Merge branch 'akpm' (patches from Andrew)
[deliverable/linux.git] / include / linux / mm_types.h
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
17
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
22
23 struct address_space;
24 struct mem_cgroup;
25
26 #define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \
28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8)
30
31 typedef void compound_page_dtor(struct page *);
32
33 /*
34 * Each physical page in the system has a struct page associated with
35 * it to keep track of whatever it is we are using the page for at the
36 * moment. Note that we have no way to track which tasks are using
37 * a page, though if it is a pagecache page, rmap structures can tell us
38 * who is mapping it.
39 *
40 * The objects in struct page are organized in double word blocks in
41 * order to allows us to use atomic double word operations on portions
42 * of struct page. That is currently only used by slub but the arrangement
43 * allows the use of atomic double word operations on the flags/mapping
44 * and lru list pointers also.
45 */
46 struct page {
47 /* First double word block */
48 unsigned long flags; /* Atomic flags, some possibly
49 * updated asynchronously */
50 union {
51 struct address_space *mapping; /* If low bit clear, points to
52 * inode address_space, or NULL.
53 * If page mapped as anonymous
54 * memory, low bit is set, and
55 * it points to anon_vma object:
56 * see PAGE_MAPPING_ANON below.
57 */
58 void *s_mem; /* slab first object */
59 };
60
61 /* Second double word */
62 struct {
63 union {
64 pgoff_t index; /* Our offset within mapping. */
65 void *freelist; /* sl[aou]b first free object */
66 bool pfmemalloc; /* If set by the page allocator,
67 * ALLOC_NO_WATERMARKS was set
68 * and the low watermark was not
69 * met implying that the system
70 * is under some pressure. The
71 * caller should try ensure
72 * this page is only used to
73 * free other pages.
74 */
75 };
76
77 union {
78 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
79 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
80 /* Used for cmpxchg_double in slub */
81 unsigned long counters;
82 #else
83 /*
84 * Keep _count separate from slub cmpxchg_double data.
85 * As the rest of the double word is protected by
86 * slab_lock but _count is not.
87 */
88 unsigned counters;
89 #endif
90
91 struct {
92
93 union {
94 /*
95 * Count of ptes mapped in
96 * mms, to show when page is
97 * mapped & limit reverse map
98 * searches.
99 *
100 * Used also for tail pages
101 * refcounting instead of
102 * _count. Tail pages cannot
103 * be mapped and keeping the
104 * tail page _count zero at
105 * all times guarantees
106 * get_page_unless_zero() will
107 * never succeed on tail
108 * pages.
109 */
110 atomic_t _mapcount;
111
112 struct { /* SLUB */
113 unsigned inuse:16;
114 unsigned objects:15;
115 unsigned frozen:1;
116 };
117 int units; /* SLOB */
118 };
119 atomic_t _count; /* Usage count, see below. */
120 };
121 unsigned int active; /* SLAB */
122 };
123 };
124
125 /* Third double word block */
126 union {
127 struct list_head lru; /* Pageout list, eg. active_list
128 * protected by zone->lru_lock !
129 * Can be used as a generic list
130 * by the page owner.
131 */
132 struct { /* slub per cpu partial pages */
133 struct page *next; /* Next partial slab */
134 #ifdef CONFIG_64BIT
135 int pages; /* Nr of partial slabs left */
136 int pobjects; /* Approximate # of objects */
137 #else
138 short int pages;
139 short int pobjects;
140 #endif
141 };
142
143 struct slab *slab_page; /* slab fields */
144 struct rcu_head rcu_head; /* Used by SLAB
145 * when destroying via RCU
146 */
147 /* First tail page of compound page */
148 struct {
149 compound_page_dtor *compound_dtor;
150 unsigned long compound_order;
151 };
152
153 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
154 pgtable_t pmd_huge_pte; /* protected by page->ptl */
155 #endif
156 };
157
158 /* Remainder is not double word aligned */
159 union {
160 unsigned long private; /* Mapping-private opaque data:
161 * usually used for buffer_heads
162 * if PagePrivate set; used for
163 * swp_entry_t if PageSwapCache;
164 * indicates order in the buddy
165 * system if PG_buddy is set.
