Merge tag 'nfsd-4.3' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30 struct bdi_writeback;
31
32 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
33 extern unsigned long max_mapnr;
34
35 static inline void set_max_mapnr(unsigned long limit)
36 {
37 max_mapnr = limit;
38 }
39 #else
40 static inline void set_max_mapnr(unsigned long limit) { }
41 #endif
42
43 extern unsigned long totalram_pages;
44 extern void * high_memory;
45 extern int page_cluster;
46
47 #ifdef CONFIG_SYSCTL
48 extern int sysctl_legacy_va_layout;
49 #else
50 #define sysctl_legacy_va_layout 0
51 #endif
52
53 #include <asm/page.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56
57 #ifndef __pa_symbol
58 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
59 #endif
60
61 /*
62 * To prevent common memory management code establishing
63 * a zero page mapping on a read fault.
64 * This macro should be defined within <asm/pgtable.h>.
65 * s390 does this to prevent multiplexing of hardware bits
66 * related to the physical page in case of virtualization.
67 */
68 #ifndef mm_forbids_zeropage
69 #define mm_forbids_zeropage(X) (0)
70 #endif
71
72 extern unsigned long sysctl_user_reserve_kbytes;
73 extern unsigned long sysctl_admin_reserve_kbytes;
74
75 extern int sysctl_overcommit_memory;
76 extern int sysctl_overcommit_ratio;
77 extern unsigned long sysctl_overcommit_kbytes;
78
79 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 size_t *, loff_t *);
83
84 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
86 /* to align the pointer to the (next) page boundary */
87 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
89 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
92 /*
93 * Linux kernel virtual memory manager primitives.
94 * The idea being to have a "virtual" mm in the same way
95 * we have a virtual fs - giving a cleaner interface to the
96 * mm details, and allowing different kinds of memory mappings
97 * (from shared memory to executable loading to arbitrary
98 * mmap() functions).
99 */
100
101 extern struct kmem_cache *vm_area_cachep;
102
103 #ifndef CONFIG_MMU
104 extern struct rb_root nommu_region_tree;
105 extern struct rw_semaphore nommu_region_sem;
106
107 extern unsigned int kobjsize(const void *objp);
108 #endif
109
110 /*
111 * vm_flags in vm_area_struct, see mm_types.h.
112 */
113 #define VM_NONE 0x00000000
114
115 #define VM_READ 0x00000001 /* currently active flags */
116 #define VM_WRITE 0x00000002
117 #define VM_EXEC 0x00000004
118 #define VM_SHARED 0x00000008
119
120 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
121 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
122 #define VM_MAYWRITE 0x00000020
123 #define VM_MAYEXEC 0x00000040
124 #define VM_MAYSHARE 0x00000080
125
126 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
127 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
128 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
129 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
130 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
131
132 #define VM_LOCKED 0x00002000
133 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
134
135 /* Used by sys_madvise() */
136 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
137 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
138
139 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
140 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
141 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
142 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
143 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
144 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
145 #define VM_ARCH_2 0x02000000
146 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
147
148 #ifdef CONFIG_MEM_SOFT_DIRTY
149 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
150 #else
151 # define VM_SOFTDIRTY 0
152 #endif
153
154 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
155 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
156 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
157 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
158
159 #if defined(CONFIG_X86)
160 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
161 #elif defined(CONFIG_PPC)
162 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
163 #elif defined(CONFIG_PARISC)
164 # define VM_GROWSUP VM_ARCH_1
165 #elif defined(CONFIG_METAG)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif defined(CONFIG_IA64)
168 # define VM_GROWSUP VM_ARCH_1
169 #elif !defined(CONFIG_MMU)
170 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
171 #endif
172
173 #if defined(CONFIG_X86)
174 /* MPX specific bounds table or bounds directory */
175 # define VM_MPX VM_ARCH_2
176 #endif
177
178 #ifndef VM_GROWSUP
179 # define VM_GROWSUP VM_NONE
180 #endif
181
182 /* Bits set in the VMA until the stack is in its final location */
183 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
184
185 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
186 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
187 #endif
188
189 #ifdef CONFIG_STACK_GROWSUP
190 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #else
192 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193 #endif
194
195 /*
196 * Special vmas that are non-mergable, non-mlock()able.
197 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
198 */
199 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
200
201 /* This mask defines which mm->def_flags a process can inherit its parent */
202 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
203
204 /*
205 * mapping from the currently active vm_flags protection bits (the
206 * low four bits) to a page protection mask..
207 */
208 extern pgprot_t protection_map[16];
209
210 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
211 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
212 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
213 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
214 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
215 #define FAULT_FLAG_TRIED 0x20 /* Second try */
216 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
217
218 /*
219 * vm_fault is filled by the the pagefault handler and passed to the vma's
220 * ->fault function. The vma's ->fault is responsible for returning a bitmask
221 * of VM_FAULT_xxx flags that give details about how the fault was handled.
222 *
223 * pgoff should be used in favour of virtual_address, if possible.
224 */
225 struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
230 struct page *cow_page; /* Handler may choose to COW */
231 struct page *page; /* ->fault handlers should return a
232 * page here, unless VM_FAULT_NOPAGE
233 * is set (which is also implied by
234 * VM_FAULT_ERROR).
235 */
236 /* for ->map_pages() only */
237 pgoff_t max_pgoff; /* map pages for offset from pgoff till
238 * max_pgoff inclusive */
239 pte_t *pte; /* pte entry associated with ->pgoff */
240 };
241
242 /*
243 * These are the virtual MM functions - opening of an area, closing and
244 * unmapping it (needed to keep files on disk up-to-date etc), pointer
245 * to the functions called when a no-page or a wp-page exception occurs.
246 */
247 struct vm_operations_struct {
248 void (*open)(struct vm_area_struct * area);
249 void (*close)(struct vm_area_struct * area);
250 int (*mremap)(struct vm_area_struct * area);
251 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
252 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
253
254 /* notification that a previously read-only page is about to become
255 * writable, if an error is returned it will cause a SIGBUS */
256 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
257
258 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
259 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
260
261 /* called by access_process_vm when get_user_pages() fails, typically
262 * for use by special VMAs that can switch between memory and hardware
263 */
264 int (*access)(struct vm_area_struct *vma, unsigned long addr,
265 void *buf, int len, int write);
266
267 /* Called by the /proc/PID/maps code to ask the vma whether it
268 * has a special name. Returning non-NULL will also cause this
269 * vma to be dumped unconditionally. */
270 const char *(*name)(struct vm_area_struct *vma);
271
272 #ifdef CONFIG_NUMA
273 /*
274 * set_policy() op must add a reference to any non-NULL @new mempolicy
275 * to hold the policy upon return. Caller should pass NULL @new to
276 * remove a policy and fall back to surrounding context--i.e. do not
277 * install a MPOL_DEFAULT policy, nor the task or system default
278 * mempolicy.
279 */
280 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
281
282 /*
283 * get_policy() op must add reference [mpol_get()] to any policy at
284 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
285 * in mm/mempolicy.c will do this automatically.
286 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
287 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
288 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
289 * must return NULL--i.e., do not "fallback" to task or system default
290 * policy.
291 */
292 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
293 unsigned long addr);
294 #endif
295 /*
296 * Called by vm_normal_page() for special PTEs to find the
297 * page for @addr. This is useful if the default behavior
298 * (using pte_page()) would not find the correct page.
299 */
300 struct page *(*find_special_page)(struct vm_area_struct *vma,
301 unsigned long addr);
302 };
303
304 struct mmu_gather;
305 struct inode;
306
307 #define page_private(page) ((page)->private)
308 #define set_page_private(page, v) ((page)->private = (v))
309
310 /* It's valid only if the page is free path or free_list */
311 static inline void set_freepage_migratetype(struct page *page, int migratetype)
312 {
313 page->index = migratetype;
314 }
315
316 /* It's valid only if the page is free path or free_list */
317 static inline int get_freepage_migratetype(struct page *page)
318 {
319 return page->index;
320 }
321
322 /*
323 * FIXME: take this include out, include page-flags.h in
324 * files which need it (119 of them)
325 */
326 #include <linux/page-flags.h>
327 #include <linux/huge_mm.h>
328
329 /*
330 * Methods to modify the page usage count.
