Move page_is_ram() declaration to mm.h
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21 struct rlimit;
22
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
26
27 extern unsigned long num_physpages;
28 extern unsigned long totalram_pages;
29 extern void * high_memory;
30 extern int page_cluster;
31
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /* to align the pointer to the (next) page boundary */
45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
46
47 /*
48 * Linux kernel virtual memory manager primitives.
49 * The idea being to have a "virtual" mm in the same way
50 * we have a virtual fs - giving a cleaner interface to the
51 * mm details, and allowing different kinds of memory mappings
52 * (from shared memory to executable loading to arbitrary
53 * mmap() functions).
54 */
55
56 extern struct kmem_cache *vm_area_cachep;
57
58 #ifndef CONFIG_MMU
59 extern struct rb_root nommu_region_tree;
60 extern struct rw_semaphore nommu_region_sem;
61
62 extern unsigned int kobjsize(const void *objp);
63 #endif
64
65 /*
66 * vm_flags in vm_area_struct, see mm_types.h.
67 */
68 #define VM_READ 0x00000001 /* currently active flags */
69 #define VM_WRITE 0x00000002
70 #define VM_EXEC 0x00000004
71 #define VM_SHARED 0x00000008
72
73 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
74 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
75 #define VM_MAYWRITE 0x00000020
76 #define VM_MAYEXEC 0x00000040
77 #define VM_MAYSHARE 0x00000080
78
79 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
80 #define VM_GROWSUP 0x00000200
81 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
82 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
83
84 #define VM_EXECUTABLE 0x00001000
85 #define VM_LOCKED 0x00002000
86 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
87
88 /* Used by sys_madvise() */
89 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
90 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
91
92 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
93 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
94 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
95 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
96 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
97 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
98 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
99 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
100 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
101 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
102
103 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
104 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
105 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
106 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
107 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
108
109 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
111 #endif
112
113 #ifdef CONFIG_STACK_GROWSUP
114 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
115 #else
116 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #endif
118
119 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
120 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
121 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
122 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
123 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
124
125 /*
126 * special vmas that are non-mergable, non-mlock()able
127 */
128 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
129
130 /*
131 * mapping from the currently active vm_flags protection bits (the
132 * low four bits) to a page protection mask..
133 */
134 extern pgprot_t protection_map[16];
135
136 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
137 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
138 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
139
140 /*
141 * This interface is used by x86 PAT code to identify a pfn mapping that is
142 * linear over entire vma. This is to optimize PAT code that deals with
143 * marking the physical region with a particular prot. This is not for generic
144 * mm use. Note also that this check will not work if the pfn mapping is
145 * linear for a vma starting at physical address 0. In which case PAT code
146 * falls back to slow path of reserving physical range page by page.
147 */
148 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
149 {
150 return (vma->vm_flags & VM_PFN_AT_MMAP);
151 }
152
153 static inline int is_pfn_mapping(struct vm_area_struct *vma)
154 {
155 return (vma->vm_flags & VM_PFNMAP);
156 }
157
158 /*
159 * vm_fault is filled by the the pagefault handler and passed to the vma's
160 * ->fault function. The vma's ->fault is responsible for returning a bitmask
161 * of VM_FAULT_xxx flags that give details about how the fault was handled.
162 *
163 * pgoff should be used in favour of virtual_address, if possible. If pgoff
164 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
165 * mapping support.
166 */
167 struct vm_fault {
168 unsigned int flags; /* FAULT_FLAG_xxx flags */
169 pgoff_t pgoff; /* Logical page offset based on vma */
170 void __user *virtual_address; /* Faulting virtual address */
171
172 struct page *page; /* ->fault handlers should return a
173 * page here, unless VM_FAULT_NOPAGE
174 * is set (which is also implied by
175 * VM_FAULT_ERROR).
176 */
177 };
178
179 /*
180 * These are the virtual MM functions - opening of an area, closing and
181 * unmapping it (needed to keep files on disk up-to-date etc), pointer
182 * to the functions called when a no-page or a wp-page exception occurs.
183 */
184 struct vm_operations_struct {
185 void (*open)(struct vm_area_struct * area);
186 void (*close)(struct vm_area_struct * area);
187 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
188
189 /* notification that a previously read-only page is about to become
190 * writable, if an error is returned it will cause a SIGBUS */
191 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
192
193 /* called by access_process_vm when get_user_pages() fails, typically
194 * for use by special VMAs that can switch between memory and hardware
195 */
196 int (*access)(struct vm_area_struct *vma, unsigned long addr,
197 void *buf, int len, int write);
198 #ifdef CONFIG_NUMA
199 /*
200 * set_policy() op must add a reference to any non-NULL @new mempolicy
201 * to hold the policy upon return. Caller should pass NULL @new to
202 * remove a policy and fall back to surrounding context--i.e. do not
203 * install a MPOL_DEFAULT policy, nor the task or system default
204 * mempolicy.
