mm: mask bits from pmd in pmd_lockptr/pmd_huge_pte
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct anon_vma_chain;
25 struct file_ra_state;
26 struct user_struct;
27 struct writeback_control;
28
29 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr;
31
32 static inline void set_max_mapnr(unsigned long limit)
33 {
34 max_mapnr = limit;
35 }
36 #else
37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif
39
40 extern unsigned long totalram_pages;
41 extern void * high_memory;
42 extern int page_cluster;
43
44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout;
46 #else
47 #define sysctl_legacy_va_layout 0
48 #endif
49
50 #include <asm/page.h>
51 #include <asm/pgtable.h>
52 #include <asm/processor.h>
53
54 #ifndef __pa_symbol
55 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes;
64
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78 /*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87 extern struct kmem_cache *vm_area_cachep;
88
89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem;
92
93 extern unsigned int kobjsize(const void *objp);
94 #endif
95
96 /*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99 #define VM_NONE 0x00000000
100
101 #define VM_READ 0x00000001 /* currently active flags */
102 #define VM_WRITE 0x00000002
103 #define VM_EXEC 0x00000004
104 #define VM_SHARED 0x00000008
105
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 #define VM_MAYWRITE 0x00000020
109 #define VM_MAYEXEC 0x00000040
110 #define VM_MAYSHARE 0x00000080
111
112 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116 #define VM_LOCKED 0x00002000
117 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 #else
135 # define VM_SOFTDIRTY 0
136 #endif
137
138 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143 #if defined(CONFIG_X86)
144 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC)
146 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP VM_ARCH_1
149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP VM_ARCH_1
151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP VM_ARCH_1
153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 #endif
156
157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP VM_NONE
159 #endif
160
161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif
167
168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else
171 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif
173
174 /*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
179
180 /*
181 * mapping from the currently active vm_flags protection bits (the
182 * low four bits) to a page protection mask..
183 */
184 extern pgprot_t protection_map[16];
185
186 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
187 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
188 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
189 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
190 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
191 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
192 #define FAULT_FLAG_TRIED 0x40 /* second try */
193 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
194
195 /*
196 * vm_fault is filled by the the pagefault handler and passed to the vma's
197 * ->fault function. The vma's ->fault is responsible for returning a bitmask
198 * of VM_FAULT_xxx flags that give details about how the fault was handled.
199 *
200 * pgoff should be used in favour of virtual_address, if possible. If pgoff
201 * is used, one may implement ->remap_pages to get nonlinear mapping support.
202 */
203 struct vm_fault {
204 unsigned int flags; /* FAULT_FLAG_xxx flags */
205 pgoff_t pgoff; /* Logical page offset based on vma */
206 void __user *virtual_address; /* Faulting virtual address */
207
208 struct page *page; /* ->fault handlers should return a
209 * page here, unless VM_FAULT_NOPAGE
210 * is set (which is also implied by
211 * VM_FAULT_ERROR).
212 */
213 };
214
215 /*
216 * These are the virtual MM functions - opening of an area, closing and
217 * unmapping it (needed to keep files on disk up-to-date etc), pointer
218 * to the functions called when a no-page or a wp-page exception occurs.
219 */
220 struct vm_operations_struct {
221 void (*open)(struct vm_area_struct * area);
222 void (*close)(struct vm_area_struct * area);
223 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
224
225 /* notification that a previously read-only page is about to become
226 * writable, if an error is returned it will cause a SIGBUS */
227 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
228
229 /* called by access_process_vm when get_user_pages() fails, typically
230 * for use by special VMAs that can switch between memory and hardware
231 */
232 int (*access)(struct vm_area_struct *vma, unsigned long addr,
233 void *buf, int len, int write);
234 #ifdef CONFIG_NUMA
235 /*
236 * set_policy() op must add a reference to any non-NULL @new mempolicy
237 * to hold the policy upon return. Caller should pass NULL @new to
238 * remove a policy and fall back to surrounding context--i.e. do not
239 * install a MPOL_DEFAULT policy, nor the task or system default
240 * mempolicy.
241 */
242 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
243
244 /*
245 * get_policy() op must add reference [mpol_get()] to any policy at
246 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
247 * in mm/mempolicy.c will do this automatically.
248 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
249 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
250 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
251 * must return NULL--i.e., do not "fallback" to task or system default
252 * policy.
253 */
254 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
255 unsigned long addr);
256 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
257 const nodemask_t *to, unsigned long flags);
258 #endif
259 /* called by sys_remap_file_pages() to populate non-linear mapping */
260 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
261 unsigned long size, pgoff_t pgoff);
262 };
263
264 struct mmu_gather;
265 struct inode;
266
267 #define page_private(page) ((page)->private)
268 #define set_page_private(page, v) ((page)->private = (v))
269
270 /* It's valid only if the page is free path or free_list */
271 static inline void set_freepage_migratetype(struct page *page, int migratetype)
272 {
273 page->index = migratetype;
274 }
275
276 /* It's valid only if the page is free path or free_list */
277 static inline int get_freepage_migratetype(struct page *page)
278 {
279 return page->index;
280 }
281
282 /*
283 * FIXME: take this include out, include page-flags.h in
284 * files which need it (119 of them)
285 */
286 #include <linux/page-flags.h>
287 #include <linux/huge_mm.h>
288
289 /*
290 * Methods to modify the page usage count.
291 *
292 * What counts for a page usage:
293 * - cache mapping (page->mapping)
294 * - private data (page->private)
295 * - page mapped in a task's page tables, each mapping
296 * is counted separately
297 *
298 * Also, many kernel routines increase the page count before a critical
299 * routine so they can be sure the page doesn't go away from under them.
300 */
301
302 /*
303 * Drop a ref, return true if the refcount fell to zero (the page has no users)
304 */
305 static inline int put_page_testzero(struct page *page)
306 {
307 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
308 return atomic_dec_and_test(&page->_count);
309 }
310
311 /*
312 * Try to grab a ref unless the page has a refcount of zero, return false if
313 * that is the case.
314 * This can be called when MMU is off so it must not access
315 * any of the virtual mappings.
316 */
317 static inline int get_page_unless_zero(struct page *page)
318 {
319 return atomic_inc_not_zero(&page->_count);
320 }
321
322 /*
323 * Try to drop a ref unless the page has a refcount of one, return false if
324 * that is the case.
325 * This is to make sure that the refcount won't become zero after this drop.
326 * This can be called when MMU is off so it must not access
327 * any of the virtual mappings.
328 */
329 static inline int put_page_unless_one(struct page *page)
330 {
331 return atomic_add_unless(&page->_count, -1, 1);
332 }
333
334 extern int page_is_ram(unsigned long pfn);
335
336 /* Support for virtually mapped pages */
337 struct page *vmalloc_to_page(const void *addr);
338 unsigned long vmalloc_to_pfn(const void *addr);
339
340 /*
341 * Determine if an address is within the vmalloc range
342 *
343 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
344 * is no special casing required.
