Merge git://git.infradead.org/ubi-2.6
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
45
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
50 extern int page_group_by_mobility_disabled;
51
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_LRU_BASE,
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91 only modified from process context */
92 NR_FILE_PAGES,
93 NR_FILE_DIRTY,
94 NR_WRITEBACK,
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS, /* NFS unstable pages */
101 NR_BOUNCE,
102 NR_VMSCAN_WRITE,
103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
107 #ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114 #endif
115 NR_VM_ZONE_STAT_ITEMS };
116
117 /*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126 #define LRU_BASE 0
127 #define LRU_ACTIVE 1
128 #define LRU_FILE 2
129
130 enum lru_list {
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
135 LRU_UNEVICTABLE,
136 NR_LRU_LISTS
137 };
138
139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140
141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142
143 static inline int is_file_lru(enum lru_list l)
144 {
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146 }
147
148 static inline int is_active_lru(enum lru_list l)
149 {
150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
151 }
152
153 static inline int is_unevictable_lru(enum lru_list l)
154 {
155 return (l == LRU_UNEVICTABLE);
156 }
157
158 enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
163 };
164
165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168
169 struct per_cpu_pages {
170 int count; /* number of pages in the list */
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
173
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
176 };
177
178 struct per_cpu_pageset {
179 struct per_cpu_pages pcp;
180 #ifdef CONFIG_NUMA
181 s8 expire;
182 #endif
183 #ifdef CONFIG_SMP
184 s8 stat_threshold;
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186 #endif
187 };
188
189 #endif /* !__GENERATING_BOUNDS.H */
190
191 enum zone_type {
192 #ifdef CONFIG_ZONE_DMA
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
220 #endif
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
227 #ifdef CONFIG_HIGHMEM
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
237 #endif
238 ZONE_MOVABLE,
239 __MAX_NR_ZONES
240 };
241
242 #ifndef __GENERATING_BOUNDS_H
243
244 /*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
250 */
251
252 #if MAX_NR_ZONES < 2
253 #define ZONES_SHIFT 0
254 #elif MAX_NR_ZONES <= 2
255 #define ZONES_SHIFT 1
256 #elif MAX_NR_ZONES <= 4
257 #define ZONES_SHIFT 2
258 #else
259 #error ZONES_SHIFT -- too many zones configured adjust calculation
260 #endif
261
262 struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
273
274 /*
275 * accumulated for batching
276 */
277 unsigned long nr_saved_scan[NR_LRU_LISTS];
278 };
279
280 struct zone {
281 /* Fields commonly accessed by the page allocator */
282
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark[NR_WMARK];
285
286 /*
287 * We don't know if the memory that we're going to allocate will be freeable
288 * or/and it will be released eventually, so to avoid totally wasting several
289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
290 * to run OOM on the lower zones despite there's tons of freeable ram
291 * on the higher zones). This array is recalculated at runtime if the
292 * sysctl_lowmem_reserve_ratio sysctl changes.
293 */
294 unsigned long lowmem_reserve[MAX_NR_ZONES];
295
296 #ifdef CONFIG_NUMA
297 int node;
298 /*
299 * zone reclaim becomes active if more unmapped pages exist.
300 */
301 unsigned long min_unmapped_pages;
302 unsigned long min_slab_pages;
303 #endif
304 struct per_cpu_pageset __percpu *pageset;
305 /*
306 * free areas of different sizes
307 */
308 spinlock_t lock;
309 int all_unreclaimable; /* All pages pinned */
310 #ifdef CONFIG_MEMORY_HOTPLUG
311 /* see spanned/present_pages for more description */
312 seqlock_t span_seqlock;
313 #endif
314 struct free_area free_area[MAX_ORDER];
315
316 #ifndef CONFIG_SPARSEMEM
317 /*
318 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
319 * In SPARSEMEM, this map is stored in struct mem_section
320 */
321 unsigned long *pageblock_flags;
322 #endif /* CONFIG_SPARSEMEM */
323
324
325 ZONE_PADDING(_pad1_)
326
327 /* Fields commonly accessed by the page reclaim scanner */
328 spinlock_t lru_lock;
329 struct zone_lru {
330 struct list_head list;
331 } lru[NR_LRU_LISTS];
332
333 struct zone_reclaim_stat reclaim_stat;
334
335 unsigned long pages_scanned; /* since last reclaim */
336 unsigned long flags; /* zone flags, see below */
337
338 /* Zone statistics */
339 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
340
341 /*
342 * prev_priority holds the scanning priority for this zone. It is
343 * defined as the scanning priority at which we achieved our reclaim
344 * target at the previous try_to_free_pages() or balance_pgdat()
345 * invokation.
