Merge branch 'for-3.17-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 #ifdef CONFIG_CMA
67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 # define is_migrate_cma(migratetype) false
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80
81 #define get_pageblock_migratetype(page) \
82 get_pfnblock_flags_mask(page, page_to_pfn(page), \
83 PB_migrate_end, MIGRATETYPE_MASK)
84
85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86 {
87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 MIGRATETYPE_MASK);
90 }
91
92 struct free_area {
93 struct list_head free_list[MIGRATE_TYPES];
94 unsigned long nr_free;
95 };
96
97 struct pglist_data;
98
99 /*
100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101 * So add a wild amount of padding here to ensure that they fall into separate
102 * cachelines. There are very few zone structures in the machine, so space
103 * consumption is not a concern here.
104 */
105 #if defined(CONFIG_SMP)
106 struct zone_padding {
107 char x[0];
108 } ____cacheline_internodealigned_in_smp;
109 #define ZONE_PADDING(name) struct zone_padding name;
110 #else
111 #define ZONE_PADDING(name)
112 #endif
113
114 enum zone_stat_item {
115 /* First 128 byte cacheline (assuming 64 bit words) */
116 NR_FREE_PAGES,
117 NR_ALLOC_BATCH,
118 NR_LRU_BASE,
119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 NR_ACTIVE_ANON, /* " " " " " */
121 NR_INACTIVE_FILE, /* " " " " " */
122 NR_ACTIVE_FILE, /* " " " " " */
123 NR_UNEVICTABLE, /* " " " " " */
124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
125 NR_ANON_PAGES, /* Mapped anonymous pages */
126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
127 only modified from process context */
128 NR_FILE_PAGES,
129 NR_FILE_DIRTY,
130 NR_WRITEBACK,
131 NR_SLAB_RECLAIMABLE,
132 NR_SLAB_UNRECLAIMABLE,
133 NR_PAGETABLE, /* used for pagetables */
134 NR_KERNEL_STACK,
135 /* Second 128 byte cacheline */
136 NR_UNSTABLE_NFS, /* NFS unstable pages */
137 NR_BOUNCE,
138 NR_VMSCAN_WRITE,
139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
144 NR_DIRTIED, /* page dirtyings since bootup */
145 NR_WRITTEN, /* page writings since bootup */
146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
147 #ifdef CONFIG_NUMA
148 NUMA_HIT, /* allocated in intended node */
149 NUMA_MISS, /* allocated in non intended node */
150 NUMA_FOREIGN, /* was intended here, hit elsewhere */
151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
152 NUMA_LOCAL, /* allocation from local node */
153 NUMA_OTHER, /* allocation from other node */
154 #endif
155 WORKINGSET_REFAULT,
156 WORKINGSET_ACTIVATE,
157 WORKINGSET_NODERECLAIM,
158 NR_ANON_TRANSPARENT_HUGEPAGES,
159 NR_FREE_CMA_PAGES,
160 NR_VM_ZONE_STAT_ITEMS };
161
162 /*
163 * We do arithmetic on the LRU lists in various places in the code,
164 * so it is important to keep the active lists LRU_ACTIVE higher in
165 * the array than the corresponding inactive lists, and to keep
166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167 *
168 * This has to be kept in sync with the statistics in zone_stat_item
169 * above and the descriptions in vmstat_text in mm/vmstat.c
170 */
171 #define LRU_BASE 0
172 #define LRU_ACTIVE 1
173 #define LRU_FILE 2
174
175 enum lru_list {
176 LRU_INACTIVE_ANON = LRU_BASE,
177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 LRU_UNEVICTABLE,
181 NR_LRU_LISTS
182 };
183
184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185
186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187
188 static inline int is_file_lru(enum lru_list lru)
189 {
190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 }
192
193 static inline int is_active_lru(enum lru_list lru)
194 {
195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 }
197
198 static inline int is_unevictable_lru(enum lru_list lru)
199 {
200 return (lru == LRU_UNEVICTABLE);
201 }
202
203 struct zone_reclaim_stat {
204 /*
205 * The pageout code in vmscan.c keeps track of how many of the
206 * mem/swap backed and file backed pages are referenced.
207 * The higher the rotated/scanned ratio, the more valuable
208 * that cache is.