205 */
206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
207
208 /*
209 * get_policy() op must add reference [mpol_get()] to any policy at
210 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
211 * in mm/mempolicy.c will do this automatically.
212 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
213 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
214 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
215 * must return NULL--i.e., do not "fallback" to task or system default
216 * policy.
217 */
218 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
219 unsigned long addr);
220 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
221 const nodemask_t *to, unsigned long flags);
222 #endif
223 };
224
225 struct mmu_gather;
226 struct inode;
227
228 #define page_private(page) ((page)->private)
229 #define set_page_private(page, v) ((page)->private = (v))
230
231 /*
232 * FIXME: take this include out, include page-flags.h in
233 * files which need it (119 of them)
234 */
235 #include <linux/page-flags.h>
236
237 /*
238 * Methods to modify the page usage count.
239 *
240 * What counts for a page usage:
241 * - cache mapping (page->mapping)
242 * - private data (page->private)
243 * - page mapped in a task's page tables, each mapping
244 * is counted separately
245 *
246 * Also, many kernel routines increase the page count before a critical
247 * routine so they can be sure the page doesn't go away from under them.
248 */
249
250 /*
251 * Drop a ref, return true if the refcount fell to zero (the page has no users)
252 */
253 static inline int put_page_testzero(struct page *page)
254 {
255 VM_BUG_ON(atomic_read(&page->_count) == 0);
256 return atomic_dec_and_test(&page->_count);
257 }
258
259 /*
260 * Try to grab a ref unless the page has a refcount of zero, return false if
261 * that is the case.
262 */
263 static inline int get_page_unless_zero(struct page *page)
264 {
265 return atomic_inc_not_zero(&page->_count);
266 }
267
268 extern int page_is_ram(unsigned long pfn);
269
270 /* Support for virtually mapped pages */
271 struct page *vmalloc_to_page(const void *addr);
272 unsigned long vmalloc_to_pfn(const void *addr);
273
274 /*
275 * Determine if an address is within the vmalloc range
276 *
277 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
278 * is no special casing required.
279 */
280 static inline int is_vmalloc_addr(const void *x)
281 {
282 #ifdef CONFIG_MMU
283 unsigned long addr = (unsigned long)x;
284
285 return addr >= VMALLOC_START && addr < VMALLOC_END;
286 #else
287 return 0;
288 #endif
289 }
290 #ifdef CONFIG_MMU
291 extern int is_vmalloc_or_module_addr(const void *x);
292 #else
293 static inline int is_vmalloc_or_module_addr(const void *x)
294 {
295 return 0;
296 }
297 #endif
298
299 static inline struct page *compound_head(struct page *page)
300 {
301 if (unlikely(PageTail(page)))
302 return page->first_page;
303 return page;
304 }
305
306 static inline int page_count(struct page *page)
307 {
308 return atomic_read(&compound_head(page)->_count);
309 }
310
311 static inline void get_page(struct page *page)
312 {
313 page = compound_head(page);
314 VM_BUG_ON(atomic_read(&page->_count) == 0);
315 atomic_inc(&page->_count);
316 }
317
318 static inline struct page *virt_to_head_page(const void *x)
319 {
320 struct page *page = virt_to_page(x);
321 return compound_head(page);
322 }
323
324 /*
325 * Setup the page count before being freed into the page allocator for
326 * the first time (boot or memory hotplug)
327 */
328 static inline void init_page_count(struct page *page)
329 {
330 atomic_set(&page->_count, 1);
331 }
332
333 void put_page(struct page *page);
334 void put_pages_list(struct list_head *pages);
335
336 void split_page(struct page *page, unsigned int order);
337
338 /*
339 * Compound pages have a destructor function. Provide a
340 * prototype for that function and accessor functions.
341 * These are _only_ valid on the head of a PG_compound page.
342 */
343 typedef void compound_page_dtor(struct page *);
344
345 static inline void set_compound_page_dtor(struct page *page,
346 compound_page_dtor *dtor)
347 {
348 page[1].lru.next = (void *)dtor;
349 }
350
351 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
352 {
353 return (compound_page_dtor *)page[1].lru.next;
354 }
355
356 static inline int compound_order(struct page *page)
357 {
358 if (!PageHead(page))
359 return 0;
360 return (unsigned long)page[1].lru.prev;
361 }
362
363 static inline void set_compound_order(struct page *page, unsigned long order)
364 {
365 page[1].lru.prev = (void *)order;
366 }
367
368 /*
369 * Multiple processes may "see" the same page. E.g. for untouched
370 * mappings of /dev/null, all processes see the same page full of
371 * zeroes, and text pages of executables and shared libraries have
372 * only one copy in memory, at most, normally.
373 *
374 * For the non-reserved pages, page_count(page) denotes a reference count.
375 * page_count() == 0 means the page is free. page->lru is then used for
376 * freelist management in the buddy allocator.
377 * page_count() > 0 means the page has been allocated.