346 *
347 * We use prev_priority as a measure of how much stress page reclaim is
348 * under - it drives the swappiness decision: whether to unmap mapped
349 * pages.
350 *
351 * Access to both this field is quite racy even on uniprocessor. But
352 * it is expected to average out OK.
353 */
354 int prev_priority;
355
356 /*
357 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
358 * this zone's LRU. Maintained by the pageout code.
359 */
360 unsigned int inactive_ratio;
361
362
363 ZONE_PADDING(_pad2_)
364 /* Rarely used or read-mostly fields */
365
366 /*
367 * wait_table -- the array holding the hash table
368 * wait_table_hash_nr_entries -- the size of the hash table array
369 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
370 *
371 * The purpose of all these is to keep track of the people
372 * waiting for a page to become available and make them
373 * runnable again when possible. The trouble is that this
374 * consumes a lot of space, especially when so few things
375 * wait on pages at a given time. So instead of using
376 * per-page waitqueues, we use a waitqueue hash table.
377 *
378 * The bucket discipline is to sleep on the same queue when
379 * colliding and wake all in that wait queue when removing.
380 * When something wakes, it must check to be sure its page is
381 * truly available, a la thundering herd. The cost of a
382 * collision is great, but given the expected load of the
383 * table, they should be so rare as to be outweighed by the
384 * benefits from the saved space.
385 *
386 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
387 * primary users of these fields, and in mm/page_alloc.c
388 * free_area_init_core() performs the initialization of them.
389 */
390 wait_queue_head_t * wait_table;
391 unsigned long wait_table_hash_nr_entries;
392 unsigned long wait_table_bits;
393
394 /*
395 * Discontig memory support fields.
396 */
397 struct pglist_data *zone_pgdat;
398 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
399 unsigned long zone_start_pfn;
400
401 /*
402 * zone_start_pfn, spanned_pages and present_pages are all
403 * protected by span_seqlock. It is a seqlock because it has
404 * to be read outside of zone->lock, and it is done in the main
405 * allocator path. But, it is written quite infrequently.
406 *
407 * The lock is declared along with zone->lock because it is
408 * frequently read in proximity to zone->lock. It's good to
409 * give them a chance of being in the same cacheline.
410 */
411 unsigned long spanned_pages; /* total size, including holes */
412 unsigned long present_pages; /* amount of memory (excluding holes) */
413
414 /*
415 * rarely used fields:
416 */
417 const char *name;
418 } ____cacheline_internodealigned_in_smp;
419
420 typedef enum {
421 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
422 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
423 } zone_flags_t;
424
425 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
426 {
427 set_bit(flag, &zone->flags);
428 }
429
430 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
431 {
432 return test_and_set_bit(flag, &zone->flags);
433 }
434
435 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
436 {
437 clear_bit(flag, &zone->flags);
438 }
439
440 static inline int zone_is_reclaim_locked(const struct zone *zone)
441 {
442 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
443 }
444
445 static inline int zone_is_oom_locked(const struct zone *zone)
446 {
447 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
448 }
449
450 /*
451 * The "priority" of VM scanning is how much of the queues we will scan in one
452 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
453 * queues ("queue_length >> 12") during an aging round.