345 */
346 static inline int is_vmalloc_addr(const void *x)
347 {
348 #ifdef CONFIG_MMU
349 unsigned long addr = (unsigned long)x;
350
351 return addr >= VMALLOC_START && addr < VMALLOC_END;
352 #else
353 return 0;
354 #endif
355 }
356 #ifdef CONFIG_MMU
357 extern int is_vmalloc_or_module_addr(const void *x);
358 #else
359 static inline int is_vmalloc_or_module_addr(const void *x)
360 {
361 return 0;
362 }
363 #endif
364
365 static inline void compound_lock(struct page *page)
366 {
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 VM_BUG_ON_PAGE(PageSlab(page), page);
369 bit_spin_lock(PG_compound_lock, &page->flags);
370 #endif
371 }
372
373 static inline void compound_unlock(struct page *page)
374 {
375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 VM_BUG_ON_PAGE(PageSlab(page), page);
377 bit_spin_unlock(PG_compound_lock, &page->flags);
378 #endif
379 }
380
381 static inline unsigned long compound_lock_irqsave(struct page *page)
382 {
383 unsigned long uninitialized_var(flags);
384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 local_irq_save(flags);
386 compound_lock(page);
387 #endif
388 return flags;
389 }
390
391 static inline void compound_unlock_irqrestore(struct page *page,
392 unsigned long flags)
393 {
394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 compound_unlock(page);
396 local_irq_restore(flags);
397 #endif
398 }
399
400 static inline struct page *compound_head(struct page *page)
401 {
402 if (unlikely(PageTail(page)))
403 return page->first_page;
404 return page;
405 }
406
407 /*
408 * The atomic page->_mapcount, starts from -1: so that transitions
409 * both from it and to it can be tracked, using atomic_inc_and_test
410 * and atomic_add_negative(-1).
411 */
412 static inline void page_mapcount_reset(struct page *page)
413 {
414 atomic_set(&(page)->_mapcount, -1);
415 }
416
417 static inline int page_mapcount(struct page *page)
418 {
419 return atomic_read(&(page)->_mapcount) + 1;
420 }
421
422 static inline int page_count(struct page *page)
423 {
424 return atomic_read(&compound_head(page)->_count);
425 }
426
427 #ifdef CONFIG_HUGETLB_PAGE
428 extern int PageHeadHuge(struct page *page_head);
429 #else /* CONFIG_HUGETLB_PAGE */
430 static inline int PageHeadHuge(struct page *page_head)
431 {
432 return 0;
433 }
434 #endif /* CONFIG_HUGETLB_PAGE */
435
436 static inline bool __compound_tail_refcounted(struct page *page)
437 {
438 return !PageSlab(page) && !PageHeadHuge(page);
439 }
440
441 /*
442 * This takes a head page as parameter and tells if the
443 * tail page reference counting can be skipped.
444 *
445 * For this to be safe, PageSlab and PageHeadHuge must remain true on
446 * any given page where they return true here, until all tail pins
447 * have been released.
448 */
449 static inline bool compound_tail_refcounted(struct page *page)
450 {
451 VM_BUG_ON_PAGE(!PageHead(page), page);
452 return __compound_tail_refcounted(page);
453 }
454
455 static inline void get_huge_page_tail(struct page *page)
456 {
457 /*
458 * __split_huge_page_refcount() cannot run from under us.
459 */
460 VM_BUG_ON_PAGE(!PageTail(page), page);
461 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
462 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
463 if (compound_tail_refcounted(page->first_page))
464 atomic_inc(&page->_mapcount);
465 }
466
467 extern bool __get_page_tail(struct page *page);
468
469 static inline void get_page(struct page *page)
470 {
471 if (unlikely(PageTail(page)))
472 if (likely(__get_page_tail(page)))
473 return;
474 /*
475 * Getting a normal page or the head of a compound page
476 * requires to already have an elevated page->_count.
477 */
478 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
479 atomic_inc(&page->_count);
480 }
481
482 static inline struct page *virt_to_head_page(const void *x)
483 {
484 struct page *page = virt_to_page(x);
485 return compound_head(page);
486 }
487
488 /*
489 * Setup the page count before being freed into the page allocator for
490 * the first time (boot or memory hotplug)
491 */
492 static inline void init_page_count(struct page *page)
493 {
494 atomic_set(&page->_count, 1);
495 }
496
497 /*
498 * PageBuddy() indicate that the page is free and in the buddy system
499 * (see mm/page_alloc.c).
500 *
501 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
502 * -2 so that an underflow of the page_mapcount() won't be mistaken
503 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
504 * efficiently by most CPU architectures.
505 */
506 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
507
508 static inline int PageBuddy(struct page *page)
509 {
510 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
511 }
512
513 static inline void __SetPageBuddy(struct page *page)
514 {
515 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
516 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
517 }
518
519 static inline void __ClearPageBuddy(struct page *page)
520 {
521 VM_BUG_ON_PAGE(!PageBuddy(page), page);
522 atomic_set(&page->_mapcount, -1);
523 }
524
525 void put_page(struct page *page);
526 void put_pages_list(struct list_head *pages);
527
528 void split_page(struct page *page, unsigned int order);
529 int split_free_page(struct page *page);
530
531 /*
532 * Compound pages have a destructor function. Provide a
533 * prototype for that function and accessor functions.
534 * These are _only_ valid on the head of a PG_compound page.
535 */
536 typedef void compound_page_dtor(struct page *);
537
538 static inline void set_compound_page_dtor(struct page *page,
539 compound_page_dtor *dtor)
540 {
541 page[1].lru.next = (void *)dtor;
542 }
543
544 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
545 {
546 return (compound_page_dtor *)page[1].lru.next;
547 }
548
549 static inline int compound_order(struct page *page)
550 {
551 if (!PageHead(page))
552 return 0;
553 return (unsigned long)page[1].lru.prev;
554 }
555
556 static inline void set_compound_order(struct page *page, unsigned long order)
557 {
558 page[1].lru.prev = (void *)order;
559 }
560
561 #ifdef CONFIG_MMU
562 /*
563 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
564 * servicing faults for write access. In the normal case, do always want
565 * pte_mkwrite. But get_user_pages can cause write faults for mappings
566 * that do not have writing enabled, when used by access_process_vm.
567 */
568 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
569 {
570 if (likely(vma->vm_flags & VM_WRITE))
571 pte = pte_mkwrite(pte);
572 return pte;
573 }
574 #endif
575
576 /*
577 * Multiple processes may "see" the same page. E.g. for untouched
578 * mappings of /dev/null, all processes see the same page full of
579 * zeroes, and text pages of executables and shared libraries have
580 * only one copy in memory, at most, normally.
581 *
582 * For the non-reserved pages, page_count(page) denotes a reference count.
583 * page_count() == 0 means the page is free. page->lru is then used for
584 * freelist management in the buddy allocator.
585 * page_count() > 0 means the page has been allocated.
586 *
587 * Pages are allocated by the slab allocator in order to provide memory
588 * to kmalloc and kmem_cache_alloc. In this case, the management of the
589 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
590 * unless a particular usage is carefully commented. (the responsibility of
591 * freeing the kmalloc memory is the caller's, of course).
592 *
593 * A page may be used by anyone else who does a __get_free_page().