331 *
332 * What counts for a page usage:
333 * - cache mapping (page->mapping)
334 * - private data (page->private)
335 * - page mapped in a task's page tables, each mapping
336 * is counted separately
337 *
338 * Also, many kernel routines increase the page count before a critical
339 * routine so they can be sure the page doesn't go away from under them.
340 */
341
342 /*
343 * Drop a ref, return true if the refcount fell to zero (the page has no users)
344 */
345 static inline int put_page_testzero(struct page *page)
346 {
347 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
348 return atomic_dec_and_test(&page->_count);
349 }
350
351 /*
352 * Try to grab a ref unless the page has a refcount of zero, return false if
353 * that is the case.
354 * This can be called when MMU is off so it must not access
355 * any of the virtual mappings.
356 */
357 static inline int get_page_unless_zero(struct page *page)
358 {
359 return atomic_inc_not_zero(&page->_count);
360 }
361
362 /*
363 * Try to drop a ref unless the page has a refcount of one, return false if
364 * that is the case.
365 * This is to make sure that the refcount won't become zero after this drop.
366 * This can be called when MMU is off so it must not access
367 * any of the virtual mappings.
368 */
369 static inline int put_page_unless_one(struct page *page)
370 {
371 return atomic_add_unless(&page->_count, -1, 1);
372 }
373
374 extern int page_is_ram(unsigned long pfn);
375 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
376
377 /* Support for virtually mapped pages */
378 struct page *vmalloc_to_page(const void *addr);
379 unsigned long vmalloc_to_pfn(const void *addr);
380
381 /*
382 * Determine if an address is within the vmalloc range
383 *
384 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
385 * is no special casing required.
386 */
387 static inline int is_vmalloc_addr(const void *x)
388 {
389 #ifdef CONFIG_MMU
390 unsigned long addr = (unsigned long)x;
391
392 return addr >= VMALLOC_START && addr < VMALLOC_END;
393 #else
394 return 0;
395 #endif
396 }
397 #ifdef CONFIG_MMU
398 extern int is_vmalloc_or_module_addr(const void *x);
399 #else
400 static inline int is_vmalloc_or_module_addr(const void *x)
401 {
402 return 0;
403 }
404 #endif
405
406 extern void kvfree(const void *addr);
407
408 static inline void compound_lock(struct page *page)
409 {
410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
411 VM_BUG_ON_PAGE(PageSlab(page), page);
412 bit_spin_lock(PG_compound_lock, &page->flags);
413 #endif
414 }
415
416 static inline void compound_unlock(struct page *page)
417 {
418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 VM_BUG_ON_PAGE(PageSlab(page), page);
420 bit_spin_unlock(PG_compound_lock, &page->flags);
421 #endif
422 }
423
424 static inline unsigned long compound_lock_irqsave(struct page *page)
425 {
426 unsigned long uninitialized_var(flags);
427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 local_irq_save(flags);
429 compound_lock(page);
430 #endif
431 return flags;
432 }
433
434 static inline void compound_unlock_irqrestore(struct page *page,
435 unsigned long flags)
436 {
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 compound_unlock(page);
439 local_irq_restore(flags);
440 #endif
441 }
442
443 static inline struct page *compound_head_by_tail(struct page *tail)
444 {
445 struct page *head = tail->first_page;
446
447 /*
448 * page->first_page may be a dangling pointer to an old
449 * compound page, so recheck that it is still a tail
450 * page before returning.
451 */
452 smp_rmb();
453 if (likely(PageTail(tail)))
454 return head;
455 return tail;
456 }
457
458 /*
459 * Since either compound page could be dismantled asynchronously in THP
460 * or we access asynchronously arbitrary positioned struct page, there
461 * would be tail flag race. To handle this race, we should call
462 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
463 */
464 static inline struct page *compound_head(struct page *page)
465 {
466 if (unlikely(PageTail(page)))
467 return compound_head_by_tail(page);
468 return page;
469 }
470
471 /*
472 * If we access compound page synchronously such as access to
473 * allocated page, there is no need to handle tail flag race, so we can
474 * check tail flag directly without any synchronization primitive.
475 */
476 static inline struct page *compound_head_fast(struct page *page)
477 {
478 if (unlikely(PageTail(page)))
479 return page->first_page;
480 return page;
481 }
482
483 /*
484 * The atomic page->_mapcount, starts from -1: so that transitions
485 * both from it and to it can be tracked, using atomic_inc_and_test
486 * and atomic_add_negative(-1).
487 */
488 static inline void page_mapcount_reset(struct page *page)
489 {
490 atomic_set(&(page)->_mapcount, -1);
491 }
492
493 static inline int page_mapcount(struct page *page)
494 {
495 VM_BUG_ON_PAGE(PageSlab(page), page);
496 return atomic_read(&page->_mapcount) + 1;
497 }
498
499 static inline int page_count(struct page *page)
500 {
501 return atomic_read(&compound_head(page)->_count);
502 }
503
504 static inline bool __compound_tail_refcounted(struct page *page)
505 {
506 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
507 }
508
509 /*
510 * This takes a head page as parameter and tells if the
511 * tail page reference counting can be skipped.
512 *
513 * For this to be safe, PageSlab and PageHeadHuge must remain true on
514 * any given page where they return true here, until all tail pins
515 * have been released.
516 */
517 static inline bool compound_tail_refcounted(struct page *page)
518 {
519 VM_BUG_ON_PAGE(!PageHead(page), page);
520 return __compound_tail_refcounted(page);
521 }
522
523 static inline void get_huge_page_tail(struct page *page)
524 {
525 /*
526 * __split_huge_page_refcount() cannot run from under us.
527 */
528 VM_BUG_ON_PAGE(!PageTail(page), page);
529 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
530 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
531 if (compound_tail_refcounted(page->first_page))
532 atomic_inc(&page->_mapcount);
533 }
534
535 extern bool __get_page_tail(struct page *page);
536
537 static inline void get_page(struct page *page)
538 {
539 if (unlikely(PageTail(page)))
540 if (likely(__get_page_tail(page)))
541 return;
542 /*
543 * Getting a normal page or the head of a compound page
544 * requires to already have an elevated page->_count.
545 */
546 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
547 atomic_inc(&page->_count);
548 }
549
550 static inline struct page *virt_to_head_page(const void *x)
551 {
552 struct page *page = virt_to_page(x);
553
554 /*
555 * We don't need to worry about synchronization of tail flag
556 * when we call virt_to_head_page() since it is only called for
557 * already allocated page and this page won't be freed until
558 * this virt_to_head_page() is finished. So use _fast variant.
559 */
560 return compound_head_fast(page);
561 }
562
563 /*
564 * Setup the page count before being freed into the page allocator for
565 * the first time (boot or memory hotplug)
566 */
567 static inline void init_page_count(struct page *page)
568 {
569 atomic_set(&page->_count, 1);
570 }
571
572 void put_page(struct page *page);
573 void put_pages_list(struct list_head *pages);
574
575 void split_page(struct page *page, unsigned int order);
576 int split_free_page(struct page *page);
577
578 /*
579 * Compound pages have a destructor function. Provide a
580 * prototype for that function and accessor functions.
581 * These are _only_ valid on the head of a PG_compound page.
582 */
583
584 static inline void set_compound_page_dtor(struct page *page,
585 compound_page_dtor *dtor)
586 {
587 page[1].compound_dtor = dtor;
588 }
589
590 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
591 {
592 return page[1].compound_dtor;
593 }
594
595 static inline int compound_order(struct page *page)
596 {
597 if (!PageHead(page))
598 return 0;
599 return page[1].compound_order;
600 }
601
602 static inline void set_compound_order(struct page *page, unsigned long order)
603 {
604 page[1].compound_order = order;
605 }
606
607 #ifdef CONFIG_MMU
608 /*
609 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
610 * servicing faults for write access. In the normal case, do always want
611 * pte_mkwrite. But get_user_pages can cause write faults for mappings
612 * that do not have writing enabled, when used by access_process_vm.
