spin_unlock(ptl); \
1101 pte_unmap(pte); \
1102 } while (0)
1103
1104 #define pte_alloc_map(mm, pmd, address) \
1105 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1106 NULL: pte_offset_map(pmd, address))
1107
1108 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1109 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1110 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1111
1112 #define pte_alloc_kernel(pmd, address) \
1113 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1114 NULL: pte_offset_kernel(pmd, address))
1115
1116 extern void free_area_init(unsigned long * zones_size);
1117 extern void free_area_init_node(int nid, unsigned long * zones_size,
1118 unsigned long zone_start_pfn, unsigned long *zholes_size);
1119 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1120 /*
1121 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1122 * zones, allocate the backing mem_map and account for memory holes in a more
1123 * architecture independent manner. This is a substitute for creating the
1124 * zone_sizes[] and zholes_size[] arrays and passing them to
1125 * free_area_init_node()
1126 *
1127 * An architecture is expected to register range of page frames backed by
1128 * physical memory with add_active_range() before calling
1129 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1130 * usage, an architecture is expected to do something like
1131 *
1132 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1133 * max_highmem_pfn};
1134 * for_each_valid_physical_page_range()
1135 * add_active_range(node_id, start_pfn, end_pfn)
1136 * free_area_init_nodes(max_zone_pfns);
1137 *
1138 * If the architecture guarantees that there are no holes in the ranges
1139 * registered with add_active_range(), free_bootmem_active_regions()
1140 * will call free_bootmem_node() for each registered physical page range.
1141 * Similarly sparse_memory_present_with_active_regions() calls
1142 * memory_present() for each range when SPARSEMEM is enabled.
1143 *
1144 * See mm/page_alloc.c for more information on each function exposed by
1145 * CONFIG_ARCH_POPULATES_NODE_MAP
1146 */
1147 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1148 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1149 unsigned long end_pfn);
1150 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1151 unsigned long end_pfn);
1152 extern void remove_all_active_ranges(void);
1153 void sort_node_map(void);
1154 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1155 unsigned long end_pfn);
1156 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1157 unsigned long end_pfn);
1158 extern void get_pfn_range_for_nid(unsigned int nid,
1159 unsigned long *start_pfn, unsigned long *end_pfn);
1160 extern unsigned long find_min_pfn_with_active_regions(void);
1161 extern void free_bootmem_with_active_regions(int nid,
1162 unsigned long max_low_pfn);
1163 int add_from_early_node_map(struct range *range, int az,
1164 int nr_range, int nid);
1165 void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1166 u64 goal, u64 limit);
1167 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1168 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1169 extern void sparse_memory_present_with_active_regions(int nid);
1170 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1171
1172 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1173 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1174 static inline int __early_pfn_to_nid(unsigned long pfn)
1175 {
1176 return 0;
1177 }
1178 #else
1179 /* please see mm/page_alloc.c */
1180 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1181 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1182 /* there is a per-arch backend function. */
1183 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1184 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1185 #endif
1186
1187 extern void set_dma_reserve(unsigned long new_dma_reserve);
1188 extern void memmap_init_zone(unsigned long, int, unsigned long,
1189 unsigned long, enum memmap_context);
1190 extern void setup_per_zone_wmarks(void);
1191 extern void calculate_zone_inactive_ratio(struct zone *zone);
1192 extern void mem_init(void);
1193 extern void __init mmap_init(void);
1194 extern void show_mem(void);
1195 extern void si_meminfo(struct sysinfo * val);
1196 extern void si_meminfo_node(struct sysinfo *val, int nid);
1197 extern int after_bootmem;
1198
1199 extern void setup_per_cpu_pageset(void);
1200
1201 extern void zone_pcp_update(struct zone *zone);
1202
1203 /* nommu.c */
1204 extern atomic_long_t mmap_pages_allocated;
1205 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1206
1207 /* prio_tree.c */
1208 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1209 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1210 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1211 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1212 struct prio_tree_iter *iter);