454 */
455 #define DEF_PRIORITY 12
456
457 /* Maximum number of zones on a zonelist */
458 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
459
460 #ifdef CONFIG_NUMA
461
462 /*
463 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
464 * allocations to a single node for GFP_THISNODE.
465 *
466 * [0] : Zonelist with fallback
467 * [1] : No fallback (GFP_THISNODE)
468 */
469 #define MAX_ZONELISTS 2
470
471
472 /*
473 * We cache key information from each zonelist for smaller cache
474 * footprint when scanning for free pages in get_page_from_freelist().
475 *
476 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
477 * up short of free memory since the last time (last_fullzone_zap)
478 * we zero'd fullzones.
479 * 2) The array z_to_n[] maps each zone in the zonelist to its node
480 * id, so that we can efficiently evaluate whether that node is
481 * set in the current tasks mems_allowed.
482 *
483 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
484 * indexed by a zones offset in the zonelist zones[] array.
485 *
486 * The get_page_from_freelist() routine does two scans. During the
487 * first scan, we skip zones whose corresponding bit in 'fullzones'
488 * is set or whose corresponding node in current->mems_allowed (which
489 * comes from cpusets) is not set. During the second scan, we bypass
490 * this zonelist_cache, to ensure we look methodically at each zone.
491 *
492 * Once per second, we zero out (zap) fullzones, forcing us to
493 * reconsider nodes that might have regained more free memory.
494 * The field last_full_zap is the time we last zapped fullzones.
495 *
496 * This mechanism reduces the amount of time we waste repeatedly
497 * reexaming zones for free memory when they just came up low on
498 * memory momentarilly ago.
499 *
500 * The zonelist_cache struct members logically belong in struct
501 * zonelist. However, the mempolicy zonelists constructed for
502 * MPOL_BIND are intentionally variable length (and usually much
503 * shorter). A general purpose mechanism for handling structs with
504 * multiple variable length members is more mechanism than we want
505 * here. We resort to some special case hackery instead.
506 *
507 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
508 * part because they are shorter), so we put the fixed length stuff
509 * at the front of the zonelist struct, ending in a variable length
510 * zones[], as is needed by MPOL_BIND.
511 *
512 * Then we put the optional zonelist cache on the end of the zonelist
513 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
514 * the fixed length portion at the front of the struct. This pointer
515 * both enables us to find the zonelist cache, and in the case of
516 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
517 * to know that the zonelist cache is not there.
518 *
519 * The end result is that struct zonelists come in two flavors:
520 * 1) The full, fixed length version, shown below, and
521 * 2) The custom zonelists for MPOL_BIND.
522 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
523 *
524 * Even though there may be multiple CPU cores on a node modifying
525 * fullzones or last_full_zap in the same zonelist_cache at the same
526 * time, we don't lock it. This is just hint data - if it is wrong now
527 * and then, the allocator will still function, perhaps a bit slower.
528 */
529
530
531 struct zonelist_cache {
532 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
533 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
534 unsigned long last_full_zap; /* when last zap'd (jiffies) */
535 };
536 #else
537 #define MAX_ZONELISTS 1
538 struct zonelist_cache;
539 #endif
540
541 /*
542 * This struct contains information about a zone in a zonelist. It is stored
543 * here to avoid dereferences into large structures and lookups of tables
544 */
545 struct zoneref {
546 struct zone *zone; /* Pointer to actual zone */
547 int zone_idx; /* zone_idx(zoneref->zone) */
548 };
549
550 /*
551 * One allocation request operates on a zonelist. A zonelist
552 * is a list of zones, the first one is the 'goal' of the
553 * allocation, the other zones are fallback zones, in decreasing
554 * priority.
555 *
556 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
557 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
558 * *
559 * To speed the reading of the zonelist, the zonerefs contain the zone index
560 * of the entry being read. Helper functions to access information given
561 * a struct zoneref are
562 *
563 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
564 * zonelist_zone_idx() - Return the index of the zone for an entry
565 * zonelist_node_idx() - Return the index of the node for an entry
566 */
567 struct zonelist {
568 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
569 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
570 #ifdef CONFIG_NUMA
571 struct zonelist_cache zlcache; // optional ...