594 * In this case, page_count still tracks the references, and should only
595 * be used through the normal accessor functions. The top bits of page->flags
596 * and page->virtual store page management information, but all other fields
597 * are unused and could be used privately, carefully. The management of this
598 * page is the responsibility of the one who allocated it, and those who have
599 * subsequently been given references to it.
600 *
601 * The other pages (we may call them "pagecache pages") are completely
602 * managed by the Linux memory manager: I/O, buffers, swapping etc.
603 * The following discussion applies only to them.
604 *
605 * A pagecache page contains an opaque `private' member, which belongs to the
606 * page's address_space. Usually, this is the address of a circular list of
607 * the page's disk buffers. PG_private must be set to tell the VM to call
608 * into the filesystem to release these pages.
609 *
610 * A page may belong to an inode's memory mapping. In this case, page->mapping
611 * is the pointer to the inode, and page->index is the file offset of the page,
612 * in units of PAGE_CACHE_SIZE.
613 *
614 * If pagecache pages are not associated with an inode, they are said to be
615 * anonymous pages. These may become associated with the swapcache, and in that
616 * case PG_swapcache is set, and page->private is an offset into the swapcache.
617 *
618 * In either case (swapcache or inode backed), the pagecache itself holds one
619 * reference to the page. Setting PG_private should also increment the
620 * refcount. The each user mapping also has a reference to the page.
621 *
622 * The pagecache pages are stored in a per-mapping radix tree, which is
623 * rooted at mapping->page_tree, and indexed by offset.
624 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
625 * lists, we instead now tag pages as dirty/writeback in the radix tree.
626 *
627 * All pagecache pages may be subject to I/O:
628 * - inode pages may need to be read from disk,
629 * - inode pages which have been modified and are MAP_SHARED may need
630 * to be written back to the inode on disk,
631 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
632 * modified may need to be swapped out to swap space and (later) to be read
633 * back into memory.
634 */
635
636 /*
637 * The zone field is never updated after free_area_init_core()
638 * sets it, so none of the operations on it need to be atomic.
639 */
640
641 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
642 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
643 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
644 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
645 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
646
647 /*
648 * Define the bit shifts to access each section. For non-existent
649 * sections we define the shift as 0; that plus a 0 mask ensures
650 * the compiler will optimise away reference to them.
651 */
652 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
653 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
654 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
655 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
656
657 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
658 #ifdef NODE_NOT_IN_PAGE_FLAGS
659 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
660 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
661 SECTIONS_PGOFF : ZONES_PGOFF)
662 #else
663 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
664 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
665 NODES_PGOFF : ZONES_PGOFF)
666 #endif
667
668 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
669
670 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
671 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
672 #endif
673
674 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
675 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
676 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
677 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
678 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
679
680 static inline enum zone_type page_zonenum(const struct page *page)
681 {
682 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
683 }
684
685 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
686 #define SECTION_IN_PAGE_FLAGS
687 #endif
688
689 /*
690 * The identification function is mainly used by the buddy allocator for
691 * determining if two pages could be buddies. We are not really identifying
692 * the zone since we could be using the section number id if we do not have
693 * node id available in page flags.
694 * We only guarantee that it will return the same value for two combinable
695 * pages in a zone.
696 */
697 static inline int page_zone_id(struct page *page)
698 {
699 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
700 }
701
702 static inline int zone_to_nid(struct zone *zone)
703 {
704 #ifdef CONFIG_NUMA
705 return zone->node;
706 #else
707 return 0;
708 #endif
709 }
710
711 #ifdef NODE_NOT_IN_PAGE_FLAGS
712 extern int page_to_nid(const struct page *page);
713 #else
714 static inline int page_to_nid(const struct page *page)
715 {
716 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
717 }
718 #endif
719
720 #ifdef CONFIG_NUMA_BALANCING
721 static inline int cpu_pid_to_cpupid(int cpu, int pid)
722 {
723 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
724 }
725
726 static inline int cpupid_to_pid(int cpupid)
727 {
728 return cpupid & LAST__PID_MASK;
729 }
730
731 static inline int cpupid_to_cpu(int cpupid)
732 {
733 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
734 }
735
736 static inline int cpupid_to_nid(int cpupid)
737 {
738 return cpu_to_node(cpupid_to_cpu(cpupid));
739 }
740
741 static inline bool cpupid_pid_unset(int cpupid)
742 {
743 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
744 }
745
746 static inline bool cpupid_cpu_unset(int cpupid)
747 {
748 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
749 }
750
751 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
752 {
753 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
754 }
755
756 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
757 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
758 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
759 {
760 return xchg(&page->_last_cpupid, cpupid);
761 }
762
763 static inline int page_cpupid_last(struct page *page)
764 {
765 return page->_last_cpupid;
766 }
767 static inline void page_cpupid_reset_last(struct page *page)
768 {
769 page->_last_cpupid = -1;
770 }
771 #else
772 static inline int page_cpupid_last(struct page *page)
773 {
774 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
775 }
776
777 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
778
779 static inline void page_cpupid_reset_last(struct page *page)
780 {
781 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
782
783 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
784 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
785 }
786 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
787 #else /* !CONFIG_NUMA_BALANCING */
788 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
789 {
790 return page_to_nid(page); /* XXX */
791 }
792
793 static inline int page_cpupid_last(struct page *page)
794 {
795 return page_to_nid(page); /* XXX */
796 }
797
798 static inline int cpupid_to_nid(int cpupid)
799 {
800 return -1;
801 }
802
803 static inline int cpupid_to_pid(int cpupid)
804 {
805 return -1;
806 }
807
808 static inline int cpupid_to_cpu(int cpupid)
809 {
810 return -1;
811 }
812
813 static inline int cpu_pid_to_cpupid(int nid, int pid)
814 {
815 return -1;
816 }
817
818 static inline bool cpupid_pid_unset(int cpupid)
819 {
820 return 1;
821 }
822
823 static inline void page_cpupid_reset_last(struct page *page)
824 {
825 }
826
827 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
828 {
829 return false;
830 }
831 #endif /* CONFIG_NUMA_BALANCING */
832
833 static inline struct zone *page_zone(const struct page *page)
834 {
835 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
836 }
837
838 #ifdef SECTION_IN_PAGE_FLAGS
839 static inline void set_page_section(struct page *page, unsigned long section)
840 {
841 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
842 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
843 }
844
845 static inline unsigned long page_to_section(const struct page *page)
846 {
847 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
848 }
849 #endif
850
851 static inline void set_page_zone(struct page *page, enum zone_type zone)
852 {
853 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
854 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
855 }
856
857 static inline void set_page_node(struct page *page, unsigned long node)
858 {
859 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
860 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
861 }
862
863 static inline void set_page_links(struct page *page, enum zone_type zone,
864 unsigned long node, unsigned long pfn)
865 {
866 set_page_zone(page, zone);
867 set_page_node(page, node);
868 #ifdef SECTION_IN_PAGE_FLAGS
869 set_page_section(page, pfn_to_section_nr(pfn));
870 #endif
871 }
872
873 /*
874 * Some inline functions in vmstat.h depend on page_zone()
875 */
876 #include <linux/vmstat.h>
877
878 static __always_inline void *lowmem_page_address(const struct page *page)
879 {
880 return __va(PFN_PHYS(page_to_pfn(page)));
881 }
882
883 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
884 #define HASHED_PAGE_VIRTUAL
885 #endif
886
887 #if defined(WANT_PAGE_VIRTUAL)
888 static inline void *page_address(const struct page *page)
889 {
890 return page->virtual;
891 }
892 static inline void set_page_address(struct page *page, void *address)
893 {
894 page->virtual = address;
895 }
896 #define page_address_init() do { } while(0)
897 #endif
898
899 #if defined(HASHED_PAGE_VIRTUAL)
900 void *page_address(const struct page *page);
901 void set_page_address(struct page *page, void *virtual);
902 void page_address_init(void);
903 #endif
904
905 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
906 #define page_address(page) lowmem_page_address(page)
907 #define set_page_address(page, address) do { } while(0)
908 #define page_address_init() do { } while(0)
909 #endif
910
911 /*
912 * On an anonymous page mapped into a user virtual memory area,
913 * page->mapping points to its anon_vma, not to a struct address_space;
914 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
915 *
916 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
917 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
918 * and then page->mapping points, not to an anon_vma, but to a private
919 * structure which KSM associates with that merged page. See ksm.h.