378 *
379 * Pages are allocated by the slab allocator in order to provide memory
380 * to kmalloc and kmem_cache_alloc. In this case, the management of the
381 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
382 * unless a particular usage is carefully commented. (the responsibility of
383 * freeing the kmalloc memory is the caller's, of course).
384 *
385 * A page may be used by anyone else who does a __get_free_page().
386 * In this case, page_count still tracks the references, and should only
387 * be used through the normal accessor functions. The top bits of page->flags
388 * and page->virtual store page management information, but all other fields
389 * are unused and could be used privately, carefully. The management of this
390 * page is the responsibility of the one who allocated it, and those who have
391 * subsequently been given references to it.
392 *
393 * The other pages (we may call them "pagecache pages") are completely
394 * managed by the Linux memory manager: I/O, buffers, swapping etc.
395 * The following discussion applies only to them.
396 *
397 * A pagecache page contains an opaque `private' member, which belongs to the
398 * page's address_space. Usually, this is the address of a circular list of
399 * the page's disk buffers. PG_private must be set to tell the VM to call
400 * into the filesystem to release these pages.
401 *
402 * A page may belong to an inode's memory mapping. In this case, page->mapping
403 * is the pointer to the inode, and page->index is the file offset of the page,
404 * in units of PAGE_CACHE_SIZE.
405 *
406 * If pagecache pages are not associated with an inode, they are said to be
407 * anonymous pages. These may become associated with the swapcache, and in that
408 * case PG_swapcache is set, and page->private is an offset into the swapcache.
409 *
410 * In either case (swapcache or inode backed), the pagecache itself holds one
411 * reference to the page. Setting PG_private should also increment the
412 * refcount. The each user mapping also has a reference to the page.
413 *
414 * The pagecache pages are stored in a per-mapping radix tree, which is
415 * rooted at mapping->page_tree, and indexed by offset.
416 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
417 * lists, we instead now tag pages as dirty/writeback in the radix tree.
418 *
419 * All pagecache pages may be subject to I/O:
420 * - inode pages may need to be read from disk,
421 * - inode pages which have been modified and are MAP_SHARED may need
422 * to be written back to the inode on disk,
423 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
424 * modified may need to be swapped out to swap space and (later) to be read
425 * back into memory.
426 */
427
428 /*
429 * The zone field is never updated after free_area_init_core()
430 * sets it, so none of the operations on it need to be atomic.
431 */
432
433
434 /*
435 * page->flags layout:
436 *
437 * There are three possibilities for how page->flags get
438 * laid out. The first is for the normal case, without
439 * sparsemem. The second is for sparsemem when there is
440 * plenty of space for node and section. The last is when
441 * we have run out of space and have to fall back to an
442 * alternate (slower) way of determining the node.
443 *
444 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
445 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
446 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
447 */
448 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
449 #define SECTIONS_WIDTH SECTIONS_SHIFT
450 #else
451 #define SECTIONS_WIDTH 0
452 #endif
453
454 #define ZONES_WIDTH ZONES_SHIFT
455
456 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
457 #define NODES_WIDTH NODES_SHIFT
458 #else
459 #ifdef CONFIG_SPARSEMEM_VMEMMAP
460 #error "Vmemmap: No space for nodes field in page flags"
461 #endif
462 #define NODES_WIDTH 0
463 #endif
464
465 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
466 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
467 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
468 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
469
470 /*
471 * We are going to use the flags for the page to node mapping if its in
472 * there. This includes the case where there is no node, so it is implicit.
473 */
474 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
475 #define NODE_NOT_IN_PAGE_FLAGS
476 #endif
477
478 #ifndef PFN_SECTION_SHIFT
479 #define PFN_SECTION_SHIFT 0
480 #endif
481
482 /*
483 * Define the bit shifts to access each section. For non-existant
484 * sections we define the shift as 0; that plus a 0 mask ensures
485 * the compiler will optimise away reference to them.
486 */
487 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
488 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
489 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
490
491 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
492 #ifdef NODE_NOT_IN_PAGEFLAGS
493 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
494 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
495 SECTIONS_PGOFF : ZONES_PGOFF)
496 #else
497 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
498 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
499 NODES_PGOFF : ZONES_PGOFF)
500 #endif
501
502 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
503
504 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
505 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
506 #endif
507
508 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
509 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
510 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
511 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
512
513 static inline enum zone_type page_zonenum(struct page *page)
514 {
515 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
516 }
517
518 /*
519 * The identification function is only used by the buddy allocator for
520 * determining if two pages could be buddies. We are not really
521 * identifying a zone since we could be using a the section number
522 * id if we have not node id available in page flags.
523 * We guarantee only that it will return the same value for two
524 * combinable pages in a zone.