572 #endif
573 };
574
575 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
576 struct node_active_region {
577 unsigned long start_pfn;
578 unsigned long end_pfn;
579 int nid;
580 };
581 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
582
583 #ifndef CONFIG_DISCONTIGMEM
584 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
585 extern struct page *mem_map;
586 #endif
587
588 /*
589 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
590 * (mostly NUMA machines?) to denote a higher-level memory zone than the
591 * zone denotes.
592 *
593 * On NUMA machines, each NUMA node would have a pg_data_t to describe
594 * it's memory layout.
595 *
596 * Memory statistics and page replacement data structures are maintained on a
597 * per-zone basis.
598 */
599 struct bootmem_data;
600 typedef struct pglist_data {
601 struct zone node_zones[MAX_NR_ZONES];
602 struct zonelist node_zonelists[MAX_ZONELISTS];
603 int nr_zones;
604 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
605 struct page *node_mem_map;
606 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
607 struct page_cgroup *node_page_cgroup;
608 #endif
609 #endif
610 #ifndef CONFIG_NO_BOOTMEM
611 struct bootmem_data *bdata;
612 #endif
613 #ifdef CONFIG_MEMORY_HOTPLUG
614 /*
615 * Must be held any time you expect node_start_pfn, node_present_pages
616 * or node_spanned_pages stay constant. Holding this will also
617 * guarantee that any pfn_valid() stays that way.
618 *
619 * Nests above zone->lock and zone->size_seqlock.
620 */
621 spinlock_t node_size_lock;
622 #endif
623 unsigned long node_start_pfn;
624 unsigned long node_present_pages; /* total number of physical pages */
625 unsigned long node_spanned_pages; /* total size of physical page
626 range, including holes */
627 int node_id;
628 wait_queue_head_t kswapd_wait;
629 struct task_struct *kswapd;
630 int kswapd_max_order;
631 } pg_data_t;
632
633 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
634 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
635 #ifdef CONFIG_FLAT_NODE_MEM_MAP
636 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
637 #else
638 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
639 #endif
640 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
641
642 #include <linux/memory_hotplug.h>
643
644 void get_zone_counts(unsigned long *active, unsigned long *inactive,
645 unsigned long *free);
646 void build_all_zonelists(void);
647 void wakeup_kswapd(struct zone *zone, int order);
648 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
649 int classzone_idx, int alloc_flags);
650 enum memmap_context {
651 MEMMAP_EARLY,
652 MEMMAP_HOTPLUG,
653 };
654 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
655 unsigned long size,
656 enum memmap_context context);
657
658 #ifdef CONFIG_HAVE_MEMORY_PRESENT
659 void memory_present(int nid, unsigned long start, unsigned long end);
660 #else
661 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
662 #endif
663
664 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
665 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
666 #endif
667
668 /*
669 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
670 */
671 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
672
673 static inline int populated_zone(struct zone *zone)
674 {
675 return (!!zone->present_pages);
676 }
677
678 extern int movable_zone;
679
680 static inline int zone_movable_is_highmem(void)
681 {
682 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
683 return movable_zone == ZONE_HIGHMEM;
684 #else
685 return 0;
686 #endif
687 }
688
689 static inline int is_highmem_idx(enum zone_type idx)
690 {
691 #ifdef CONFIG_HIGHMEM
692 return (idx == ZONE_HIGHMEM ||
693 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
694 #else
695 return 0;
696 #endif
697 }
698
699 static inline int is_normal_idx(enum zone_type idx)
700 {
701 return (idx == ZONE_NORMAL);
702 }
703
704 /**
705 * is_highmem - helper function to quickly check if a struct zone is a
706 * highmem zone or not. This is an attempt to keep references
707 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
708 * @zone - pointer to struct zone variable