209 *
210 * The anon LRU stats live in [0], file LRU stats in [1]
211 */
212 unsigned long recent_rotated[2];
213 unsigned long recent_scanned[2];
214 };
215
216 struct lruvec {
217 struct list_head lists[NR_LRU_LISTS];
218 struct zone_reclaim_stat reclaim_stat;
219 #ifdef CONFIG_MEMCG
220 struct zone *zone;
221 #endif
222 };
223
224 /* Mask used at gathering information at once (see memcontrol.c) */
225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
228
229 /* Isolate clean file */
230 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
231 /* Isolate unmapped file */
232 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
233 /* Isolate for asynchronous migration */
234 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
235 /* Isolate unevictable pages */
236 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
237
238 /* LRU Isolation modes. */
239 typedef unsigned __bitwise__ isolate_mode_t;
240
241 enum zone_watermarks {
242 WMARK_MIN,
243 WMARK_LOW,
244 WMARK_HIGH,
245 NR_WMARK
246 };
247
248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251
252 struct per_cpu_pages {
253 int count; /* number of pages in the list */
254 int high; /* high watermark, emptying needed */
255 int batch; /* chunk size for buddy add/remove */
256
257 /* Lists of pages, one per migrate type stored on the pcp-lists */
258 struct list_head lists[MIGRATE_PCPTYPES];
259 };
260
261 struct per_cpu_pageset {
262 struct per_cpu_pages pcp;
263 #ifdef CONFIG_NUMA
264 s8 expire;
265 #endif
266 #ifdef CONFIG_SMP
267 s8 stat_threshold;
268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269 #endif
270 };
271
272 #endif /* !__GENERATING_BOUNDS.H */
273
274 enum zone_type {
275 #ifdef CONFIG_ZONE_DMA
276 /*
277 * ZONE_DMA is used when there are devices that are not able
278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 * carve out the portion of memory that is needed for these devices.
280 * The range is arch specific.
281 *
282 * Some examples
283 *
284 * Architecture Limit
285 * ---------------------------
286 * parisc, ia64, sparc <4G
287 * s390 <2G
288 * arm Various
289 * alpha Unlimited or 0-16MB.
290 *
291 * i386, x86_64 and multiple other arches
292 * <16M.
293 */
294 ZONE_DMA,
295 #endif
296 #ifdef CONFIG_ZONE_DMA32
297 /*
298 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 * only able to do DMA to the lower 16M but also 32 bit devices that
300 * can only do DMA areas below 4G.
301 */
302 ZONE_DMA32,
303 #endif
304 /*
305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 * performed on pages in ZONE_NORMAL if the DMA devices support
307 * transfers to all addressable memory.
308 */
309 ZONE_NORMAL,
310 #ifdef CONFIG_HIGHMEM
311 /*
312 * A memory area that is only addressable by the kernel through
313 * mapping portions into its own address space. This is for example
314 * used by i386 to allow the kernel to address the memory beyond
315 * 900MB. The kernel will set up special mappings (page
316 * table entries on i386) for each page that the kernel needs to
317 * access.
318 */
319 ZONE_HIGHMEM,
320 #endif
321 ZONE_MOVABLE,
322 __MAX_NR_ZONES
323 };
324
325 #ifndef __GENERATING_BOUNDS_H
326
327 struct zone {
328 /* Read-mostly fields */
329
330 /* zone watermarks, access with *_wmark_pages(zone) macros */
331 unsigned long watermark[NR_WMARK];
332
333 /*
334 * We don't know if the memory that we're going to allocate will be freeable
335 * or/and it will be released eventually, so to avoid totally wasting several
336 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
337 * to run OOM on the lower zones despite there's tons of freeable ram
338 * on the higher zones). This array is recalculated at runtime if the
339 * sysctl_lowmem_reserve_ratio sysctl changes.
340 */
341 long lowmem_reserve[MAX_NR_ZONES];
342
343 #ifdef CONFIG_NUMA
344 int node;
345 #endif
346
347 /*
348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
349 * this zone's LRU. Maintained by the pageout code.
350 */
351 unsigned int inactive_ratio;
352
353 struct pglist_data *zone_pgdat;
354 struct per_cpu_pageset __percpu *pageset;
355
356 /*
357 * This is a per-zone reserve of pages that should not be
358 * considered dirtyable memory.
359 */
360 unsigned long dirty_balance_reserve;
361
362 #ifndef CONFIG_SPARSEMEM
363 /*
364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
365 * In SPARSEMEM, this map is stored in struct mem_section
366 */
367 unsigned long *pageblock_flags;
368 #endif /* CONFIG_SPARSEMEM */
369
370 #ifdef CONFIG_NUMA
371 /*
372 * zone reclaim becomes active if more unmapped pages exist.