1213
1214 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1215 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1216 (vma = vma_prio_tree_next(vma, iter)); )
1217
1218 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1219 struct list_head *list)
1220 {
1221 vma->shared.vm_set.parent = NULL;
1222 list_add_tail(&vma->shared.vm_set.list, list);
1223 }
1224
1225 /* mmap.c */
1226 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1227 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1228 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1229 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1230 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1231 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1232 struct mempolicy *);
1233 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1234 extern int split_vma(struct mm_struct *,
1235 struct vm_area_struct *, unsigned long addr, int new_below);
1236 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1237 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1238 struct rb_node **, struct rb_node *);
1239 extern void unlink_file_vma(struct vm_area_struct *);
1240 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1241 unsigned long addr, unsigned long len, pgoff_t pgoff);
1242 extern void exit_mmap(struct mm_struct *);
1243
1244 extern int mm_take_all_locks(struct mm_struct *mm);
1245 extern void mm_drop_all_locks(struct mm_struct *mm);
1246
1247 #ifdef CONFIG_PROC_FS
1248 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1249 extern void added_exe_file_vma(struct mm_struct *mm);
1250 extern void removed_exe_file_vma(struct mm_struct *mm);
1251 #else
1252 static inline void added_exe_file_vma(struct mm_struct *mm)
1253 {}
1254
1255 static inline void removed_exe_file_vma(struct mm_struct *mm)
1256 {}
1257 #endif /* CONFIG_PROC_FS */
1258
1259 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1260 extern int install_special_mapping(struct mm_struct *mm,
1261 unsigned long addr, unsigned long len,
1262 unsigned long flags, struct page **pages);
1263
1264 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1265
1266 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1267 unsigned long len, unsigned long prot,
1268 unsigned long flag, unsigned long pgoff);
1269 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1270 unsigned long len, unsigned long flags,
1271 unsigned int vm_flags, unsigned long pgoff);
1272
1273 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1274 unsigned long len, unsigned long prot,
1275 unsigned long flag, unsigned long offset)
1276 {
1277 unsigned long ret = -EINVAL;
1278 if ((offset + PAGE_ALIGN(len)) < offset)
1279 goto out;
1280 if (!(offset & ~PAGE_MASK))
1281 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1282 out:
1283 return ret;
1284 }
1285
1286 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1287
1288 extern unsigned long do_brk(unsigned long, unsigned long);
1289
1290 /* filemap.c */
1291 extern unsigned long page_unuse(struct page *);
1292 extern void truncate_inode_pages(struct address_space *, loff_t);
1293 extern void truncate_inode_pages_range(struct address_space *,
1294 loff_t lstart, loff_t lend);
1295
1296 /* generic vm_area_ops exported for stackable file systems */
1297 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1298
1299 /* mm/page-writeback.c */
1300 int write_one_page(struct page *page, int wait);
1301 void task_dirty_inc(struct task_struct *tsk);
1302
1303 /* readahead.c */
1304 #define VM_MAX_READAHEAD 128 /* kbytes */
1305 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1306
1307 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1308 pgoff_t offset, unsigned long nr_to_read);
1309
1310 void page_cache_sync_readahead(struct address_space *mapping,
1311 struct file_ra_state *ra,
1312 struct file *filp,
1313 pgoff_t offset,
1314 unsigned long size);
1315
1316 void page_cache_async_readahead(struct address_space *mapping,
1317 struct file_ra_state *ra,
1318 struct file *filp,
1319 struct page *pg,
1320 pgoff_t offset,
1321 unsigned long size);
1322
1323 unsigned long max_sane_readahead(unsigned long nr);
1324 unsigned long ra_submit(struct file_ra_state *ra,
1325 struct address_space *mapping,
1326 struct file *filp);
1327
1328 /* Do stack extension */
1329 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1330 #ifdef CONFIG_IA64
1331 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1332 #endif
1333 extern int expand_stack_downwards(struct vm_area_struct *vma,
1334 unsigned long address);
1335
1336 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1337 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1338 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1339 struct vm_area_struct **pprev);