613 */
614 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
615 {
616 if (likely(vma->vm_flags & VM_WRITE))
617 pte = pte_mkwrite(pte);
618 return pte;
619 }
620
621 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
622 struct page *page, pte_t *pte, bool write, bool anon);
623 #endif
624
625 /*
626 * Multiple processes may "see" the same page. E.g. for untouched
627 * mappings of /dev/null, all processes see the same page full of
628 * zeroes, and text pages of executables and shared libraries have
629 * only one copy in memory, at most, normally.
630 *
631 * For the non-reserved pages, page_count(page) denotes a reference count.
632 * page_count() == 0 means the page is free. page->lru is then used for
633 * freelist management in the buddy allocator.
634 * page_count() > 0 means the page has been allocated.
635 *
636 * Pages are allocated by the slab allocator in order to provide memory
637 * to kmalloc and kmem_cache_alloc. In this case, the management of the
638 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
639 * unless a particular usage is carefully commented. (the responsibility of
640 * freeing the kmalloc memory is the caller's, of course).
641 *
642 * A page may be used by anyone else who does a __get_free_page().
643 * In this case, page_count still tracks the references, and should only
644 * be used through the normal accessor functions. The top bits of page->flags
645 * and page->virtual store page management information, but all other fields
646 * are unused and could be used privately, carefully. The management of this
647 * page is the responsibility of the one who allocated it, and those who have
648 * subsequently been given references to it.
649 *
650 * The other pages (we may call them "pagecache pages") are completely
651 * managed by the Linux memory manager: I/O, buffers, swapping etc.
652 * The following discussion applies only to them.
653 *
654 * A pagecache page contains an opaque `private' member, which belongs to the
655 * page's address_space. Usually, this is the address of a circular list of
656 * the page's disk buffers. PG_private must be set to tell the VM to call
657 * into the filesystem to release these pages.
658 *
659 * A page may belong to an inode's memory mapping. In this case, page->mapping
660 * is the pointer to the inode, and page->index is the file offset of the page,
661 * in units of PAGE_CACHE_SIZE.
662 *
663 * If pagecache pages are not associated with an inode, they are said to be
664 * anonymous pages. These may become associated with the swapcache, and in that
665 * case PG_swapcache is set, and page->private is an offset into the swapcache.
666 *
667 * In either case (swapcache or inode backed), the pagecache itself holds one
668 * reference to the page. Setting PG_private should also increment the
669 * refcount. The each user mapping also has a reference to the page.
670 *
671 * The pagecache pages are stored in a per-mapping radix tree, which is
672 * rooted at mapping->page_tree, and indexed by offset.
673 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
674 * lists, we instead now tag pages as dirty/writeback in the radix tree.
675 *
676 * All pagecache pages may be subject to I/O:
677 * - inode pages may need to be read from disk,
678 * - inode pages which have been modified and are MAP_SHARED may need
679 * to be written back to the inode on disk,
680 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
681 * modified may need to be swapped out to swap space and (later) to be read
682 * back into memory.
683 */
684
685 /*
686 * The zone field is never updated after free_area_init_core()
687 * sets it, so none of the operations on it need to be atomic.
688 */
689
690 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
691 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
692 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
693 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
694 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
695
696 /*
697 * Define the bit shifts to access each section. For non-existent
698 * sections we define the shift as 0; that plus a 0 mask ensures
699 * the compiler will optimise away reference to them.
700 */
701 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
702 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
703 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
704 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
705
706 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
707 #ifdef NODE_NOT_IN_PAGE_FLAGS
708 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
709 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
710 SECTIONS_PGOFF : ZONES_PGOFF)
711 #else
712 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
713 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
714 NODES_PGOFF : ZONES_PGOFF)
715 #endif
716
717 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
718
719 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
720 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
721 #endif
722
723 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
724 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
725 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
726 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
727 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
728
729 static inline enum zone_type page_zonenum(const struct page *page)
730 {
731 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
732 }
733
734 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
735 #define SECTION_IN_PAGE_FLAGS
736 #endif
737
738 /*
739 * The identification function is mainly used by the buddy allocator for
740 * determining if two pages could be buddies. We are not really identifying
741 * the zone since we could be using the section number id if we do not have
742 * node id available in page flags.
743 * We only guarantee that it will return the same value for two combinable
744 * pages in a zone.
745 */
746 static inline int page_zone_id(struct page *page)
747 {
748 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
749 }
750
751 static inline int zone_to_nid(struct zone *zone)
752 {
753 #ifdef CONFIG_NUMA
754 return zone->node;
755 #else
756 return 0;
757 #endif
758 }
759
760 #ifdef NODE_NOT_IN_PAGE_FLAGS
761 extern int page_to_nid(const struct page *page);
762 #else
763 static inline int page_to_nid(const struct page *page)
764 {
765 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
766 }
767 #endif
768
769 #ifdef CONFIG_NUMA_BALANCING
770 static inline int cpu_pid_to_cpupid(int cpu, int pid)
771 {
772 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
773 }
774
775 static inline int cpupid_to_pid(int cpupid)
776 {
777 return cpupid & LAST__PID_MASK;
778 }
779
780 static inline int cpupid_to_cpu(int cpupid)
781 {
782 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
783 }
784
785 static inline int cpupid_to_nid(int cpupid)
786 {
787 return cpu_to_node(cpupid_to_cpu(cpupid));
788 }
789
790 static inline bool cpupid_pid_unset(int cpupid)
791 {
792 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
793 }
794
795 static inline bool cpupid_cpu_unset(int cpupid)
796 {
797 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
798 }
799
800 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
801 {
802 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
803 }
804
805 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
806 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
807 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
808 {
809 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
810 }
811
812 static inline int page_cpupid_last(struct page *page)
813 {
814 return page->_last_cpupid;
815 }
816 static inline void page_cpupid_reset_last(struct page *page)
817 {
818 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
819 }
820 #else
821 static inline int page_cpupid_last(struct page *page)
822 {
823 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
824 }
825
826 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
827
828 static inline void page_cpupid_reset_last(struct page *page)
829 {
830 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
831
832 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
833 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
834 }
835 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
836 #else /* !CONFIG_NUMA_BALANCING */
837 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
838 {
839 return page_to_nid(page); /* XXX */
840 }
841
842 static inline int page_cpupid_last(struct page *page)
843 {
844 return page_to_nid(page); /* XXX */
845 }
846
847 static inline int cpupid_to_nid(int cpupid)
848 {
849 return -1;
850 }
851
852 static inline int cpupid_to_pid(int cpupid)
853 {
854 return -1;
855 }
856
857 static inline int cpupid_to_cpu(int cpupid)
858 {
859 return -1;
860 }
861
862 static inline int cpu_pid_to_cpupid(int nid, int pid)
863 {
864 return -1;
865 }
866
867 static inline bool cpupid_pid_unset(int cpupid)
868 {
869 return 1;
870 }
871
872 static inline void page_cpupid_reset_last(struct page *page)
873 {
874 }
875
876 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
877 {
878 return false;
879 }
880 #endif /* CONFIG_NUMA_BALANCING */
881
882 static inline struct zone *page_zone(const struct page *page)
883 {
884 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
885 }
886
887 #ifdef SECTION_IN_PAGE_FLAGS
888 static inline void set_page_section(struct page *page, unsigned long section)
889 {
890 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
891 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
892 }
893
894 static inline unsigned long page_to_section(const struct page *page)
895 {
896 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
897 }
898 #endif
899
900 static inline void set_page_zone(struct page *page, enum zone_type zone)
901 {
902 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
903 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
904 }
905
906 static inline void set_page_node(struct page *page, unsigned long node)
907 {
908 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
909 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
910 }
911
912 static inline void set_page_links(struct page *page, enum zone_type zone,
913 unsigned long node, unsigned long pfn)
914 {
915 set_page_zone(page, zone);
916 set_page_node(page, node);
917 #ifdef SECTION_IN_PAGE_FLAGS
918 set_page_section(page, pfn_to_section_nr(pfn));
919 #endif
920 }
921
922 /*
923 * Some inline functions in vmstat.h depend on page_zone()
924 */
925 #include <linux/vmstat.h>
926
927 static __always_inline void *lowmem_page_address(const struct page *page)
928 {
929 return __va(PFN_PHYS(page_to_pfn(page)));
930 }
931
932 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
933 #define HASHED_PAGE_VIRTUAL
934 #endif
935
936 #if defined(WANT_PAGE_VIRTUAL)
937 static inline void *page_address(const struct page *page)
938 {
939 return page->virtual;
940 }
941 static inline void set_page_address(struct page *page, void *address)
942 {
943 page->virtual = address;
944 }
945 #define page_address_init() do { } while(0)
946 #endif
947
948 #if defined(HASHED_PAGE_VIRTUAL)
949 void *page_address(const struct page *page);
950 void set_page_address(struct page *page, void *virtual);
951 void page_address_init(void);
952 #endif
953
954 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
955 #define page_address(page) lowmem_page_address(page)
956 #define set_page_address(page, address) do { } while(0)
957 #define page_address_init() do { } while(0)
958 #endif
959
960 extern void *page_rmapping(struct page *page);
961 extern struct anon_vma *page_anon_vma(struct page *page);
962 extern struct address_space *page_mapping(struct page *page);
963
964 extern struct address_space *__page_file_mapping(struct page *);
965
966 static inline
967 struct address_space *page_file_mapping(struct page *page)
968 {
969 if (unlikely(PageSwapCache(page)))
970 return __page_file_mapping(page);
971
972 return page->mapping;
973 }
974
975 /*
976 * Return the pagecache index of the passed page. Regular pagecache pages
977 * use ->index whereas swapcache pages use ->private
978 */
979 static inline pgoff_t page_index(struct page *page)
980 {
981 if (unlikely(PageSwapCache(page)))
982 return page_private(page);
983 return page->index;
984 }
985
986 extern pgoff_t __page_file_index(struct page *page);
987
988 /*
989 * Return the file index of the page. Regular pagecache pages use ->index
990 * whereas swapcache pages use swp_offset(->private)
991 */
992 static inline pgoff_t page_file_index(struct page *page)
993 {
994 if (unlikely(PageSwapCache(page)))
995 return __page_file_index(page);
996
997 return page->index;
998 }
999
1000 /*
1001 * Return true if this page is mapped into pagetables.