373 */
374 unsigned long min_unmapped_pages;
375 unsigned long min_slab_pages;
376 #endif /* CONFIG_NUMA */
377
378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
379 unsigned long zone_start_pfn;
380
381 /*
382 * spanned_pages is the total pages spanned by the zone, including
383 * holes, which is calculated as:
384 * spanned_pages = zone_end_pfn - zone_start_pfn;
385 *
386 * present_pages is physical pages existing within the zone, which
387 * is calculated as:
388 * present_pages = spanned_pages - absent_pages(pages in holes);
389 *
390 * managed_pages is present pages managed by the buddy system, which
391 * is calculated as (reserved_pages includes pages allocated by the
392 * bootmem allocator):
393 * managed_pages = present_pages - reserved_pages;
394 *
395 * So present_pages may be used by memory hotplug or memory power
396 * management logic to figure out unmanaged pages by checking
397 * (present_pages - managed_pages). And managed_pages should be used
398 * by page allocator and vm scanner to calculate all kinds of watermarks
399 * and thresholds.
400 *
401 * Locking rules:
402 *
403 * zone_start_pfn and spanned_pages are protected by span_seqlock.
404 * It is a seqlock because it has to be read outside of zone->lock,
405 * and it is done in the main allocator path. But, it is written
406 * quite infrequently.
407 *
408 * The span_seq lock is declared along with zone->lock because it is
409 * frequently read in proximity to zone->lock. It's good to
410 * give them a chance of being in the same cacheline.
411 *
412 * Write access to present_pages at runtime should be protected by
413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
414 * present_pages should get_online_mems() to get a stable value.
415 *
416 * Read access to managed_pages should be safe because it's unsigned
417 * long. Write access to zone->managed_pages and totalram_pages are
418 * protected by managed_page_count_lock at runtime. Idealy only
419 * adjust_managed_page_count() should be used instead of directly
420 * touching zone->managed_pages and totalram_pages.
421 */
422 unsigned long managed_pages;
423 unsigned long spanned_pages;
424 unsigned long present_pages;
425
426 const char *name;
427
428 /*
429 * Number of MIGRATE_RESEVE page block. To maintain for just
430 * optimization. Protected by zone->lock.
431 */
432 int nr_migrate_reserve_block;
433
434 #ifdef CONFIG_MEMORY_HOTPLUG
435 /* see spanned/present_pages for more description */
436 seqlock_t span_seqlock;
437 #endif
438
439 /*
440 * wait_table -- the array holding the hash table
441 * wait_table_hash_nr_entries -- the size of the hash table array
442 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
443 *
444 * The purpose of all these is to keep track of the people
445 * waiting for a page to become available and make them
446 * runnable again when possible. The trouble is that this
447 * consumes a lot of space, especially when so few things
448 * wait on pages at a given time. So instead of using
449 * per-page waitqueues, we use a waitqueue hash table.
450 *
451 * The bucket discipline is to sleep on the same queue when
452 * colliding and wake all in that wait queue when removing.
453 * When something wakes, it must check to be sure its page is
454 * truly available, a la thundering herd. The cost of a
455 * collision is great, but given the expected load of the
456 * table, they should be so rare as to be outweighed by the
457 * benefits from the saved space.
458 *
459 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
460 * primary users of these fields, and in mm/page_alloc.c
461 * free_area_init_core() performs the initialization of them.
462 */
463 wait_queue_head_t *wait_table;
464 unsigned long wait_table_hash_nr_entries;
465 unsigned long wait_table_bits;
466
467 ZONE_PADDING(_pad1_)
468
469 /* Write-intensive fields used from the page allocator */
470 spinlock_t lock;
471
472 /* free areas of different sizes */
473 struct free_area free_area[MAX_ORDER];
474
475 /* zone flags, see below */
476 unsigned long flags;
477
478 ZONE_PADDING(_pad2_)
479
480 /* Write-intensive fields used by page reclaim */
481
482 /* Fields commonly accessed by the page reclaim scanner */
483 spinlock_t lru_lock;
484 struct lruvec lruvec;
485
486 /* Evictions & activations on the inactive file list */
487 atomic_long_t inactive_age;
488
489 /*
490 * When free pages are below this point, additional steps are taken
491 * when reading the number of free pages to avoid per-cpu counter
492 * drift allowing watermarks to be breached
493 */
494 unsigned long percpu_drift_mark;
495
496 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
497 /* pfn where compaction free scanner should start */
498 unsigned long compact_cached_free_pfn;
499 /* pfn where async and sync compaction migration scanner should start */
500 unsigned long compact_cached_migrate_pfn[2];
501 #endif
502
503 #ifdef CONFIG_COMPACTION
504 /*
505 * On compaction failure, 1<<compact_defer_shift compactions
506 * are skipped before trying again. The number attempted since
507 * last failure is tracked with compact_considered.