920 *
921 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
922 *
923 * Please note that, confusingly, "page_mapping" refers to the inode
924 * address_space which maps the page from disk; whereas "page_mapped"
925 * refers to user virtual address space into which the page is mapped.
926 */
927 #define PAGE_MAPPING_ANON 1
928 #define PAGE_MAPPING_KSM 2
929 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
930
931 extern struct address_space *page_mapping(struct page *page);
932
933 /* Neutral page->mapping pointer to address_space or anon_vma or other */
934 static inline void *page_rmapping(struct page *page)
935 {
936 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
937 }
938
939 extern struct address_space *__page_file_mapping(struct page *);
940
941 static inline
942 struct address_space *page_file_mapping(struct page *page)
943 {
944 if (unlikely(PageSwapCache(page)))
945 return __page_file_mapping(page);
946
947 return page->mapping;
948 }
949
950 static inline int PageAnon(struct page *page)
951 {
952 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
953 }
954
955 /*
956 * Return the pagecache index of the passed page. Regular pagecache pages
957 * use ->index whereas swapcache pages use ->private
958 */
959 static inline pgoff_t page_index(struct page *page)
960 {
961 if (unlikely(PageSwapCache(page)))
962 return page_private(page);
963 return page->index;
964 }
965
966 extern pgoff_t __page_file_index(struct page *page);
967
968 /*
969 * Return the file index of the page. Regular pagecache pages use ->index
970 * whereas swapcache pages use swp_offset(->private)
971 */
972 static inline pgoff_t page_file_index(struct page *page)
973 {
974 if (unlikely(PageSwapCache(page)))
975 return __page_file_index(page);
976
977 return page->index;
978 }
979
980 /*
981 * Return true if this page is mapped into pagetables.
982 */
983 static inline int page_mapped(struct page *page)
984 {
985 return atomic_read(&(page)->_mapcount) >= 0;
986 }
987
988 /*
989 * Different kinds of faults, as returned by handle_mm_fault().
990 * Used to decide whether a process gets delivered SIGBUS or
991 * just gets major/minor fault counters bumped up.
992 */
993
994 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
995
996 #define VM_FAULT_OOM 0x0001
997 #define VM_FAULT_SIGBUS 0x0002
998 #define VM_FAULT_MAJOR 0x0004
999 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1000 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1001 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1002
1003 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1004 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1005 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1006 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1007
1008 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1009
1010 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1011 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1012
1013 /* Encode hstate index for a hwpoisoned large page */
1014 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1015 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1016
1017 /*
1018 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1019 */
1020 extern void pagefault_out_of_memory(void);
1021
1022 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1023
1024 /*
1025 * Flags passed to show_mem() and show_free_areas() to suppress output in
1026 * various contexts.
1027 */
1028 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1029
1030 extern void show_free_areas(unsigned int flags);
1031 extern bool skip_free_areas_node(unsigned int flags, int nid);
1032
1033 int shmem_zero_setup(struct vm_area_struct *);
1034
1035 extern int can_do_mlock(void);
1036 extern int user_shm_lock(size_t, struct user_struct *);
1037 extern void user_shm_unlock(size_t, struct user_struct *);
1038
1039 /*
1040 * Parameter block passed down to zap_pte_range in exceptional cases.
1041 */
1042 struct zap_details {
1043 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1044 struct address_space *check_mapping; /* Check page->mapping if set */
1045 pgoff_t first_index; /* Lowest page->index to unmap */
1046 pgoff_t last_index; /* Highest page->index to unmap */
1047 };
1048
1049 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1050 pte_t pte);
1051
1052 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1053 unsigned long size);
1054 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1055 unsigned long size, struct zap_details *);
1056 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1057 unsigned long start, unsigned long end);
1058
1059 /**
1060 * mm_walk - callbacks for walk_page_range
1061 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1062 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1063 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1064 * this handler is required to be able to handle
1065 * pmd_trans_huge() pmds. They may simply choose to
1066 * split_huge_page() instead of handling it explicitly.
1067 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1068 * @pte_hole: if set, called for each hole at all levels
1069 * @hugetlb_entry: if set, called for each hugetlb entry
1070 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1071 * is used.