525 */
526 static inline int page_zone_id(struct page *page)
527 {
528 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
529 }
530
531 static inline int zone_to_nid(struct zone *zone)
532 {
533 #ifdef CONFIG_NUMA
534 return zone->node;
535 #else
536 return 0;
537 #endif
538 }
539
540 #ifdef NODE_NOT_IN_PAGE_FLAGS
541 extern int page_to_nid(struct page *page);
542 #else
543 static inline int page_to_nid(struct page *page)
544 {
545 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
546 }
547 #endif
548
549 static inline struct zone *page_zone(struct page *page)
550 {
551 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
552 }
553
554 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
555 static inline unsigned long page_to_section(struct page *page)
556 {
557 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
558 }
559 #endif
560
561 static inline void set_page_zone(struct page *page, enum zone_type zone)
562 {
563 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
564 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
565 }
566
567 static inline void set_page_node(struct page *page, unsigned long node)
568 {
569 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
570 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
571 }
572
573 static inline void set_page_section(struct page *page, unsigned long section)
574 {
575 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
576 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
577 }
578
579 static inline void set_page_links(struct page *page, enum zone_type zone,
580 unsigned long node, unsigned long pfn)
581 {
582 set_page_zone(page, zone);
583 set_page_node(page, node);
584 set_page_section(page, pfn_to_section_nr(pfn));
585 }
586
587 /*
588 * Some inline functions in vmstat.h depend on page_zone()
589 */
590 #include <linux/vmstat.h>
591
592 static __always_inline void *lowmem_page_address(struct page *page)
593 {
594 return __va(page_to_pfn(page) << PAGE_SHIFT);
595 }
596
597 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
598 #define HASHED_PAGE_VIRTUAL
599 #endif
600
601 #if defined(WANT_PAGE_VIRTUAL)
602 #define page_address(page) ((page)->virtual)
603 #define set_page_address(page, address) \
604 do { \
605 (page)->virtual = (address); \
606 } while(0)
607 #define page_address_init() do { } while(0)
608 #endif
609
610 #if defined(HASHED_PAGE_VIRTUAL)
611 void *page_address(struct page *page);
612 void set_page_address(struct page *page, void *virtual);
613 void page_address_init(void);
614 #endif
615
616 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
617 #define page_address(page) lowmem_page_address(page)
618 #define set_page_address(page, address) do { } while(0)
619 #define page_address_init() do { } while(0)
620 #endif
621
622 /*
623 * On an anonymous page mapped into a user virtual memory area,
624 * page->mapping points to its anon_vma, not to a struct address_space;
625 * with the PAGE_MAPPING_ANON bit set to distinguish it.
626 *
627 * Please note that, confusingly, "page_mapping" refers to the inode
628 * address_space which maps the page from disk; whereas "page_mapped"
629 * refers to user virtual address space into which the page is mapped.
630 */
631 #define PAGE_MAPPING_ANON 1
632
633 extern struct address_space swapper_space;
634 static inline struct address_space *page_mapping(struct page *page)
635 {
636 struct address_space *mapping = page->mapping;
637
638 VM_BUG_ON(PageSlab(page));
639 #ifdef CONFIG_SWAP
640 if (unlikely(PageSwapCache(page)))
641 mapping = &swapper_space;
642 else
643 #endif
644 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
645 mapping = NULL;
646 return mapping;
647 }
648
649 static inline int PageAnon(struct page *page)
650 {
651 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
652 }
653
654 /*
655 * Return the pagecache index of the passed page. Regular pagecache pages
656 * use ->index whereas swapcache pages use ->private
657 */
658 static inline pgoff_t page_index(struct page *page)
659 {
660 if (unlikely(PageSwapCache(page)))
661 return page_private(page);
662 return page->index;
663 }
664
665 /*
666 * The atomic page->_mapcount, like _count, starts from -1:
667 * so that transitions both from it and to it can be tracked,
668 * using atomic_inc_and_test and atomic_add_negative(-1).
669 */
670 static inline void reset_page_mapcount(struct page *page)
671 {
672 atomic_set(&(page)->_mapcount, -1);
673 }
674
675 static inline int page_mapcount(struct page *page)
676 {
677 return atomic_read(&(page)->_mapcount) + 1;
678 }
679
680 /*
681 * Return true if this page is mapped into pagetables.
682 */
683 static inline int page_mapped(struct page *page)
684 {
685 return atomic_read(&(page)->_mapcount) >= 0;
686 }
687
688 /*
689 * Different kinds of faults, as returned by handle_mm_fault().
690 * Used to decide whether a process gets delivered SIGBUS or
691 * just gets major/minor fault counters bumped up.