1002 */
1003 static inline int page_mapped(struct page *page)
1004 {
1005 return atomic_read(&(page)->_mapcount) >= 0;
1006 }
1007
1008 /*
1009 * Return true only if the page has been allocated with
1010 * ALLOC_NO_WATERMARKS and the low watermark was not
1011 * met implying that the system is under some pressure.
1012 */
1013 static inline bool page_is_pfmemalloc(struct page *page)
1014 {
1015 /*
1016 * Page index cannot be this large so this must be
1017 * a pfmemalloc page.
1018 */
1019 return page->index == -1UL;
1020 }
1021
1022 /*
1023 * Only to be called by the page allocator on a freshly allocated
1024 * page.
1025 */
1026 static inline void set_page_pfmemalloc(struct page *page)
1027 {
1028 page->index = -1UL;
1029 }
1030
1031 static inline void clear_page_pfmemalloc(struct page *page)
1032 {
1033 page->index = 0;
1034 }
1035
1036 /*
1037 * Different kinds of faults, as returned by handle_mm_fault().
1038 * Used to decide whether a process gets delivered SIGBUS or
1039 * just gets major/minor fault counters bumped up.
1040 */
1041
1042 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1043
1044 #define VM_FAULT_OOM 0x0001
1045 #define VM_FAULT_SIGBUS 0x0002
1046 #define VM_FAULT_MAJOR 0x0004
1047 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1048 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1049 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1050 #define VM_FAULT_SIGSEGV 0x0040
1051
1052 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1053 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1054 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1055 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1056
1057 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1058
1059 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1060 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1061 VM_FAULT_FALLBACK)
1062
1063 /* Encode hstate index for a hwpoisoned large page */
1064 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1065 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1066
1067 /*
1068 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1069 */
1070 extern void pagefault_out_of_memory(void);
1071
1072 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1073
1074 /*
1075 * Flags passed to show_mem() and show_free_areas() to suppress output in
1076 * various contexts.
1077 */
1078 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1079
1080 extern void show_free_areas(unsigned int flags);
1081 extern bool skip_free_areas_node(unsigned int flags, int nid);
1082
1083 int shmem_zero_setup(struct vm_area_struct *);
1084 #ifdef CONFIG_SHMEM
1085 bool shmem_mapping(struct address_space *mapping);
1086 #else
1087 static inline bool shmem_mapping(struct address_space *mapping)
1088 {
1089 return false;
1090 }
1091 #endif
1092
1093 extern int can_do_mlock(void);
1094 extern int user_shm_lock(size_t, struct user_struct *);
1095 extern void user_shm_unlock(size_t, struct user_struct *);
1096
1097 /*
1098 * Parameter block passed down to zap_pte_range in exceptional cases.
1099 */
1100 struct zap_details {
1101 struct address_space *check_mapping; /* Check page->mapping if set */
1102 pgoff_t first_index; /* Lowest page->index to unmap */
1103 pgoff_t last_index; /* Highest page->index to unmap */
1104 };
1105
1106 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1107 pte_t pte);
1108
1109 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1110 unsigned long size);
1111 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1112 unsigned long size, struct zap_details *);
1113 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1114 unsigned long start, unsigned long end);
1115
1116 /**
1117 * mm_walk - callbacks for walk_page_range
1118 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1119 * this handler is required to be able to handle
1120 * pmd_trans_huge() pmds. They may simply choose to
1121 * split_huge_page() instead of handling it explicitly.
1122 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1123 * @pte_hole: if set, called for each hole at all levels
1124 * @hugetlb_entry: if set, called for each hugetlb entry
1125 * @test_walk: caller specific callback function to determine whether
1126 * we walk over the current vma or not. A positive returned
1127 * value means "do page table walk over the current vma,"
1128 * and a negative one means "abort current page table walk
1129 * right now." 0 means "skip the current vma."
