block: Always check queue limits for cloned requests
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151
152 /*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181 };
182
183
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210 };
211
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215 };
216
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268 };
269
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281 };
282
283
284 /*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293
294 int __init netdev_boot_setup(char *str);
295
296 /*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323 };
324
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330 };
331
332 enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340
341 /*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382 enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398
399 /**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413
414 /**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425 }
426
427 /**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437 }
438
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447 }
448
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 return napi_complete_done(n, 0);
461 }
462
463 /**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471
472 /**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487 void napi_hash_del(struct napi_struct *napi);
488
489 /**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496 void napi_disable(struct napi_struct *n);
497
498 /**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510 clear_bit(NAPI_STATE_NPSVC, &n->state);
511 }
512
513 #ifdef CONFIG_SMP
514 /**
515 * napi_synchronize - wait until NAPI is not running
516 * @n: napi context
517 *
518 * Wait until NAPI is done being scheduled on this context.
519 * Waits till any outstanding processing completes but
520 * does not disable future activations.
521 */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 while (test_bit(NAPI_STATE_SCHED, &n->state))
525 msleep(1);
526 }
527 #else
528 # define napi_synchronize(n) barrier()
529 #endif
530
531 enum netdev_queue_state_t {
532 __QUEUE_STATE_DRV_XOFF,
533 __QUEUE_STATE_STACK_XOFF,
534 __QUEUE_STATE_FROZEN,
535 };
536
537 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540
541 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 QUEUE_STATE_FROZEN)
546
547 /*
548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
549 * netif_tx_* functions below are used to manipulate this flag. The
550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551 * queue independently. The netif_xmit_*stopped functions below are called
552 * to check if the queue has been stopped by the driver or stack (either
553 * of the XOFF bits are set in the state). Drivers should not need to call
554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
555 */
556
557 struct netdev_queue {
558 /*
559 * read mostly part
560 */
561 struct net_device *dev;
562 struct Qdisc __rcu *qdisc;
563 struct Qdisc *qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 struct kobject kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 int numa_node;
569 #endif
570 /*
571 * write mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * please use this field instead of dev->trans_start
577 */
578 unsigned long trans_start;
579
580 /*
581 * Number of TX timeouts for this queue
582 * (/sys/class/net/DEV/Q/trans_timeout)
583 */
584 unsigned long trans_timeout;
585
586 unsigned long state;
587
588 #ifdef CONFIG_BQL
589 struct dql dql;
590 #endif
591 unsigned long tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 return q->numa_node;
598 #else
599 return NUMA_NO_NODE;
600 #endif
601 }
602
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 q->numa_node = node;
607 #endif
608 }
609
610 #ifdef CONFIG_RPS
611 /*
612 * This structure holds an RPS map which can be of variable length. The
613 * map is an array of CPUs.
614 */
615 struct rps_map {
616 unsigned int len;
617 struct rcu_head rcu;
618 u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621
622 /*
623 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624 * tail pointer for that CPU's input queue at the time of last enqueue, and
625 * a hardware filter index.
626 */
627 struct rps_dev_flow {
628 u16 cpu;
629 u16 filter;
630 unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633
634 /*
635 * The rps_dev_flow_table structure contains a table of flow mappings.
636 */
637 struct rps_dev_flow_table {
638 unsigned int mask;
639 struct rcu_head rcu;
640 struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643 ((_num) * sizeof(struct rps_dev_flow)))
644
645 /*
646 * The rps_sock_flow_table contains mappings of flows to the last CPU
647 * on which they were processed by the application (set in recvmsg).
648 * Each entry is a 32bit value. Upper part is the high order bits
649 * of flow hash, lower part is cpu number.
650 * rps_cpu_mask is used to partition the space, depending on number of
651 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653 * meaning we use 32-6=26 bits for the hash.
654 */
655 struct rps_sock_flow_table {
656 u32 mask;
657
658 u32 ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661
662 #define RPS_NO_CPU 0xffff
663
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 u32 hash)
669 {
670 if (table && hash) {
671 unsigned int index = hash & table->mask;
672 u32 val = hash & ~rps_cpu_mask;
673
674 /* We only give a hint, preemption can change cpu under us */
675 val |= raw_smp_processor_id();
676
677 if (table->ents[index] != val)
678 table->ents[index] = val;
679 }
680 }
681
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 struct rps_map __rcu *rps_map;
692 struct rps_dev_flow_table __rcu *rps_flow_table;
693 #endif
694 struct kobject kobj;
695 struct net_device *dev;
696 } ____cacheline_aligned_in_smp;
697
698 /*
699 * RX queue sysfs structures and functions.
700 */
701 struct rx_queue_attribute {
702 struct attribute attr;
703 ssize_t (*show)(struct netdev_rx_queue *queue,
704 struct rx_queue_attribute *attr, char *buf);
705 ssize_t (*store)(struct netdev_rx_queue *queue,
706 struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708
709 #ifdef CONFIG_XPS
710 /*
711 * This structure holds an XPS map which can be of variable length. The
712 * map is an array of queues.
713 */
714 struct xps_map {
715 unsigned int len;
716 unsigned int alloc_len;
717 struct rcu_head rcu;
718 u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
722 - sizeof(struct xps_map)) / sizeof(u16))
723
724 /*
725 * This structure holds all XPS maps for device. Maps are indexed by CPU.
726 */
727 struct xps_dev_maps {
728 struct rcu_head rcu;
729 struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
732 (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734
735 #define TC_MAX_QUEUE 16
736 #define TC_BITMASK 15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 u16 count;
740 u16 offset;
741 };
742
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745 * This structure is to hold information about the device
746 * configured to run FCoE protocol stack.
747 */
748 struct netdev_fcoe_hbainfo {
749 char manufacturer[64];
750 char serial_number[64];
751 char hardware_version[64];
752 char driver_version[64];
753 char optionrom_version[64];
754 char firmware_version[64];
755 char model[256];
756 char model_description[256];
757 };
758 #endif
759
760 #define MAX_PHYS_ITEM_ID_LEN 32
761
762 /* This structure holds a unique identifier to identify some
763 * physical item (port for example) used by a netdevice.
764 */
765 struct netdev_phys_item_id {
766 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 unsigned char id_len;
768 };
769
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 struct netdev_phys_item_id *b)
772 {
773 return a->id_len == b->id_len &&
774 memcmp(a->id, b->id, a->id_len) == 0;
775 }
776
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 struct sk_buff *skb);
779
780 /*
781 * This structure defines the management hooks for network devices.
782 * The following hooks can be defined; unless noted otherwise, they are
783 * optional and can be filled with a null pointer.
784 *
785 * int (*ndo_init)(struct net_device *dev);
786 * This function is called once when network device is registered.
787 * The network device can use this to any late stage initializaton
788 * or semantic validattion. It can fail with an error code which will
789 * be propogated back to register_netdev
790 *
791 * void (*ndo_uninit)(struct net_device *dev);
792 * This function is called when device is unregistered or when registration
793 * fails. It is not called if init fails.
794 *
795 * int (*ndo_open)(struct net_device *dev);
796 * This function is called when network device transistions to the up
797 * state.
798 *
799 * int (*ndo_stop)(struct net_device *dev);
800 * This function is called when network device transistions to the down
801 * state.
802 *
803 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804 * struct net_device *dev);
805 * Called when a packet needs to be transmitted.
806 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
807 * the queue before that can happen; it's for obsolete devices and weird
808 * corner cases, but the stack really does a non-trivial amount
809 * of useless work if you return NETDEV_TX_BUSY.
810 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811 * Required can not be NULL.
812 *
813 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814 * void *accel_priv, select_queue_fallback_t fallback);
815 * Called to decide which queue to when device supports multiple
816 * transmit queues.
817 *
818 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819 * This function is called to allow device receiver to make
820 * changes to configuration when multicast or promiscious is enabled.
821 *
822 * void (*ndo_set_rx_mode)(struct net_device *dev);
823 * This function is called device changes address list filtering.
824 * If driver handles unicast address filtering, it should set
825 * IFF_UNICAST_FLT to its priv_flags.
826 *
827 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828 * This function is called when the Media Access Control address
829 * needs to be changed. If this interface is not defined, the
830 * mac address can not be changed.
831 *
832 * int (*ndo_validate_addr)(struct net_device *dev);
833 * Test if Media Access Control address is valid for the device.
834 *
835 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836 * Called when a user request an ioctl which can't be handled by
837 * the generic interface code. If not defined ioctl's return
838 * not supported error code.
839 *
840 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841 * Used to set network devices bus interface parameters. This interface
842 * is retained for legacy reason, new devices should use the bus
843 * interface (PCI) for low level management.
844 *
845 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846 * Called when a user wants to change the Maximum Transfer Unit
847 * of a device. If not defined, any request to change MTU will
848 * will return an error.
849 *
850 * void (*ndo_tx_timeout)(struct net_device *dev);
851 * Callback uses when the transmitter has not made any progress
852 * for dev->watchdog ticks.
853 *
854 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855 * struct rtnl_link_stats64 *storage);
856 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857 * Called when a user wants to get the network device usage
858 * statistics. Drivers must do one of the following:
859 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
860 * rtnl_link_stats64 structure passed by the caller.
861 * 2. Define @ndo_get_stats to update a net_device_stats structure
862 * (which should normally be dev->stats) and return a pointer to
863 * it. The structure may be changed asynchronously only if each
864 * field is written atomically.
865 * 3. Update dev->stats asynchronously and atomically, and define
866 * neither operation.
867 *
868 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869 * If device support VLAN filtering this function is called when a
870 * VLAN id is registered.
871 *
872 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873 * If device support VLAN filtering this function is called when a
874 * VLAN id is unregistered.
875 *
876 * void (*ndo_poll_controller)(struct net_device *dev);
877 *
878 * SR-IOV management functions.
879 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882 * int max_tx_rate);
883 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
885 * int (*ndo_get_vf_config)(struct net_device *dev,
886 * int vf, struct ifla_vf_info *ivf);
887 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
888 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
889 * struct nlattr *port[]);
890 *
891 * Enable or disable the VF ability to query its RSS Redirection Table and
892 * Hash Key. This is needed since on some devices VF share this information
893 * with PF and querying it may adduce a theoretical security risk.
894 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
895 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
896 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
897 * Called to setup 'tc' number of traffic classes in the net device. This
898 * is always called from the stack with the rtnl lock held and netif tx
899 * queues stopped. This allows the netdevice to perform queue management
900 * safely.
901 *
902 * Fiber Channel over Ethernet (FCoE) offload functions.
903 * int (*ndo_fcoe_enable)(struct net_device *dev);
904 * Called when the FCoE protocol stack wants to start using LLD for FCoE
905 * so the underlying device can perform whatever needed configuration or
906 * initialization to support acceleration of FCoE traffic.
907 *
908 * int (*ndo_fcoe_disable)(struct net_device *dev);
909 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
910 * so the underlying device can perform whatever needed clean-ups to
911 * stop supporting acceleration of FCoE traffic.
912 *
913 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
914 * struct scatterlist *sgl, unsigned int sgc);
915 * Called when the FCoE Initiator wants to initialize an I/O that
916 * is a possible candidate for Direct Data Placement (DDP). The LLD can
917 * perform necessary setup and returns 1 to indicate the device is set up
918 * successfully to perform DDP on this I/O, otherwise this returns 0.
919 *
920 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
921 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
922 * indicated by the FC exchange id 'xid', so the underlying device can
923 * clean up and reuse resources for later DDP requests.
924 *
925 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
926 * struct scatterlist *sgl, unsigned int sgc);
927 * Called when the FCoE Target wants to initialize an I/O that
928 * is a possible candidate for Direct Data Placement (DDP). The LLD can
929 * perform necessary setup and returns 1 to indicate the device is set up
930 * successfully to perform DDP on this I/O, otherwise this returns 0.
931 *
932 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
933 * struct netdev_fcoe_hbainfo *hbainfo);
934 * Called when the FCoE Protocol stack wants information on the underlying
935 * device. This information is utilized by the FCoE protocol stack to
936 * register attributes with Fiber Channel management service as per the
937 * FC-GS Fabric Device Management Information(FDMI) specification.
938 *
939 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
940 * Called when the underlying device wants to override default World Wide
941 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
942 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
943 * protocol stack to use.
944 *
945 * RFS acceleration.
946 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
947 * u16 rxq_index, u32 flow_id);
948 * Set hardware filter for RFS. rxq_index is the target queue index;
949 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
950 * Return the filter ID on success, or a negative error code.
951 *
952 * Slave management functions (for bridge, bonding, etc).
953 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
954 * Called to make another netdev an underling.
955 *
956 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
957 * Called to release previously enslaved netdev.
958 *
959 * Feature/offload setting functions.
960 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
961 * netdev_features_t features);
962 * Adjusts the requested feature flags according to device-specific
963 * constraints, and returns the resulting flags. Must not modify
964 * the device state.
965 *
966 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
967 * Called to update device configuration to new features. Passed
968 * feature set might be less than what was returned by ndo_fix_features()).
969 * Must return >0 or -errno if it changed dev->features itself.
970 *
971 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
972 * struct net_device *dev,
973 * const unsigned char *addr, u16 vid, u16 flags)
974 * Adds an FDB entry to dev for addr.
975 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
976 * struct net_device *dev,
977 * const unsigned char *addr, u16 vid)
978 * Deletes the FDB entry from dev coresponding to addr.
979 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
980 * struct net_device *dev, struct net_device *filter_dev,
981 * int idx)
982 * Used to add FDB entries to dump requests. Implementers should add
983 * entries to skb and update idx with the number of entries.
