[PATCH] struct seq_operations and struct file_operations constification
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26
27 struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30 };
31
32 struct pglist_data;
33
34 /*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40 #if defined(CONFIG_SMP)
41 struct zone_padding {
42 char x[0];
43 } ____cacheline_internodealigned_in_smp;
44 #define ZONE_PADDING(name) struct zone_padding name;
45 #else
46 #define ZONE_PADDING(name)
47 #endif
48
49 enum zone_stat_item {
50 NR_ANON_PAGES, /* Mapped anonymous pages */
51 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
52 only modified from process context */
53 NR_FILE_PAGES,
54 NR_SLAB_RECLAIMABLE,
55 NR_SLAB_UNRECLAIMABLE,
56 NR_PAGETABLE, /* used for pagetables */
57 NR_FILE_DIRTY,
58 NR_WRITEBACK,
59 NR_UNSTABLE_NFS, /* NFS unstable pages */
60 NR_BOUNCE,
61 NR_VMSCAN_WRITE,
62 #ifdef CONFIG_NUMA
63 NUMA_HIT, /* allocated in intended node */
64 NUMA_MISS, /* allocated in non intended node */
65 NUMA_FOREIGN, /* was intended here, hit elsewhere */
66 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
67 NUMA_LOCAL, /* allocation from local node */
68 NUMA_OTHER, /* allocation from other node */
69 #endif
70 NR_VM_ZONE_STAT_ITEMS };
71
72 struct per_cpu_pages {
73 int count; /* number of pages in the list */
74 int high; /* high watermark, emptying needed */
75 int batch; /* chunk size for buddy add/remove */
76 struct list_head list; /* the list of pages */
77 };
78
79 struct per_cpu_pageset {
80 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
81 #ifdef CONFIG_SMP
82 s8 stat_threshold;
83 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
84 #endif
85 } ____cacheline_aligned_in_smp;
86
87 #ifdef CONFIG_NUMA
88 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
89 #else
90 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
91 #endif
92
93 enum zone_type {
94 /*
95 * ZONE_DMA is used when there are devices that are not able
96 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
97 * carve out the portion of memory that is needed for these devices.
98 * The range is arch specific.
99 *
100 * Some examples
101 *
102 * Architecture Limit
103 * ---------------------------
104 * parisc, ia64, sparc <4G
105 * s390 <2G
106 * arm26 <48M
107 * arm Various
108 * alpha Unlimited or 0-16MB.
109 *
110 * i386, x86_64 and multiple other arches
111 * <16M.
112 */
113 ZONE_DMA,
114 #ifdef CONFIG_ZONE_DMA32
115 /*
116 * x86_64 needs two ZONE_DMAs because it supports devices that are
117 * only able to do DMA to the lower 16M but also 32 bit devices that
118 * can only do DMA areas below 4G.
119 */
120 ZONE_DMA32,
121 #endif
122 /*
123 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
124 * performed on pages in ZONE_NORMAL if the DMA devices support
125 * transfers to all addressable memory.
126 */
127 ZONE_NORMAL,
128 #ifdef CONFIG_HIGHMEM
129 /*
130 * A memory area that is only addressable by the kernel through
131 * mapping portions into its own address space. This is for example
132 * used by i386 to allow the kernel to address the memory beyond
133 * 900MB. The kernel will set up special mappings (page
134 * table entries on i386) for each page that the kernel needs to
135 * access.
136 */
137 ZONE_HIGHMEM,
138 #endif
139 MAX_NR_ZONES
140 };
141
142 /*
143 * When a memory allocation must conform to specific limitations (such
144 * as being suitable for DMA) the caller will pass in hints to the
145 * allocator in the gfp_mask, in the zone modifier bits. These bits
146 * are used to select a priority ordered list of memory zones which
147 * match the requested limits. See gfp_zone() in include/linux/gfp.h
148 */
149
150 #if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
151 #define ZONES_SHIFT 1
152 #else
153 #define ZONES_SHIFT 2
154 #endif
155
156 struct zone {
157 /* Fields commonly accessed by the page allocator */
158 unsigned long free_pages;
159 unsigned long pages_min, pages_low, pages_high;
160 /*
161 * We don't know if the memory that we're going to allocate will be freeable
162 * or/and it will be released eventually, so to avoid totally wasting several
163 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
164 * to run OOM on the lower zones despite there's tons of freeable ram
165 * on the higher zones). This array is recalculated at runtime if the
166 * sysctl_lowmem_reserve_ratio sysctl changes.