1130 * @mm: mm_struct representing the target process of page table walk
1131 * @vma: vma currently walked (NULL if walking outside vmas)
1132 * @private: private data for callbacks' usage
1133 *
1134 * (see the comment on walk_page_range() for more details)
1135 */
1136 struct mm_walk {
1137 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1138 unsigned long next, struct mm_walk *walk);
1139 int (*pte_entry)(pte_t *pte, unsigned long addr,
1140 unsigned long next, struct mm_walk *walk);
1141 int (*pte_hole)(unsigned long addr, unsigned long next,
1142 struct mm_walk *walk);
1143 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1144 unsigned long addr, unsigned long next,
1145 struct mm_walk *walk);
1146 int (*test_walk)(unsigned long addr, unsigned long next,
1147 struct mm_walk *walk);
1148 struct mm_struct *mm;
1149 struct vm_area_struct *vma;
1150 void *private;
1151 };
1152
1153 int walk_page_range(unsigned long addr, unsigned long end,
1154 struct mm_walk *walk);
1155 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1156 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1157 unsigned long end, unsigned long floor, unsigned long ceiling);
1158 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1159 struct vm_area_struct *vma);
1160 void unmap_mapping_range(struct address_space *mapping,
1161 loff_t const holebegin, loff_t const holelen, int even_cows);
1162 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1163 unsigned long *pfn);
1164 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1165 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1166 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1167 void *buf, int len, int write);
1168
1169 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1170 loff_t const holebegin, loff_t const holelen)
1171 {
1172 unmap_mapping_range(mapping, holebegin, holelen, 0);
1173 }
1174
1175 extern void truncate_pagecache(struct inode *inode, loff_t new);
1176 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1177 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1178 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1179 int truncate_inode_page(struct address_space *mapping, struct page *page);
1180 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1181 int invalidate_inode_page(struct page *page);
1182
1183 #ifdef CONFIG_MMU
1184 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1185 unsigned long address, unsigned int flags);
1186 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1187 unsigned long address, unsigned int fault_flags);
1188 #else
1189 static inline int handle_mm_fault(struct mm_struct *mm,
1190 struct vm_area_struct *vma, unsigned long address,
1191 unsigned int flags)
1192 {
1193 /* should never happen if there's no MMU */
1194 BUG();
1195 return VM_FAULT_SIGBUS;
1196 }
1197 static inline int fixup_user_fault(struct task_struct *tsk,
1198 struct mm_struct *mm, unsigned long address,
1199 unsigned int fault_flags)
1200 {
1201 /* should never happen if there's no MMU */
1202 BUG();
1203 return -EFAULT;
1204 }
1205 #endif
1206
1207 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1208 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1209 void *buf, int len, int write);
1210
1211 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212 unsigned long start, unsigned long nr_pages,
1213 unsigned int foll_flags, struct page **pages,
1214 struct vm_area_struct **vmas, int *nonblocking);
1215 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1216 unsigned long start, unsigned long nr_pages,
1217 int write, int force, struct page **pages,
1218 struct vm_area_struct **vmas);
1219 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1220 unsigned long start, unsigned long nr_pages,
1221 int write, int force, struct page **pages,
1222 int *locked);
1223 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1224 unsigned long start, unsigned long nr_pages,
1225 int write, int force, struct page **pages,
1226 unsigned int gup_flags);
1227 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1228 unsigned long start, unsigned long nr_pages,
1229 int write, int force, struct page **pages);
1230 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1231 struct page **pages);
1232 struct kvec;
1233 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1234 struct page **pages);
1235 int get_kernel_page(unsigned long start, int write, struct page **pages);
1236 struct page *get_dump_page(unsigned long addr);
1237
1238 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1239 extern void do_invalidatepage(struct page *page, unsigned int offset,
1240 unsigned int length);
1241
1242 int __set_page_dirty_nobuffers(struct page *page);
1243 int __set_page_dirty_no_writeback(struct page *page);
1244 int redirty_page_for_writepage(struct writeback_control *wbc,
1245 struct page *page);
1246 void account_page_dirtied(struct page *page, struct address_space *mapping,
1247 struct mem_cgroup *memcg);
1248 void account_page_cleaned(struct page *page, struct address_space *mapping,
1249 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1250 int set_page_dirty(struct page *page);
1251 int set_page_dirty_lock(struct page *page);
1252 void cancel_dirty_page(struct page *page);
1253 int clear_page_dirty_for_io(struct page *page);
1254
1255 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1256
1257 /* Is the vma a continuation of the stack vma above it? */
1258 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1259 {
1260 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1261 }
1262
1263 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1264 unsigned long addr)
1265 {
1266 return (vma->vm_flags & VM_GROWSDOWN) &&
1267 (vma->vm_start == addr) &&
1268 !vma_growsdown(vma->vm_prev, addr);
1269 }
1270
1271 /* Is the vma a continuation of the stack vma below it? */
1272 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1273 {
1274 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1275 }
1276
1277 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1278 unsigned long addr)
1279 {
1280 return (vma->vm_flags & VM_GROWSUP) &&
1281 (vma->vm_end == addr) &&
1282 !vma_growsup(vma->vm_next, addr);
1283 }
1284
1285 extern struct task_struct *task_of_stack(struct task_struct *task,
1286 struct vm_area_struct *vma, bool in_group);
1287
1288 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1289 unsigned long old_addr, struct vm_area_struct *new_vma,
1290 unsigned long new_addr, unsigned long len,
1291 bool need_rmap_locks);
1292 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1293 unsigned long end, pgprot_t newprot,
1294 int dirty_accountable, int prot_numa);
1295 extern int mprotect_fixup(struct vm_area_struct *vma,
1296 struct vm_area_struct **pprev, unsigned long start,
1297 unsigned long end, unsigned long newflags);
1298
1299 /*
1300 * doesn't attempt to fault and will return short.
1301 */
1302 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1303 struct page **pages);
1304 /*
1305 * per-process(per-mm_struct) statistics.
1306 */
1307 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1308 {
1309 long val = atomic_long_read(&mm->rss_stat.count[member]);
1310
1311 #ifdef SPLIT_RSS_COUNTING
1312 /*
1313 * counter is updated in asynchronous manner and may go to minus.
1314 * But it's never be expected number for users.
1315 */
1316 if (val < 0)
1317 val = 0;
1318 #endif
1319 return (unsigned long)val;
1320 }
1321
1322 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1323 {
1324 atomic_long_add(value, &mm->rss_stat.count[member]);
1325 }
1326
1327 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1328 {
1329 atomic_long_inc(&mm->rss_stat.count[member]);
1330 }
1331
1332 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1333 {
1334 atomic_long_dec(&mm->rss_stat.count[member]);
1335 }
1336
1337 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1338 {
1339 return get_mm_counter(mm, MM_FILEPAGES) +
1340 get_mm_counter(mm, MM_ANONPAGES);
1341 }
1342
1343 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1344 {
1345 return max(mm->hiwater_rss, get_mm_rss(mm));
1346 }
1347
1348 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1349 {
1350 return max(mm->hiwater_vm, mm->total_vm);
1351 }
1352
1353 static inline void update_hiwater_rss(struct mm_struct *mm)
1354 {
1355 unsigned long _rss = get_mm_rss(mm);
1356
1357 if ((mm)->hiwater_rss < _rss)
1358 (mm)->hiwater_rss = _rss;
1359 }
1360
1361 static inline void update_hiwater_vm(struct mm_struct *mm)
1362 {
1363 if (mm->hiwater_vm < mm->total_vm)
1364 mm->hiwater_vm = mm->total_vm;
1365 }
1366
1367 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1368 {
1369 mm->hiwater_rss = get_mm_rss(mm);
1370 }
1371
1372 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1373 struct mm_struct *mm)
1374 {
1375 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1376
1377 if (*maxrss < hiwater_rss)
1378 *maxrss = hiwater_rss;
1379 }
1380
1381 #if defined(SPLIT_RSS_COUNTING)
1382 void sync_mm_rss(struct mm_struct *mm);
1383 #else
1384 static inline void sync_mm_rss(struct mm_struct *mm)
1385 {
1386 }
1387 #endif
1388
1389 int vma_wants_writenotify(struct vm_area_struct *vma);
1390
1391 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1392 spinlock_t **ptl);
1393 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1394 spinlock_t **ptl)
1395 {
1396 pte_t *ptep;
1397 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1398 return ptep;
1399 }
1400
1401 #ifdef __PAGETABLE_PUD_FOLDED
1402 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1403 unsigned long address)
1404 {
1405 return 0;
1406 }
1407 #else
1408 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1409 #endif
1410
1411 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1412 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1413 unsigned long address)
1414 {
1415 return 0;
1416 }
1417
1418 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1419
1420 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1421 {
1422 return 0;
1423 }
1424
1425 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1426 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1427
1428 #else
1429 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1430
1431 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1432 {
1433 atomic_long_set(&mm->nr_pmds, 0);
1434 }
1435
1436 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1437 {
1438 return atomic_long_read(&mm->nr_pmds);
1439 }
1440
1441 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1442 {
1443 atomic_long_inc(&mm->nr_pmds);
1444 }
1445
1446 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1447 {
1448 atomic_long_dec(&mm->nr_pmds);
1449 }
1450 #endif
1451
1452 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1453 pmd_t *pmd, unsigned long address);
1454 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1455
1456 /*
1457 * The following ifdef needed to get the 4level-fixup.h header to work.
1458 * Remove it when 4level-fixup.h has been removed.