984 *
985 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
986 * u16 flags)
987 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
988 * struct net_device *dev, u32 filter_mask,
989 * int nlflags)
990 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
991 * u16 flags);
992 *
993 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
994 * Called to change device carrier. Soft-devices (like dummy, team, etc)
995 * which do not represent real hardware may define this to allow their
996 * userspace components to manage their virtual carrier state. Devices
997 * that determine carrier state from physical hardware properties (eg
998 * network cables) or protocol-dependent mechanisms (eg
999 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1000 *
1001 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1002 * struct netdev_phys_item_id *ppid);
1003 * Called to get ID of physical port of this device. If driver does
1004 * not implement this, it is assumed that the hw is not able to have
1005 * multiple net devices on single physical port.
1006 *
1007 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1008 * sa_family_t sa_family, __be16 port);
1009 * Called by vxlan to notiy a driver about the UDP port and socket
1010 * address family that vxlan is listnening to. It is called only when
1011 * a new port starts listening. The operation is protected by the
1012 * vxlan_net->sock_lock.
1013 *
1014 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1015 * sa_family_t sa_family, __be16 port);
1016 * Called by vxlan to notify the driver about a UDP port and socket
1017 * address family that vxlan is not listening to anymore. The operation
1018 * is protected by the vxlan_net->sock_lock.
1019 *
1020 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1021 * struct net_device *dev)
1022 * Called by upper layer devices to accelerate switching or other
1023 * station functionality into hardware. 'pdev is the lowerdev
1024 * to use for the offload and 'dev' is the net device that will
1025 * back the offload. Returns a pointer to the private structure
1026 * the upper layer will maintain.
1027 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1028 * Called by upper layer device to delete the station created
1029 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1030 * the station and priv is the structure returned by the add
1031 * operation.
1032 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1033 * struct net_device *dev,
1034 * void *priv);
1035 * Callback to use for xmit over the accelerated station. This
1036 * is used in place of ndo_start_xmit on accelerated net
1037 * devices.
1038 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1039 * struct net_device *dev
1040 * netdev_features_t features);
1041 * Called by core transmit path to determine if device is capable of
1042 * performing offload operations on a given packet. This is to give
1043 * the device an opportunity to implement any restrictions that cannot
1044 * be otherwise expressed by feature flags. The check is called with
1045 * the set of features that the stack has calculated and it returns
1046 * those the driver believes to be appropriate.
1047 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1048 * int queue_index, u32 maxrate);
1049 * Called when a user wants to set a max-rate limitation of specific
1050 * TX queue.
1051 * int (*ndo_get_iflink)(const struct net_device *dev);
1052 * Called to get the iflink value of this device.
1053 * void (*ndo_change_proto_down)(struct net_device *dev,
1054 * bool proto_down);
1055 * This function is used to pass protocol port error state information
1056 * to the switch driver. The switch driver can react to the proto_down
1057 * by doing a phys down on the associated switch port.
1058 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1059 * This function is used to get egress tunnel information for given skb.
1060 * This is useful for retrieving outer tunnel header parameters while
1061 * sampling packet.
1062 *
1063 */
1064 struct net_device_ops {
1065 int (*ndo_init)(struct net_device *dev);
1066 void (*ndo_uninit)(struct net_device *dev);
1067 int (*ndo_open)(struct net_device *dev);
1068 int (*ndo_stop)(struct net_device *dev);
1069 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1070 struct net_device *dev);
1071 u16 (*ndo_select_queue)(struct net_device *dev,
1072 struct sk_buff *skb,
1073 void *accel_priv,
1074 select_queue_fallback_t fallback);
1075 void (*ndo_change_rx_flags)(struct net_device *dev,
1076 int flags);
1077 void (*ndo_set_rx_mode)(struct net_device *dev);
1078 int (*ndo_set_mac_address)(struct net_device *dev,
1079 void *addr);
1080 int (*ndo_validate_addr)(struct net_device *dev);
1081 int (*ndo_do_ioctl)(struct net_device *dev,
1082 struct ifreq *ifr, int cmd);
1083 int (*ndo_set_config)(struct net_device *dev,
1084 struct ifmap *map);
1085 int (*ndo_change_mtu)(struct net_device *dev,
1086 int new_mtu);
1087 int (*ndo_neigh_setup)(struct net_device *dev,
1088 struct neigh_parms *);
1089 void (*ndo_tx_timeout) (struct net_device *dev);
1090
1091 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1092 struct rtnl_link_stats64 *storage);
1093 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1094
1095 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1096 __be16 proto, u16 vid);
1097 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1098 __be16 proto, u16 vid);
1099 #ifdef CONFIG_NET_POLL_CONTROLLER
1100 void (*ndo_poll_controller)(struct net_device *dev);
1101 int (*ndo_netpoll_setup)(struct net_device *dev,
1102 struct netpoll_info *info);
1103 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1104 #endif
1105 #ifdef CONFIG_NET_RX_BUSY_POLL
1106 int (*ndo_busy_poll)(struct napi_struct *dev);
1107 #endif
1108 int (*ndo_set_vf_mac)(struct net_device *dev,
1109 int queue, u8 *mac);
1110 int (*ndo_set_vf_vlan)(struct net_device *dev,
1111 int queue, u16 vlan, u8 qos);
1112 int (*ndo_set_vf_rate)(struct net_device *dev,
1113 int vf, int min_tx_rate,
1114 int max_tx_rate);
1115 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1116 int vf, bool setting);
1117 int (*ndo_set_vf_trust)(struct net_device *dev,
1118 int vf, bool setting);
1119 int (*ndo_get_vf_config)(struct net_device *dev,
1120 int vf,
1121 struct ifla_vf_info *ivf);
1122 int (*ndo_set_vf_link_state)(struct net_device *dev,
1123 int vf, int link_state);
1124 int (*ndo_get_vf_stats)(struct net_device *dev,
1125 int vf,
1126 struct ifla_vf_stats
1127 *vf_stats);
1128 int (*ndo_set_vf_port)(struct net_device *dev,
1129 int vf,
1130 struct nlattr *port[]);
1131 int (*ndo_get_vf_port)(struct net_device *dev,
1132 int vf, struct sk_buff *skb);
1133 int (*ndo_set_vf_rss_query_en)(
1134 struct net_device *dev,
1135 int vf, bool setting);
1136 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1137 #if IS_ENABLED(CONFIG_FCOE)
1138 int (*ndo_fcoe_enable)(struct net_device *dev);
1139 int (*ndo_fcoe_disable)(struct net_device *dev);
1140 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1141 u16 xid,
1142 struct scatterlist *sgl,
1143 unsigned int sgc);
1144 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1145 u16 xid);
1146 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1147 u16 xid,
1148 struct scatterlist *sgl,
1149 unsigned int sgc);
1150 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1151 struct netdev_fcoe_hbainfo *hbainfo);
1152 #endif
1153
1154 #if IS_ENABLED(CONFIG_LIBFCOE)
1155 #define NETDEV_FCOE_WWNN 0
1156 #define NETDEV_FCOE_WWPN 1
1157 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1158 u64 *wwn, int type);
1159 #endif
1160
1161 #ifdef CONFIG_RFS_ACCEL
1162 int (*ndo_rx_flow_steer)(struct net_device *dev,
1163 const struct sk_buff *skb,
1164 u16 rxq_index,
1165 u32 flow_id);
1166 #endif
1167 int (*ndo_add_slave)(struct net_device *dev,
1168 struct net_device *slave_dev);
1169 int (*ndo_del_slave)(struct net_device *dev,
1170 struct net_device *slave_dev);
1171 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1172 netdev_features_t features);
1173 int (*ndo_set_features)(struct net_device *dev,
1174 netdev_features_t features);
1175 int (*ndo_neigh_construct)(struct neighbour *n);
1176 void (*ndo_neigh_destroy)(struct neighbour *n);
1177
1178 int (*ndo_fdb_add)(struct ndmsg *ndm,
1179 struct nlattr *tb[],
1180 struct net_device *dev,
1181 const unsigned char *addr,
1182 u16 vid,
1183 u16 flags);
1184 int (*ndo_fdb_del)(struct ndmsg *ndm,
1185 struct nlattr *tb[],
1186 struct net_device *dev,
1187 const unsigned char *addr,
1188 u16 vid);
1189 int (*ndo_fdb_dump)(struct sk_buff *skb,
1190 struct netlink_callback *cb,
1191 struct net_device *dev,
1192 struct net_device *filter_dev,
1193 int idx);
1194
1195 int (*ndo_bridge_setlink)(struct net_device *dev,
1196 struct nlmsghdr *nlh,
1197 u16 flags);
1198 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1199 u32 pid, u32 seq,
1200 struct net_device *dev,
1201 u32 filter_mask,
1202 int nlflags);
1203 int (*ndo_bridge_dellink)(struct net_device *dev,
1204 struct nlmsghdr *nlh,
1205 u16 flags);
1206 int (*ndo_change_carrier)(struct net_device *dev,
1207 bool new_carrier);
1208 int (*ndo_get_phys_port_id)(struct net_device *dev,
1209 struct netdev_phys_item_id *ppid);
1210 int (*ndo_get_phys_port_name)(struct net_device *dev,
1211 char *name, size_t len);
1212 void (*ndo_add_vxlan_port)(struct net_device *dev,
1213 sa_family_t sa_family,
1214 __be16 port);
1215 void (*ndo_del_vxlan_port)(struct net_device *dev,
1216 sa_family_t sa_family,
1217 __be16 port);
1218
1219 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1220 struct net_device *dev);
1221 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1222 void *priv);
1223
1224 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1225 struct net_device *dev,
1226 void *priv);
1227 int (*ndo_get_lock_subclass)(struct net_device *dev);
1228 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1229 struct net_device *dev,
1230 netdev_features_t features);
1231 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1232 int queue_index,
1233 u32 maxrate);
1234 int (*ndo_get_iflink)(const struct net_device *dev);
1235 int (*ndo_change_proto_down)(struct net_device *dev,
1236 bool proto_down);
1237 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1238 struct sk_buff *skb);
1239 };
1240
1241 /**
1242 * enum net_device_priv_flags - &struct net_device priv_flags
1243 *
1244 * These are the &struct net_device, they are only set internally
1245 * by drivers and used in the kernel. These flags are invisible to
1246 * userspace, this means that the order of these flags can change
1247 * during any kernel release.
1248 *
1249 * You should have a pretty good reason to be extending these flags.
1250 *
1251 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1252 * @IFF_EBRIDGE: Ethernet bridging device
1253 * @IFF_BONDING: bonding master or slave
1254 * @IFF_ISATAP: ISATAP interface (RFC4214)
1255 * @IFF_WAN_HDLC: WAN HDLC device
1256 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1257 * release skb->dst
1258 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1259 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1260 * @IFF_MACVLAN_PORT: device used as macvlan port
1261 * @IFF_BRIDGE_PORT: device used as bridge port
1262 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1263 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1264 * @IFF_UNICAST_FLT: Supports unicast filtering
1265 * @IFF_TEAM_PORT: device used as team port
1266 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1267 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1268 * change when it's running
1269 * @IFF_MACVLAN: Macvlan device
1270 * @IFF_L3MDEV_MASTER: device is an L3 master device
1271 * @IFF_NO_QUEUE: device can run without qdisc attached
1272 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1273 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1274 */
1275 enum netdev_priv_flags {
1276 IFF_802_1Q_VLAN = 1<<0,
1277 IFF_EBRIDGE = 1<<1,
1278 IFF_BONDING = 1<<2,
1279 IFF_ISATAP = 1<<3,
1280 IFF_WAN_HDLC = 1<<4,
1281 IFF_XMIT_DST_RELEASE = 1<<5,
1282 IFF_DONT_BRIDGE = 1<<6,
1283 IFF_DISABLE_NETPOLL = 1<<7,
1284 IFF_MACVLAN_PORT = 1<<8,
1285 IFF_BRIDGE_PORT = 1<<9,
1286 IFF_OVS_DATAPATH = 1<<10,
1287 IFF_TX_SKB_SHARING = 1<<11,
1288 IFF_UNICAST_FLT = 1<<12,
1289 IFF_TEAM_PORT = 1<<13,
1290 IFF_SUPP_NOFCS = 1<<14,
1291 IFF_LIVE_ADDR_CHANGE = 1<<15,
1292 IFF_MACVLAN = 1<<16,
1293 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1294 IFF_IPVLAN_MASTER = 1<<18,
1295 IFF_IPVLAN_SLAVE = 1<<19,
1296 IFF_L3MDEV_MASTER = 1<<20,
1297 IFF_NO_QUEUE = 1<<21,
1298 IFF_OPENVSWITCH = 1<<22,
1299 IFF_L3MDEV_SLAVE = 1<<23,
1300 };
1301
1302 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1303 #define IFF_EBRIDGE IFF_EBRIDGE
1304 #define IFF_BONDING IFF_BONDING
1305 #define IFF_ISATAP IFF_ISATAP
1306 #define IFF_WAN_HDLC IFF_WAN_HDLC
1307 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1308 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1309 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1310 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1311 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1312 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1313 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1314 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1315 #define IFF_TEAM_PORT IFF_TEAM_PORT
1316 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1317 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1318 #define IFF_MACVLAN IFF_MACVLAN
1319 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1320 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1321 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1322 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1323 #define IFF_NO_QUEUE IFF_NO_QUEUE
1324 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1325 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1326
1327 /**
1328 * struct net_device - The DEVICE structure.
1329 * Actually, this whole structure is a big mistake. It mixes I/O
1330 * data with strictly "high-level" data, and it has to know about
1331 * almost every data structure used in the INET module.