167 */
168 unsigned long lowmem_reserve[MAX_NR_ZONES];
169
170 #ifdef CONFIG_NUMA
171 int node;
172 /*
173 * zone reclaim becomes active if more unmapped pages exist.
174 */
175 unsigned long min_unmapped_pages;
176 unsigned long min_slab_pages;
177 struct per_cpu_pageset *pageset[NR_CPUS];
178 #else
179 struct per_cpu_pageset pageset[NR_CPUS];
180 #endif
181 /*
182 * free areas of different sizes
183 */
184 spinlock_t lock;
185 #ifdef CONFIG_MEMORY_HOTPLUG
186 /* see spanned/present_pages for more description */
187 seqlock_t span_seqlock;
188 #endif
189 struct free_area free_area[MAX_ORDER];
190
191
192 ZONE_PADDING(_pad1_)
193
194 /* Fields commonly accessed by the page reclaim scanner */
195 spinlock_t lru_lock;
196 struct list_head active_list;
197 struct list_head inactive_list;
198 unsigned long nr_scan_active;
199 unsigned long nr_scan_inactive;
200 unsigned long nr_active;
201 unsigned long nr_inactive;
202 unsigned long pages_scanned; /* since last reclaim */
203 int all_unreclaimable; /* All pages pinned */
204
205 /* A count of how many reclaimers are scanning this zone */
206 atomic_t reclaim_in_progress;
207
208 /* Zone statistics */
209 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
210
211 /*
212 * prev_priority holds the scanning priority for this zone. It is
213 * defined as the scanning priority at which we achieved our reclaim
214 * target at the previous try_to_free_pages() or balance_pgdat()
215 * invokation.
216 *
217 * We use prev_priority as a measure of how much stress page reclaim is
218 * under - it drives the swappiness decision: whether to unmap mapped
219 * pages.
220 *
221 * Access to both this field is quite racy even on uniprocessor. But
222 * it is expected to average out OK.
223 */
224 int prev_priority;
225
226
227 ZONE_PADDING(_pad2_)
228 /* Rarely used or read-mostly fields */
229
230 /*
231 * wait_table -- the array holding the hash table
232 * wait_table_hash_nr_entries -- the size of the hash table array
233 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
234 *
235 * The purpose of all these is to keep track of the people
236 * waiting for a page to become available and make them
237 * runnable again when possible. The trouble is that this
238 * consumes a lot of space, especially when so few things
239 * wait on pages at a given time. So instead of using
240 * per-page waitqueues, we use a waitqueue hash table.
241 *
242 * The bucket discipline is to sleep on the same queue when
243 * colliding and wake all in that wait queue when removing.
244 * When something wakes, it must check to be sure its page is
245 * truly available, a la thundering herd. The cost of a
246 * collision is great, but given the expected load of the
247 * table, they should be so rare as to be outweighed by the
248 * benefits from the saved space.
249 *
250 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
251 * primary users of these fields, and in mm/page_alloc.c
252 * free_area_init_core() performs the initialization of them.
253 */
254 wait_queue_head_t * wait_table;
255 unsigned long wait_table_hash_nr_entries;
256 unsigned long wait_table_bits;
257
258 /*
259 * Discontig memory support fields.
260 */
261 struct pglist_data *zone_pgdat;
262 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
263 unsigned long zone_start_pfn;
264
265 /*
266 * zone_start_pfn, spanned_pages and present_pages are all
267 * protected by span_seqlock. It is a seqlock because it has
268 * to be read outside of zone->lock, and it is done in the main
269 * allocator path. But, it is written quite infrequently.
270 *
271 * The lock is declared along with zone->lock because it is
272 * frequently read in proximity to zone->lock. It's good to
273 * give them a chance of being in the same cacheline.
274 */
275 unsigned long spanned_pages; /* total size, including holes */
276 unsigned long present_pages; /* amount of memory (excluding holes) */
277
278 /*
279 * rarely used fields:
280 */
281 const char *name;
282 } ____cacheline_internodealigned_in_smp;
283
284 /*
285 * The "priority" of VM scanning is how much of the queues we will scan in one
286 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
287 * queues ("queue_length >> 12") during an aging round.
288 */
289 #define DEF_PRIORITY 12
290
291 /* Maximum number of zones on a zonelist */
292 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
293
294 #ifdef CONFIG_NUMA
295 /*
296 * We cache key information from each zonelist for smaller cache
297 * footprint when scanning for free pages in get_page_from_freelist().