1072 *
1073 * (see walk_page_range for more details)
1074 */
1075 struct mm_walk {
1076 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1077 unsigned long next, struct mm_walk *walk);
1078 int (*pud_entry)(pud_t *pud, unsigned long addr,
1079 unsigned long next, struct mm_walk *walk);
1080 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1081 unsigned long next, struct mm_walk *walk);
1082 int (*pte_entry)(pte_t *pte, unsigned long addr,
1083 unsigned long next, struct mm_walk *walk);
1084 int (*pte_hole)(unsigned long addr, unsigned long next,
1085 struct mm_walk *walk);
1086 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1087 unsigned long addr, unsigned long next,
1088 struct mm_walk *walk);
1089 struct mm_struct *mm;
1090 void *private;
1091 };
1092
1093 int walk_page_range(unsigned long addr, unsigned long end,
1094 struct mm_walk *walk);
1095 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1096 unsigned long end, unsigned long floor, unsigned long ceiling);
1097 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1098 struct vm_area_struct *vma);
1099 void unmap_mapping_range(struct address_space *mapping,
1100 loff_t const holebegin, loff_t const holelen, int even_cows);
1101 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1102 unsigned long *pfn);
1103 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1104 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1105 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1106 void *buf, int len, int write);
1107
1108 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1109 loff_t const holebegin, loff_t const holelen)
1110 {
1111 unmap_mapping_range(mapping, holebegin, holelen, 0);
1112 }
1113
1114 extern void truncate_pagecache(struct inode *inode, loff_t new);
1115 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1116 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1117 int truncate_inode_page(struct address_space *mapping, struct page *page);
1118 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1119 int invalidate_inode_page(struct page *page);
1120
1121 #ifdef CONFIG_MMU
1122 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1123 unsigned long address, unsigned int flags);
1124 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1125 unsigned long address, unsigned int fault_flags);
1126 #else
1127 static inline int handle_mm_fault(struct mm_struct *mm,
1128 struct vm_area_struct *vma, unsigned long address,
1129 unsigned int flags)
1130 {
1131 /* should never happen if there's no MMU */
1132 BUG();
1133 return VM_FAULT_SIGBUS;
1134 }
1135 static inline int fixup_user_fault(struct task_struct *tsk,
1136 struct mm_struct *mm, unsigned long address,
1137 unsigned int fault_flags)
1138 {
1139 /* should never happen if there's no MMU */
1140 BUG();
1141 return -EFAULT;
1142 }
1143 #endif
1144
1145 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1146 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1147 void *buf, int len, int write);
1148
1149 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1150 unsigned long start, unsigned long nr_pages,
1151 unsigned int foll_flags, struct page **pages,
1152 struct vm_area_struct **vmas, int *nonblocking);
1153 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1154 unsigned long start, unsigned long nr_pages,
1155 int write, int force, struct page **pages,
1156 struct vm_area_struct **vmas);
1157 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1158 struct page **pages);
1159 struct kvec;
1160 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1161 struct page **pages);
1162 int get_kernel_page(unsigned long start, int write, struct page **pages);
1163 struct page *get_dump_page(unsigned long addr);
1164
1165 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1166 extern void do_invalidatepage(struct page *page, unsigned int offset,
1167 unsigned int length);
1168
1169 int __set_page_dirty_nobuffers(struct page *page);
1170 int __set_page_dirty_no_writeback(struct page *page);
1171 int redirty_page_for_writepage(struct writeback_control *wbc,
1172 struct page *page);
1173 void account_page_dirtied(struct page *page, struct address_space *mapping);
1174 void account_page_writeback(struct page *page);
1175 int set_page_dirty(struct page *page);
1176 int set_page_dirty_lock(struct page *page);
1177 int clear_page_dirty_for_io(struct page *page);
1178
1179 /* Is the vma a continuation of the stack vma above it? */
1180 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1181 {
1182 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1183 }
1184
1185 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1186 unsigned long addr)
1187 {
1188 return (vma->vm_flags & VM_GROWSDOWN) &&
1189 (vma->vm_start == addr) &&
1190 !vma_growsdown(vma->vm_prev, addr);
1191 }
1192
1193 /* Is the vma a continuation of the stack vma below it? */
1194 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1195 {
1196 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1197 }
1198
1199 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1200 unsigned long addr)
1201 {
1202 return (vma->vm_flags & VM_GROWSUP) &&
1203 (vma->vm_end == addr) &&
1204 !vma_growsup(vma->vm_next, addr);
1205 }
1206
1207 extern pid_t
1208 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1209
1210 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1211 unsigned long old_addr, struct vm_area_struct *new_vma,
1212 unsigned long new_addr, unsigned long len,
1213 bool need_rmap_locks);
1214 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1215 unsigned long end, pgprot_t newprot,
1216 int dirty_accountable, int prot_numa);
1217 extern int mprotect_fixup(struct vm_area_struct *vma,
1218 struct vm_area_struct **pprev, unsigned long start,
1219 unsigned long end, unsigned long newflags);
1220
1221 /*
1222 * doesn't attempt to fault and will return short.
1223 */
1224 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1225 struct page **pages);
1226 /*
1227 * per-process(per-mm_struct) statistics.
1228 */
1229 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1230 {
1231 long val = atomic_long_read(&mm->rss_stat.count[member]);
1232
1233 #ifdef SPLIT_RSS_COUNTING
1234 /*
1235 * counter is updated in asynchronous manner and may go to minus.
1236 * But it's never be expected number for users.
1237 */
1238 if (val < 0)
1239 val = 0;
1240 #endif
1241 return (unsigned long)val;
1242 }
1243
1244 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1245 {
1246 atomic_long_add(value, &mm->rss_stat.count[member]);
1247 }
1248
1249 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1250 {
1251 atomic_long_inc(&mm->rss_stat.count[member]);
1252 }
1253
1254 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1255 {
1256 atomic_long_dec(&mm->rss_stat.count[member]);
1257 }
1258
1259 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1260 {
1261 return get_mm_counter(mm, MM_FILEPAGES) +
1262 get_mm_counter(mm, MM_ANONPAGES);
1263 }
1264
1265 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1266 {
1267 return max(mm->hiwater_rss, get_mm_rss(mm));
1268 }
1269
1270 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1271 {
1272 return max(mm->hiwater_vm, mm->total_vm);
1273 }
1274
1275 static inline void update_hiwater_rss(struct mm_struct *mm)
1276 {
1277 unsigned long _rss = get_mm_rss(mm);
1278
1279 if ((mm)->hiwater_rss < _rss)
1280 (mm)->hiwater_rss = _rss;
1281 }
1282
1283 static inline void update_hiwater_vm(struct mm_struct *mm)
1284 {
1285 if (mm->hiwater_vm < mm->total_vm)
1286 mm->hiwater_vm = mm->total_vm;
1287 }
1288
1289 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1290 struct mm_struct *mm)
1291 {
1292 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1293
1294 if (*maxrss < hiwater_rss)
1295 *maxrss = hiwater_rss;
1296 }
1297
1298 #if defined(SPLIT_RSS_COUNTING)
1299 void sync_mm_rss(struct mm_struct *mm);
1300 #else
1301 static inline void sync_mm_rss(struct mm_struct *mm)
1302 {
1303 }
1304 #endif
1305
1306 int vma_wants_writenotify(struct vm_area_struct *vma);
1307
1308 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1309 spinlock_t **ptl);
1310 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1311 spinlock_t **ptl)
1312 {
1313 pte_t *ptep;
1314 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1315 return ptep;
1316 }
1317
1318 #ifdef __PAGETABLE_PUD_FOLDED
1319 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1320 unsigned long address)
1321 {
1322 return 0;
1323 }
1324 #else
1325 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1326 #endif
1327
1328 #ifdef __PAGETABLE_PMD_FOLDED
1329 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1330 unsigned long address)
1331 {
1332 return 0;
1333 }
1334 #else
1335 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1336 #endif
1337
1338 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1339 pmd_t *pmd, unsigned long address);
1340 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1341
1342 /*
1343 * The following ifdef needed to get the 4level-fixup.h header to work.
1344 * Remove it when 4level-fixup.h has been removed.