709 */
710 static inline int is_highmem(struct zone *zone)
711 {
712 #ifdef CONFIG_HIGHMEM
713 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
714 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
715 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
716 zone_movable_is_highmem());
717 #else
718 return 0;
719 #endif
720 }
721
722 static inline int is_normal(struct zone *zone)
723 {
724 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
725 }
726
727 static inline int is_dma32(struct zone *zone)
728 {
729 #ifdef CONFIG_ZONE_DMA32
730 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
731 #else
732 return 0;
733 #endif
734 }
735
736 static inline int is_dma(struct zone *zone)
737 {
738 #ifdef CONFIG_ZONE_DMA
739 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
740 #else
741 return 0;
742 #endif
743 }
744
745 /* These two functions are used to setup the per zone pages min values */
746 struct ctl_table;
747 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
748 void __user *, size_t *, loff_t *);
749 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
750 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
751 void __user *, size_t *, loff_t *);
752 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
753 void __user *, size_t *, loff_t *);
754 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
755 void __user *, size_t *, loff_t *);
756 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
757 void __user *, size_t *, loff_t *);
758
759 extern int numa_zonelist_order_handler(struct ctl_table *, int,
760 void __user *, size_t *, loff_t *);
761 extern char numa_zonelist_order[];
762 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
763
764 #ifndef CONFIG_NEED_MULTIPLE_NODES
765
766 extern struct pglist_data contig_page_data;
767 #define NODE_DATA(nid) (&contig_page_data)
768 #define NODE_MEM_MAP(nid) mem_map
769
770 #else /* CONFIG_NEED_MULTIPLE_NODES */
771
772 #include <asm/mmzone.h>
773
774 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
775
776 extern struct pglist_data *first_online_pgdat(void);
777 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
778 extern struct zone *next_zone(struct zone *zone);
779
780 /**
781 * for_each_online_pgdat - helper macro to iterate over all online nodes
782 * @pgdat - pointer to a pg_data_t variable
783 */
784 #define for_each_online_pgdat(pgdat) \
785 for (pgdat = first_online_pgdat(); \
786 pgdat; \
787 pgdat = next_online_pgdat(pgdat))
788 /**
789 * for_each_zone - helper macro to iterate over all memory zones
790 * @zone - pointer to struct zone variable
791 *
792 * The user only needs to declare the zone variable, for_each_zone
793 * fills it in.
794 */
795 #define for_each_zone(zone) \
796 for (zone = (first_online_pgdat())->node_zones; \
797 zone; \
798 zone = next_zone(zone))
799
800 #define for_each_populated_zone(zone) \
801 for (zone = (first_online_pgdat())->node_zones; \
802 zone; \
803 zone = next_zone(zone)) \
804 if (!populated_zone(zone)) \
805 ; /* do nothing */ \
806 else
807
808 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
809 {
810 return zoneref->zone;
811 }
812
813 static inline int zonelist_zone_idx(struct zoneref *zoneref)
814 {
815 return zoneref->zone_idx;
816 }
817
818 static inline int zonelist_node_idx(struct zoneref *zoneref)
819 {
820 #ifdef CONFIG_NUMA
821 /* zone_to_nid not available in this context */
822 return zoneref->zone->node;
823 #else
824 return 0;
825 #endif /* CONFIG_NUMA */
826 }
827
828 /**
829 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
830 * @z - The cursor used as a starting point for the search
831 * @highest_zoneidx - The zone index of the highest zone to return
832 * @nodes - An optional nodemask to filter the zonelist with
833 * @zone - The first suitable zone found is returned via this parameter
834 *
835 * This function returns the next zone at or below a given zone index that is
836 * within the allowed nodemask using a cursor as the starting point for the
837 * search. The zoneref returned is a cursor that represents the current zone
838 * being examined. It should be advanced by one before calling
839 * next_zones_zonelist again.