298 *
299 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
300 * up short of free memory since the last time (last_fullzone_zap)
301 * we zero'd fullzones.
302 * 2) The array z_to_n[] maps each zone in the zonelist to its node
303 * id, so that we can efficiently evaluate whether that node is
304 * set in the current tasks mems_allowed.
305 *
306 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
307 * indexed by a zones offset in the zonelist zones[] array.
308 *
309 * The get_page_from_freelist() routine does two scans. During the
310 * first scan, we skip zones whose corresponding bit in 'fullzones'
311 * is set or whose corresponding node in current->mems_allowed (which
312 * comes from cpusets) is not set. During the second scan, we bypass
313 * this zonelist_cache, to ensure we look methodically at each zone.
314 *
315 * Once per second, we zero out (zap) fullzones, forcing us to
316 * reconsider nodes that might have regained more free memory.
317 * The field last_full_zap is the time we last zapped fullzones.
318 *
319 * This mechanism reduces the amount of time we waste repeatedly
320 * reexaming zones for free memory when they just came up low on
321 * memory momentarilly ago.
322 *
323 * The zonelist_cache struct members logically belong in struct
324 * zonelist. However, the mempolicy zonelists constructed for
325 * MPOL_BIND are intentionally variable length (and usually much
326 * shorter). A general purpose mechanism for handling structs with
327 * multiple variable length members is more mechanism than we want
328 * here. We resort to some special case hackery instead.
329 *
330 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
331 * part because they are shorter), so we put the fixed length stuff
332 * at the front of the zonelist struct, ending in a variable length
333 * zones[], as is needed by MPOL_BIND.
334 *
335 * Then we put the optional zonelist cache on the end of the zonelist
336 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
337 * the fixed length portion at the front of the struct. This pointer
338 * both enables us to find the zonelist cache, and in the case of
339 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
340 * to know that the zonelist cache is not there.
341 *
342 * The end result is that struct zonelists come in two flavors:
343 * 1) The full, fixed length version, shown below, and
344 * 2) The custom zonelists for MPOL_BIND.
345 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
346 *
347 * Even though there may be multiple CPU cores on a node modifying
348 * fullzones or last_full_zap in the same zonelist_cache at the same
349 * time, we don't lock it. This is just hint data - if it is wrong now
350 * and then, the allocator will still function, perhaps a bit slower.
351 */
352
353
354 struct zonelist_cache {
355 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
356 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
357 unsigned long last_full_zap; /* when last zap'd (jiffies) */
358 };
359 #else
360 struct zonelist_cache;
361 #endif
362
363 /*
364 * One allocation request operates on a zonelist. A zonelist
365 * is a list of zones, the first one is the 'goal' of the
366 * allocation, the other zones are fallback zones, in decreasing
367 * priority.
368 *
369 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
370 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
371 */
372
373 struct zonelist {
374 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
375 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
376 #ifdef CONFIG_NUMA
377 struct zonelist_cache zlcache; // optional ...
378 #endif
379 };
380
381 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
382 struct node_active_region {
383 unsigned long start_pfn;
384 unsigned long end_pfn;
385 int nid;
386 };
387 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
388
389 #ifndef CONFIG_DISCONTIGMEM
390 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
391 extern struct page *mem_map;
392 #endif
393
394 /*
395 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
396 * (mostly NUMA machines?) to denote a higher-level memory zone than the
397 * zone denotes.
398 *
399 * On NUMA machines, each NUMA node would have a pg_data_t to describe
400 * it's memory layout.
401 *
402 * Memory statistics and page replacement data structures are maintained on a
403 * per-zone basis.
404 */
405 struct bootmem_data;
406 typedef struct pglist_data {
407 struct zone node_zones[MAX_NR_ZONES];
408 struct zonelist node_zonelists[MAX_NR_ZONES];
409 int nr_zones;
410 #ifdef CONFIG_FLAT_NODE_MEM_MAP
411 struct page *node_mem_map;
412 #endif
413 struct bootmem_data *bdata;
414 #ifdef CONFIG_MEMORY_HOTPLUG
415 /*
416 * Must be held any time you expect node_start_pfn, node_present_pages
417 * or node_spanned_pages stay constant. Holding this will also
418 * guarantee that any pfn_valid() stays that way.
419 *
420 * Nests above zone->lock and zone->size_seqlock.