1459 */
1460 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1461 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1462 {
1463 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1464 NULL: pud_offset(pgd, address);
1465 }
1466
1467 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1468 {
1469 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1470 NULL: pmd_offset(pud, address);
1471 }
1472 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1473
1474 #if USE_SPLIT_PTE_PTLOCKS
1475 #if ALLOC_SPLIT_PTLOCKS
1476 void __init ptlock_cache_init(void);
1477 extern bool ptlock_alloc(struct page *page);
1478 extern void ptlock_free(struct page *page);
1479
1480 static inline spinlock_t *ptlock_ptr(struct page *page)
1481 {
1482 return page->ptl;
1483 }
1484 #else /* ALLOC_SPLIT_PTLOCKS */
1485 static inline void ptlock_cache_init(void)
1486 {
1487 }
1488
1489 static inline bool ptlock_alloc(struct page *page)
1490 {
1491 return true;
1492 }
1493
1494 static inline void ptlock_free(struct page *page)
1495 {
1496 }
1497
1498 static inline spinlock_t *ptlock_ptr(struct page *page)
1499 {
1500 return &page->ptl;
1501 }
1502 #endif /* ALLOC_SPLIT_PTLOCKS */
1503
1504 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1505 {
1506 return ptlock_ptr(pmd_page(*pmd));
1507 }
1508
1509 static inline bool ptlock_init(struct page *page)
1510 {
1511 /*
1512 * prep_new_page() initialize page->private (and therefore page->ptl)
1513 * with 0. Make sure nobody took it in use in between.
1514 *
1515 * It can happen if arch try to use slab for page table allocation:
1516 * slab code uses page->slab_cache and page->first_page (for tail
1517 * pages), which share storage with page->ptl.
1518 */
1519 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1520 if (!ptlock_alloc(page))
1521 return false;
1522 spin_lock_init(ptlock_ptr(page));
1523 return true;
1524 }
1525
1526 /* Reset page->mapping so free_pages_check won't complain. */
1527 static inline void pte_lock_deinit(struct page *page)
1528 {
1529 page->mapping = NULL;
1530 ptlock_free(page);
1531 }
1532
1533 #else /* !USE_SPLIT_PTE_PTLOCKS */
1534 /*
1535 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1536 */
1537 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1538 {
1539 return &mm->page_table_lock;
1540 }
1541 static inline void ptlock_cache_init(void) {}
1542 static inline bool ptlock_init(struct page *page) { return true; }
1543 static inline void pte_lock_deinit(struct page *page) {}
1544 #endif /* USE_SPLIT_PTE_PTLOCKS */
1545
1546 static inline void pgtable_init(void)
1547 {
1548 ptlock_cache_init();
1549 pgtable_cache_init();
1550 }
1551
1552 static inline bool pgtable_page_ctor(struct page *page)
1553 {
1554 inc_zone_page_state(page, NR_PAGETABLE);
1555 return ptlock_init(page);
1556 }
1557
1558 static inline void pgtable_page_dtor(struct page *page)
1559 {
1560 pte_lock_deinit(page);
1561 dec_zone_page_state(page, NR_PAGETABLE);
1562 }
1563
1564 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1565 ({ \
1566 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1567 pte_t *__pte = pte_offset_map(pmd, address); \
1568 *(ptlp) = __ptl; \
1569 spin_lock(__ptl); \
1570 __pte; \
1571 })
1572
1573 #define pte_unmap_unlock(pte, ptl) do { \
1574 spin_unlock(ptl); \
1575 pte_unmap(pte); \
1576 } while (0)
1577
1578 #define pte_alloc_map(mm, vma, pmd, address) \
1579 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1580 pmd, address))? \
1581 NULL: pte_offset_map(pmd, address))
1582
1583 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1584 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1585 pmd, address))? \
1586 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1587
1588 #define pte_alloc_kernel(pmd, address) \
1589 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1590 NULL: pte_offset_kernel(pmd, address))
1591
1592 #if USE_SPLIT_PMD_PTLOCKS
1593
1594 static struct page *pmd_to_page(pmd_t *pmd)
1595 {
1596 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1597 return virt_to_page((void *)((unsigned long) pmd & mask));
1598 }
1599
1600 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1601 {
1602 return ptlock_ptr(pmd_to_page(pmd));
1603 }
1604
1605 static inline bool pgtable_pmd_page_ctor(struct page *page)
1606 {
1607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1608 page->pmd_huge_pte = NULL;
1609 #endif
1610 return ptlock_init(page);
1611 }
1612
1613 static inline void pgtable_pmd_page_dtor(struct page *page)
1614 {
1615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1616 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1617 #endif
1618 ptlock_free(page);
1619 }
1620
1621 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1622
1623 #else
1624
1625 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1626 {
1627 return &mm->page_table_lock;
1628 }
1629
1630 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1631 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1632
1633 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1634
1635 #endif
1636
1637 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1638 {
1639 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1640 spin_lock(ptl);
1641 return ptl;
1642 }
1643
1644 extern void free_area_init(unsigned long * zones_size);
1645 extern void free_area_init_node(int nid, unsigned long * zones_size,
1646 unsigned long zone_start_pfn, unsigned long *zholes_size);
1647 extern void free_initmem(void);
1648
1649 /*
1650 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1651 * into the buddy system. The freed pages will be poisoned with pattern
1652 * "poison" if it's within range [0, UCHAR_MAX].
1653 * Return pages freed into the buddy system.
1654 */
1655 extern unsigned long free_reserved_area(void *start, void *end,
1656 int poison, char *s);
1657
1658 #ifdef CONFIG_HIGHMEM
1659 /*
1660 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1661 * and totalram_pages.
1662 */
1663 extern void free_highmem_page(struct page *page);
1664 #endif
1665
1666 extern void adjust_managed_page_count(struct page *page, long count);
1667 extern void mem_init_print_info(const char *str);
1668
1669 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1670
1671 /* Free the reserved page into the buddy system, so it gets managed. */
1672 static inline void __free_reserved_page(struct page *page)
1673 {
1674 ClearPageReserved(page);
1675 init_page_count(page);
1676 __free_page(page);
1677 }
1678
1679 static inline void free_reserved_page(struct page *page)
1680 {
1681 __free_reserved_page(page);
1682 adjust_managed_page_count(page, 1);
1683 }
1684
1685 static inline void mark_page_reserved(struct page *page)
1686 {
1687 SetPageReserved(page);
1688 adjust_managed_page_count(page, -1);
1689 }
1690
1691 /*
1692 * Default method to free all the __init memory into the buddy system.
1693 * The freed pages will be poisoned with pattern "poison" if it's within
1694 * range [0, UCHAR_MAX].
1695 * Return pages freed into the buddy system.
1696 */
1697 static inline unsigned long free_initmem_default(int poison)
1698 {
1699 extern char __init_begin[], __init_end[];
1700
1701 return free_reserved_area(&__init_begin, &__init_end,
1702 poison, "unused kernel");
1703 }
1704
1705 static inline unsigned long get_num_physpages(void)
1706 {
1707 int nid;
1708 unsigned long phys_pages = 0;
1709
1710 for_each_online_node(nid)
1711 phys_pages += node_present_pages(nid);
1712
1713 return phys_pages;
1714 }
1715
1716 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1717 /*
1718 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1719 * zones, allocate the backing mem_map and account for memory holes in a more
1720 * architecture independent manner. This is a substitute for creating the
1721 * zone_sizes[] and zholes_size[] arrays and passing them to
1722 * free_area_init_node()
1723 *
1724 * An architecture is expected to register range of page frames backed by
1725 * physical memory with memblock_add[_node]() before calling
1726 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1727 * usage, an architecture is expected to do something like
1728 *
1729 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1730 * max_highmem_pfn};
1731 * for_each_valid_physical_page_range()
1732 * memblock_add_node(base, size, nid)
1733 * free_area_init_nodes(max_zone_pfns);
1734 *
1735 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1736 * registered physical page range. Similarly
1737 * sparse_memory_present_with_active_regions() calls memory_present() for
1738 * each range when SPARSEMEM is enabled.