166 */
167 #if USE_SPLIT_PTE_PTLOCKS
168 #if ALLOC_SPLIT_PTLOCKS
169 spinlock_t *ptl;
170 #else
171 spinlock_t ptl;
172 #endif
173 #endif
174 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
175 struct page *first_page; /* Compound tail pages */
176 };
177
178 #ifdef CONFIG_MEMCG
179 struct mem_cgroup *mem_cgroup;
180 #endif
181
182 /*
183 * On machines where all RAM is mapped into kernel address space,
184 * we can simply calculate the virtual address. On machines with
185 * highmem some memory is mapped into kernel virtual memory
186 * dynamically, so we need a place to store that address.
187 * Note that this field could be 16 bits on x86 ... ;)
188 *
189 * Architectures with slow multiplication can define
190 * WANT_PAGE_VIRTUAL in asm/page.h
191 */
192 #if defined(WANT_PAGE_VIRTUAL)
193 void *virtual; /* Kernel virtual address (NULL if
194 not kmapped, ie. highmem) */
195 #endif /* WANT_PAGE_VIRTUAL */
196
197 #ifdef CONFIG_KMEMCHECK
198 /*
199 * kmemcheck wants to track the status of each byte in a page; this
200 * is a pointer to such a status block. NULL if not tracked.
201 */
202 void *shadow;
203 #endif
204
205 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
206 int _last_cpupid;
207 #endif
208 }
209 /*
210 * The struct page can be forced to be double word aligned so that atomic ops
211 * on double words work. The SLUB allocator can make use of such a feature.
212 */
213 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
214 __aligned(2 * sizeof(unsigned long))
215 #endif
216 ;
217
218 struct page_frag {
219 struct page *page;
220 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
221 __u32 offset;
222 __u32 size;
223 #else
224 __u16 offset;
225 __u16 size;
226 #endif
227 };
228
229 typedef unsigned long __nocast vm_flags_t;
230
231 /*
232 * A region containing a mapping of a non-memory backed file under NOMMU
233 * conditions. These are held in a global tree and are pinned by the VMAs that
234 * map parts of them.
235 */
236 struct vm_region {
237 struct rb_node vm_rb; /* link in global region tree */
238 vm_flags_t vm_flags; /* VMA vm_flags */
239 unsigned long vm_start; /* start address of region */
240 unsigned long vm_end; /* region initialised to here */
241 unsigned long vm_top; /* region allocated to here */
242 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
243 struct file *vm_file; /* the backing file or NULL */
244
245 int vm_usage; /* region usage count (access under nommu_region_sem) */
246 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
247 * this region */
248 };
249
250 /*
251 * This struct defines a memory VMM memory area. There is one of these
252 * per VM-area/task. A VM area is any part of the process virtual memory
253 * space that has a special rule for the page-fault handlers (ie a shared
254 * library, the executable area etc).
255 */
256 struct vm_area_struct {
257 /* The first cache line has the info for VMA tree walking. */
258
259 unsigned long vm_start; /* Our start address within vm_mm. */
260 unsigned long vm_end; /* The first byte after our end address
261 within vm_mm. */
262
263 /* linked list of VM areas per task, sorted by address */
264 struct vm_area_struct *vm_next, *vm_prev;
265
266 struct rb_node vm_rb;
267
268 /*
269 * Largest free memory gap in bytes to the left of this VMA.
270 * Either between this VMA and vma->vm_prev, or between one of the
271 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
272 * get_unmapped_area find a free area of the right size.
273 */
274 unsigned long rb_subtree_gap;
275
276 /* Second cache line starts here. */
277
278 struct mm_struct *vm_mm; /* The address space we belong to. */
279 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
280 unsigned long vm_flags; /* Flags, see mm.h. */
281
282 /*
283 * For areas with an address space and backing store,
284 * linkage into the address_space->i_mmap interval tree.