1340
1341 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1342 NULL if none. Assume start_addr < end_addr. */
1343 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1344 {
1345 struct vm_area_struct * vma = find_vma(mm,start_addr);
1346
1347 if (vma && end_addr <= vma->vm_start)
1348 vma = NULL;
1349 return vma;
1350 }
1351
1352 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1353 {
1354 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1355 }
1356
1357 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1358 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1359 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1360 unsigned long pfn, unsigned long size, pgprot_t);
1361 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1362 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1363 unsigned long pfn);
1364 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1365 unsigned long pfn);
1366
1367 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1368 unsigned int foll_flags);
1369 #define FOLL_WRITE 0x01 /* check pte is writable */
1370 #define FOLL_TOUCH 0x02 /* mark page accessed */
1371 #define FOLL_GET 0x04 /* do get_page on page */
1372 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1373 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1374
1375 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1376 void *data);
1377 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1378 unsigned long size, pte_fn_t fn, void *data);
1379
1380 #ifdef CONFIG_PROC_FS
1381 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1382 #else
1383 static inline void vm_stat_account(struct mm_struct *mm,
1384 unsigned long flags, struct file *file, long pages)
1385 {
1386 }
1387 #endif /* CONFIG_PROC_FS */
1388
1389 #ifdef CONFIG_DEBUG_PAGEALLOC
1390 extern int debug_pagealloc_enabled;
1391
1392 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1393
1394 static inline void enable_debug_pagealloc(void)
1395 {
1396 debug_pagealloc_enabled = 1;
1397 }
1398 #ifdef CONFIG_HIBERNATION
1399 extern bool kernel_page_present(struct page *page);
1400 #endif /* CONFIG_HIBERNATION */
1401 #else
1402 static inline void
1403 kernel_map_pages(struct page *page, int numpages, int enable) {}
1404 static inline void enable_debug_pagealloc(void)
1405 {
1406 }
1407 #ifdef CONFIG_HIBERNATION
1408 static inline bool kernel_page_present(struct page *page) { return true; }
1409 #endif /* CONFIG_HIBERNATION */
1410 #endif
1411
1412 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1413 #ifdef __HAVE_ARCH_GATE_AREA
1414 int in_gate_area_no_task(unsigned long addr);
1415 int in_gate_area(struct task_struct *task, unsigned long addr);
1416 #else
1417 int in_gate_area_no_task(unsigned long addr);
1418 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1419 #endif /* __HAVE_ARCH_GATE_AREA */
1420
1421 int drop_caches_sysctl_handler(struct ctl_table *, int,
1422 void __user *, size_t *, loff_t *);
1423 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1424 unsigned long lru_pages);
1425
1426 #ifndef CONFIG_MMU
1427 #define randomize_va_space 0
1428 #else
1429 extern int randomize_va_space;
1430 #endif
1431
1432 const char * arch_vma_name(struct vm_area_struct *vma);
1433 void print_vma_addr(char *prefix, unsigned long rip);
1434
1435 void sparse_mem_maps_populate_node(struct page **map_map,
1436 unsigned long pnum_begin,
1437 unsigned long pnum_end,
1438 unsigned long map_count,
1439 int nodeid);
1440
1441 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1442 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1443 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1444 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1445 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1446 void *vmemmap_alloc_block(unsigned long size, int node);
1447 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1448 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1449 int vmemmap_populate_basepages(struct page *start_page,
1450 unsigned long pages, int node);
1451 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1452 void vmemmap_populate_print_last(void);
1453
1454
1455 enum mf_flags {
1456 MF_COUNT_INCREASED = 1 << 0,
1457 };
1458 extern void memory_failure(unsigned long pfn, int trapno);
1459 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1460 extern int unpoison_memory(unsigned long pfn);
1461 extern int sysctl_memory_failure_early_kill;
1462 extern int sysctl_memory_failure_recovery;
1463 extern void shake_page(struct page *p, int access);
1464 extern atomic_long_t mce_bad_pages;
1465 extern int soft_offline_page(struct page *page, int flags);
1466
1467 extern void dump_page(struct page *page);
1468
1469 #endif /* __KERNEL__ */
1470 #endif /* _LINUX_MM_H */
This page took 0.063948 seconds and 5 git commands to generate.