421 */
422 spinlock_t node_size_lock;
423 #endif
424 unsigned long node_start_pfn;
425 unsigned long node_present_pages; /* total number of physical pages */
426 unsigned long node_spanned_pages; /* total size of physical page
427 range, including holes */
428 int node_id;
429 wait_queue_head_t kswapd_wait;
430 struct task_struct *kswapd;
431 int kswapd_max_order;
432 } pg_data_t;
433
434 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
435 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
436 #ifdef CONFIG_FLAT_NODE_MEM_MAP
437 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
438 #else
439 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
440 #endif
441 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
442
443 #include <linux/memory_hotplug.h>
444
445 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
446 unsigned long *free, struct pglist_data *pgdat);
447 void get_zone_counts(unsigned long *active, unsigned long *inactive,
448 unsigned long *free);
449 void build_all_zonelists(void);
450 void wakeup_kswapd(struct zone *zone, int order);
451 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
452 int classzone_idx, int alloc_flags);
453
454 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
455 unsigned long size);
456
457 #ifdef CONFIG_HAVE_MEMORY_PRESENT
458 void memory_present(int nid, unsigned long start, unsigned long end);
459 #else
460 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
461 #endif
462
463 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
464 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
465 #endif
466
467 /*
468 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
469 */
470 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
471
472 static inline int populated_zone(struct zone *zone)
473 {
474 return (!!zone->present_pages);
475 }
476
477 static inline int is_highmem_idx(enum zone_type idx)
478 {
479 #ifdef CONFIG_HIGHMEM
480 return (idx == ZONE_HIGHMEM);
481 #else
482 return 0;
483 #endif
484 }
485
486 static inline int is_normal_idx(enum zone_type idx)
487 {
488 return (idx == ZONE_NORMAL);
489 }
490
491 /**
492 * is_highmem - helper function to quickly check if a struct zone is a
493 * highmem zone or not. This is an attempt to keep references
494 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
495 * @zone - pointer to struct zone variable
496 */
497 static inline int is_highmem(struct zone *zone)
498 {
499 #ifdef CONFIG_HIGHMEM
500 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
501 #else
502 return 0;
503 #endif
504 }
505
506 static inline int is_normal(struct zone *zone)
507 {
508 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
509 }
510
511 static inline int is_dma32(struct zone *zone)
512 {
513 #ifdef CONFIG_ZONE_DMA32
514 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
515 #else
516 return 0;
517 #endif
518 }
519
520 static inline int is_dma(struct zone *zone)
521 {
522 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
523 }
524
525 /* These two functions are used to setup the per zone pages min values */
526 struct ctl_table;
527 struct file;
528 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
529 void __user *, size_t *, loff_t *);
530 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
531 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
532 void __user *, size_t *, loff_t *);
533 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
534 void __user *, size_t *, loff_t *);
535 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
536 struct file *, void __user *, size_t *, loff_t *);
537 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
538 struct file *, void __user *, size_t *, loff_t *);
539
540 #include <linux/topology.h>
541 /* Returns the number of the current Node. */
542 #ifndef numa_node_id
543 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
544 #endif
545
546 #ifndef CONFIG_NEED_MULTIPLE_NODES
547
548 extern struct pglist_data contig_page_data;
549 #define NODE_DATA(nid) (&contig_page_data)
550 #define NODE_MEM_MAP(nid) mem_map
551 #define MAX_NODES_SHIFT 1
552
553 #else /* CONFIG_NEED_MULTIPLE_NODES */
554
555 #include <asm/mmzone.h>
556
557 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
558
559 extern struct pglist_data *first_online_pgdat(void);
560 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
561 extern struct zone *next_zone(struct zone *zone);
562
563 /**
564 * for_each_pgdat - helper macro to iterate over all nodes
565 * @pgdat - pointer to a pg_data_t variable
566 */
567 #define for_each_online_pgdat(pgdat) \
568 for (pgdat = first_online_pgdat(); \
569 pgdat; \
570 pgdat = next_online_pgdat(pgdat))
571 /**
572 * for_each_zone - helper macro to iterate over all memory zones
573 * @zone - pointer to struct zone variable
574 *
575 * The user only needs to declare the zone variable, for_each_zone
576 * fills it in.
577 */
578 #define for_each_zone(zone) \
579 for (zone = (first_online_pgdat())->node_zones; \
580 zone; \
581 zone = next_zone(zone))
582
583 #ifdef CONFIG_SPARSEMEM
584 #include <asm/sparsemem.h>
585 #endif
586
587 #if BITS_PER_LONG == 32
588 /*
589 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
590 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
591 */
592 #define FLAGS_RESERVED 9
593
594 #elif BITS_PER_LONG == 64
595 /*
596 * with 64 bit flags field, there's plenty of room.