1332 *
1333 * @name: This is the first field of the "visible" part of this structure
1334 * (i.e. as seen by users in the "Space.c" file). It is the name
1335 * of the interface.
1336 *
1337 * @name_hlist: Device name hash chain, please keep it close to name[]
1338 * @ifalias: SNMP alias
1339 * @mem_end: Shared memory end
1340 * @mem_start: Shared memory start
1341 * @base_addr: Device I/O address
1342 * @irq: Device IRQ number
1343 *
1344 * @carrier_changes: Stats to monitor carrier on<->off transitions
1345 *
1346 * @state: Generic network queuing layer state, see netdev_state_t
1347 * @dev_list: The global list of network devices
1348 * @napi_list: List entry, that is used for polling napi devices
1349 * @unreg_list: List entry, that is used, when we are unregistering the
1350 * device, see the function unregister_netdev
1351 * @close_list: List entry, that is used, when we are closing the device
1352 *
1353 * @adj_list: Directly linked devices, like slaves for bonding
1354 * @all_adj_list: All linked devices, *including* neighbours
1355 * @features: Currently active device features
1356 * @hw_features: User-changeable features
1357 *
1358 * @wanted_features: User-requested features
1359 * @vlan_features: Mask of features inheritable by VLAN devices
1360 *
1361 * @hw_enc_features: Mask of features inherited by encapsulating devices
1362 * This field indicates what encapsulation
1363 * offloads the hardware is capable of doing,
1364 * and drivers will need to set them appropriately.
1365 *
1366 * @mpls_features: Mask of features inheritable by MPLS
1367 *
1368 * @ifindex: interface index
1369 * @group: The group, that the device belongs to
1370 *
1371 * @stats: Statistics struct, which was left as a legacy, use
1372 * rtnl_link_stats64 instead
1373 *
1374 * @rx_dropped: Dropped packets by core network,
1375 * do not use this in drivers
1376 * @tx_dropped: Dropped packets by core network,
1377 * do not use this in drivers
1378 *
1379 * @wireless_handlers: List of functions to handle Wireless Extensions,
1380 * instead of ioctl,
1381 * see <net/iw_handler.h> for details.
1382 * @wireless_data: Instance data managed by the core of wireless extensions
1383 *
1384 * @netdev_ops: Includes several pointers to callbacks,
1385 * if one wants to override the ndo_*() functions
1386 * @ethtool_ops: Management operations
1387 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1388 * of Layer 2 headers.
1389 *
1390 * @flags: Interface flags (a la BSD)
1391 * @priv_flags: Like 'flags' but invisible to userspace,
1392 * see if.h for the definitions
1393 * @gflags: Global flags ( kept as legacy )
1394 * @padded: How much padding added by alloc_netdev()
1395 * @operstate: RFC2863 operstate
1396 * @link_mode: Mapping policy to operstate
1397 * @if_port: Selectable AUI, TP, ...
1398 * @dma: DMA channel
1399 * @mtu: Interface MTU value
1400 * @type: Interface hardware type
1401 * @hard_header_len: Hardware header length
1402 *
1403 * @needed_headroom: Extra headroom the hardware may need, but not in all
1404 * cases can this be guaranteed
1405 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1406 * cases can this be guaranteed. Some cases also use
1407 * LL_MAX_HEADER instead to allocate the skb
1408 *
1409 * interface address info:
1410 *
1411 * @perm_addr: Permanent hw address
1412 * @addr_assign_type: Hw address assignment type
1413 * @addr_len: Hardware address length
1414 * @neigh_priv_len; Used in neigh_alloc(),
1415 * initialized only in atm/clip.c
1416 * @dev_id: Used to differentiate devices that share
1417 * the same link layer address
1418 * @dev_port: Used to differentiate devices that share
1419 * the same function
1420 * @addr_list_lock: XXX: need comments on this one
1421 * @uc_promisc: Counter, that indicates, that promiscuous mode
1422 * has been enabled due to the need to listen to
1423 * additional unicast addresses in a device that
1424 * does not implement ndo_set_rx_mode()
1425 * @uc: unicast mac addresses
1426 * @mc: multicast mac addresses
1427 * @dev_addrs: list of device hw addresses
1428 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1429 * @promiscuity: Number of times, the NIC is told to work in
1430 * Promiscuous mode, if it becomes 0 the NIC will
1431 * exit from working in Promiscuous mode
1432 * @allmulti: Counter, enables or disables allmulticast mode
1433 *
1434 * @vlan_info: VLAN info
1435 * @dsa_ptr: dsa specific data
1436 * @tipc_ptr: TIPC specific data
1437 * @atalk_ptr: AppleTalk link
1438 * @ip_ptr: IPv4 specific data
1439 * @dn_ptr: DECnet specific data
1440 * @ip6_ptr: IPv6 specific data
1441 * @ax25_ptr: AX.25 specific data
1442 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1443 *
1444 * @last_rx: Time of last Rx
1445 * @dev_addr: Hw address (before bcast,
1446 * because most packets are unicast)
1447 *
1448 * @_rx: Array of RX queues
1449 * @num_rx_queues: Number of RX queues
1450 * allocated at register_netdev() time
1451 * @real_num_rx_queues: Number of RX queues currently active in device
1452 *
1453 * @rx_handler: handler for received packets
1454 * @rx_handler_data: XXX: need comments on this one
1455 * @ingress_queue: XXX: need comments on this one
1456 * @broadcast: hw bcast address
1457 *
1458 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1459 * indexed by RX queue number. Assigned by driver.
1460 * This must only be set if the ndo_rx_flow_steer
1461 * operation is defined
1462 * @index_hlist: Device index hash chain
1463 *
1464 * @_tx: Array of TX queues
1465 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1466 * @real_num_tx_queues: Number of TX queues currently active in device
1467 * @qdisc: Root qdisc from userspace point of view
1468 * @tx_queue_len: Max frames per queue allowed
1469 * @tx_global_lock: XXX: need comments on this one
1470 *
1471 * @xps_maps: XXX: need comments on this one
1472 *
1473 * @offload_fwd_mark: Offload device fwding mark
1474 *
1475 * @trans_start: Time (in jiffies) of last Tx
1476 * @watchdog_timeo: Represents the timeout that is used by
1477 * the watchdog ( see dev_watchdog() )
1478 * @watchdog_timer: List of timers
1479 *
1480 * @pcpu_refcnt: Number of references to this device
1481 * @todo_list: Delayed register/unregister
1482 * @link_watch_list: XXX: need comments on this one
1483 *
1484 * @reg_state: Register/unregister state machine
1485 * @dismantle: Device is going to be freed
1486 * @rtnl_link_state: This enum represents the phases of creating
1487 * a new link
1488 *
1489 * @destructor: Called from unregister,
1490 * can be used to call free_netdev
1491 * @npinfo: XXX: need comments on this one
1492 * @nd_net: Network namespace this network device is inside
1493 *
1494 * @ml_priv: Mid-layer private
1495 * @lstats: Loopback statistics
1496 * @tstats: Tunnel statistics
1497 * @dstats: Dummy statistics
1498 * @vstats: Virtual ethernet statistics
1499 *
1500 * @garp_port: GARP
1501 * @mrp_port: MRP
1502 *
1503 * @dev: Class/net/name entry
1504 * @sysfs_groups: Space for optional device, statistics and wireless
1505 * sysfs groups
1506 *
1507 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1508 * @rtnl_link_ops: Rtnl_link_ops
1509 *
1510 * @gso_max_size: Maximum size of generic segmentation offload
1511 * @gso_max_segs: Maximum number of segments that can be passed to the
1512 * NIC for GSO
1513 * @gso_min_segs: Minimum number of segments that can be passed to the
1514 * NIC for GSO
1515 *
1516 * @dcbnl_ops: Data Center Bridging netlink ops
1517 * @num_tc: Number of traffic classes in the net device
1518 * @tc_to_txq: XXX: need comments on this one
1519 * @prio_tc_map XXX: need comments on this one
1520 *
1521 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1522 *
1523 * @priomap: XXX: need comments on this one
1524 * @phydev: Physical device may attach itself
1525 * for hardware timestamping
1526 *
1527 * @qdisc_tx_busylock: XXX: need comments on this one
1528 *
1529 * @proto_down: protocol port state information can be sent to the
1530 * switch driver and used to set the phys state of the
1531 * switch port.
1532 *
1533 * FIXME: cleanup struct net_device such that network protocol info
1534 * moves out.
1535 */
1536
1537 struct net_device {
1538 char name[IFNAMSIZ];
1539 struct hlist_node name_hlist;
1540 char *ifalias;
1541 /*
1542 * I/O specific fields
1543 * FIXME: Merge these and struct ifmap into one
1544 */
1545 unsigned long mem_end;
1546 unsigned long mem_start;
1547 unsigned long base_addr;
1548 int irq;
1549
1550 atomic_t carrier_changes;
1551
1552 /*
1553 * Some hardware also needs these fields (state,dev_list,
1554 * napi_list,unreg_list,close_list) but they are not
1555 * part of the usual set specified in Space.c.
1556 */
1557
1558 unsigned long state;
1559
1560 struct list_head dev_list;
1561 struct list_head napi_list;
1562 struct list_head unreg_list;
1563 struct list_head close_list;
1564 struct list_head ptype_all;
1565 struct list_head ptype_specific;
1566
1567 struct {
1568 struct list_head upper;
1569 struct list_head lower;
1570 } adj_list;
1571
1572 struct {
1573 struct list_head upper;
1574 struct list_head lower;
1575 } all_adj_list;
1576
1577 netdev_features_t features;
1578 netdev_features_t hw_features;
1579 netdev_features_t wanted_features;
1580 netdev_features_t vlan_features;
1581 netdev_features_t hw_enc_features;
1582 netdev_features_t mpls_features;
1583
1584 int ifindex;
1585 int group;
1586
1587 struct net_device_stats stats;
1588
1589 atomic_long_t rx_dropped;
1590 atomic_long_t tx_dropped;
1591
1592 #ifdef CONFIG_WIRELESS_EXT
1593 const struct iw_handler_def * wireless_handlers;
1594 struct iw_public_data * wireless_data;
1595 #endif
1596 const struct net_device_ops *netdev_ops;
1597 const struct ethtool_ops *ethtool_ops;
1598 #ifdef CONFIG_NET_SWITCHDEV
1599 const struct switchdev_ops *switchdev_ops;
1600 #endif
1601 #ifdef CONFIG_NET_L3_MASTER_DEV
1602 const struct l3mdev_ops *l3mdev_ops;
1603 #endif
1604
1605 const struct header_ops *header_ops;
1606
1607 unsigned int flags;
1608 unsigned int priv_flags;
1609
1610 unsigned short gflags;
1611 unsigned short padded;
1612
1613 unsigned char operstate;
1614 unsigned char link_mode;
1615
1616 unsigned char if_port;
1617 unsigned char dma;
1618
1619 unsigned int mtu;
1620 unsigned short type;
1621 unsigned short hard_header_len;
1622
1623 unsigned short needed_headroom;
1624 unsigned short needed_tailroom;
1625
1626 /* Interface address info. */
1627 unsigned char perm_addr[MAX_ADDR_LEN];
1628 unsigned char addr_assign_type;
1629 unsigned char addr_len;
1630 unsigned short neigh_priv_len;
1631 unsigned short dev_id;
1632 unsigned short dev_port;
1633 spinlock_t addr_list_lock;
1634 unsigned char name_assign_type;
1635 bool uc_promisc;
1636 struct netdev_hw_addr_list uc;
1637 struct netdev_hw_addr_list mc;
1638 struct netdev_hw_addr_list dev_addrs;
1639
1640 #ifdef CONFIG_SYSFS
1641 struct kset *queues_kset;
1642 #endif
1643 unsigned int promiscuity;
1644 unsigned int allmulti;
1645
1646
1647 /* Protocol specific pointers */
1648
1649 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1650 struct vlan_info __rcu *vlan_info;
1651 #endif
1652 #if IS_ENABLED(CONFIG_NET_DSA)
1653 struct dsa_switch_tree *dsa_ptr;
1654 #endif
1655 #if IS_ENABLED(CONFIG_TIPC)
1656 struct tipc_bearer __rcu *tipc_ptr;
1657 #endif
1658 void *atalk_ptr;
1659 struct in_device __rcu *ip_ptr;
1660 struct dn_dev __rcu *dn_ptr;
1661 struct inet6_dev __rcu *ip6_ptr;
1662 void *ax25_ptr;
1663 struct wireless_dev *ieee80211_ptr;
1664 struct wpan_dev *ieee802154_ptr;
1665 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1666 struct mpls_dev __rcu *mpls_ptr;
1667 #endif
1668
1669 /*
1670 * Cache lines mostly used on receive path (including eth_type_trans())
1671 */
1672 unsigned long last_rx;
1673
1674 /* Interface address info used in eth_type_trans() */
1675 unsigned char *dev_addr;
1676
1677
1678 #ifdef CONFIG_SYSFS
1679 struct netdev_rx_queue *_rx;
1680
1681 unsigned int num_rx_queues;
1682 unsigned int real_num_rx_queues;
1683
1684 #endif
1685
1686 unsigned long gro_flush_timeout;
1687 rx_handler_func_t __rcu *rx_handler;
1688 void __rcu *rx_handler_data;
1689
1690 #ifdef CONFIG_NET_CLS_ACT
1691 struct tcf_proto __rcu *ingress_cl_list;
1692 #endif
1693 struct netdev_queue __rcu *ingress_queue;
1694 #ifdef CONFIG_NETFILTER_INGRESS
1695 struct list_head nf_hooks_ingress;
1696 #endif
1697
1698 unsigned char broadcast[MAX_ADDR_LEN];
1699 #ifdef CONFIG_RFS_ACCEL
1700 struct cpu_rmap *rx_cpu_rmap;
1701 #endif
1702 struct hlist_node index_hlist;
1703
1704 /*
1705 * Cache lines mostly used on transmit path
1706 */
1707 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1708 unsigned int num_tx_queues;
1709 unsigned int real_num_tx_queues;
1710 struct Qdisc *qdisc;
1711 unsigned long tx_queue_len;
1712 spinlock_t tx_global_lock;
1713 int watchdog_timeo;
1714
1715 #ifdef CONFIG_XPS
1716 struct xps_dev_maps __rcu *xps_maps;
1717 #endif
1718
1719 #ifdef CONFIG_NET_SWITCHDEV
1720 u32 offload_fwd_mark;
1721 #endif
1722
1723 /* These may be needed for future network-power-down code. */
1724
1725 /*
1726 * trans_start here is expensive for high speed devices on SMP,
1727 * please use netdev_queue->trans_start instead.