692 */
693
694 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
695
696 #define VM_FAULT_OOM 0x0001
697 #define VM_FAULT_SIGBUS 0x0002
698 #define VM_FAULT_MAJOR 0x0004
699 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
700 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
701
702 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
703 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
704
705 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
706
707 /*
708 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
709 */
710 extern void pagefault_out_of_memory(void);
711
712 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
713
714 extern void show_free_areas(void);
715
716 int shmem_lock(struct file *file, int lock, struct user_struct *user);
717 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
718 int shmem_zero_setup(struct vm_area_struct *);
719
720 #ifndef CONFIG_MMU
721 extern unsigned long shmem_get_unmapped_area(struct file *file,
722 unsigned long addr,
723 unsigned long len,
724 unsigned long pgoff,
725 unsigned long flags);
726 #endif
727
728 extern int can_do_mlock(void);
729 extern int user_shm_lock(size_t, struct user_struct *);
730 extern void user_shm_unlock(size_t, struct user_struct *);
731
732 /*
733 * Parameter block passed down to zap_pte_range in exceptional cases.
734 */
735 struct zap_details {
736 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
737 struct address_space *check_mapping; /* Check page->mapping if set */
738 pgoff_t first_index; /* Lowest page->index to unmap */
739 pgoff_t last_index; /* Highest page->index to unmap */
740 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
741 unsigned long truncate_count; /* Compare vm_truncate_count */
742 };
743
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 pte_t pte);
746
747 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
748 unsigned long size);
749 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
750 unsigned long size, struct zap_details *);
751 unsigned long unmap_vmas(struct mmu_gather **tlb,
752 struct vm_area_struct *start_vma, unsigned long start_addr,
753 unsigned long end_addr, unsigned long *nr_accounted,
754 struct zap_details *);
755
756 /**
757 * mm_walk - callbacks for walk_page_range
758 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
759 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
760 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
761 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
762 * @pte_hole: if set, called for each hole at all levels
763 *
764 * (see walk_page_range for more details)
765 */
766 struct mm_walk {
767 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
768 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
769 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
770 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
771 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
772 struct mm_struct *mm;
773 void *private;
774 };
775
776 int walk_page_range(unsigned long addr, unsigned long end,
777 struct mm_walk *walk);
778 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
779 unsigned long end, unsigned long floor, unsigned long ceiling);
780 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
781 struct vm_area_struct *vma);
782 void unmap_mapping_range(struct address_space *mapping,
783 loff_t const holebegin, loff_t const holelen, int even_cows);
784 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
785 unsigned long *pfn);
786 int follow_phys(struct vm_area_struct *vma, unsigned long address,
787 unsigned int flags, unsigned long *prot, resource_size_t *phys);
788 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
789 void *buf, int len, int write);
790
791 static inline void unmap_shared_mapping_range(struct address_space *mapping,
792 loff_t const holebegin, loff_t const holelen)
793 {
794 unmap_mapping_range(mapping, holebegin, holelen, 0);
795 }
796
797 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
798 extern int vmtruncate(struct inode *inode, loff_t offset);
799 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
800
801 int truncate_inode_page(struct address_space *mapping, struct page *page);
802 int generic_error_remove_page(struct address_space *mapping, struct page *page);
803
804 int invalidate_inode_page(struct page *page);
805
806 #ifdef CONFIG_MMU
807 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
808 unsigned long address, unsigned int flags);
809 #else
810 static inline int handle_mm_fault(struct mm_struct *mm,
811 struct vm_area_struct *vma, unsigned long address,
812 unsigned int flags)
813 {
814 /* should never happen if there's no MMU */
815 BUG();
816 return VM_FAULT_SIGBUS;
817 }
818 #endif
819
820 extern int make_pages_present(unsigned long addr, unsigned long end);
821 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
822
823 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
824 unsigned long start, int nr_pages, int write, int force,
825 struct page **pages, struct vm_area_struct **vmas);
826 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
827 struct page **pages);
828 struct page *get_dump_page(unsigned long addr);
829
830 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
831 extern void do_invalidatepage(struct page *page, unsigned long offset);
832
833 int __set_page_dirty_nobuffers(struct page *page);
834 int __set_page_dirty_no_writeback(struct page *page);
835 int redirty_page_for_writepage(struct writeback_control *wbc,
836 struct page *page);
837 void account_page_dirtied(struct page *page, struct address_space *mapping);
838 int set_page_dirty(struct page *page);
839 int set_page_dirty_lock(struct page *page);
840 int clear_page_dirty_for_io(struct page *page);
841
842 extern unsigned long move_page_tables(struct vm_area_struct *vma,
843 unsigned long old_addr, struct vm_area_struct *new_vma,
844 unsigned long new_addr, unsigned long len);
845 extern unsigned long do_mremap(unsigned long addr,
846 unsigned long old_len, unsigned long new_len,
847 unsigned long flags, unsigned long new_addr);
848 extern int mprotect_fixup(struct vm_area_struct *vma,
849 struct vm_area_struct **pprev, unsigned long start,
850 unsigned long end, unsigned long newflags);
851
852 /*
853 * doesn't attempt to fault and will return short.
854 */
855 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
856 struct page **pages);
857
858 /*
859 * A callback you can register to apply pressure to ageable caches.
860 *
861 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
862 * look through the least-recently-used 'nr_to_scan' entries and
863 * attempt to free them up. It should return the number of objects
864 * which remain in the cache. If it returns -1, it means it cannot do
865 * any scanning at this time (eg. there is a risk of deadlock).