1345 */
1346 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1347 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1348 {
1349 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1350 NULL: pud_offset(pgd, address);
1351 }
1352
1353 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1354 {
1355 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1356 NULL: pmd_offset(pud, address);
1357 }
1358 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1359
1360 #if USE_SPLIT_PTE_PTLOCKS
1361 #if ALLOC_SPLIT_PTLOCKS
1362 void __init ptlock_cache_init(void);
1363 extern bool ptlock_alloc(struct page *page);
1364 extern void ptlock_free(struct page *page);
1365
1366 static inline spinlock_t *ptlock_ptr(struct page *page)
1367 {
1368 return page->ptl;
1369 }
1370 #else /* ALLOC_SPLIT_PTLOCKS */
1371 static inline void ptlock_cache_init(void)
1372 {
1373 }
1374
1375 static inline bool ptlock_alloc(struct page *page)
1376 {
1377 return true;
1378 }
1379
1380 static inline void ptlock_free(struct page *page)
1381 {
1382 }
1383
1384 static inline spinlock_t *ptlock_ptr(struct page *page)
1385 {
1386 return &page->ptl;
1387 }
1388 #endif /* ALLOC_SPLIT_PTLOCKS */
1389
1390 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1391 {
1392 return ptlock_ptr(pmd_page(*pmd));
1393 }
1394
1395 static inline bool ptlock_init(struct page *page)
1396 {
1397 /*
1398 * prep_new_page() initialize page->private (and therefore page->ptl)
1399 * with 0. Make sure nobody took it in use in between.
1400 *
1401 * It can happen if arch try to use slab for page table allocation:
1402 * slab code uses page->slab_cache and page->first_page (for tail
1403 * pages), which share storage with page->ptl.
1404 */
1405 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1406 if (!ptlock_alloc(page))
1407 return false;
1408 spin_lock_init(ptlock_ptr(page));
1409 return true;
1410 }
1411
1412 /* Reset page->mapping so free_pages_check won't complain. */
1413 static inline void pte_lock_deinit(struct page *page)
1414 {
1415 page->mapping = NULL;
1416 ptlock_free(page);
1417 }
1418
1419 #else /* !USE_SPLIT_PTE_PTLOCKS */
1420 /*
1421 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1422 */
1423 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1424 {
1425 return &mm->page_table_lock;
1426 }
1427 static inline void ptlock_cache_init(void) {}
1428 static inline bool ptlock_init(struct page *page) { return true; }
1429 static inline void pte_lock_deinit(struct page *page) {}
1430 #endif /* USE_SPLIT_PTE_PTLOCKS */
1431
1432 static inline void pgtable_init(void)
1433 {
1434 ptlock_cache_init();
1435 pgtable_cache_init();
1436 }
1437
1438 static inline bool pgtable_page_ctor(struct page *page)
1439 {
1440 inc_zone_page_state(page, NR_PAGETABLE);
1441 return ptlock_init(page);
1442 }
1443
1444 static inline void pgtable_page_dtor(struct page *page)
1445 {
1446 pte_lock_deinit(page);
1447 dec_zone_page_state(page, NR_PAGETABLE);
1448 }
1449
1450 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1451 ({ \
1452 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1453 pte_t *__pte = pte_offset_map(pmd, address); \
1454 *(ptlp) = __ptl; \
1455 spin_lock(__ptl); \
1456 __pte; \
1457 })
1458
1459 #define pte_unmap_unlock(pte, ptl) do { \
1460 spin_unlock(ptl); \
1461 pte_unmap(pte); \
1462 } while (0)
1463
1464 #define pte_alloc_map(mm, vma, pmd, address) \
1465 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1466 pmd, address))? \
1467 NULL: pte_offset_map(pmd, address))
1468
1469 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1470 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1471 pmd, address))? \
1472 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1473
1474 #define pte_alloc_kernel(pmd, address) \
1475 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1476 NULL: pte_offset_kernel(pmd, address))
1477
1478 #if USE_SPLIT_PMD_PTLOCKS
1479
1480 static struct page *pmd_to_page(pmd_t *pmd)
1481 {
1482 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1483 return virt_to_page((void *)((unsigned long) pmd & mask));
1484 }
1485
1486 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1487 {
1488 return ptlock_ptr(pmd_to_page(pmd));
1489 }
1490
1491 static inline bool pgtable_pmd_page_ctor(struct page *page)
1492 {
1493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1494 page->pmd_huge_pte = NULL;
1495 #endif
1496 return ptlock_init(page);
1497 }
1498
1499 static inline void pgtable_pmd_page_dtor(struct page *page)
1500 {
1501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1502 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1503 #endif
1504 ptlock_free(page);
1505 }
1506
1507 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1508
1509 #else
1510
1511 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1512 {
1513 return &mm->page_table_lock;
1514 }
1515
1516 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1517 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1518
1519 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1520
1521 #endif
1522
1523 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1524 {
1525 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1526 spin_lock(ptl);
1527 return ptl;
1528 }
1529
1530 extern void free_area_init(unsigned long * zones_size);
1531 extern void free_area_init_node(int nid, unsigned long * zones_size,
1532 unsigned long zone_start_pfn, unsigned long *zholes_size);
1533 extern void free_initmem(void);
1534
1535 /*
1536 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1537 * into the buddy system. The freed pages will be poisoned with pattern
1538 * "poison" if it's within range [0, UCHAR_MAX].
1539 * Return pages freed into the buddy system.
1540 */
1541 extern unsigned long free_reserved_area(void *start, void *end,
1542 int poison, char *s);
1543
1544 #ifdef CONFIG_HIGHMEM
1545 /*
1546 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1547 * and totalram_pages.
1548 */
1549 extern void free_highmem_page(struct page *page);
1550 #endif
1551
1552 extern void adjust_managed_page_count(struct page *page, long count);
1553 extern void mem_init_print_info(const char *str);
1554
1555 /* Free the reserved page into the buddy system, so it gets managed. */
1556 static inline void __free_reserved_page(struct page *page)
1557 {
1558 ClearPageReserved(page);
1559 init_page_count(page);
1560 __free_page(page);
1561 }
1562
1563 static inline void free_reserved_page(struct page *page)
1564 {
1565 __free_reserved_page(page);
1566 adjust_managed_page_count(page, 1);
1567 }
1568
1569 static inline void mark_page_reserved(struct page *page)
1570 {
1571 SetPageReserved(page);
1572 adjust_managed_page_count(page, -1);
1573 }
1574
1575 /*
1576 * Default method to free all the __init memory into the buddy system.
1577 * The freed pages will be poisoned with pattern "poison" if it's within
1578 * range [0, UCHAR_MAX].
1579 * Return pages freed into the buddy system.
1580 */
1581 static inline unsigned long free_initmem_default(int poison)
1582 {
1583 extern char __init_begin[], __init_end[];
1584
1585 return free_reserved_area(&__init_begin, &__init_end,
1586 poison, "unused kernel");
1587 }
1588
1589 static inline unsigned long get_num_physpages(void)
1590 {
1591 int nid;
1592 unsigned long phys_pages = 0;
1593
1594 for_each_online_node(nid)
1595 phys_pages += node_present_pages(nid);
1596
1597 return phys_pages;
1598 }
1599
1600 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1601 /*
1602 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1603 * zones, allocate the backing mem_map and account for memory holes in a more
1604 * architecture independent manner. This is a substitute for creating the
1605 * zone_sizes[] and zholes_size[] arrays and passing them to
1606 * free_area_init_node()
1607 *
1608 * An architecture is expected to register range of page frames backed by
1609 * physical memory with memblock_add[_node]() before calling
1610 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1611 * usage, an architecture is expected to do something like
1612 *
1613 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1614 * max_highmem_pfn};
1615 * for_each_valid_physical_page_range()
1616 * memblock_add_node(base, size, nid)
1617 * free_area_init_nodes(max_zone_pfns);
1618 *
1619 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1620 * registered physical page range. Similarly
1621 * sparse_memory_present_with_active_regions() calls memory_present() for
1622 * each range when SPARSEMEM is enabled.