840 */
841 struct zoneref *next_zones_zonelist(struct zoneref *z,
842 enum zone_type highest_zoneidx,
843 nodemask_t *nodes,
844 struct zone **zone);
845
846 /**
847 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
848 * @zonelist - The zonelist to search for a suitable zone
849 * @highest_zoneidx - The zone index of the highest zone to return
850 * @nodes - An optional nodemask to filter the zonelist with
851 * @zone - The first suitable zone found is returned via this parameter
852 *
853 * This function returns the first zone at or below a given zone index that is
854 * within the allowed nodemask. The zoneref returned is a cursor that can be
855 * used to iterate the zonelist with next_zones_zonelist by advancing it by
856 * one before calling.
857 */
858 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
859 enum zone_type highest_zoneidx,
860 nodemask_t *nodes,
861 struct zone **zone)
862 {
863 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
864 zone);
865 }
866
867 /**
868 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
869 * @zone - The current zone in the iterator
870 * @z - The current pointer within zonelist->zones being iterated
871 * @zlist - The zonelist being iterated
872 * @highidx - The zone index of the highest zone to return
873 * @nodemask - Nodemask allowed by the allocator
874 *
875 * This iterator iterates though all zones at or below a given zone index and
876 * within a given nodemask
877 */
878 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
879 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
880 zone; \
881 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
882
883 /**
884 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
885 * @zone - The current zone in the iterator
886 * @z - The current pointer within zonelist->zones being iterated
887 * @zlist - The zonelist being iterated
888 * @highidx - The zone index of the highest zone to return
889 *
890 * This iterator iterates though all zones at or below a given zone index.
891 */
892 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
893 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
894
895 #ifdef CONFIG_SPARSEMEM
896 #include <asm/sparsemem.h>
897 #endif
898
899 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
900 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
901 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
902 {
903 return 0;
904 }
905 #endif
906
907 #ifdef CONFIG_FLATMEM
908 #define pfn_to_nid(pfn) (0)
909 #endif
910
911 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
912 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
913
914 #ifdef CONFIG_SPARSEMEM
915
916 /*
917 * SECTION_SHIFT #bits space required to store a section #
918 *
919 * PA_SECTION_SHIFT physical address to/from section number
920 * PFN_SECTION_SHIFT pfn to/from section number
921 */
922 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
923
924 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
925 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
926
927 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
928
929 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
930 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
931
932 #define SECTION_BLOCKFLAGS_BITS \
933 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
934
935 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
936 #error Allocator MAX_ORDER exceeds SECTION_SIZE
937 #endif
938
939 struct page;
940 struct page_cgroup;
941 struct mem_section {
942 /*
943 * This is, logically, a pointer to an array of struct
944 * pages. However, it is stored with some other magic.
945 * (see sparse.c::sparse_init_one_section())
946 *
947 * Additionally during early boot we encode node id of
948 * the location of the section here to guide allocation.
949 * (see sparse.c::memory_present())
950 *
951 * Making it a UL at least makes someone do a cast
952 * before using it wrong.
953 */
954 unsigned long section_mem_map;
955
956 /* See declaration of similar field in struct zone */
957 unsigned long *pageblock_flags;
958 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
959 /*
960 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
961 * section. (see memcontrol.h/page_cgroup.h about this.)
962 */
963 struct page_cgroup *page_cgroup;
964 unsigned long pad;
965 #endif
966 };
967
968 #ifdef CONFIG_SPARSEMEM_EXTREME
969 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
970 #else
971 #define SECTIONS_PER_ROOT 1
972 #endif
973
974 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
975 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
976 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
977
978 #ifdef CONFIG_SPARSEMEM_EXTREME
979 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
980 #else
981 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
982 #endif
983
984 static inline struct mem_section *__nr_to_section(unsigned long nr)
985 {
986 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
987 return NULL;
988 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
989 }
990 extern int __section_nr(struct mem_section* ms);
991 extern unsigned long usemap_size(void);
992
993 /*
994 * We use the lower bits of the mem_map pointer to store
995 * a little bit of information. There should be at least
996 * 3 bits here due to 32-bit alignment.