1728 */
1729 unsigned long trans_start;
1730
1731 struct timer_list watchdog_timer;
1732
1733 int __percpu *pcpu_refcnt;
1734 struct list_head todo_list;
1735
1736 struct list_head link_watch_list;
1737
1738 enum { NETREG_UNINITIALIZED=0,
1739 NETREG_REGISTERED, /* completed register_netdevice */
1740 NETREG_UNREGISTERING, /* called unregister_netdevice */
1741 NETREG_UNREGISTERED, /* completed unregister todo */
1742 NETREG_RELEASED, /* called free_netdev */
1743 NETREG_DUMMY, /* dummy device for NAPI poll */
1744 } reg_state:8;
1745
1746 bool dismantle;
1747
1748 enum {
1749 RTNL_LINK_INITIALIZED,
1750 RTNL_LINK_INITIALIZING,
1751 } rtnl_link_state:16;
1752
1753 void (*destructor)(struct net_device *dev);
1754
1755 #ifdef CONFIG_NETPOLL
1756 struct netpoll_info __rcu *npinfo;
1757 #endif
1758
1759 possible_net_t nd_net;
1760
1761 /* mid-layer private */
1762 union {
1763 void *ml_priv;
1764 struct pcpu_lstats __percpu *lstats;
1765 struct pcpu_sw_netstats __percpu *tstats;
1766 struct pcpu_dstats __percpu *dstats;
1767 struct pcpu_vstats __percpu *vstats;
1768 };
1769
1770 struct garp_port __rcu *garp_port;
1771 struct mrp_port __rcu *mrp_port;
1772
1773 struct device dev;
1774 const struct attribute_group *sysfs_groups[4];
1775 const struct attribute_group *sysfs_rx_queue_group;
1776
1777 const struct rtnl_link_ops *rtnl_link_ops;
1778
1779 /* for setting kernel sock attribute on TCP connection setup */
1780 #define GSO_MAX_SIZE 65536
1781 unsigned int gso_max_size;
1782 #define GSO_MAX_SEGS 65535
1783 u16 gso_max_segs;
1784 u16 gso_min_segs;
1785 #ifdef CONFIG_DCB
1786 const struct dcbnl_rtnl_ops *dcbnl_ops;
1787 #endif
1788 u8 num_tc;
1789 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1790 u8 prio_tc_map[TC_BITMASK + 1];
1791
1792 #if IS_ENABLED(CONFIG_FCOE)
1793 unsigned int fcoe_ddp_xid;
1794 #endif
1795 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1796 struct netprio_map __rcu *priomap;
1797 #endif
1798 struct phy_device *phydev;
1799 struct lock_class_key *qdisc_tx_busylock;
1800 bool proto_down;
1801 };
1802 #define to_net_dev(d) container_of(d, struct net_device, dev)
1803
1804 #define NETDEV_ALIGN 32
1805
1806 static inline
1807 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1808 {
1809 return dev->prio_tc_map[prio & TC_BITMASK];
1810 }
1811
1812 static inline
1813 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1814 {
1815 if (tc >= dev->num_tc)
1816 return -EINVAL;
1817
1818 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1819 return 0;
1820 }
1821
1822 static inline
1823 void netdev_reset_tc(struct net_device *dev)
1824 {
1825 dev->num_tc = 0;
1826 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1827 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1828 }
1829
1830 static inline
1831 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1832 {
1833 if (tc >= dev->num_tc)
1834 return -EINVAL;
1835
1836 dev->tc_to_txq[tc].count = count;
1837 dev->tc_to_txq[tc].offset = offset;
1838 return 0;
1839 }
1840
1841 static inline
1842 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1843 {
1844 if (num_tc > TC_MAX_QUEUE)
1845 return -EINVAL;
1846
1847 dev->num_tc = num_tc;
1848 return 0;
1849 }
1850
1851 static inline
1852 int netdev_get_num_tc(struct net_device *dev)
1853 {
1854 return dev->num_tc;
1855 }
1856
1857 static inline
1858 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1859 unsigned int index)
1860 {
1861 return &dev->_tx[index];
1862 }
1863
1864 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1865 const struct sk_buff *skb)
1866 {
1867 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1868 }
1869
1870 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1871 void (*f)(struct net_device *,
1872 struct netdev_queue *,
1873 void *),
1874 void *arg)
1875 {
1876 unsigned int i;
1877
1878 for (i = 0; i < dev->num_tx_queues; i++)
1879 f(dev, &dev->_tx[i], arg);
1880 }
1881
1882 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1883 struct sk_buff *skb,
1884 void *accel_priv);
1885
1886 /*
1887 * Net namespace inlines
1888 */
1889 static inline
1890 struct net *dev_net(const struct net_device *dev)
1891 {
1892 return read_pnet(&dev->nd_net);
1893 }
1894
1895 static inline
1896 void dev_net_set(struct net_device *dev, struct net *net)
1897 {
1898 write_pnet(&dev->nd_net, net);
1899 }
1900
1901 static inline bool netdev_uses_dsa(struct net_device *dev)
1902 {
1903 #if IS_ENABLED(CONFIG_NET_DSA)
1904 if (dev->dsa_ptr != NULL)
1905 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1906 #endif
1907 return false;
1908 }
1909
1910 /**
1911 * netdev_priv - access network device private data
1912 * @dev: network device
1913 *
1914 * Get network device private data
1915 */
1916 static inline void *netdev_priv(const struct net_device *dev)
1917 {
1918 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1919 }
1920
1921 /* Set the sysfs physical device reference for the network logical device
1922 * if set prior to registration will cause a symlink during initialization.
1923 */
1924 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1925
1926 /* Set the sysfs device type for the network logical device to allow
1927 * fine-grained identification of different network device types. For
1928 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1929 */
1930 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1931
1932 /* Default NAPI poll() weight
1933 * Device drivers are strongly advised to not use bigger value
1934 */
1935 #define NAPI_POLL_WEIGHT 64
1936
1937 /**
1938 * netif_napi_add - initialize a napi context
1939 * @dev: network device
1940 * @napi: napi context
1941 * @poll: polling function
1942 * @weight: default weight
1943 *
1944 * netif_napi_add() must be used to initialize a napi context prior to calling
1945 * *any* of the other napi related functions.
1946 */
1947 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1948 int (*poll)(struct napi_struct *, int), int weight);
1949
1950 /**
1951 * netif_napi_del - remove a napi context
1952 * @napi: napi context
1953 *
1954 * netif_napi_del() removes a napi context from the network device napi list
1955 */
1956 void netif_napi_del(struct napi_struct *napi);
1957
1958 struct napi_gro_cb {
1959 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1960 void *frag0;
1961
1962 /* Length of frag0. */
1963 unsigned int frag0_len;
1964
1965 /* This indicates where we are processing relative to skb->data. */
1966 int data_offset;
1967
1968 /* This is non-zero if the packet cannot be merged with the new skb. */
1969 u16 flush;
1970
1971 /* Save the IP ID here and check when we get to the transport layer */
1972 u16 flush_id;
1973
1974 /* Number of segments aggregated. */
1975 u16 count;
1976
1977 /* Start offset for remote checksum offload */
1978 u16 gro_remcsum_start;
1979
1980 /* jiffies when first packet was created/queued */
1981 unsigned long age;
1982
1983 /* Used in ipv6_gro_receive() and foo-over-udp */
1984 u16 proto;
1985
1986 /* This is non-zero if the packet may be of the same flow. */
1987 u8 same_flow:1;
1988
1989 /* Used in udp_gro_receive */
1990 u8 udp_mark:1;
1991
1992 /* GRO checksum is valid */
1993 u8 csum_valid:1;
1994
1995 /* Number of checksums via CHECKSUM_UNNECESSARY */
1996 u8 csum_cnt:3;
1997
1998 /* Free the skb? */
1999 u8 free:2;
2000 #define NAPI_GRO_FREE 1
2001 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2002
2003 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2004 u8 is_ipv6:1;
2005
2006 /* 7 bit hole */
2007
2008 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2009 __wsum csum;
2010
2011 /* used in skb_gro_receive() slow path */
2012 struct sk_buff *last;
2013 };
2014
2015 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2016
2017 struct packet_type {
2018 __be16 type; /* This is really htons(ether_type). */
2019 struct net_device *dev; /* NULL is wildcarded here */
2020 int (*func) (struct sk_buff *,
2021 struct net_device *,
2022 struct packet_type *,
2023 struct net_device *);
2024 bool (*id_match)(struct packet_type *ptype,
2025 struct sock *sk);
2026 void *af_packet_priv;
2027 struct list_head list;
2028 };
2029
2030 struct offload_callbacks {
2031 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2032 netdev_features_t features);
2033 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2034 struct sk_buff *skb);
2035 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2036 };
2037
2038 struct packet_offload {
2039 __be16 type; /* This is really htons(ether_type). */
2040 u16 priority;
2041 struct offload_callbacks callbacks;
2042 struct list_head list;
2043 };
2044
2045 struct udp_offload;
2046
2047 struct udp_offload_callbacks {
2048 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2049 struct sk_buff *skb,
2050 struct udp_offload *uoff);
2051 int (*gro_complete)(struct sk_buff *skb,
2052 int nhoff,
2053 struct udp_offload *uoff);
2054 };
2055
2056 struct udp_offload {
2057 __be16 port;
2058 u8 ipproto;
2059 struct udp_offload_callbacks callbacks;
2060 };
2061
2062 /* often modified stats are per cpu, other are shared (netdev->stats) */
2063 struct pcpu_sw_netstats {
2064 u64 rx_packets;
2065 u64 rx_bytes;
2066 u64 tx_packets;
2067 u64 tx_bytes;
2068 struct u64_stats_sync syncp;
2069 };
2070
2071 #define __netdev_alloc_pcpu_stats(type, gfp) \
2072 ({ \
2073 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2074 if (pcpu_stats) { \
2075 int __cpu; \
2076 for_each_possible_cpu(__cpu) { \
2077 typeof(type) *stat; \
2078 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2079 u64_stats_init(&stat->syncp); \
2080 } \
2081 } \
2082 pcpu_stats; \
2083 })
2084
2085 #define netdev_alloc_pcpu_stats(type) \
2086 __netdev_alloc_pcpu_stats(type, GFP_KERNEL);
2087
2088 #include <linux/notifier.h>
2089
2090 /* netdevice notifier chain. Please remember to update the rtnetlink
2091 * notification exclusion list in rtnetlink_event() when adding new
2092 * types.