597 */
598 #define FLAGS_RESERVED 32
599
600 #else
601
602 #error BITS_PER_LONG not defined
603
604 #endif
605
606 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
607 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
608 #define early_pfn_to_nid(nid) (0UL)
609 #endif
610
611 #ifdef CONFIG_FLATMEM
612 #define pfn_to_nid(pfn) (0)
613 #endif
614
615 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
616 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
617
618 #ifdef CONFIG_SPARSEMEM
619
620 /*
621 * SECTION_SHIFT #bits space required to store a section #
622 *
623 * PA_SECTION_SHIFT physical address to/from section number
624 * PFN_SECTION_SHIFT pfn to/from section number
625 */
626 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
627
628 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
629 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
630
631 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
632
633 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
634 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
635
636 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
637 #error Allocator MAX_ORDER exceeds SECTION_SIZE
638 #endif
639
640 struct page;
641 struct mem_section {
642 /*
643 * This is, logically, a pointer to an array of struct
644 * pages. However, it is stored with some other magic.
645 * (see sparse.c::sparse_init_one_section())
646 *
647 * Additionally during early boot we encode node id of
648 * the location of the section here to guide allocation.
649 * (see sparse.c::memory_present())
650 *
651 * Making it a UL at least makes someone do a cast
652 * before using it wrong.
653 */
654 unsigned long section_mem_map;
655 };
656
657 #ifdef CONFIG_SPARSEMEM_EXTREME
658 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
659 #else
660 #define SECTIONS_PER_ROOT 1
661 #endif
662
663 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
664 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
665 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
666
667 #ifdef CONFIG_SPARSEMEM_EXTREME
668 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
669 #else
670 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
671 #endif
672
673 static inline struct mem_section *__nr_to_section(unsigned long nr)
674 {
675 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
676 return NULL;
677 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
678 }
679 extern int __section_nr(struct mem_section* ms);
680
681 /*
682 * We use the lower bits of the mem_map pointer to store
683 * a little bit of information. There should be at least
684 * 3 bits here due to 32-bit alignment.
685 */
686 #define SECTION_MARKED_PRESENT (1UL<<0)
687 #define SECTION_HAS_MEM_MAP (1UL<<1)
688 #define SECTION_MAP_LAST_BIT (1UL<<2)
689 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
690 #define SECTION_NID_SHIFT 2
691
692 static inline struct page *__section_mem_map_addr(struct mem_section *section)
693 {
694 unsigned long map = section->section_mem_map;
695 map &= SECTION_MAP_MASK;
696 return (struct page *)map;
697 }
698
699 static inline int valid_section(struct mem_section *section)
700 {
701 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
702 }
703
704 static inline int section_has_mem_map(struct mem_section *section)
705 {
706 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
707 }
708
709 static inline int valid_section_nr(unsigned long nr)
710 {
711 return valid_section(__nr_to_section(nr));
712 }
713
714 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
715 {
716 return __nr_to_section(pfn_to_section_nr(pfn));
717 }
718
719 static inline int pfn_valid(unsigned long pfn)
720 {
721 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
722 return 0;
723 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
724 }
725
726 /*
727 * These are _only_ used during initialisation, therefore they
728 * can use __initdata ... They could have names to indicate
729 * this restriction.
730 */
731 #ifdef CONFIG_NUMA
732 #define pfn_to_nid(pfn) \
733 ({ \
734 unsigned long __pfn_to_nid_pfn = (pfn); \
735 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
736 })
737 #else
738 #define pfn_to_nid(pfn) (0)
739 #endif
740
741 #define early_pfn_valid(pfn) pfn_valid(pfn)
742 void sparse_init(void);
743 #else
744 #define sparse_init() do {} while (0)
745 #define sparse_index_init(_sec, _nid) do {} while (0)
746 #endif /* CONFIG_SPARSEMEM */
747
748 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
749 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
750 #else
751 #define early_pfn_in_nid(pfn, nid) (1)
752 #endif
753
754 #ifndef early_pfn_valid
755 #define early_pfn_valid(pfn) (1)
756 #endif
757
758 void memory_present(int nid, unsigned long start, unsigned long end);
759 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
760
761 #endif /* !__ASSEMBLY__ */
762 #endif /* __KERNEL__ */
763 #endif /* _LINUX_MMZONE_H */
This page took 0.048199 seconds and 5 git commands to generate.