997 */
998 #define SECTION_MARKED_PRESENT (1UL<<0)
999 #define SECTION_HAS_MEM_MAP (1UL<<1)
1000 #define SECTION_MAP_LAST_BIT (1UL<<2)
1001 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1002 #define SECTION_NID_SHIFT 2
1003
1004 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1005 {
1006 unsigned long map = section->section_mem_map;
1007 map &= SECTION_MAP_MASK;
1008 return (struct page *)map;
1009 }
1010
1011 static inline int present_section(struct mem_section *section)
1012 {
1013 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1014 }
1015
1016 static inline int present_section_nr(unsigned long nr)
1017 {
1018 return present_section(__nr_to_section(nr));
1019 }
1020
1021 static inline int valid_section(struct mem_section *section)
1022 {
1023 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1024 }
1025
1026 static inline int valid_section_nr(unsigned long nr)
1027 {
1028 return valid_section(__nr_to_section(nr));
1029 }
1030
1031 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1032 {
1033 return __nr_to_section(pfn_to_section_nr(pfn));
1034 }
1035
1036 static inline int pfn_valid(unsigned long pfn)
1037 {
1038 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1039 return 0;
1040 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1041 }
1042
1043 static inline int pfn_present(unsigned long pfn)
1044 {
1045 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1046 return 0;
1047 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1048 }
1049
1050 /*
1051 * These are _only_ used during initialisation, therefore they
1052 * can use __initdata ... They could have names to indicate
1053 * this restriction.
1054 */
1055 #ifdef CONFIG_NUMA
1056 #define pfn_to_nid(pfn) \
1057 ({ \
1058 unsigned long __pfn_to_nid_pfn = (pfn); \
1059 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1060 })
1061 #else
1062 #define pfn_to_nid(pfn) (0)
1063 #endif
1064
1065 #define early_pfn_valid(pfn) pfn_valid(pfn)
1066 void sparse_init(void);
1067 #else
1068 #define sparse_init() do {} while (0)
1069 #define sparse_index_init(_sec, _nid) do {} while (0)
1070 #endif /* CONFIG_SPARSEMEM */
1071
1072 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1073 bool early_pfn_in_nid(unsigned long pfn, int nid);
1074 #else
1075 #define early_pfn_in_nid(pfn, nid) (1)
1076 #endif
1077
1078 #ifndef early_pfn_valid
1079 #define early_pfn_valid(pfn) (1)
1080 #endif
1081
1082 void memory_present(int nid, unsigned long start, unsigned long end);
1083 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1084
1085 /*
1086 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1087 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1088 * pfn_valid_within() should be used in this case; we optimise this away
1089 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1090 */
1091 #ifdef CONFIG_HOLES_IN_ZONE
1092 #define pfn_valid_within(pfn) pfn_valid(pfn)
1093 #else
1094 #define pfn_valid_within(pfn) (1)
1095 #endif
1096
1097 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1098 /*
1099 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1100 * associated with it or not. In FLATMEM, it is expected that holes always
1101 * have valid memmap as long as there is valid PFNs either side of the hole.
1102 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1103 * entire section.
1104 *
1105 * However, an ARM, and maybe other embedded architectures in the future
1106 * free memmap backing holes to save memory on the assumption the memmap is
1107 * never used. The page_zone linkages are then broken even though pfn_valid()
1108 * returns true. A walker of the full memmap must then do this additional
1109 * check to ensure the memmap they are looking at is sane by making sure
1110 * the zone and PFN linkages are still valid. This is expensive, but walkers
1111 * of the full memmap are extremely rare.
1112 */
1113 int memmap_valid_within(unsigned long pfn,
1114 struct page *page, struct zone *zone);
1115 #else
1116 static inline int memmap_valid_within(unsigned long pfn,
1117 struct page *page, struct zone *zone)
1118 {
1119 return 1;
1120 }
1121 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1122
1123 #endif /* !__GENERATING_BOUNDS.H */
1124 #endif /* !__ASSEMBLY__ */
1125 #endif /* _LINUX_MMZONE_H */
This page took 0.071626 seconds and 6 git commands to generate.