2093 */
2094 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2095 #define NETDEV_DOWN 0x0002
2096 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2097 detected a hardware crash and restarted
2098 - we can use this eg to kick tcp sessions
2099 once done */
2100 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2101 #define NETDEV_REGISTER 0x0005
2102 #define NETDEV_UNREGISTER 0x0006
2103 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2104 #define NETDEV_CHANGEADDR 0x0008
2105 #define NETDEV_GOING_DOWN 0x0009
2106 #define NETDEV_CHANGENAME 0x000A
2107 #define NETDEV_FEAT_CHANGE 0x000B
2108 #define NETDEV_BONDING_FAILOVER 0x000C
2109 #define NETDEV_PRE_UP 0x000D
2110 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2111 #define NETDEV_POST_TYPE_CHANGE 0x000F
2112 #define NETDEV_POST_INIT 0x0010
2113 #define NETDEV_UNREGISTER_FINAL 0x0011
2114 #define NETDEV_RELEASE 0x0012
2115 #define NETDEV_NOTIFY_PEERS 0x0013
2116 #define NETDEV_JOIN 0x0014
2117 #define NETDEV_CHANGEUPPER 0x0015
2118 #define NETDEV_RESEND_IGMP 0x0016
2119 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2120 #define NETDEV_CHANGEINFODATA 0x0018
2121 #define NETDEV_BONDING_INFO 0x0019
2122 #define NETDEV_PRECHANGEUPPER 0x001A
2123
2124 int register_netdevice_notifier(struct notifier_block *nb);
2125 int unregister_netdevice_notifier(struct notifier_block *nb);
2126
2127 struct netdev_notifier_info {
2128 struct net_device *dev;
2129 };
2130
2131 struct netdev_notifier_change_info {
2132 struct netdev_notifier_info info; /* must be first */
2133 unsigned int flags_changed;
2134 };
2135
2136 struct netdev_notifier_changeupper_info {
2137 struct netdev_notifier_info info; /* must be first */
2138 struct net_device *upper_dev; /* new upper dev */
2139 bool master; /* is upper dev master */
2140 bool linking; /* is the nofication for link or unlink */
2141 };
2142
2143 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2144 struct net_device *dev)
2145 {
2146 info->dev = dev;
2147 }
2148
2149 static inline struct net_device *
2150 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2151 {
2152 return info->dev;
2153 }
2154
2155 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2156
2157
2158 extern rwlock_t dev_base_lock; /* Device list lock */
2159
2160 #define for_each_netdev(net, d) \
2161 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2162 #define for_each_netdev_reverse(net, d) \
2163 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2164 #define for_each_netdev_rcu(net, d) \
2165 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2166 #define for_each_netdev_safe(net, d, n) \
2167 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2168 #define for_each_netdev_continue(net, d) \
2169 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2170 #define for_each_netdev_continue_rcu(net, d) \
2171 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2172 #define for_each_netdev_in_bond_rcu(bond, slave) \
2173 for_each_netdev_rcu(&init_net, slave) \
2174 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2175 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2176
2177 static inline struct net_device *next_net_device(struct net_device *dev)
2178 {
2179 struct list_head *lh;
2180 struct net *net;
2181
2182 net = dev_net(dev);
2183 lh = dev->dev_list.next;
2184 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2185 }
2186
2187 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2188 {
2189 struct list_head *lh;
2190 struct net *net;
2191
2192 net = dev_net(dev);
2193 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2194 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2195 }
2196
2197 static inline struct net_device *first_net_device(struct net *net)
2198 {
2199 return list_empty(&net->dev_base_head) ? NULL :
2200 net_device_entry(net->dev_base_head.next);
2201 }
2202
2203 static inline struct net_device *first_net_device_rcu(struct net *net)
2204 {
2205 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2206
2207 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2208 }
2209
2210 int netdev_boot_setup_check(struct net_device *dev);
2211 unsigned long netdev_boot_base(const char *prefix, int unit);
2212 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2213 const char *hwaddr);
2214 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2215 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2216 void dev_add_pack(struct packet_type *pt);
2217 void dev_remove_pack(struct packet_type *pt);
2218 void __dev_remove_pack(struct packet_type *pt);
2219 void dev_add_offload(struct packet_offload *po);
2220 void dev_remove_offload(struct packet_offload *po);
2221
2222 int dev_get_iflink(const struct net_device *dev);
2223 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2224 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2225 unsigned short mask);
2226 struct net_device *dev_get_by_name(struct net *net, const char *name);
2227 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2228 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2229 int dev_alloc_name(struct net_device *dev, const char *name);
2230 int dev_open(struct net_device *dev);
2231 int dev_close(struct net_device *dev);
2232 int dev_close_many(struct list_head *head, bool unlink);
2233 void dev_disable_lro(struct net_device *dev);
2234 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2235 int dev_queue_xmit(struct sk_buff *skb);
2236 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2237 int register_netdevice(struct net_device *dev);
2238 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2239 void unregister_netdevice_many(struct list_head *head);
2240 static inline void unregister_netdevice(struct net_device *dev)
2241 {
2242 unregister_netdevice_queue(dev, NULL);
2243 }
2244
2245 int netdev_refcnt_read(const struct net_device *dev);
2246 void free_netdev(struct net_device *dev);
2247 void netdev_freemem(struct net_device *dev);
2248 void synchronize_net(void);
2249 int init_dummy_netdev(struct net_device *dev);
2250
2251 DECLARE_PER_CPU(int, xmit_recursion);
2252 static inline int dev_recursion_level(void)
2253 {
2254 return this_cpu_read(xmit_recursion);
2255 }
2256
2257 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2258 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2259 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2260 int netdev_get_name(struct net *net, char *name, int ifindex);
2261 int dev_restart(struct net_device *dev);
2262 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2263
2264 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2265 {
2266 return NAPI_GRO_CB(skb)->data_offset;
2267 }
2268
2269 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2270 {
2271 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2272 }
2273
2274 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2275 {
2276 NAPI_GRO_CB(skb)->data_offset += len;
2277 }
2278
2279 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2280 unsigned int offset)
2281 {
2282 return NAPI_GRO_CB(skb)->frag0 + offset;
2283 }
2284
2285 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2286 {
2287 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2288 }
2289
2290 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2291 unsigned int offset)
2292 {
2293 if (!pskb_may_pull(skb, hlen))
2294 return NULL;
2295
2296 NAPI_GRO_CB(skb)->frag0 = NULL;
2297 NAPI_GRO_CB(skb)->frag0_len = 0;
2298 return skb->data + offset;
2299 }
2300
2301 static inline void *skb_gro_network_header(struct sk_buff *skb)
2302 {
2303 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2304 skb_network_offset(skb);
2305 }
2306
2307 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2308 const void *start, unsigned int len)
2309 {
2310 if (NAPI_GRO_CB(skb)->csum_valid)
2311 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2312 csum_partial(start, len, 0));
2313 }
2314
2315 /* GRO checksum functions. These are logical equivalents of the normal
2316 * checksum functions (in skbuff.h) except that they operate on the GRO
2317 * offsets and fields in sk_buff.
2318 */
2319
2320 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2321
2322 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2323 {
2324 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2325 }
2326
2327 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2328 bool zero_okay,
2329 __sum16 check)
2330 {
2331 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2332 skb_checksum_start_offset(skb) <
2333 skb_gro_offset(skb)) &&
2334 !skb_at_gro_remcsum_start(skb) &&
2335 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2336 (!zero_okay || check));
2337 }
2338
2339 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2340 __wsum psum)
2341 {
2342 if (NAPI_GRO_CB(skb)->csum_valid &&
2343 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2344 return 0;
2345
2346 NAPI_GRO_CB(skb)->csum = psum;
2347
2348 return __skb_gro_checksum_complete(skb);
2349 }
2350
2351 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2352 {
2353 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2354 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2355 NAPI_GRO_CB(skb)->csum_cnt--;
2356 } else {
2357 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2358 * verified a new top level checksum or an encapsulated one
2359 * during GRO. This saves work if we fallback to normal path.
2360 */
2361 __skb_incr_checksum_unnecessary(skb);
2362 }
2363 }
2364
2365 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2366 compute_pseudo) \
2367 ({ \
2368 __sum16 __ret = 0; \
2369 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2370 __ret = __skb_gro_checksum_validate_complete(skb, \
2371 compute_pseudo(skb, proto)); \
2372 if (__ret) \
2373 __skb_mark_checksum_bad(skb); \
2374 else \
2375 skb_gro_incr_csum_unnecessary(skb); \
2376 __ret; \
2377 })
2378
2379 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2380 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2381
2382 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2383 compute_pseudo) \
2384 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2385
2386 #define skb_gro_checksum_simple_validate(skb) \
2387 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2388
2389 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2390 {
2391 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2392 !NAPI_GRO_CB(skb)->csum_valid);
2393 }
2394
2395 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2396 __sum16 check, __wsum pseudo)
2397 {
2398 NAPI_GRO_CB(skb)->csum = ~pseudo;
2399 NAPI_GRO_CB(skb)->csum_valid = 1;
2400 }
2401
2402 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2403 do { \
2404 if (__skb_gro_checksum_convert_check(skb)) \
2405 __skb_gro_checksum_convert(skb, check, \
2406 compute_pseudo(skb, proto)); \
2407 } while (0)
2408
2409 struct gro_remcsum {
2410 int offset;
2411 __wsum delta;
2412 };
2413
2414 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2415 {
2416 grc->offset = 0;
2417 grc->delta = 0;
2418 }
2419
2420 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2421 unsigned int off, size_t hdrlen,
2422 int start, int offset,
2423 struct gro_remcsum *grc,
2424 bool nopartial)
2425 {
2426 __wsum delta;
2427 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2428
2429 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2430
2431 if (!nopartial) {
2432 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2433 return ptr;
2434 }
2435
2436 ptr = skb_gro_header_fast(skb, off);
2437 if (skb_gro_header_hard(skb, off + plen)) {
2438 ptr = skb_gro_header_slow(skb, off + plen, off);
2439 if (!ptr)
2440 return NULL;
2441 }
2442
2443 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2444 start, offset);
2445
2446 /* Adjust skb->csum since we changed the packet */
2447 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2448
2449 grc->offset = off + hdrlen + offset;
2450 grc->delta = delta;
2451
2452 return ptr;
2453 }
2454
2455 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2456 struct gro_remcsum *grc)
2457 {
2458 void *ptr;
2459 size_t plen = grc->offset + sizeof(u16);
2460
2461 if (!grc->delta)
2462 return;
2463
2464 ptr = skb_gro_header_fast(skb, grc->offset);
2465 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2466 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2467 if (!ptr)
2468 return;
2469 }
2470
2471 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2472 }
2473
2474 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2475 unsigned short type,
2476 const void *daddr, const void *saddr,
2477 unsigned int len)
2478 {
2479 if (!dev->header_ops || !dev->header_ops->create)
2480 return 0;
2481
2482 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2483 }
2484
2485 static inline int dev_parse_header(const struct sk_buff *skb,
2486 unsigned char *haddr)
2487 {
2488 const struct net_device *dev = skb->dev;
2489
2490 if (!dev->header_ops || !dev->header_ops->parse)
2491 return 0;
2492 return dev->header_ops->parse(skb, haddr);
2493 }
2494
2495 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2496 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2497 static inline int unregister_gifconf(unsigned int family)
2498 {
2499 return register_gifconf(family, NULL);
2500 }
2501
2502 #ifdef CONFIG_NET_FLOW_LIMIT
2503 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2504 struct sd_flow_limit {
2505 u64 count;
2506 unsigned int num_buckets;
2507 unsigned int history_head;
2508 u16 history[FLOW_LIMIT_HISTORY];
2509 u8 buckets[];
2510 };
2511
2512 extern int netdev_flow_limit_table_len;
2513 #endif /* CONFIG_NET_FLOW_LIMIT */
2514
2515 /*
2516 * Incoming packets are placed on per-cpu queues
2517 */
2518 struct softnet_data {
2519 struct list_head poll_list;
2520 struct sk_buff_head process_queue;
2521
2522 /* stats */
2523 unsigned int processed;
2524 unsigned int time_squeeze;
2525 unsigned int cpu_collision;
2526 unsigned int received_rps;
2527 #ifdef CONFIG_RPS
2528 struct softnet_data *rps_ipi_list;
2529 #endif
2530 #ifdef CONFIG_NET_FLOW_LIMIT
2531 struct sd_flow_limit __rcu *flow_limit;
2532 #endif
2533 struct Qdisc *output_queue;
2534 struct Qdisc **output_queue_tailp;
2535 struct sk_buff *completion_queue;
2536
2537 #ifdef CONFIG_RPS
2538 /* Elements below can be accessed between CPUs for RPS */
2539 struct call_single_data csd ____cacheline_aligned_in_smp;
2540 struct softnet_data *rps_ipi_next;
2541 unsigned int cpu;
2542 unsigned int input_queue_head;
2543 unsigned int input_queue_tail;
2544 #endif
2545 unsigned int dropped;
2546 struct sk_buff_head input_pkt_queue;
2547 struct napi_struct backlog;
2548
2549 };
2550
2551 static inline void input_queue_head_incr(struct softnet_data *sd)
2552 {
2553 #ifdef CONFIG_RPS
2554 sd->input_queue_head++;
2555 #endif
2556 }
2557
2558 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2559 unsigned int *qtail)
2560 {
2561 #ifdef CONFIG_RPS
2562 *qtail = ++sd->input_queue_tail;
2563 #endif
2564 }
2565
2566 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2567
2568 void __netif_schedule(struct Qdisc *q);
2569 void netif_schedule_queue(struct netdev_queue *txq);
2570
2571 static inline void netif_tx_schedule_all(struct net_device *dev)
2572 {
2573 unsigned int i;
2574
2575 for (i = 0; i < dev->num_tx_queues; i++)
2576 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2577 }
2578
2579 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2580 {
2581 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2582 }
2583
2584 /**
2585 * netif_start_queue - allow transmit
2586 * @dev: network device
2587 *
2588 * Allow upper layers to call the device hard_start_xmit routine.
2589 */
2590 static inline void netif_start_queue(struct net_device *dev)
2591 {
2592 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2593 }
2594
2595 static inline void netif_tx_start_all_queues(struct net_device *dev)
2596 {
2597 unsigned int i;
2598
2599 for (i = 0; i < dev->num_tx_queues; i++) {
2600 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2601 netif_tx_start_queue(txq);
2602 }
2603 }
2604
2605 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2606
2607 /**
2608 * netif_wake_queue - restart transmit
2609 * @dev: network device
2610 *
2611 * Allow upper layers to call the device hard_start_xmit routine.
2612 * Used for flow control when transmit resources are available.
2613 */
2614 static inline void netif_wake_queue(struct net_device *dev)
2615 {
2616 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2617 }
2618
2619 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2620 {
2621 unsigned int i;
2622
2623 for (i = 0; i < dev->num_tx_queues; i++) {
2624 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2625 netif_tx_wake_queue(txq);
2626 }
2627 }
2628
2629 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2630 {
2631 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2632 }
2633
2634 /**
2635 * netif_stop_queue - stop transmitted packets
2636 * @dev: network device
2637 *
2638 * Stop upper layers calling the device hard_start_xmit routine.
2639 * Used for flow control when transmit resources are unavailable.
2640 */
2641 static inline void netif_stop_queue(struct net_device *dev)
2642 {
2643 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2644 }
2645
2646 void netif_tx_stop_all_queues(struct net_device *dev);
2647
2648 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2649 {
2650 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2651 }
2652
2653 /**
2654 * netif_queue_stopped - test if transmit queue is flowblocked
2655 * @dev: network device
2656 *
2657 * Test if transmit queue on device is currently unable to send.