508 */
509 unsigned int compact_considered;
510 unsigned int compact_defer_shift;
511 int compact_order_failed;
512 #endif
513
514 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
515 /* Set to true when the PG_migrate_skip bits should be cleared */
516 bool compact_blockskip_flush;
517 #endif
518
519 ZONE_PADDING(_pad3_)
520 /* Zone statistics */
521 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
522 } ____cacheline_internodealigned_in_smp;
523
524 typedef enum {
525 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
526 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
527 ZONE_CONGESTED, /* zone has many dirty pages backed by
528 * a congested BDI
529 */
530 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found
531 * many dirty file pages at the tail
532 * of the LRU.
533 */
534 ZONE_WRITEBACK, /* reclaim scanning has recently found
535 * many pages under writeback
536 */
537 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
538 } zone_flags_t;
539
540 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
541 {
542 set_bit(flag, &zone->flags);
543 }
544
545 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
546 {
547 return test_and_set_bit(flag, &zone->flags);
548 }
549
550 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
551 {
552 clear_bit(flag, &zone->flags);
553 }
554
555 static inline int zone_is_reclaim_congested(const struct zone *zone)
556 {
557 return test_bit(ZONE_CONGESTED, &zone->flags);
558 }
559
560 static inline int zone_is_reclaim_dirty(const struct zone *zone)
561 {
562 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
563 }
564
565 static inline int zone_is_reclaim_writeback(const struct zone *zone)
566 {
567 return test_bit(ZONE_WRITEBACK, &zone->flags);
568 }
569
570 static inline int zone_is_reclaim_locked(const struct zone *zone)
571 {
572 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
573 }
574
575 static inline int zone_is_fair_depleted(const struct zone *zone)
576 {
577 return test_bit(ZONE_FAIR_DEPLETED, &zone->flags);
578 }
579
580 static inline int zone_is_oom_locked(const struct zone *zone)
581 {
582 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
583 }
584
585 static inline unsigned long zone_end_pfn(const struct zone *zone)
586 {
587 return zone->zone_start_pfn + zone->spanned_pages;
588 }
589
590 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
591 {
592 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
593 }
594
595 static inline bool zone_is_initialized(struct zone *zone)
596 {
597 return !!zone->wait_table;
598 }
599
600 static inline bool zone_is_empty(struct zone *zone)
601 {
602 return zone->spanned_pages == 0;
603 }
604
605 /*
606 * The "priority" of VM scanning is how much of the queues we will scan in one
607 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
608 * queues ("queue_length >> 12") during an aging round.
609 */
610 #define DEF_PRIORITY 12
611
612 /* Maximum number of zones on a zonelist */
613 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
614
615 #ifdef CONFIG_NUMA
616
617 /*
618 * The NUMA zonelists are doubled because we need zonelists that restrict the
619 * allocations to a single node for __GFP_THISNODE.
620 *
621 * [0] : Zonelist with fallback
622 * [1] : No fallback (__GFP_THISNODE)
623 */
624 #define MAX_ZONELISTS 2
625
626
627 /*
628 * We cache key information from each zonelist for smaller cache
629 * footprint when scanning for free pages in get_page_from_freelist().
630 *
631 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
632 * up short of free memory since the last time (last_fullzone_zap)
633 * we zero'd fullzones.
634 * 2) The array z_to_n[] maps each zone in the zonelist to its node
635 * id, so that we can efficiently evaluate whether that node is
636 * set in the current tasks mems_allowed.
637 *
638 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
639 * indexed by a zones offset in the zonelist zones[] array.
640 *
641 * The get_page_from_freelist() routine does two scans. During the
642 * first scan, we skip zones whose corresponding bit in 'fullzones'
643 * is set or whose corresponding node in current->mems_allowed (which
644 * comes from cpusets) is not set. During the second scan, we bypass
645 * this zonelist_cache, to ensure we look methodically at each zone.
646 *
647 * Once per second, we zero out (zap) fullzones, forcing us to
648 * reconsider nodes that might have regained more free memory.
649 * The field last_full_zap is the time we last zapped fullzones.
650 *
651 * This mechanism reduces the amount of time we waste repeatedly
652 * reexaming zones for free memory when they just came up low on
653 * memory momentarilly ago.
654 *
655 * The zonelist_cache struct members logically belong in struct
656 * zonelist. However, the mempolicy zonelists constructed for
657 * MPOL_BIND are intentionally variable length (and usually much
658 * shorter). A general purpose mechanism for handling structs with
659 * multiple variable length members is more mechanism than we want
660 * here. We resort to some special case hackery instead.
661 *
662 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
663 * part because they are shorter), so we put the fixed length stuff
664 * at the front of the zonelist struct, ending in a variable length
665 * zones[], as is needed by MPOL_BIND.
666 *
667 * Then we put the optional zonelist cache on the end of the zonelist
668 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
669 * the fixed length portion at the front of the struct. This pointer
670 * both enables us to find the zonelist cache, and in the case of
671 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
672 * to know that the zonelist cache is not there.