866 *
867 * The 'gfpmask' refers to the allocation we are currently trying to
868 * fulfil.
869 *
870 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
871 * querying the cache size, so a fastpath for that case is appropriate.
872 */
873 struct shrinker {
874 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
875 int seeks; /* seeks to recreate an obj */
876
877 /* These are for internal use */
878 struct list_head list;
879 long nr; /* objs pending delete */
880 };
881 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
882 extern void register_shrinker(struct shrinker *);
883 extern void unregister_shrinker(struct shrinker *);
884
885 int vma_wants_writenotify(struct vm_area_struct *vma);
886
887 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
888
889 #ifdef __PAGETABLE_PUD_FOLDED
890 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
891 unsigned long address)
892 {
893 return 0;
894 }
895 #else
896 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
897 #endif
898
899 #ifdef __PAGETABLE_PMD_FOLDED
900 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
901 unsigned long address)
902 {
903 return 0;
904 }
905 #else
906 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
907 #endif
908
909 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
910 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
911
912 /*
913 * The following ifdef needed to get the 4level-fixup.h header to work.
914 * Remove it when 4level-fixup.h has been removed.
915 */
916 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
917 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
918 {
919 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
920 NULL: pud_offset(pgd, address);
921 }
922
923 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
924 {
925 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
926 NULL: pmd_offset(pud, address);
927 }
928 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
929
930 #if USE_SPLIT_PTLOCKS
931 /*
932 * We tuck a spinlock to guard each pagetable page into its struct page,
933 * at page->private, with BUILD_BUG_ON to make sure that this will not
934 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
935 * When freeing, reset page->mapping so free_pages_check won't complain.
936 */
937 #define __pte_lockptr(page) &((page)->ptl)
938 #define pte_lock_init(_page) do { \
939 spin_lock_init(__pte_lockptr(_page)); \
940 } while (0)
941 #define pte_lock_deinit(page) ((page)->mapping = NULL)
942 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
943 #else /* !USE_SPLIT_PTLOCKS */
944 /*
945 * We use mm->page_table_lock to guard all pagetable pages of the mm.
946 */
947 #define pte_lock_init(page) do {} while (0)
948 #define pte_lock_deinit(page) do {} while (0)
949 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
950 #endif /* USE_SPLIT_PTLOCKS */
951
952 static inline void pgtable_page_ctor(struct page *page)
953 {
954 pte_lock_init(page);
955 inc_zone_page_state(page, NR_PAGETABLE);
956 }
957
958 static inline void pgtable_page_dtor(struct page *page)
959 {
960 pte_lock_deinit(page);
961 dec_zone_page_state(page, NR_PAGETABLE);
962 }
963
964 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
965 ({ \
966 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
967 pte_t *__pte = pte_offset_map(pmd, address); \
968 *(ptlp) = __ptl; \
969 spin_lock(__ptl); \
970 __pte; \
971 })
972
973 #define pte_unmap_unlock(pte, ptl) do { \
974 spin_unlock(ptl); \
975 pte_unmap(pte); \
976 } while (0)
977
978 #define pte_alloc_map(mm, pmd, address) \
979 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
980 NULL: pte_offset_map(pmd, address))
981
982 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
983 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
984 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
985
986 #define pte_alloc_kernel(pmd, address) \
987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
988 NULL: pte_offset_kernel(pmd, address))
989
990 extern void free_area_init(unsigned long * zones_size);
991 extern void free_area_init_node(int nid, unsigned long * zones_size,
992 unsigned long zone_start_pfn, unsigned long *zholes_size);
993 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
994 /*
995 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
996 * zones, allocate the backing mem_map and account for memory holes in a more
997 * architecture independent manner. This is a substitute for creating the
998 * zone_sizes[] and zholes_size[] arrays and passing them to
999 * free_area_init_node()
1000 *
1001 * An architecture is expected to register range of page frames backed by
1002 * physical memory with add_active_range() before calling
1003 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1004 * usage, an architecture is expected to do something like
1005 *
1006 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1007 * max_highmem_pfn};
1008 * for_each_valid_physical_page_range()
1009 * add_active_range(node_id, start_pfn, end_pfn)
1010 * free_area_init_nodes(max_zone_pfns);
1011 *
1012 * If the architecture guarantees that there are no holes in the ranges
1013 * registered with add_active_range(), free_bootmem_active_regions()
1014 * will call free_bootmem_node() for each registered physical page range.
1015 * Similarly sparse_memory_present_with_active_regions() calls
1016 * memory_present() for each range when SPARSEMEM is enabled.