1623 *
1624 * See mm/page_alloc.c for more information on each function exposed by
1625 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1626 */
1627 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1628 unsigned long node_map_pfn_alignment(void);
1629 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1630 unsigned long end_pfn);
1631 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1632 unsigned long end_pfn);
1633 extern void get_pfn_range_for_nid(unsigned int nid,
1634 unsigned long *start_pfn, unsigned long *end_pfn);
1635 extern unsigned long find_min_pfn_with_active_regions(void);
1636 extern void free_bootmem_with_active_regions(int nid,
1637 unsigned long max_low_pfn);
1638 extern void sparse_memory_present_with_active_regions(int nid);
1639
1640 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1641
1642 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1643 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1644 static inline int __early_pfn_to_nid(unsigned long pfn)
1645 {
1646 return 0;
1647 }
1648 #else
1649 /* please see mm/page_alloc.c */
1650 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1651 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1652 /* there is a per-arch backend function. */
1653 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1654 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1655 #endif
1656
1657 extern void set_dma_reserve(unsigned long new_dma_reserve);
1658 extern void memmap_init_zone(unsigned long, int, unsigned long,
1659 unsigned long, enum memmap_context);
1660 extern void setup_per_zone_wmarks(void);
1661 extern int __meminit init_per_zone_wmark_min(void);
1662 extern void mem_init(void);
1663 extern void __init mmap_init(void);
1664 extern void show_mem(unsigned int flags);
1665 extern void si_meminfo(struct sysinfo * val);
1666 extern void si_meminfo_node(struct sysinfo *val, int nid);
1667
1668 extern __printf(3, 4)
1669 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1670
1671 extern void setup_per_cpu_pageset(void);
1672
1673 extern void zone_pcp_update(struct zone *zone);
1674 extern void zone_pcp_reset(struct zone *zone);
1675
1676 /* page_alloc.c */
1677 extern int min_free_kbytes;
1678
1679 /* nommu.c */
1680 extern atomic_long_t mmap_pages_allocated;
1681 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1682
1683 /* interval_tree.c */
1684 void vma_interval_tree_insert(struct vm_area_struct *node,
1685 struct rb_root *root);
1686 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1687 struct vm_area_struct *prev,
1688 struct rb_root *root);
1689 void vma_interval_tree_remove(struct vm_area_struct *node,
1690 struct rb_root *root);
1691 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1692 unsigned long start, unsigned long last);
1693 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1694 unsigned long start, unsigned long last);
1695
1696 #define vma_interval_tree_foreach(vma, root, start, last) \
1697 for (vma = vma_interval_tree_iter_first(root, start, last); \
1698 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1699
1700 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1701 struct list_head *list)
1702 {
1703 list_add_tail(&vma->shared.nonlinear, list);
1704 }
1705
1706 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1707 struct rb_root *root);
1708 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1709 struct rb_root *root);
1710 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1711 struct rb_root *root, unsigned long start, unsigned long last);
1712 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1713 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1714 #ifdef CONFIG_DEBUG_VM_RB
1715 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1716 #endif
1717
1718 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1719 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1720 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1721
1722 /* mmap.c */
1723 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1724 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1725 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1726 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1727 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1728 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1729 struct mempolicy *);
1730 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1731 extern int split_vma(struct mm_struct *,
1732 struct vm_area_struct *, unsigned long addr, int new_below);
1733 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1734 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1735 struct rb_node **, struct rb_node *);
1736 extern void unlink_file_vma(struct vm_area_struct *);
1737 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1738 unsigned long addr, unsigned long len, pgoff_t pgoff,
1739 bool *need_rmap_locks);
1740 extern void exit_mmap(struct mm_struct *);
1741
1742 extern int mm_take_all_locks(struct mm_struct *mm);
1743 extern void mm_drop_all_locks(struct mm_struct *mm);
1744
1745 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1746 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1747
1748 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1749 extern int install_special_mapping(struct mm_struct *mm,
1750 unsigned long addr, unsigned long len,
1751 unsigned long flags, struct page **pages);
1752
1753 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1754
1755 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1756 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1757 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1758 unsigned long len, unsigned long prot, unsigned long flags,
1759 unsigned long pgoff, unsigned long *populate);
1760 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1761
1762 #ifdef CONFIG_MMU
1763 extern int __mm_populate(unsigned long addr, unsigned long len,
1764 int ignore_errors);
1765 static inline void mm_populate(unsigned long addr, unsigned long len)
1766 {
1767 /* Ignore errors */
1768 (void) __mm_populate(addr, len, 1);
1769 }
1770 #else
1771 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1772 #endif
1773
1774 /* These take the mm semaphore themselves */
1775 extern unsigned long vm_brk(unsigned long, unsigned long);
1776 extern int vm_munmap(unsigned long, size_t);
1777 extern unsigned long vm_mmap(struct file *, unsigned long,
1778 unsigned long, unsigned long,
1779 unsigned long, unsigned long);
1780
1781 struct vm_unmapped_area_info {
1782 #define VM_UNMAPPED_AREA_TOPDOWN 1
1783 unsigned long flags;
1784 unsigned long length;
1785 unsigned long low_limit;
1786 unsigned long high_limit;
1787 unsigned long align_mask;
1788 unsigned long align_offset;
1789 };
1790
1791 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1792 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1793
1794 /*
1795 * Search for an unmapped address range.
1796 *
1797 * We are looking for a range that:
1798 * - does not intersect with any VMA;
1799 * - is contained within the [low_limit, high_limit) interval;
1800 * - is at least the desired size.