673 *
674 * The end result is that struct zonelists come in two flavors:
675 * 1) The full, fixed length version, shown below, and
676 * 2) The custom zonelists for MPOL_BIND.
677 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
678 *
679 * Even though there may be multiple CPU cores on a node modifying
680 * fullzones or last_full_zap in the same zonelist_cache at the same
681 * time, we don't lock it. This is just hint data - if it is wrong now
682 * and then, the allocator will still function, perhaps a bit slower.
683 */
684
685
686 struct zonelist_cache {
687 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
688 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
689 unsigned long last_full_zap; /* when last zap'd (jiffies) */
690 };
691 #else
692 #define MAX_ZONELISTS 1
693 struct zonelist_cache;
694 #endif
695
696 /*
697 * This struct contains information about a zone in a zonelist. It is stored
698 * here to avoid dereferences into large structures and lookups of tables
699 */
700 struct zoneref {
701 struct zone *zone; /* Pointer to actual zone */
702 int zone_idx; /* zone_idx(zoneref->zone) */
703 };
704
705 /*
706 * One allocation request operates on a zonelist. A zonelist
707 * is a list of zones, the first one is the 'goal' of the
708 * allocation, the other zones are fallback zones, in decreasing
709 * priority.
710 *
711 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
712 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
713 * *
714 * To speed the reading of the zonelist, the zonerefs contain the zone index
715 * of the entry being read. Helper functions to access information given
716 * a struct zoneref are
717 *
718 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
719 * zonelist_zone_idx() - Return the index of the zone for an entry
720 * zonelist_node_idx() - Return the index of the node for an entry
721 */
722 struct zonelist {
723 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
724 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
725 #ifdef CONFIG_NUMA
726 struct zonelist_cache zlcache; // optional ...
727 #endif
728 };
729
730 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
731 struct node_active_region {
732 unsigned long start_pfn;
733 unsigned long end_pfn;
734 int nid;
735 };
736 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
737
738 #ifndef CONFIG_DISCONTIGMEM
739 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
740 extern struct page *mem_map;
741 #endif
742
743 /*
744 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
745 * (mostly NUMA machines?) to denote a higher-level memory zone than the
746 * zone denotes.
747 *
748 * On NUMA machines, each NUMA node would have a pg_data_t to describe
749 * it's memory layout.
750 *
751 * Memory statistics and page replacement data structures are maintained on a
752 * per-zone basis.
753 */
754 struct bootmem_data;
755 typedef struct pglist_data {
756 struct zone node_zones[MAX_NR_ZONES];
757 struct zonelist node_zonelists[MAX_ZONELISTS];
758 int nr_zones;
759 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
760 struct page *node_mem_map;
761 #ifdef CONFIG_MEMCG
762 struct page_cgroup *node_page_cgroup;
763 #endif
764 #endif
765 #ifndef CONFIG_NO_BOOTMEM
766 struct bootmem_data *bdata;
767 #endif
768 #ifdef CONFIG_MEMORY_HOTPLUG
769 /*
770 * Must be held any time you expect node_start_pfn, node_present_pages
771 * or node_spanned_pages stay constant. Holding this will also
772 * guarantee that any pfn_valid() stays that way.
773 *
774 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
775 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
776 *
777 * Nests above zone->lock and zone->span_seqlock
778 */
779 spinlock_t node_size_lock;
780 #endif
781 unsigned long node_start_pfn;
782 unsigned long node_present_pages; /* total number of physical pages */
783 unsigned long node_spanned_pages; /* total size of physical page
784 range, including holes */
785 int node_id;
786 wait_queue_head_t kswapd_wait;
787 wait_queue_head_t pfmemalloc_wait;
788 struct task_struct *kswapd; /* Protected by
789 mem_hotplug_begin/end() */
790 int kswapd_max_order;
791 enum zone_type classzone_idx;
792 #ifdef CONFIG_NUMA_BALANCING
793 /* Lock serializing the migrate rate limiting window */
794 spinlock_t numabalancing_migrate_lock;
795
796 /* Rate limiting time interval */
797 unsigned long numabalancing_migrate_next_window;
798
799 /* Number of pages migrated during the rate limiting time interval */
800 unsigned long numabalancing_migrate_nr_pages;
801 #endif
802 } pg_data_t;
803
804 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
805 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
806 #ifdef CONFIG_FLAT_NODE_MEM_MAP
807 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
808 #else
809 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
810 #endif
811 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
812
813 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