1739 *
1740 * See mm/page_alloc.c for more information on each function exposed by
1741 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1742 */
1743 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1744 unsigned long node_map_pfn_alignment(void);
1745 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1746 unsigned long end_pfn);
1747 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1748 unsigned long end_pfn);
1749 extern void get_pfn_range_for_nid(unsigned int nid,
1750 unsigned long *start_pfn, unsigned long *end_pfn);
1751 extern unsigned long find_min_pfn_with_active_regions(void);
1752 extern void free_bootmem_with_active_regions(int nid,
1753 unsigned long max_low_pfn);
1754 extern void sparse_memory_present_with_active_regions(int nid);
1755
1756 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1757
1758 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1759 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1760 static inline int __early_pfn_to_nid(unsigned long pfn,
1761 struct mminit_pfnnid_cache *state)
1762 {
1763 return 0;
1764 }
1765 #else
1766 /* please see mm/page_alloc.c */
1767 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1768 /* there is a per-arch backend function. */
1769 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1770 struct mminit_pfnnid_cache *state);
1771 #endif
1772
1773 extern void set_dma_reserve(unsigned long new_dma_reserve);
1774 extern void memmap_init_zone(unsigned long, int, unsigned long,
1775 unsigned long, enum memmap_context);
1776 extern void setup_per_zone_wmarks(void);
1777 extern int __meminit init_per_zone_wmark_min(void);
1778 extern void mem_init(void);
1779 extern void __init mmap_init(void);
1780 extern void show_mem(unsigned int flags);
1781 extern void si_meminfo(struct sysinfo * val);
1782 extern void si_meminfo_node(struct sysinfo *val, int nid);
1783
1784 extern __printf(3, 4)
1785 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1786
1787 extern void setup_per_cpu_pageset(void);
1788
1789 extern void zone_pcp_update(struct zone *zone);
1790 extern void zone_pcp_reset(struct zone *zone);
1791
1792 /* page_alloc.c */
1793 extern int min_free_kbytes;
1794
1795 /* nommu.c */
1796 extern atomic_long_t mmap_pages_allocated;
1797 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1798
1799 /* interval_tree.c */
1800 void vma_interval_tree_insert(struct vm_area_struct *node,
1801 struct rb_root *root);
1802 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1803 struct vm_area_struct *prev,
1804 struct rb_root *root);
1805 void vma_interval_tree_remove(struct vm_area_struct *node,
1806 struct rb_root *root);
1807 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1808 unsigned long start, unsigned long last);
1809 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1810 unsigned long start, unsigned long last);
1811
1812 #define vma_interval_tree_foreach(vma, root, start, last) \
1813 for (vma = vma_interval_tree_iter_first(root, start, last); \
1814 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1815
1816 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1817 struct rb_root *root);
1818 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1819 struct rb_root *root);
1820 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1821 struct rb_root *root, unsigned long start, unsigned long last);
1822 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1823 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1824 #ifdef CONFIG_DEBUG_VM_RB
1825 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1826 #endif
1827
1828 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1829 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1830 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1831
1832 /* mmap.c */
1833 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1834 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1835 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1836 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1837 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1838 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1839 struct mempolicy *, struct vm_userfaultfd_ctx);
1840 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1841 extern int split_vma(struct mm_struct *,
1842 struct vm_area_struct *, unsigned long addr, int new_below);
1843 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1844 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1845 struct rb_node **, struct rb_node *);
1846 extern void unlink_file_vma(struct vm_area_struct *);
1847 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1848 unsigned long addr, unsigned long len, pgoff_t pgoff,
1849 bool *need_rmap_locks);
1850 extern void exit_mmap(struct mm_struct *);
1851
1852 static inline int check_data_rlimit(unsigned long rlim,
1853 unsigned long new,
1854 unsigned long start,
1855 unsigned long end_data,
1856 unsigned long start_data)
1857 {
1858 if (rlim < RLIM_INFINITY) {
1859 if (((new - start) + (end_data - start_data)) > rlim)
1860 return -ENOSPC;
1861 }
1862
1863 return 0;
1864 }
1865
1866 extern int mm_take_all_locks(struct mm_struct *mm);
1867 extern void mm_drop_all_locks(struct mm_struct *mm);
1868
1869 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1870 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1871
1872 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1873 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1874 unsigned long addr, unsigned long len,
1875 unsigned long flags,
1876 const struct vm_special_mapping *spec);
1877 /* This is an obsolete alternative to _install_special_mapping. */
1878 extern int install_special_mapping(struct mm_struct *mm,
1879 unsigned long addr, unsigned long len,
1880 unsigned long flags, struct page **pages);
1881
1882 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1883
1884 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1885 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1886 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1887 unsigned long len, unsigned long prot, unsigned long flags,
1888 unsigned long pgoff, unsigned long *populate);
1889 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1890
1891 #ifdef CONFIG_MMU
1892 extern int __mm_populate(unsigned long addr, unsigned long len,
1893 int ignore_errors);
1894 static inline void mm_populate(unsigned long addr, unsigned long len)
1895 {
1896 /* Ignore errors */
1897 (void) __mm_populate(addr, len, 1);
1898 }
1899 #else
1900 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1901 #endif
1902
1903 /* These take the mm semaphore themselves */
1904 extern unsigned long vm_brk(unsigned long, unsigned long);
1905 extern int vm_munmap(unsigned long, size_t);
1906 extern unsigned long vm_mmap(struct file *, unsigned long,
1907 unsigned long, unsigned long,
1908 unsigned long, unsigned long);
1909
1910 struct vm_unmapped_area_info {
1911 #define VM_UNMAPPED_AREA_TOPDOWN 1
1912 unsigned long flags;
1913 unsigned long length;
1914 unsigned long low_limit;
1915 unsigned long high_limit;
1916 unsigned long align_mask;
1917 unsigned long align_offset;
1918 };
1919
1920 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1921 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1922
1923 /*
1924 * Search for an unmapped address range.
1925 *
1926 * We are looking for a range that:
1927 * - does not intersect with any VMA;
1928 * - is contained within the [low_limit, high_limit) interval;
1929 * - is at least the desired size.
1930 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1931 */
1932 static inline unsigned long
1933 vm_unmapped_area(struct vm_unmapped_area_info *info)
1934 {
1935 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1936 return unmapped_area_topdown(info);
1937 else
1938 return unmapped_area(info);
1939 }
1940
1941 /* truncate.c */
1942 extern void truncate_inode_pages(struct address_space *, loff_t);
1943 extern void truncate_inode_pages_range(struct address_space *,
1944 loff_t lstart, loff_t lend);
1945 extern void truncate_inode_pages_final(struct address_space *);
1946
1947 /* generic vm_area_ops exported for stackable file systems */
1948 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1949 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1950 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1951
1952 /* mm/page-writeback.c */
1953 int write_one_page(struct page *page, int wait);
1954 void task_dirty_inc(struct task_struct *tsk);
1955
1956 /* readahead.c */
1957 #define VM_MAX_READAHEAD 128 /* kbytes */
1958 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1959
1960 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1961 pgoff_t offset, unsigned long nr_to_read);
1962
1963 void page_cache_sync_readahead(struct address_space *mapping,
1964 struct file_ra_state *ra,
1965 struct file *filp,
1966 pgoff_t offset,
1967 unsigned long size);
1968
1969 void page_cache_async_readahead(struct address_space *mapping,
1970 struct file_ra_state *ra,
1971 struct file *filp,
1972 struct page *pg,
1973 pgoff_t offset,
1974 unsigned long size);
1975
1976 unsigned long max_sane_readahead(unsigned long nr);
1977
1978 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1979 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1980
1981 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1982 extern int expand_downwards(struct vm_area_struct *vma,
1983 unsigned long address);
1984 #if VM_GROWSUP
1985 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1986 #else
1987 #define expand_upwards(vma, address) (0)
1988 #endif
1989