1017 *
1018 * See mm/page_alloc.c for more information on each function exposed by
1019 * CONFIG_ARCH_POPULATES_NODE_MAP
1020 */
1021 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1022 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1023 unsigned long end_pfn);
1024 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1025 unsigned long end_pfn);
1026 extern void remove_all_active_ranges(void);
1027 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1028 unsigned long end_pfn);
1029 extern void get_pfn_range_for_nid(unsigned int nid,
1030 unsigned long *start_pfn, unsigned long *end_pfn);
1031 extern unsigned long find_min_pfn_with_active_regions(void);
1032 extern void free_bootmem_with_active_regions(int nid,
1033 unsigned long max_low_pfn);
1034 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1035 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1036 extern void sparse_memory_present_with_active_regions(int nid);
1037 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1038
1039 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1040 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1041 static inline int __early_pfn_to_nid(unsigned long pfn)
1042 {
1043 return 0;
1044 }
1045 #else
1046 /* please see mm/page_alloc.c */
1047 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1048 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1049 /* there is a per-arch backend function. */
1050 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1051 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1052 #endif
1053
1054 extern void set_dma_reserve(unsigned long new_dma_reserve);
1055 extern void memmap_init_zone(unsigned long, int, unsigned long,
1056 unsigned long, enum memmap_context);
1057 extern void setup_per_zone_wmarks(void);
1058 extern void calculate_zone_inactive_ratio(struct zone *zone);
1059 extern void mem_init(void);
1060 extern void __init mmap_init(void);
1061 extern void show_mem(void);
1062 extern void si_meminfo(struct sysinfo * val);
1063 extern void si_meminfo_node(struct sysinfo *val, int nid);
1064 extern int after_bootmem;
1065
1066 #ifdef CONFIG_NUMA
1067 extern void setup_per_cpu_pageset(void);
1068 #else
1069 static inline void setup_per_cpu_pageset(void) {}
1070 #endif
1071
1072 extern void zone_pcp_update(struct zone *zone);
1073
1074 /* nommu.c */
1075 extern atomic_long_t mmap_pages_allocated;
1076
1077 /* prio_tree.c */
1078 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1079 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1080 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1081 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1082 struct prio_tree_iter *iter);
1083
1084 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1085 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1086 (vma = vma_prio_tree_next(vma, iter)); )
1087
1088 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1089 struct list_head *list)
1090 {
1091 vma->shared.vm_set.parent = NULL;
1092 list_add_tail(&vma->shared.vm_set.list, list);
1093 }
1094
1095 /* mmap.c */
1096 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1097 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1098 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1099 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1100 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1101 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1102 struct mempolicy *);
1103 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1104 extern int split_vma(struct mm_struct *,
1105 struct vm_area_struct *, unsigned long addr, int new_below);
1106 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1107 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1108 struct rb_node **, struct rb_node *);
1109 extern void unlink_file_vma(struct vm_area_struct *);
1110 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1111 unsigned long addr, unsigned long len, pgoff_t pgoff);
1112 extern void exit_mmap(struct mm_struct *);
1113
1114 extern int mm_take_all_locks(struct mm_struct *mm);
1115 extern void mm_drop_all_locks(struct mm_struct *mm);
1116
1117 #ifdef CONFIG_PROC_FS
1118 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1119 extern void added_exe_file_vma(struct mm_struct *mm);
1120 extern void removed_exe_file_vma(struct mm_struct *mm);
1121 #else
1122 static inline void added_exe_file_vma(struct mm_struct *mm)
1123 {}
1124
1125 static inline void removed_exe_file_vma(struct mm_struct *mm)
1126 {}
1127 #endif /* CONFIG_PROC_FS */
1128
1129 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1130 extern int install_special_mapping(struct mm_struct *mm,
1131 unsigned long addr, unsigned long len,
1132 unsigned long flags, struct page **pages);
1133
1134 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1135
1136 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1137 unsigned long len, unsigned long prot,
1138 unsigned long flag, unsigned long pgoff);
1139 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1140 unsigned long len, unsigned long flags,
1141 unsigned int vm_flags, unsigned long pgoff);
1142
1143 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1144 unsigned long len, unsigned long prot,
1145 unsigned long flag, unsigned long offset)
1146 {
1147 unsigned long ret = -EINVAL;
1148 if ((offset + PAGE_ALIGN(len)) < offset)
1149 goto out;
1150 if (!(offset & ~PAGE_MASK))
1151 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1152 out:
1153 return ret;
1154 }
1155
1156 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1157
1158 extern unsigned long do_brk(unsigned long, unsigned long);
1159
1160 /* filemap.c */
1161 extern unsigned long page_unuse(struct page *);
1162 extern void truncate_inode_pages(struct address_space *, loff_t);
1163 extern void truncate_inode_pages_range(struct address_space *,
1164 loff_t lstart, loff_t lend);
1165
1166 /* generic vm_area_ops exported for stackable file systems */