814 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
815
816 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
817 {
818 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
819 }
820
821 static inline bool pgdat_is_empty(pg_data_t *pgdat)
822 {
823 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
824 }
825
826 #include <linux/memory_hotplug.h>
827
828 extern struct mutex zonelists_mutex;
829 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
830 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
831 bool zone_watermark_ok(struct zone *z, unsigned int order,
832 unsigned long mark, int classzone_idx, int alloc_flags);
833 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
834 unsigned long mark, int classzone_idx, int alloc_flags);
835 enum memmap_context {
836 MEMMAP_EARLY,
837 MEMMAP_HOTPLUG,
838 };
839 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
840 unsigned long size,
841 enum memmap_context context);
842
843 extern void lruvec_init(struct lruvec *lruvec);
844
845 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
846 {
847 #ifdef CONFIG_MEMCG
848 return lruvec->zone;
849 #else
850 return container_of(lruvec, struct zone, lruvec);
851 #endif
852 }
853
854 #ifdef CONFIG_HAVE_MEMORY_PRESENT
855 void memory_present(int nid, unsigned long start, unsigned long end);
856 #else
857 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
858 #endif
859
860 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
861 int local_memory_node(int node_id);
862 #else
863 static inline int local_memory_node(int node_id) { return node_id; };
864 #endif
865
866 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
867 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
868 #endif
869
870 /*
871 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
872 */
873 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
874
875 static inline int populated_zone(struct zone *zone)
876 {
877 return (!!zone->present_pages);
878 }
879
880 extern int movable_zone;
881
882 static inline int zone_movable_is_highmem(void)
883 {
884 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
885 return movable_zone == ZONE_HIGHMEM;
886 #elif defined(CONFIG_HIGHMEM)
887 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
888 #else
889 return 0;
890 #endif
891 }
892
893 static inline int is_highmem_idx(enum zone_type idx)
894 {
895 #ifdef CONFIG_HIGHMEM
896 return (idx == ZONE_HIGHMEM ||
897 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
898 #else
899 return 0;
900 #endif
901 }
902
903 /**
904 * is_highmem - helper function to quickly check if a struct zone is a
905 * highmem zone or not. This is an attempt to keep references
906 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
907 * @zone - pointer to struct zone variable
908 */
909 static inline int is_highmem(struct zone *zone)
910 {
911 #ifdef CONFIG_HIGHMEM
912 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
913 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
914 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
915 zone_movable_is_highmem());
916 #else
917 return 0;
918 #endif
919 }
920
921 /* These two functions are used to setup the per zone pages min values */
922 struct ctl_table;
923 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
924 void __user *, size_t *, loff_t *);
925 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
926 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
927 void __user *, size_t *, loff_t *);
928 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
929 void __user *, size_t *, loff_t *);
930 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
931 void __user *, size_t *, loff_t *);
932 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
933 void __user *, size_t *, loff_t *);
934
935 extern int numa_zonelist_order_handler(struct ctl_table *, int,
936 void __user *, size_t *, loff_t *);
937 extern char numa_zonelist_order[];
938 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
939
940 #ifndef CONFIG_NEED_MULTIPLE_NODES
941
942 extern struct pglist_data contig_page_data;
943 #define NODE_DATA(nid) (&contig_page_data)
944 #define NODE_MEM_MAP(nid) mem_map
945
946 #else /* CONFIG_NEED_MULTIPLE_NODES */
947
948 #include <asm/mmzone.h>
949
950 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
951
952 extern struct pglist_data *first_online_pgdat(void);
953 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
954 extern struct zone *next_zone(struct zone *zone);
955
956 /**
957 * for_each_online_pgdat - helper macro to iterate over all online nodes
958 * @pgdat - pointer to a pg_data_t variable
959 */
960 #define for_each_online_pgdat(pgdat) \
961 for (pgdat = first_online_pgdat(); \
962 pgdat; \
963 pgdat = next_online_pgdat(pgdat))
964 /**
965 * for_each_zone - helper macro to iterate over all memory zones
966 * @zone - pointer to struct zone variable
967 *
968 * The user only needs to declare the zone variable, for_each_zone
969 * fills it in.