1801 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1802 */
1803 static inline unsigned long
1804 vm_unmapped_area(struct vm_unmapped_area_info *info)
1805 {
1806 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1807 return unmapped_area(info);
1808 else
1809 return unmapped_area_topdown(info);
1810 }
1811
1812 /* truncate.c */
1813 extern void truncate_inode_pages(struct address_space *, loff_t);
1814 extern void truncate_inode_pages_range(struct address_space *,
1815 loff_t lstart, loff_t lend);
1816
1817 /* generic vm_area_ops exported for stackable file systems */
1818 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1819 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1820
1821 /* mm/page-writeback.c */
1822 int write_one_page(struct page *page, int wait);
1823 void task_dirty_inc(struct task_struct *tsk);
1824
1825 /* readahead.c */
1826 #define VM_MAX_READAHEAD 128 /* kbytes */
1827 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1828
1829 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1830 pgoff_t offset, unsigned long nr_to_read);
1831
1832 void page_cache_sync_readahead(struct address_space *mapping,
1833 struct file_ra_state *ra,
1834 struct file *filp,
1835 pgoff_t offset,
1836 unsigned long size);
1837
1838 void page_cache_async_readahead(struct address_space *mapping,
1839 struct file_ra_state *ra,
1840 struct file *filp,
1841 struct page *pg,
1842 pgoff_t offset,
1843 unsigned long size);
1844
1845 unsigned long max_sane_readahead(unsigned long nr);
1846 unsigned long ra_submit(struct file_ra_state *ra,
1847 struct address_space *mapping,
1848 struct file *filp);
1849
1850 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1851 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1852
1853 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1854 extern int expand_downwards(struct vm_area_struct *vma,
1855 unsigned long address);
1856 #if VM_GROWSUP
1857 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1858 #else
1859 #define expand_upwards(vma, address) do { } while (0)
1860 #endif
1861
1862 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1863 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1864 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1865 struct vm_area_struct **pprev);
1866
1867 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1868 NULL if none. Assume start_addr < end_addr. */
1869 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1870 {
1871 struct vm_area_struct * vma = find_vma(mm,start_addr);
1872
1873 if (vma && end_addr <= vma->vm_start)
1874 vma = NULL;
1875 return vma;
1876 }
1877
1878 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1879 {
1880 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1881 }
1882
1883 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1884 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1885 unsigned long vm_start, unsigned long vm_end)
1886 {
1887 struct vm_area_struct *vma = find_vma(mm, vm_start);
1888
1889 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1890 vma = NULL;
1891
1892 return vma;
1893 }
1894
1895 #ifdef CONFIG_MMU
1896 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1897 #else
1898 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1899 {
1900 return __pgprot(0);
1901 }
1902 #endif
1903
1904 #ifdef CONFIG_NUMA_BALANCING
1905 unsigned long change_prot_numa(struct vm_area_struct *vma,
1906 unsigned long start, unsigned long end);
1907 #endif
1908
1909 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1910 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1911 unsigned long pfn, unsigned long size, pgprot_t);
1912 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1913 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1914 unsigned long pfn);
1915 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1916 unsigned long pfn);
1917 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1918
1919
1920 struct page *follow_page_mask(struct vm_area_struct *vma,
1921 unsigned long address, unsigned int foll_flags,
1922 unsigned int *page_mask);
1923
1924 static inline struct page *follow_page(struct vm_area_struct *vma,
1925 unsigned long address, unsigned int foll_flags)
1926 {
1927 unsigned int unused_page_mask;
1928 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1929 }
1930
1931 #define FOLL_WRITE 0x01 /* check pte is writable */
1932 #define FOLL_TOUCH 0x02 /* mark page accessed */
1933 #define FOLL_GET 0x04 /* do get_page on page */
1934 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1935 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1936 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1937 * and return without waiting upon it */
1938 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1939 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1940 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1941 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1942 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1943
1944 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1945 void *data);
1946 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1947 unsigned long size, pte_fn_t fn, void *data);
1948
1949 #ifdef CONFIG_PROC_FS
1950 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1951 #else
1952 static inline void vm_stat_account(struct mm_struct *mm,
1953 unsigned long flags, struct file *file, long pages)
1954 {
1955 mm->total_vm += pages;
1956 }
1957 #endif /* CONFIG_PROC_FS */
1958
1959 #ifdef CONFIG_DEBUG_PAGEALLOC
1960 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1961 #ifdef CONFIG_HIBERNATION
1962 extern bool kernel_page_present(struct page *page);
1963 #endif /* CONFIG_HIBERNATION */
1964 #else
1965 static inline void
1966 kernel_map_pages(struct page *page, int numpages, int enable) {}
1967 #ifdef CONFIG_HIBERNATION
1968 static inline bool kernel_page_present(struct page *page) { return true; }
1969 #endif /* CONFIG_HIBERNATION */
1970 #endif
1971
1972 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1973 #ifdef __HAVE_ARCH_GATE_AREA
1974 int in_gate_area_no_mm(unsigned long addr);
1975 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1976 #else
1977 int in_gate_area_no_mm(unsigned long addr);
1978 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1979 #endif /* __HAVE_ARCH_GATE_AREA */
1980
1981 #ifdef CONFIG_SYSCTL
1982 extern int sysctl_drop_caches;
1983 int drop_caches_sysctl_handler(struct ctl_table *, int,
1984 void __user *, size_t *, loff_t *);
1985 #endif
1986
1987 unsigned long shrink_slab(struct shrink_control *shrink,
1988 unsigned long nr_pages_scanned,
1989 unsigned long lru_pages);
1990
1991 #ifndef CONFIG_MMU
1992 #define randomize_va_space 0
1993 #else
1994 extern int randomize_va_space;
1995 #endif
1996
1997 const char * arch_vma_name(struct vm_area_struct *vma);
1998 void print_vma_addr(char *prefix, unsigned long rip);
1999
2000 void sparse_mem_maps_populate_node(struct page **map_map,
2001 unsigned long pnum_begin,
2002 unsigned long pnum_end,
2003 unsigned long map_count,
2004 int nodeid);
2005
2006 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2007 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2008 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2009 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2010 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2011 void *vmemmap_alloc_block(unsigned long size, int node);
2012 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2013 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2014 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2015 int node);
2016 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2017 void vmemmap_populate_print_last(void);
2018 #ifdef CONFIG_MEMORY_HOTPLUG
2019 void vmemmap_free(unsigned long start, unsigned long end);
2020 #endif
2021 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2022 unsigned long size);
2023
2024 enum mf_flags {
2025 MF_COUNT_INCREASED = 1 << 0,
2026 MF_ACTION_REQUIRED = 1 << 1,
2027 MF_MUST_KILL = 1 << 2,
2028 MF_SOFT_OFFLINE = 1 << 3,
2029 };
2030 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2031 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2032 extern int unpoison_memory(unsigned long pfn);
2033 extern int sysctl_memory_failure_early_kill;
2034 extern int sysctl_memory_failure_recovery;
2035 extern void shake_page(struct page *p, int access);
2036 extern atomic_long_t num_poisoned_pages;
2037 extern int soft_offline_page(struct page *page, int flags);
2038
2039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2040 extern void clear_huge_page(struct page *page,
2041 unsigned long addr,
2042 unsigned int pages_per_huge_page);
2043 extern void copy_user_huge_page(struct page *dst, struct page *src,
2044 unsigned long addr, struct vm_area_struct *vma,
2045 unsigned int pages_per_huge_page);
2046 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2047
2048 #ifdef CONFIG_DEBUG_PAGEALLOC
2049 extern unsigned int _debug_guardpage_minorder;
2050
2051 static inline unsigned int debug_guardpage_minorder(void)
2052 {
2053 return _debug_guardpage_minorder;
2054 }
2055
2056 static inline bool page_is_guard(struct page *page)
2057 {
2058 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2059 }
2060 #else
2061 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2062 static inline bool page_is_guard(struct page *page) { return false; }
2063 #endif /* CONFIG_DEBUG_PAGEALLOC */
2064
2065 #if MAX_NUMNODES > 1
2066 void __init setup_nr_node_ids(void);
2067 #else
2068 static inline void setup_nr_node_ids(void) {}
2069 #endif
2070
2071 #endif /* __KERNEL__ */
2072 #endif /* _LINUX_MM_H */
This page took 0.080783 seconds and 5 git commands to generate.