2658 */
2659 static inline bool netif_queue_stopped(const struct net_device *dev)
2660 {
2661 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2662 }
2663
2664 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2665 {
2666 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2667 }
2668
2669 static inline bool
2670 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2671 {
2672 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2673 }
2674
2675 static inline bool
2676 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2677 {
2678 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2679 }
2680
2681 /**
2682 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2683 * @dev_queue: pointer to transmit queue
2684 *
2685 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2686 * to give appropriate hint to the cpu.
2687 */
2688 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2689 {
2690 #ifdef CONFIG_BQL
2691 prefetchw(&dev_queue->dql.num_queued);
2692 #endif
2693 }
2694
2695 /**
2696 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2697 * @dev_queue: pointer to transmit queue
2698 *
2699 * BQL enabled drivers might use this helper in their TX completion path,
2700 * to give appropriate hint to the cpu.
2701 */
2702 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2703 {
2704 #ifdef CONFIG_BQL
2705 prefetchw(&dev_queue->dql.limit);
2706 #endif
2707 }
2708
2709 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2710 unsigned int bytes)
2711 {
2712 #ifdef CONFIG_BQL
2713 dql_queued(&dev_queue->dql, bytes);
2714
2715 if (likely(dql_avail(&dev_queue->dql) >= 0))
2716 return;
2717
2718 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2719
2720 /*
2721 * The XOFF flag must be set before checking the dql_avail below,
2722 * because in netdev_tx_completed_queue we update the dql_completed
2723 * before checking the XOFF flag.
2724 */
2725 smp_mb();
2726
2727 /* check again in case another CPU has just made room avail */
2728 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2729 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2730 #endif
2731 }
2732
2733 /**
2734 * netdev_sent_queue - report the number of bytes queued to hardware
2735 * @dev: network device
2736 * @bytes: number of bytes queued to the hardware device queue
2737 *
2738 * Report the number of bytes queued for sending/completion to the network
2739 * device hardware queue. @bytes should be a good approximation and should
2740 * exactly match netdev_completed_queue() @bytes
2741 */
2742 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2743 {
2744 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2745 }
2746
2747 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2748 unsigned int pkts, unsigned int bytes)
2749 {
2750 #ifdef CONFIG_BQL
2751 if (unlikely(!bytes))
2752 return;
2753
2754 dql_completed(&dev_queue->dql, bytes);
2755
2756 /*
2757 * Without the memory barrier there is a small possiblity that
2758 * netdev_tx_sent_queue will miss the update and cause the queue to
2759 * be stopped forever
2760 */
2761 smp_mb();
2762
2763 if (dql_avail(&dev_queue->dql) < 0)
2764 return;
2765
2766 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2767 netif_schedule_queue(dev_queue);
2768 #endif
2769 }
2770
2771 /**
2772 * netdev_completed_queue - report bytes and packets completed by device
2773 * @dev: network device
2774 * @pkts: actual number of packets sent over the medium
2775 * @bytes: actual number of bytes sent over the medium
2776 *
2777 * Report the number of bytes and packets transmitted by the network device
2778 * hardware queue over the physical medium, @bytes must exactly match the
2779 * @bytes amount passed to netdev_sent_queue()
2780 */
2781 static inline void netdev_completed_queue(struct net_device *dev,
2782 unsigned int pkts, unsigned int bytes)
2783 {
2784 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2785 }
2786
2787 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2788 {
2789 #ifdef CONFIG_BQL
2790 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2791 dql_reset(&q->dql);
2792 #endif
2793 }
2794
2795 /**
2796 * netdev_reset_queue - reset the packets and bytes count of a network device
2797 * @dev_queue: network device
2798 *
2799 * Reset the bytes and packet count of a network device and clear the
2800 * software flow control OFF bit for this network device
2801 */
2802 static inline void netdev_reset_queue(struct net_device *dev_queue)
2803 {
2804 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2805 }
2806
2807 /**
2808 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2809 * @dev: network device
2810 * @queue_index: given tx queue index
2811 *
2812 * Returns 0 if given tx queue index >= number of device tx queues,
2813 * otherwise returns the originally passed tx queue index.
2814 */
2815 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2816 {
2817 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2818 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2819 dev->name, queue_index,
2820 dev->real_num_tx_queues);
2821 return 0;
2822 }
2823
2824 return queue_index;
2825 }
2826
2827 /**
2828 * netif_running - test if up
2829 * @dev: network device
2830 *
2831 * Test if the device has been brought up.
2832 */
2833 static inline bool netif_running(const struct net_device *dev)
2834 {
2835 return test_bit(__LINK_STATE_START, &dev->state);
2836 }
2837
2838 /*
2839 * Routines to manage the subqueues on a device. We only need start
2840 * stop, and a check if it's stopped. All other device management is
2841 * done at the overall netdevice level.
2842 * Also test the device if we're multiqueue.
2843 */
2844
2845 /**
2846 * netif_start_subqueue - allow sending packets on subqueue
2847 * @dev: network device
2848 * @queue_index: sub queue index
2849 *
2850 * Start individual transmit queue of a device with multiple transmit queues.
2851 */
2852 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2853 {
2854 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2855
2856 netif_tx_start_queue(txq);
2857 }
2858
2859 /**
2860 * netif_stop_subqueue - stop sending packets on subqueue
2861 * @dev: network device
2862 * @queue_index: sub queue index
2863 *
2864 * Stop individual transmit queue of a device with multiple transmit queues.
2865 */
2866 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2867 {
2868 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2869 netif_tx_stop_queue(txq);
2870 }
2871
2872 /**
2873 * netif_subqueue_stopped - test status of subqueue
2874 * @dev: network device
2875 * @queue_index: sub queue index
2876 *
2877 * Check individual transmit queue of a device with multiple transmit queues.
2878 */
2879 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2880 u16 queue_index)
2881 {
2882 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2883
2884 return netif_tx_queue_stopped(txq);
2885 }
2886
2887 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2888 struct sk_buff *skb)
2889 {
2890 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2891 }
2892
2893 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2894
2895 #ifdef CONFIG_XPS
2896 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2897 u16 index);
2898 #else
2899 static inline int netif_set_xps_queue(struct net_device *dev,
2900 const struct cpumask *mask,
2901 u16 index)
2902 {
2903 return 0;
2904 }
2905 #endif
2906
2907 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2908 unsigned int num_tx_queues);
2909
2910 /*
2911 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2912 * as a distribution range limit for the returned value.
2913 */
2914 static inline u16 skb_tx_hash(const struct net_device *dev,
2915 struct sk_buff *skb)
2916 {
2917 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2918 }
2919
2920 /**
2921 * netif_is_multiqueue - test if device has multiple transmit queues
2922 * @dev: network device
2923 *
2924 * Check if device has multiple transmit queues
2925 */
2926 static inline bool netif_is_multiqueue(const struct net_device *dev)
2927 {
2928 return dev->num_tx_queues > 1;
2929 }
2930
2931 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2932
2933 #ifdef CONFIG_SYSFS
2934 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2935 #else
2936 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2937 unsigned int rxq)
2938 {
2939 return 0;
2940 }
2941 #endif
2942
2943 #ifdef CONFIG_SYSFS
2944 static inline unsigned int get_netdev_rx_queue_index(
2945 struct netdev_rx_queue *queue)
2946 {
2947 struct net_device *dev = queue->dev;
2948 int index = queue - dev->_rx;
2949
2950 BUG_ON(index >= dev->num_rx_queues);
2951 return index;
2952 }
2953 #endif
2954
2955 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2956 int netif_get_num_default_rss_queues(void);
2957
2958 enum skb_free_reason {
2959 SKB_REASON_CONSUMED,
2960 SKB_REASON_DROPPED,
2961 };
2962
2963 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2964 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2965
2966 /*
2967 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2968 * interrupt context or with hardware interrupts being disabled.
2969 * (in_irq() || irqs_disabled())
2970 *
2971 * We provide four helpers that can be used in following contexts :
2972 *
2973 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2974 * replacing kfree_skb(skb)
2975 *
2976 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2977 * Typically used in place of consume_skb(skb) in TX completion path
2978 *
2979 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2980 * replacing kfree_skb(skb)
2981 *
2982 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2983 * and consumed a packet. Used in place of consume_skb(skb)
2984 */
2985 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2986 {
2987 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2988 }
2989
2990 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2991 {
2992 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2993 }
2994
2995 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2996 {
2997 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2998 }
2999
3000 static inline void dev_consume_skb_any(struct sk_buff *skb)
3001 {
3002 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3003 }
3004
3005 int netif_rx(struct sk_buff *skb);
3006 int netif_rx_ni(struct sk_buff *skb);
3007 int netif_receive_skb(struct sk_buff *skb);
3008 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3009 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3010 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3011 gro_result_t napi_gro_frags(struct napi_struct *napi);
3012 struct packet_offload *gro_find_receive_by_type(__be16 type);
3013 struct packet_offload *gro_find_complete_by_type(__be16 type);
3014
3015 static inline void napi_free_frags(struct napi_struct *napi)
3016 {
3017 kfree_skb(napi->skb);
3018 napi->skb = NULL;
3019 }
3020
3021 int netdev_rx_handler_register(struct net_device *dev,
3022 rx_handler_func_t *rx_handler,
3023 void *rx_handler_data);
3024 void netdev_rx_handler_unregister(struct net_device *dev);
3025
3026 bool dev_valid_name(const char *name);
3027 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3028 int dev_ethtool(struct net *net, struct ifreq *);
3029 unsigned int dev_get_flags(const struct net_device *);
3030 int __dev_change_flags(struct net_device *, unsigned int flags);
3031 int dev_change_flags(struct net_device *, unsigned int);
3032 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3033 unsigned int gchanges);
3034 int dev_change_name(struct net_device *, const char *);
3035 int dev_set_alias(struct net_device *, const char *, size_t);
3036 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3037 int dev_set_mtu(struct net_device *, int);
3038 void dev_set_group(struct net_device *, int);
3039 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3040 int dev_change_carrier(struct net_device *, bool new_carrier);
3041 int dev_get_phys_port_id(struct net_device *dev,
3042 struct netdev_phys_item_id *ppid);
3043 int dev_get_phys_port_name(struct net_device *dev,
3044 char *name, size_t len);
3045 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3046 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3047 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3048 struct netdev_queue *txq, int *ret);
3049 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3050 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3051 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3052
3053 extern int netdev_budget;
3054
3055 /* Called by rtnetlink.c:rtnl_unlock() */
3056 void netdev_run_todo(void);
3057
3058 /**
3059 * dev_put - release reference to device
3060 * @dev: network device
3061 *
3062 * Release reference to device to allow it to be freed.
3063 */
3064 static inline void dev_put(struct net_device *dev)
3065 {
3066 this_cpu_dec(*dev->pcpu_refcnt);
3067 }
3068
3069 /**
3070 * dev_hold - get reference to device
3071 * @dev: network device
3072 *
3073 * Hold reference to device to keep it from being freed.
3074 */
3075 static inline void dev_hold(struct net_device *dev)
3076 {
3077 this_cpu_inc(*dev->pcpu_refcnt);
3078 }
3079
3080 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3081 * and _off may be called from IRQ context, but it is caller
3082 * who is responsible for serialization of these calls.
3083 *
3084 * The name carrier is inappropriate, these functions should really be
3085 * called netif_lowerlayer_*() because they represent the state of any
3086 * kind of lower layer not just hardware media.
3087 */
3088
3089 void linkwatch_init_dev(struct net_device *dev);
3090 void linkwatch_fire_event(struct net_device *dev);
3091 void linkwatch_forget_dev(struct net_device *dev);
3092
3093 /**
3094 * netif_carrier_ok - test if carrier present
3095 * @dev: network device
3096 *
3097 * Check if carrier is present on device
3098 */
3099 static inline bool netif_carrier_ok(const struct net_device *dev)
3100 {
3101 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3102 }
3103
3104 unsigned long dev_trans_start(struct net_device *dev);
3105
3106 void __netdev_watchdog_up(struct net_device *dev);
3107
3108 void netif_carrier_on(struct net_device *dev);
3109
3110 void netif_carrier_off(struct net_device *dev);
3111
3112 /**
3113 * netif_dormant_on - mark device as dormant.
3114 * @dev: network device
3115 *
3116 * Mark device as dormant (as per RFC2863).
3117 *
3118 * The dormant state indicates that the relevant interface is not
3119 * actually in a condition to pass packets (i.e., it is not 'up') but is
3120 * in a "pending" state, waiting for some external event. For "on-
3121 * demand" interfaces, this new state identifies the situation where the
3122 * interface is waiting for events to place it in the up state.
3123 *
3124 */
3125 static inline void netif_dormant_on(struct net_device *dev)
3126 {
3127 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3128 linkwatch_fire_event(dev);
3129 }
3130
3131 /**
3132 * netif_dormant_off - set device as not dormant.
3133 * @dev: network device
3134 *
3135 * Device is not in dormant state.
3136 */
3137 static inline void netif_dormant_off(struct net_device *dev)
3138 {
3139 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3140 linkwatch_fire_event(dev);
3141 }
3142
3143 /**
3144 * netif_dormant - test if carrier present
3145 * @dev: network device
3146 *
3147 * Check if carrier is present on device
3148 */
3149 static inline bool netif_dormant(const struct net_device *dev)
3150 {
3151 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3152 }
3153
3154
3155 /**
3156 * netif_oper_up - test if device is operational
3157 * @dev: network device
3158 *
3159 * Check if carrier is operational
3160 */
3161 static inline bool netif_oper_up(const struct net_device *dev)
3162 {
3163 return (dev->operstate == IF_OPER_UP ||
3164 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3165 }
3166
3167 /**
3168 * netif_device_present - is device available or removed
3169 * @dev: network device
3170 *
3171 * Check if device has not been removed from system.