970 */
971 #define for_each_zone(zone) \
972 for (zone = (first_online_pgdat())->node_zones; \
973 zone; \
974 zone = next_zone(zone))
975
976 #define for_each_populated_zone(zone) \
977 for (zone = (first_online_pgdat())->node_zones; \
978 zone; \
979 zone = next_zone(zone)) \
980 if (!populated_zone(zone)) \
981 ; /* do nothing */ \
982 else
983
984 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
985 {
986 return zoneref->zone;
987 }
988
989 static inline int zonelist_zone_idx(struct zoneref *zoneref)
990 {
991 return zoneref->zone_idx;
992 }
993
994 static inline int zonelist_node_idx(struct zoneref *zoneref)
995 {
996 #ifdef CONFIG_NUMA
997 /* zone_to_nid not available in this context */
998 return zoneref->zone->node;
999 #else
1000 return 0;
1001 #endif /* CONFIG_NUMA */
1002 }
1003
1004 /**
1005 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1006 * @z - The cursor used as a starting point for the search
1007 * @highest_zoneidx - The zone index of the highest zone to return
1008 * @nodes - An optional nodemask to filter the zonelist with
1009 * @zone - The first suitable zone found is returned via this parameter
1010 *
1011 * This function returns the next zone at or below a given zone index that is
1012 * within the allowed nodemask using a cursor as the starting point for the
1013 * search. The zoneref returned is a cursor that represents the current zone
1014 * being examined. It should be advanced by one before calling
1015 * next_zones_zonelist again.
1016 */
1017 struct zoneref *next_zones_zonelist(struct zoneref *z,
1018 enum zone_type highest_zoneidx,
1019 nodemask_t *nodes,
1020 struct zone **zone);
1021
1022 /**
1023 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1024 * @zonelist - The zonelist to search for a suitable zone
1025 * @highest_zoneidx - The zone index of the highest zone to return
1026 * @nodes - An optional nodemask to filter the zonelist with
1027 * @zone - The first suitable zone found is returned via this parameter
1028 *
1029 * This function returns the first zone at or below a given zone index that is
1030 * within the allowed nodemask. The zoneref returned is a cursor that can be
1031 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1032 * one before calling.
1033 */
1034 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1035 enum zone_type highest_zoneidx,
1036 nodemask_t *nodes,
1037 struct zone **zone)
1038 {
1039 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1040 zone);
1041 }
1042
1043 /**
1044 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1045 * @zone - The current zone in the iterator
1046 * @z - The current pointer within zonelist->zones being iterated
1047 * @zlist - The zonelist being iterated
1048 * @highidx - The zone index of the highest zone to return
1049 * @nodemask - Nodemask allowed by the allocator
1050 *
1051 * This iterator iterates though all zones at or below a given zone index and
1052 * within a given nodemask
1053 */
1054 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1055 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1056 zone; \
1057 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
1058
1059 /**
1060 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1061 * @zone - The current zone in the iterator
1062 * @z - The current pointer within zonelist->zones being iterated
1063 * @zlist - The zonelist being iterated
1064 * @highidx - The zone index of the highest zone to return
1065 *
1066 * This iterator iterates though all zones at or below a given zone index.
1067 */
1068 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1069 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1070
1071 #ifdef CONFIG_SPARSEMEM
1072 #include <asm/sparsemem.h>
1073 #endif
1074
1075 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1076 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1077 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1078 {
1079 return 0;
1080 }
1081 #endif
1082
1083 #ifdef CONFIG_FLATMEM
1084 #define pfn_to_nid(pfn) (0)
1085 #endif
1086
1087 #ifdef CONFIG_SPARSEMEM
1088
1089 /*
1090 * SECTION_SHIFT #bits space required to store a section #
1091 *
1092 * PA_SECTION_SHIFT physical address to/from section number
1093 * PFN_SECTION_SHIFT pfn to/from section number
1094 */
1095 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1096 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1097
1098 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1099
1100 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1101 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1102
1103 #define SECTION_BLOCKFLAGS_BITS \
1104 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1105
1106 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1107 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1108 #endif
1109
1110 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1111 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1112
1113 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1114 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1115
1116 struct page;
1117 struct page_cgroup;
1118 struct mem_section {
1119 /*
1120 * This is, logically, a pointer to an array of struct
1121 * pages. However, it is stored with some other magic.
1122 * (see sparse.c::sparse_init_one_section())
1123 *
1124 * Additionally during early boot we encode node id of
1125 * the location of the section here to guide allocation.
1126 * (see sparse.c::memory_present())
1127 *
1128 * Making it a UL at least makes someone do a cast
1129 * before using it wrong.
1130 */
1131 unsigned long section_mem_map;
1132
1133 /* See declaration of similar field in struct zone */
1134 unsigned long *pageblock_flags;
1135 #ifdef CONFIG_MEMCG
1136 /*
1137 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1138 * section. (see memcontrol.h/page_cgroup.h about this.)
1139 */
1140 struct page_cgroup *page_cgroup;
1141 unsigned long pad;
1142 #endif
1143 /*
1144 * WARNING: mem_section must be a power-of-2 in size for the
1145 * calculation and use of SECTION_ROOT_MASK to make sense.