1167 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1168
1169 /* mm/page-writeback.c */
1170 int write_one_page(struct page *page, int wait);
1171 void task_dirty_inc(struct task_struct *tsk);
1172
1173 /* readahead.c */
1174 #define VM_MAX_READAHEAD 128 /* kbytes */
1175 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1176
1177 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1178 pgoff_t offset, unsigned long nr_to_read);
1179
1180 void page_cache_sync_readahead(struct address_space *mapping,
1181 struct file_ra_state *ra,
1182 struct file *filp,
1183 pgoff_t offset,
1184 unsigned long size);
1185
1186 void page_cache_async_readahead(struct address_space *mapping,
1187 struct file_ra_state *ra,
1188 struct file *filp,
1189 struct page *pg,
1190 pgoff_t offset,
1191 unsigned long size);
1192
1193 unsigned long max_sane_readahead(unsigned long nr);
1194 unsigned long ra_submit(struct file_ra_state *ra,
1195 struct address_space *mapping,
1196 struct file *filp);
1197
1198 /* Do stack extension */
1199 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1200 #ifdef CONFIG_IA64
1201 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1202 #endif
1203 extern int expand_stack_downwards(struct vm_area_struct *vma,
1204 unsigned long address);
1205
1206 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1207 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1208 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1209 struct vm_area_struct **pprev);
1210
1211 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1212 NULL if none. Assume start_addr < end_addr. */
1213 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1214 {
1215 struct vm_area_struct * vma = find_vma(mm,start_addr);
1216
1217 if (vma && end_addr <= vma->vm_start)
1218 vma = NULL;
1219 return vma;
1220 }
1221
1222 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1223 {
1224 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1225 }
1226
1227 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1228 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1229 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1230 unsigned long pfn, unsigned long size, pgprot_t);
1231 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1232 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1233 unsigned long pfn);
1234 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1235 unsigned long pfn);
1236
1237 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1238 unsigned int foll_flags);
1239 #define FOLL_WRITE 0x01 /* check pte is writable */
1240 #define FOLL_TOUCH 0x02 /* mark page accessed */
1241 #define FOLL_GET 0x04 /* do get_page on page */
1242 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1243 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1244
1245 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1246 void *data);
1247 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1248 unsigned long size, pte_fn_t fn, void *data);
1249
1250 #ifdef CONFIG_PROC_FS
1251 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1252 #else
1253 static inline void vm_stat_account(struct mm_struct *mm,
1254 unsigned long flags, struct file *file, long pages)
1255 {
1256 }
1257 #endif /* CONFIG_PROC_FS */
1258
1259 #ifdef CONFIG_DEBUG_PAGEALLOC
1260 extern int debug_pagealloc_enabled;
1261
1262 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1263
1264 static inline void enable_debug_pagealloc(void)
1265 {
1266 debug_pagealloc_enabled = 1;
1267 }
1268 #ifdef CONFIG_HIBERNATION
1269 extern bool kernel_page_present(struct page *page);
1270 #endif /* CONFIG_HIBERNATION */
1271 #else
1272 static inline void
1273 kernel_map_pages(struct page *page, int numpages, int enable) {}
1274 static inline void enable_debug_pagealloc(void)
1275 {
1276 }
1277 #ifdef CONFIG_HIBERNATION
1278 static inline bool kernel_page_present(struct page *page) { return true; }
1279 #endif /* CONFIG_HIBERNATION */
1280 #endif
1281
1282 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1283 #ifdef __HAVE_ARCH_GATE_AREA
1284 int in_gate_area_no_task(unsigned long addr);
1285 int in_gate_area(struct task_struct *task, unsigned long addr);
1286 #else
1287 int in_gate_area_no_task(unsigned long addr);
1288 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1289 #endif /* __HAVE_ARCH_GATE_AREA */
1290
1291 int drop_caches_sysctl_handler(struct ctl_table *, int,
1292 void __user *, size_t *, loff_t *);
1293 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1294 unsigned long lru_pages);
1295
1296 #ifndef CONFIG_MMU
1297 #define randomize_va_space 0
1298 #else
1299 extern int randomize_va_space;
1300 #endif
1301
1302 const char * arch_vma_name(struct vm_area_struct *vma);
1303 void print_vma_addr(char *prefix, unsigned long rip);
1304
1305 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1306 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1307 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1308 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1309 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1310 void *vmemmap_alloc_block(unsigned long size, int node);
1311 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1312 int vmemmap_populate_basepages(struct page *start_page,
1313 unsigned long pages, int node);
1314 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1315 void vmemmap_populate_print_last(void);
1316
1317 extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
1318 size_t size);
1319 extern void refund_locked_memory(struct mm_struct *mm, size_t size);
1320
1321 extern void memory_failure(unsigned long pfn, int trapno);
1322 extern int __memory_failure(unsigned long pfn, int trapno, int ref);
1323 extern int sysctl_memory_failure_early_kill;
1324 extern int sysctl_memory_failure_recovery;
1325 extern atomic_long_t mce_bad_pages;
1326
1327 #endif /* __KERNEL__ */
1328 #endif /* _LINUX_MM_H */
This page took 0.059761 seconds and 6 git commands to generate.