3172 */
3173 static inline bool netif_device_present(struct net_device *dev)
3174 {
3175 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3176 }
3177
3178 void netif_device_detach(struct net_device *dev);
3179
3180 void netif_device_attach(struct net_device *dev);
3181
3182 /*
3183 * Network interface message level settings
3184 */
3185
3186 enum {
3187 NETIF_MSG_DRV = 0x0001,
3188 NETIF_MSG_PROBE = 0x0002,
3189 NETIF_MSG_LINK = 0x0004,
3190 NETIF_MSG_TIMER = 0x0008,
3191 NETIF_MSG_IFDOWN = 0x0010,
3192 NETIF_MSG_IFUP = 0x0020,
3193 NETIF_MSG_RX_ERR = 0x0040,
3194 NETIF_MSG_TX_ERR = 0x0080,
3195 NETIF_MSG_TX_QUEUED = 0x0100,
3196 NETIF_MSG_INTR = 0x0200,
3197 NETIF_MSG_TX_DONE = 0x0400,
3198 NETIF_MSG_RX_STATUS = 0x0800,
3199 NETIF_MSG_PKTDATA = 0x1000,
3200 NETIF_MSG_HW = 0x2000,
3201 NETIF_MSG_WOL = 0x4000,
3202 };
3203
3204 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3205 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3206 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3207 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3208 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3209 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3210 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3211 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3212 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3213 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3214 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3215 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3216 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3217 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3218 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3219
3220 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3221 {
3222 /* use default */
3223 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3224 return default_msg_enable_bits;
3225 if (debug_value == 0) /* no output */
3226 return 0;
3227 /* set low N bits */
3228 return (1 << debug_value) - 1;
3229 }
3230
3231 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3232 {
3233 spin_lock(&txq->_xmit_lock);
3234 txq->xmit_lock_owner = cpu;
3235 }
3236
3237 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3238 {
3239 spin_lock_bh(&txq->_xmit_lock);
3240 txq->xmit_lock_owner = smp_processor_id();
3241 }
3242
3243 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3244 {
3245 bool ok = spin_trylock(&txq->_xmit_lock);
3246 if (likely(ok))
3247 txq->xmit_lock_owner = smp_processor_id();
3248 return ok;
3249 }
3250
3251 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3252 {
3253 txq->xmit_lock_owner = -1;
3254 spin_unlock(&txq->_xmit_lock);
3255 }
3256
3257 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3258 {
3259 txq->xmit_lock_owner = -1;
3260 spin_unlock_bh(&txq->_xmit_lock);
3261 }
3262
3263 static inline void txq_trans_update(struct netdev_queue *txq)
3264 {
3265 if (txq->xmit_lock_owner != -1)
3266 txq->trans_start = jiffies;
3267 }
3268
3269 /**
3270 * netif_tx_lock - grab network device transmit lock
3271 * @dev: network device
3272 *
3273 * Get network device transmit lock
3274 */
3275 static inline void netif_tx_lock(struct net_device *dev)
3276 {
3277 unsigned int i;
3278 int cpu;
3279
3280 spin_lock(&dev->tx_global_lock);
3281 cpu = smp_processor_id();
3282 for (i = 0; i < dev->num_tx_queues; i++) {
3283 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3284
3285 /* We are the only thread of execution doing a
3286 * freeze, but we have to grab the _xmit_lock in
3287 * order to synchronize with threads which are in
3288 * the ->hard_start_xmit() handler and already
3289 * checked the frozen bit.
3290 */
3291 __netif_tx_lock(txq, cpu);
3292 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3293 __netif_tx_unlock(txq);
3294 }
3295 }
3296
3297 static inline void netif_tx_lock_bh(struct net_device *dev)
3298 {
3299 local_bh_disable();
3300 netif_tx_lock(dev);
3301 }
3302
3303 static inline void netif_tx_unlock(struct net_device *dev)
3304 {
3305 unsigned int i;
3306
3307 for (i = 0; i < dev->num_tx_queues; i++) {
3308 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3309
3310 /* No need to grab the _xmit_lock here. If the
3311 * queue is not stopped for another reason, we
3312 * force a schedule.
3313 */
3314 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3315 netif_schedule_queue(txq);
3316 }
3317 spin_unlock(&dev->tx_global_lock);
3318 }
3319
3320 static inline void netif_tx_unlock_bh(struct net_device *dev)
3321 {
3322 netif_tx_unlock(dev);
3323 local_bh_enable();
3324 }
3325
3326 #define HARD_TX_LOCK(dev, txq, cpu) { \
3327 if ((dev->features & NETIF_F_LLTX) == 0) { \
3328 __netif_tx_lock(txq, cpu); \
3329 } \
3330 }
3331
3332 #define HARD_TX_TRYLOCK(dev, txq) \
3333 (((dev->features & NETIF_F_LLTX) == 0) ? \
3334 __netif_tx_trylock(txq) : \
3335 true )
3336
3337 #define HARD_TX_UNLOCK(dev, txq) { \
3338 if ((dev->features & NETIF_F_LLTX) == 0) { \
3339 __netif_tx_unlock(txq); \
3340 } \
3341 }
3342
3343 static inline void netif_tx_disable(struct net_device *dev)
3344 {
3345 unsigned int i;
3346 int cpu;
3347
3348 local_bh_disable();
3349 cpu = smp_processor_id();
3350 for (i = 0; i < dev->num_tx_queues; i++) {
3351 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3352
3353 __netif_tx_lock(txq, cpu);
3354 netif_tx_stop_queue(txq);
3355 __netif_tx_unlock(txq);
3356 }
3357 local_bh_enable();
3358 }
3359
3360 static inline void netif_addr_lock(struct net_device *dev)
3361 {
3362 spin_lock(&dev->addr_list_lock);
3363 }
3364
3365 static inline void netif_addr_lock_nested(struct net_device *dev)
3366 {
3367 int subclass = SINGLE_DEPTH_NESTING;
3368
3369 if (dev->netdev_ops->ndo_get_lock_subclass)
3370 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3371
3372 spin_lock_nested(&dev->addr_list_lock, subclass);
3373 }
3374
3375 static inline void netif_addr_lock_bh(struct net_device *dev)
3376 {
3377 spin_lock_bh(&dev->addr_list_lock);
3378 }
3379
3380 static inline void netif_addr_unlock(struct net_device *dev)
3381 {
3382 spin_unlock(&dev->addr_list_lock);
3383 }
3384
3385 static inline void netif_addr_unlock_bh(struct net_device *dev)
3386 {
3387 spin_unlock_bh(&dev->addr_list_lock);
3388 }
3389
3390 /*
3391 * dev_addrs walker. Should be used only for read access. Call with
3392 * rcu_read_lock held.
3393 */
3394 #define for_each_dev_addr(dev, ha) \
3395 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3396
3397 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3398
3399 void ether_setup(struct net_device *dev);
3400
3401 /* Support for loadable net-drivers */
3402 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3403 unsigned char name_assign_type,
3404 void (*setup)(struct net_device *),
3405 unsigned int txqs, unsigned int rxqs);
3406 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3407 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3408
3409 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3410 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3411 count)
3412
3413 int register_netdev(struct net_device *dev);
3414 void unregister_netdev(struct net_device *dev);
3415
3416 /* General hardware address lists handling functions */
3417 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3418 struct netdev_hw_addr_list *from_list, int addr_len);
3419 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3420 struct netdev_hw_addr_list *from_list, int addr_len);
3421 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3422 struct net_device *dev,
3423 int (*sync)(struct net_device *, const unsigned char *),
3424 int (*unsync)(struct net_device *,
3425 const unsigned char *));
3426 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3427 struct net_device *dev,
3428 int (*unsync)(struct net_device *,
3429 const unsigned char *));
3430 void __hw_addr_init(struct netdev_hw_addr_list *list);
3431
3432 /* Functions used for device addresses handling */
3433 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3434 unsigned char addr_type);
3435 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3436 unsigned char addr_type);
3437 void dev_addr_flush(struct net_device *dev);
3438 int dev_addr_init(struct net_device *dev);
3439
3440 /* Functions used for unicast addresses handling */
3441 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3442 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3443 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3444 int dev_uc_sync(struct net_device *to, struct net_device *from);
3445 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3446 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3447 void dev_uc_flush(struct net_device *dev);
3448 void dev_uc_init(struct net_device *dev);
3449
3450 /**
3451 * __dev_uc_sync - Synchonize device's unicast list
3452 * @dev: device to sync
3453 * @sync: function to call if address should be added
3454 * @unsync: function to call if address should be removed
3455 *
3456 * Add newly added addresses to the interface, and release
3457 * addresses that have been deleted.
3458 **/
3459 static inline int __dev_uc_sync(struct net_device *dev,
3460 int (*sync)(struct net_device *,
3461 const unsigned char *),
3462 int (*unsync)(struct net_device *,
3463 const unsigned char *))
3464 {
3465 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3466 }
3467
3468 /**
3469 * __dev_uc_unsync - Remove synchronized addresses from device
3470 * @dev: device to sync
3471 * @unsync: function to call if address should be removed
3472 *
3473 * Remove all addresses that were added to the device by dev_uc_sync().
3474 **/
3475 static inline void __dev_uc_unsync(struct net_device *dev,
3476 int (*unsync)(struct net_device *,
3477 const unsigned char *))
3478 {
3479 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3480 }
3481
3482 /* Functions used for multicast addresses handling */
3483 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3484 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3485 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3486 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3487 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3488 int dev_mc_sync(struct net_device *to, struct net_device *from);
3489 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3490 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3491 void dev_mc_flush(struct net_device *dev);
3492 void dev_mc_init(struct net_device *dev);
3493
3494 /**
3495 * __dev_mc_sync - Synchonize device's multicast list
3496 * @dev: device to sync
3497 * @sync: function to call if address should be added
3498 * @unsync: function to call if address should be removed
3499 *
3500 * Add newly added addresses to the interface, and release
3501 * addresses that have been deleted.
3502 **/
3503 static inline int __dev_mc_sync(struct net_device *dev,
3504 int (*sync)(struct net_device *,
3505 const unsigned char *),
3506 int (*unsync)(struct net_device *,
3507 const unsigned char *))
3508 {
3509 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3510 }
3511
3512 /**
3513 * __dev_mc_unsync - Remove synchronized addresses from device
3514 * @dev: device to sync
3515 * @unsync: function to call if address should be removed
3516 *
3517 * Remove all addresses that were added to the device by dev_mc_sync().