1146 */
1147 };
1148
1149 #ifdef CONFIG_SPARSEMEM_EXTREME
1150 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1151 #else
1152 #define SECTIONS_PER_ROOT 1
1153 #endif
1154
1155 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1156 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1157 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1158
1159 #ifdef CONFIG_SPARSEMEM_EXTREME
1160 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1161 #else
1162 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1163 #endif
1164
1165 static inline struct mem_section *__nr_to_section(unsigned long nr)
1166 {
1167 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1168 return NULL;
1169 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1170 }
1171 extern int __section_nr(struct mem_section* ms);
1172 extern unsigned long usemap_size(void);
1173
1174 /*
1175 * We use the lower bits of the mem_map pointer to store
1176 * a little bit of information. There should be at least
1177 * 3 bits here due to 32-bit alignment.
1178 */
1179 #define SECTION_MARKED_PRESENT (1UL<<0)
1180 #define SECTION_HAS_MEM_MAP (1UL<<1)
1181 #define SECTION_MAP_LAST_BIT (1UL<<2)
1182 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1183 #define SECTION_NID_SHIFT 2
1184
1185 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1186 {
1187 unsigned long map = section->section_mem_map;
1188 map &= SECTION_MAP_MASK;
1189 return (struct page *)map;
1190 }
1191
1192 static inline int present_section(struct mem_section *section)
1193 {
1194 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1195 }
1196
1197 static inline int present_section_nr(unsigned long nr)
1198 {
1199 return present_section(__nr_to_section(nr));
1200 }
1201
1202 static inline int valid_section(struct mem_section *section)
1203 {
1204 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1205 }
1206
1207 static inline int valid_section_nr(unsigned long nr)
1208 {
1209 return valid_section(__nr_to_section(nr));
1210 }
1211
1212 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1213 {
1214 return __nr_to_section(pfn_to_section_nr(pfn));
1215 }
1216
1217 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1218 static inline int pfn_valid(unsigned long pfn)
1219 {
1220 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1221 return 0;
1222 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1223 }
1224 #endif
1225
1226 static inline int pfn_present(unsigned long pfn)
1227 {
1228 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1229 return 0;
1230 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1231 }
1232
1233 /*
1234 * These are _only_ used during initialisation, therefore they
1235 * can use __initdata ... They could have names to indicate
1236 * this restriction.
1237 */
1238 #ifdef CONFIG_NUMA
1239 #define pfn_to_nid(pfn) \
1240 ({ \
1241 unsigned long __pfn_to_nid_pfn = (pfn); \
1242 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1243 })
1244 #else
1245 #define pfn_to_nid(pfn) (0)
1246 #endif
1247
1248 #define early_pfn_valid(pfn) pfn_valid(pfn)
1249 void sparse_init(void);
1250 #else
1251 #define sparse_init() do {} while (0)
1252 #define sparse_index_init(_sec, _nid) do {} while (0)
1253 #endif /* CONFIG_SPARSEMEM */
1254
1255 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1256 bool early_pfn_in_nid(unsigned long pfn, int nid);
1257 #else
1258 #define early_pfn_in_nid(pfn, nid) (1)
1259 #endif
1260
1261 #ifndef early_pfn_valid
1262 #define early_pfn_valid(pfn) (1)
1263 #endif
1264
1265 void memory_present(int nid, unsigned long start, unsigned long end);
1266 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1267
1268 /*
1269 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1270 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1271 * pfn_valid_within() should be used in this case; we optimise this away
1272 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1273 */
1274 #ifdef CONFIG_HOLES_IN_ZONE
1275 #define pfn_valid_within(pfn) pfn_valid(pfn)
1276 #else
1277 #define pfn_valid_within(pfn) (1)
1278 #endif
1279
1280 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1281 /*
1282 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1283 * associated with it or not. In FLATMEM, it is expected that holes always
1284 * have valid memmap as long as there is valid PFNs either side of the hole.
1285 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1286 * entire section.
1287 *
1288 * However, an ARM, and maybe other embedded architectures in the future
1289 * free memmap backing holes to save memory on the assumption the memmap is
1290 * never used. The page_zone linkages are then broken even though pfn_valid()
1291 * returns true. A walker of the full memmap must then do this additional
1292 * check to ensure the memmap they are looking at is sane by making sure
1293 * the zone and PFN linkages are still valid. This is expensive, but walkers
1294 * of the full memmap are extremely rare.
1295 */
1296 int memmap_valid_within(unsigned long pfn,
1297 struct page *page, struct zone *zone);
1298 #else
1299 static inline int memmap_valid_within(unsigned long pfn,
1300 struct page *page, struct zone *zone)
1301 {
1302 return 1;
1303 }
1304 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1305
1306 #endif /* !__GENERATING_BOUNDS.H */
1307 #endif /* !__ASSEMBLY__ */
1308 #endif /* _LINUX_MMZONE_H */
This page took 0.058014 seconds and 5 git commands to generate.