285 */
286 struct {
287 struct rb_node rb;
288 unsigned long rb_subtree_last;
289 } shared;
290
291 /*
292 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
293 * list, after a COW of one of the file pages. A MAP_SHARED vma
294 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
295 * or brk vma (with NULL file) can only be in an anon_vma list.
296 */
297 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
298 * page_table_lock */
299 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
300
301 /* Function pointers to deal with this struct. */
302 const struct vm_operations_struct *vm_ops;
303
304 /* Information about our backing store: */
305 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
306 units, *not* PAGE_CACHE_SIZE */
307 struct file * vm_file; /* File we map to (can be NULL). */
308 void * vm_private_data; /* was vm_pte (shared mem) */
309
310 #ifndef CONFIG_MMU
311 struct vm_region *vm_region; /* NOMMU mapping region */
312 #endif
313 #ifdef CONFIG_NUMA
314 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
315 #endif
316 };
317
318 struct core_thread {
319 struct task_struct *task;
320 struct core_thread *next;
321 };
322
323 struct core_state {
324 atomic_t nr_threads;
325 struct core_thread dumper;
326 struct completion startup;
327 };
328
329 enum {
330 MM_FILEPAGES,
331 MM_ANONPAGES,
332 MM_SWAPENTS,
333 NR_MM_COUNTERS
334 };
335
336 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
337 #define SPLIT_RSS_COUNTING
338 /* per-thread cached information, */
339 struct task_rss_stat {
340 int events; /* for synchronization threshold */
341 int count[NR_MM_COUNTERS];
342 };
343 #endif /* USE_SPLIT_PTE_PTLOCKS */
344
345 struct mm_rss_stat {
346 atomic_long_t count[NR_MM_COUNTERS];
347 };
348
349 struct kioctx_table;
350 struct mm_struct {
351 struct vm_area_struct *mmap; /* list of VMAs */
352 struct rb_root mm_rb;
353 u32 vmacache_seqnum; /* per-thread vmacache */
354 #ifdef CONFIG_MMU
355 unsigned long (*get_unmapped_area) (struct file *filp,
356 unsigned long addr, unsigned long len,
357 unsigned long pgoff, unsigned long flags);
358 #endif
359 unsigned long mmap_base; /* base of mmap area */
360 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
361 unsigned long task_size; /* size of task vm space */
362 unsigned long highest_vm_end; /* highest vma end address */
363 pgd_t * pgd;
364 atomic_t mm_users; /* How many users with user space? */
365 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
366 atomic_long_t nr_ptes; /* PTE page table pages */
367 atomic_long_t nr_pmds; /* PMD page table pages */
368 int map_count; /* number of VMAs */
369
370 spinlock_t page_table_lock; /* Protects page tables and some counters */
371 struct rw_semaphore mmap_sem;
372
373 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
374 * together off init_mm.mmlist, and are protected
375 * by mmlist_lock
376 */
377
378
379 unsigned long hiwater_rss; /* High-watermark of RSS usage */
380 unsigned long hiwater_vm; /* High-water virtual memory usage */
381
382 unsigned long total_vm; /* Total pages mapped */
383 unsigned long locked_vm; /* Pages that have PG_mlocked set */
384 unsigned long pinned_vm; /* Refcount permanently increased */
385 unsigned long shared_vm; /* Shared pages (files) */
386 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */
387 unsigned long stack_vm; /* VM_GROWSUP/DOWN */
388 unsigned long def_flags;
389 unsigned long start_code, end_code, start_data, end_data;
390 unsigned long start_brk, brk, start_stack;
391 unsigned long arg_start, arg_end, env_start, env_end;
392
393 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
394
395 /*
396 * Special counters, in some configurations protected by the
397 * page_table_lock, in other configurations by being atomic.