1990 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1991 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1992 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1993 struct vm_area_struct **pprev);
1994
1995 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1996 NULL if none. Assume start_addr < end_addr. */
1997 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1998 {
1999 struct vm_area_struct * vma = find_vma(mm,start_addr);
2000
2001 if (vma && end_addr <= vma->vm_start)
2002 vma = NULL;
2003 return vma;
2004 }
2005
2006 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2007 {
2008 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2009 }
2010
2011 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2012 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2013 unsigned long vm_start, unsigned long vm_end)
2014 {
2015 struct vm_area_struct *vma = find_vma(mm, vm_start);
2016
2017 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2018 vma = NULL;
2019
2020 return vma;
2021 }
2022
2023 #ifdef CONFIG_MMU
2024 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2025 void vma_set_page_prot(struct vm_area_struct *vma);
2026 #else
2027 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2028 {
2029 return __pgprot(0);
2030 }
2031 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2032 {
2033 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2034 }
2035 #endif
2036
2037 #ifdef CONFIG_NUMA_BALANCING
2038 unsigned long change_prot_numa(struct vm_area_struct *vma,
2039 unsigned long start, unsigned long end);
2040 #endif
2041
2042 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2043 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2044 unsigned long pfn, unsigned long size, pgprot_t);
2045 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2046 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 unsigned long pfn);
2048 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2049 unsigned long pfn);
2050 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2051
2052
2053 struct page *follow_page_mask(struct vm_area_struct *vma,
2054 unsigned long address, unsigned int foll_flags,
2055 unsigned int *page_mask);
2056
2057 static inline struct page *follow_page(struct vm_area_struct *vma,
2058 unsigned long address, unsigned int foll_flags)
2059 {
2060 unsigned int unused_page_mask;
2061 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2062 }
2063
2064 #define FOLL_WRITE 0x01 /* check pte is writable */
2065 #define FOLL_TOUCH 0x02 /* mark page accessed */
2066 #define FOLL_GET 0x04 /* do get_page on page */
2067 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2068 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2069 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2070 * and return without waiting upon it */
2071 #define FOLL_POPULATE 0x40 /* fault in page */
2072 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2073 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2074 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2075 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2076 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2077
2078 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2079 void *data);
2080 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2081 unsigned long size, pte_fn_t fn, void *data);
2082
2083 #ifdef CONFIG_PROC_FS
2084 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2085 #else
2086 static inline void vm_stat_account(struct mm_struct *mm,
2087 unsigned long flags, struct file *file, long pages)
2088 {
2089 mm->total_vm += pages;
2090 }
2091 #endif /* CONFIG_PROC_FS */
2092
2093 #ifdef CONFIG_DEBUG_PAGEALLOC
2094 extern bool _debug_pagealloc_enabled;
2095 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2096
2097 static inline bool debug_pagealloc_enabled(void)
2098 {
2099 return _debug_pagealloc_enabled;
2100 }
2101
2102 static inline void
2103 kernel_map_pages(struct page *page, int numpages, int enable)
2104 {
2105 if (!debug_pagealloc_enabled())
2106 return;
2107
2108 __kernel_map_pages(page, numpages, enable);
2109 }
2110 #ifdef CONFIG_HIBERNATION
2111 extern bool kernel_page_present(struct page *page);
2112 #endif /* CONFIG_HIBERNATION */
2113 #else
2114 static inline void
2115 kernel_map_pages(struct page *page, int numpages, int enable) {}
2116 #ifdef CONFIG_HIBERNATION
2117 static inline bool kernel_page_present(struct page *page) { return true; }
2118 #endif /* CONFIG_HIBERNATION */
2119 #endif
2120
2121 #ifdef __HAVE_ARCH_GATE_AREA
2122 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2123 extern int in_gate_area_no_mm(unsigned long addr);
2124 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2125 #else
2126 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2127 {
2128 return NULL;
2129 }
2130 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2131 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2132 {
2133 return 0;
2134 }
2135 #endif /* __HAVE_ARCH_GATE_AREA */
2136
2137 #ifdef CONFIG_SYSCTL
2138 extern int sysctl_drop_caches;
2139 int drop_caches_sysctl_handler(struct ctl_table *, int,
2140 void __user *, size_t *, loff_t *);
2141 #endif
2142
2143 void drop_slab(void);
2144 void drop_slab_node(int nid);
2145
2146 #ifndef CONFIG_MMU
2147 #define randomize_va_space 0
2148 #else
2149 extern int randomize_va_space;
2150 #endif
2151
2152 const char * arch_vma_name(struct vm_area_struct *vma);
2153 void print_vma_addr(char *prefix, unsigned long rip);
2154
2155 void sparse_mem_maps_populate_node(struct page **map_map,
2156 unsigned long pnum_begin,
2157 unsigned long pnum_end,
2158 unsigned long map_count,
2159 int nodeid);
2160
2161 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2162 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2163 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2164 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2165 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2166 void *vmemmap_alloc_block(unsigned long size, int node);
2167 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2168 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2169 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2170 int node);
2171 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2172 void vmemmap_populate_print_last(void);
2173 #ifdef CONFIG_MEMORY_HOTPLUG
2174 void vmemmap_free(unsigned long start, unsigned long end);
2175 #endif
2176 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2177 unsigned long size);
2178
2179 enum mf_flags {
2180 MF_COUNT_INCREASED = 1 << 0,
2181 MF_ACTION_REQUIRED = 1 << 1,
2182 MF_MUST_KILL = 1 << 2,
2183 MF_SOFT_OFFLINE = 1 << 3,
2184 };
2185 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2186 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2187 extern int unpoison_memory(unsigned long pfn);
2188 extern int get_hwpoison_page(struct page *page);
2189 extern int sysctl_memory_failure_early_kill;
2190 extern int sysctl_memory_failure_recovery;
2191 extern void shake_page(struct page *p, int access);
2192 extern atomic_long_t num_poisoned_pages;
2193 extern int soft_offline_page(struct page *page, int flags);
2194
2195
2196 /*
2197 * Error handlers for various types of pages.
2198 */
2199 enum mf_result {
2200 MF_IGNORED, /* Error: cannot be handled */
2201 MF_FAILED, /* Error: handling failed */
2202 MF_DELAYED, /* Will be handled later */
2203 MF_RECOVERED, /* Successfully recovered */
2204 };
2205
2206 enum mf_action_page_type {
2207 MF_MSG_KERNEL,
2208 MF_MSG_KERNEL_HIGH_ORDER,
2209 MF_MSG_SLAB,
2210 MF_MSG_DIFFERENT_COMPOUND,
2211 MF_MSG_POISONED_HUGE,
2212 MF_MSG_HUGE,
2213 MF_MSG_FREE_HUGE,
2214 MF_MSG_UNMAP_FAILED,
2215 MF_MSG_DIRTY_SWAPCACHE,
2216 MF_MSG_CLEAN_SWAPCACHE,
2217 MF_MSG_DIRTY_MLOCKED_LRU,
2218 MF_MSG_CLEAN_MLOCKED_LRU,
2219 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2220 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2221 MF_MSG_DIRTY_LRU,
2222 MF_MSG_CLEAN_LRU,
2223 MF_MSG_TRUNCATED_LRU,
2224 MF_MSG_BUDDY,
2225 MF_MSG_BUDDY_2ND,
2226 MF_MSG_UNKNOWN,
2227 };
2228
2229 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2230 extern void clear_huge_page(struct page *page,
2231 unsigned long addr,
2232 unsigned int pages_per_huge_page);
2233 extern void copy_user_huge_page(struct page *dst, struct page *src,
2234 unsigned long addr, struct vm_area_struct *vma,
2235 unsigned int pages_per_huge_page);
2236 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2237
2238 extern struct page_ext_operations debug_guardpage_ops;
2239 extern struct page_ext_operations page_poisoning_ops;
2240
2241 #ifdef CONFIG_DEBUG_PAGEALLOC
2242 extern unsigned int _debug_guardpage_minorder;
2243 extern bool _debug_guardpage_enabled;
2244
2245 static inline unsigned int debug_guardpage_minorder(void)
2246 {
2247 return _debug_guardpage_minorder;
2248 }
2249
2250 static inline bool debug_guardpage_enabled(void)
2251 {
2252 return _debug_guardpage_enabled;
2253 }
2254
2255 static inline bool page_is_guard(struct page *page)
2256 {
2257 struct page_ext *page_ext;
2258
2259 if (!debug_guardpage_enabled())
2260 return false;
2261
2262 page_ext = lookup_page_ext(page);
2263 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2264 }
2265 #else
2266 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2267 static inline bool debug_guardpage_enabled(void) { return false; }
2268 static inline bool page_is_guard(struct page *page) { return false; }
2269 #endif /* CONFIG_DEBUG_PAGEALLOC */
2270
2271 #if MAX_NUMNODES > 1
2272 void __init setup_nr_node_ids(void);
2273 #else
2274 static inline void setup_nr_node_ids(void) {}
2275 #endif
2276
2277 #endif /* __KERNEL__ */
2278 #endif /* _LINUX_MM_H */
This page took 0.07824 seconds and 6 git commands to generate.