398 */
399 struct mm_rss_stat rss_stat;
400
401 struct linux_binfmt *binfmt;
402
403 cpumask_var_t cpu_vm_mask_var;
404
405 /* Architecture-specific MM context */
406 mm_context_t context;
407
408 unsigned long flags; /* Must use atomic bitops to access the bits */
409
410 struct core_state *core_state; /* coredumping support */
411 #ifdef CONFIG_AIO
412 spinlock_t ioctx_lock;
413 struct kioctx_table __rcu *ioctx_table;
414 #endif
415 #ifdef CONFIG_MEMCG
416 /*
417 * "owner" points to a task that is regarded as the canonical
418 * user/owner of this mm. All of the following must be true in
419 * order for it to be changed:
420 *
421 * current == mm->owner
422 * current->mm != mm
423 * new_owner->mm == mm
424 * new_owner->alloc_lock is held
425 */
426 struct task_struct __rcu *owner;
427 #endif
428
429 /* store ref to file /proc/<pid>/exe symlink points to */
430 struct file *exe_file;
431 #ifdef CONFIG_MMU_NOTIFIER
432 struct mmu_notifier_mm *mmu_notifier_mm;
433 #endif
434 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
435 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
436 #endif
437 #ifdef CONFIG_CPUMASK_OFFSTACK
438 struct cpumask cpumask_allocation;
439 #endif
440 #ifdef CONFIG_NUMA_BALANCING
441 /*
442 * numa_next_scan is the next time that the PTEs will be marked
443 * pte_numa. NUMA hinting faults will gather statistics and migrate
444 * pages to new nodes if necessary.
445 */
446 unsigned long numa_next_scan;
447
448 /* Restart point for scanning and setting pte_numa */
449 unsigned long numa_scan_offset;
450
451 /* numa_scan_seq prevents two threads setting pte_numa */
452 int numa_scan_seq;
453 #endif
454 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
455 /*
456 * An operation with batched TLB flushing is going on. Anything that
457 * can move process memory needs to flush the TLB when moving a
458 * PROT_NONE or PROT_NUMA mapped page.
459 */
460 bool tlb_flush_pending;
461 #endif
462 struct uprobes_state uprobes_state;
463 #ifdef CONFIG_X86_INTEL_MPX
464 /* address of the bounds directory */
465 void __user *bd_addr;
466 #endif
467 };
468
469 static inline void mm_init_cpumask(struct mm_struct *mm)
470 {
471 #ifdef CONFIG_CPUMASK_OFFSTACK
472 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
473 #endif
474 cpumask_clear(mm->cpu_vm_mask_var);
475 }
476
477 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
478 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
479 {
480 return mm->cpu_vm_mask_var;
481 }
482
483 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
484 /*
485 * Memory barriers to keep this state in sync are graciously provided by
486 * the page table locks, outside of which no page table modifications happen.
487 * The barriers below prevent the compiler from re-ordering the instructions
488 * around the memory barriers that are already present in the code.
489 */
490 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
491 {
492 barrier();
493 return mm->tlb_flush_pending;
494 }
495 static inline void set_tlb_flush_pending(struct mm_struct *mm)
496 {
497 mm->tlb_flush_pending = true;
498
499 /*
500 * Guarantee that the tlb_flush_pending store does not leak into the
501 * critical section updating the page tables
502 */
503 smp_mb__before_spinlock();
504 }
505 /* Clearing is done after a TLB flush, which also provides a barrier. */
506 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
507 {
508 barrier();
509 mm->tlb_flush_pending = false;
510 }
511 #else
512 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
513 {
514 return false;
515 }
516 static inline void set_tlb_flush_pending(struct mm_struct *mm)
517 {
518 }
519 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
520 {
521 }
522 #endif
523
524 struct vm_special_mapping
525 {
526 const char *name;
527 struct page **pages;
528 };
529
530 enum tlb_flush_reason {
531 TLB_FLUSH_ON_TASK_SWITCH,
532 TLB_REMOTE_SHOOTDOWN,
533 TLB_LOCAL_SHOOTDOWN,
534 TLB_LOCAL_MM_SHOOTDOWN,
535 NR_TLB_FLUSH_REASONS,
536 };
537
538 /*
539 * A swap entry has to fit into a "unsigned long", as the entry is hidden
540 * in the "index" field of the swapper address space.
541 */
542 typedef struct {
543 unsigned long val;
544 } swp_entry_t;
545
546 #endif /* _LINUX_MM_TYPES_H */
This page took 0.059139 seconds and 5 git commands to generate.