3518 **/
3519 static inline void __dev_mc_unsync(struct net_device *dev,
3520 int (*unsync)(struct net_device *,
3521 const unsigned char *))
3522 {
3523 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3524 }
3525
3526 /* Functions used for secondary unicast and multicast support */
3527 void dev_set_rx_mode(struct net_device *dev);
3528 void __dev_set_rx_mode(struct net_device *dev);
3529 int dev_set_promiscuity(struct net_device *dev, int inc);
3530 int dev_set_allmulti(struct net_device *dev, int inc);
3531 void netdev_state_change(struct net_device *dev);
3532 void netdev_notify_peers(struct net_device *dev);
3533 void netdev_features_change(struct net_device *dev);
3534 /* Load a device via the kmod */
3535 void dev_load(struct net *net, const char *name);
3536 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3537 struct rtnl_link_stats64 *storage);
3538 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3539 const struct net_device_stats *netdev_stats);
3540
3541 extern int netdev_max_backlog;
3542 extern int netdev_tstamp_prequeue;
3543 extern int weight_p;
3544 extern int bpf_jit_enable;
3545
3546 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3547 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3548 struct list_head **iter);
3549 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3550 struct list_head **iter);
3551
3552 /* iterate through upper list, must be called under RCU read lock */
3553 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3554 for (iter = &(dev)->adj_list.upper, \
3555 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3556 updev; \
3557 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3558
3559 /* iterate through upper list, must be called under RCU read lock */
3560 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3561 for (iter = &(dev)->all_adj_list.upper, \
3562 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3563 updev; \
3564 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3565
3566 void *netdev_lower_get_next_private(struct net_device *dev,
3567 struct list_head **iter);
3568 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3569 struct list_head **iter);
3570
3571 #define netdev_for_each_lower_private(dev, priv, iter) \
3572 for (iter = (dev)->adj_list.lower.next, \
3573 priv = netdev_lower_get_next_private(dev, &(iter)); \
3574 priv; \
3575 priv = netdev_lower_get_next_private(dev, &(iter)))
3576
3577 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3578 for (iter = &(dev)->adj_list.lower, \
3579 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3580 priv; \
3581 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3582
3583 void *netdev_lower_get_next(struct net_device *dev,
3584 struct list_head **iter);
3585 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3586 for (iter = &(dev)->adj_list.lower, \
3587 ldev = netdev_lower_get_next(dev, &(iter)); \
3588 ldev; \
3589 ldev = netdev_lower_get_next(dev, &(iter)))
3590
3591 void *netdev_adjacent_get_private(struct list_head *adj_list);
3592 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3593 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3594 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3595 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3596 int netdev_master_upper_dev_link(struct net_device *dev,
3597 struct net_device *upper_dev);
3598 int netdev_master_upper_dev_link_private(struct net_device *dev,
3599 struct net_device *upper_dev,
3600 void *private);
3601 void netdev_upper_dev_unlink(struct net_device *dev,
3602 struct net_device *upper_dev);
3603 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3604 void *netdev_lower_dev_get_private(struct net_device *dev,
3605 struct net_device *lower_dev);
3606
3607 /* RSS keys are 40 or 52 bytes long */
3608 #define NETDEV_RSS_KEY_LEN 52
3609 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3610 void netdev_rss_key_fill(void *buffer, size_t len);
3611
3612 int dev_get_nest_level(struct net_device *dev,
3613 bool (*type_check)(struct net_device *dev));
3614 int skb_checksum_help(struct sk_buff *skb);
3615 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3616 netdev_features_t features, bool tx_path);
3617 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3618 netdev_features_t features);
3619
3620 struct netdev_bonding_info {
3621 ifslave slave;
3622 ifbond master;
3623 };
3624
3625 struct netdev_notifier_bonding_info {
3626 struct netdev_notifier_info info; /* must be first */
3627 struct netdev_bonding_info bonding_info;
3628 };
3629
3630 void netdev_bonding_info_change(struct net_device *dev,
3631 struct netdev_bonding_info *bonding_info);
3632
3633 static inline
3634 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3635 {
3636 return __skb_gso_segment(skb, features, true);
3637 }
3638 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3639
3640 static inline bool can_checksum_protocol(netdev_features_t features,
3641 __be16 protocol)
3642 {
3643 return ((features & NETIF_F_GEN_CSUM) ||
3644 ((features & NETIF_F_V4_CSUM) &&
3645 protocol == htons(ETH_P_IP)) ||
3646 ((features & NETIF_F_V6_CSUM) &&
3647 protocol == htons(ETH_P_IPV6)) ||
3648 ((features & NETIF_F_FCOE_CRC) &&
3649 protocol == htons(ETH_P_FCOE)));
3650 }
3651
3652 #ifdef CONFIG_BUG
3653 void netdev_rx_csum_fault(struct net_device *dev);
3654 #else
3655 static inline void netdev_rx_csum_fault(struct net_device *dev)
3656 {
3657 }
3658 #endif
3659 /* rx skb timestamps */
3660 void net_enable_timestamp(void);
3661 void net_disable_timestamp(void);
3662
3663 #ifdef CONFIG_PROC_FS
3664 int __init dev_proc_init(void);
3665 #else
3666 #define dev_proc_init() 0
3667 #endif
3668
3669 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3670 struct sk_buff *skb, struct net_device *dev,
3671 bool more)
3672 {
3673 skb->xmit_more = more ? 1 : 0;
3674 return ops->ndo_start_xmit(skb, dev);
3675 }
3676
3677 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3678 struct netdev_queue *txq, bool more)
3679 {
3680 const struct net_device_ops *ops = dev->netdev_ops;
3681 int rc;
3682
3683 rc = __netdev_start_xmit(ops, skb, dev, more);
3684 if (rc == NETDEV_TX_OK)
3685 txq_trans_update(txq);
3686
3687 return rc;
3688 }
3689
3690 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3691 const void *ns);
3692 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3693 const void *ns);
3694
3695 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3696 {
3697 return netdev_class_create_file_ns(class_attr, NULL);
3698 }
3699
3700 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3701 {
3702 netdev_class_remove_file_ns(class_attr, NULL);
3703 }
3704
3705 extern struct kobj_ns_type_operations net_ns_type_operations;
3706
3707 const char *netdev_drivername(const struct net_device *dev);
3708
3709 void linkwatch_run_queue(void);
3710
3711 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3712 netdev_features_t f2)
3713 {
3714 if (f1 & NETIF_F_GEN_CSUM)
3715 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3716 if (f2 & NETIF_F_GEN_CSUM)
3717 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3718 f1 &= f2;
3719 if (f1 & NETIF_F_GEN_CSUM)
3720 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3721
3722 return f1;
3723 }
3724
3725 static inline netdev_features_t netdev_get_wanted_features(
3726 struct net_device *dev)
3727 {
3728 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3729 }
3730 netdev_features_t netdev_increment_features(netdev_features_t all,
3731 netdev_features_t one, netdev_features_t mask);
3732
3733 /* Allow TSO being used on stacked device :
3734 * Performing the GSO segmentation before last device
3735 * is a performance improvement.
3736 */
3737 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3738 netdev_features_t mask)
3739 {
3740 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3741 }
3742
3743 int __netdev_update_features(struct net_device *dev);
3744 void netdev_update_features(struct net_device *dev);
3745 void netdev_change_features(struct net_device *dev);
3746
3747 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3748 struct net_device *dev);
3749
3750 netdev_features_t passthru_features_check(struct sk_buff *skb,
3751 struct net_device *dev,
3752 netdev_features_t features);
3753 netdev_features_t netif_skb_features(struct sk_buff *skb);
3754
3755 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3756 {
3757 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3758
3759 /* check flags correspondence */
3760 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3761 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3762 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3763 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3764 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3765 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3766 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3767 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3768 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3769 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3770 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3771 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3772 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3773
3774 return (features & feature) == feature;
3775 }
3776
3777 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3778 {
3779 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3780 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3781 }
3782
3783 static inline bool netif_needs_gso(struct sk_buff *skb,
3784 netdev_features_t features)
3785 {
3786 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3787 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3788 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3789 }
3790
3791 static inline void netif_set_gso_max_size(struct net_device *dev,
3792 unsigned int size)
3793 {
3794 dev->gso_max_size = size;
3795 }
3796
3797 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3798 int pulled_hlen, u16 mac_offset,
3799 int mac_len)
3800 {
3801 skb->protocol = protocol;
3802 skb->encapsulation = 1;
3803 skb_push(skb, pulled_hlen);
3804 skb_reset_transport_header(skb);
3805 skb->mac_header = mac_offset;
3806 skb->network_header = skb->mac_header + mac_len;
3807 skb->mac_len = mac_len;
3808 }
3809
3810 static inline bool netif_is_macvlan(struct net_device *dev)
3811 {
3812 return dev->priv_flags & IFF_MACVLAN;
3813 }
3814
3815 static inline bool netif_is_macvlan_port(struct net_device *dev)
3816 {
3817 return dev->priv_flags & IFF_MACVLAN_PORT;
3818 }
3819
3820 static inline bool netif_is_ipvlan(struct net_device *dev)
3821 {
3822 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3823 }
3824
3825 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3826 {
3827 return dev->priv_flags & IFF_IPVLAN_MASTER;
3828 }
3829
3830 static inline bool netif_is_bond_master(struct net_device *dev)
3831 {
3832 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3833 }
3834
3835 static inline bool netif_is_bond_slave(struct net_device *dev)
3836 {
3837 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3838 }
3839
3840 static inline bool netif_supports_nofcs(struct net_device *dev)
3841 {
3842 return dev->priv_flags & IFF_SUPP_NOFCS;
3843 }
3844
3845 static inline bool netif_is_l3_master(const struct net_device *dev)
3846 {
3847 return dev->priv_flags & IFF_L3MDEV_MASTER;
3848 }
3849
3850 static inline bool netif_is_l3_slave(const struct net_device *dev)
3851 {
3852 return dev->priv_flags & IFF_L3MDEV_SLAVE;
3853 }
3854
3855 static inline bool netif_is_bridge_master(const struct net_device *dev)
3856 {
3857 return dev->priv_flags & IFF_EBRIDGE;
3858 }
3859
3860 static inline bool netif_is_bridge_port(const struct net_device *dev)
3861 {
3862 return dev->priv_flags & IFF_BRIDGE_PORT;
3863 }
3864
3865 static inline bool netif_is_ovs_master(const struct net_device *dev)
3866 {
3867 return dev->priv_flags & IFF_OPENVSWITCH;
3868 }
3869
3870 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3871 static inline void netif_keep_dst(struct net_device *dev)
3872 {
3873 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3874 }
3875
3876 extern struct pernet_operations __net_initdata loopback_net_ops;
3877
3878 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3879
3880 /* netdev_printk helpers, similar to dev_printk */
3881
3882 static inline const char *netdev_name(const struct net_device *dev)
3883 {
3884 if (!dev->name[0] || strchr(dev->name, '%'))
3885 return "(unnamed net_device)";
3886 return dev->name;
3887 }
3888
3889 static inline const char *netdev_reg_state(const struct net_device *dev)
3890 {
3891 switch (dev->reg_state) {
3892 case NETREG_UNINITIALIZED: return " (uninitialized)";
3893 case NETREG_REGISTERED: return "";
3894 case NETREG_UNREGISTERING: return " (unregistering)";
3895 case NETREG_UNREGISTERED: return " (unregistered)";
3896 case NETREG_RELEASED: return " (released)";
3897 case NETREG_DUMMY: return " (dummy)";
3898 }
3899
3900 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3901 return " (unknown)";
3902 }
3903
3904 __printf(3, 4)
3905 void netdev_printk(const char *level, const struct net_device *dev,
3906 const char *format, ...);
3907 __printf(2, 3)
3908 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3909 __printf(2, 3)
3910 void netdev_alert(const struct net_device *dev, const char *format, ...);
3911 __printf(2, 3)
3912 void netdev_crit(const struct net_device *dev, const char *format, ...);
3913 __printf(2, 3)
3914 void netdev_err(const struct net_device *dev, const char *format, ...);
3915 __printf(2, 3)
3916 void netdev_warn(const struct net_device *dev, const char *format, ...);
3917 __printf(2, 3)
3918 void netdev_notice(const struct net_device *dev, const char *format, ...);
3919 __printf(2, 3)
3920 void netdev_info(const struct net_device *dev, const char *format, ...);
3921
3922 #define MODULE_ALIAS_NETDEV(device) \
3923 MODULE_ALIAS("netdev-" device)
3924
3925 #if defined(CONFIG_DYNAMIC_DEBUG)
3926 #define netdev_dbg(__dev, format, args...) \
3927 do { \
3928 dynamic_netdev_dbg(__dev, format, ##args); \
3929 } while (0)
3930 #elif defined(DEBUG)
3931 #define netdev_dbg(__dev, format, args...) \
3932 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3933 #else
3934 #define netdev_dbg(__dev, format, args...) \
3935 ({ \
3936 if (0) \
3937 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3938 })
3939 #endif
3940
3941 #if defined(VERBOSE_DEBUG)
3942 #define netdev_vdbg netdev_dbg
3943 #else
3944
3945 #define netdev_vdbg(dev, format, args...) \
3946 ({ \
3947 if (0) \
3948 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3949 0; \
3950 })
3951 #endif
3952
3953 /*
3954 * netdev_WARN() acts like dev_printk(), but with the key difference
3955 * of using a WARN/WARN_ON to get the message out, including the
3956 * file/line information and a backtrace.
3957 */
3958 #define netdev_WARN(dev, format, args...) \
3959 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3960 netdev_reg_state(dev), ##args)
3961
3962 /* netif printk helpers, similar to netdev_printk */
3963
3964 #define netif_printk(priv, type, level, dev, fmt, args...) \
3965 do { \
3966 if (netif_msg_##type(priv)) \
3967 netdev_printk(level, (dev), fmt, ##args); \
3968 } while (0)
3969
3970 #define netif_level(level, priv, type, dev, fmt, args...) \
3971 do { \
3972 if (netif_msg_##type(priv)) \
3973 netdev_##level(dev, fmt, ##args); \
3974 } while (0)
3975
3976 #define netif_emerg(priv, type, dev, fmt, args...) \
3977 netif_level(emerg, priv, type, dev, fmt, ##args)
3978 #define netif_alert(priv, type, dev, fmt, args...) \
3979 netif_level(alert, priv, type, dev, fmt, ##args)
3980 #define netif_crit(priv, type, dev, fmt, args...) \
3981 netif_level(crit, priv, type, dev, fmt, ##args)
3982 #define netif_err(priv, type, dev, fmt, args...) \
3983 netif_level(err, priv, type, dev, fmt, ##args)
3984 #define netif_warn(priv, type, dev, fmt, args...) \
3985 netif_level(warn, priv, type, dev, fmt, ##args)
3986 #define netif_notice(priv, type, dev, fmt, args...) \
3987 netif_level(notice, priv, type, dev, fmt, ##args)
3988 #define netif_info(priv, type, dev, fmt, args...) \
3989 netif_level(info, priv, type, dev, fmt, ##args)
3990
3991 #if defined(CONFIG_DYNAMIC_DEBUG)
3992 #define netif_dbg(priv, type, netdev, format, args...) \
3993 do { \
3994 if (netif_msg_##type(priv)) \
3995 dynamic_netdev_dbg(netdev, format, ##args); \
3996 } while (0)
3997 #elif defined(DEBUG)
3998 #define netif_dbg(priv, type, dev, format, args...) \
3999 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4000 #else
4001 #define netif_dbg(priv, type, dev, format, args...) \
4002 ({ \
4003 if (0) \
4004 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4005 0; \
4006 })
4007 #endif
4008
4009 #if defined(VERBOSE_DEBUG)
4010 #define netif_vdbg netif_dbg
4011 #else
4012 #define netif_vdbg(priv, type, dev, format, args...) \
4013 ({ \
4014 if (0) \
4015 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4016 0; \
4017 })
4018 #endif
4019
4020 /*
4021 * The list of packet types we will receive (as opposed to discard)
4022 * and the routines to invoke.
4023 *
4024 * Why 16. Because with 16 the only overlap we get on a hash of the
4025 * low nibble of the protocol value is RARP/SNAP/X.25.
4026 *
4027 * NOTE: That is no longer true with the addition of VLAN tags. Not
4028 * sure which should go first, but I bet it won't make much
4029 * difference if we are running VLANs. The good news is that
4030 * this protocol won't be in the list unless compiled in, so
4031 * the average user (w/out VLANs) will not be adversely affected.
4032 * --BLG
4033 *
4034 * 0800 IP
4035 * 8100 802.1Q VLAN
4036 * 0001 802.3
4037 * 0002 AX.25
4038 * 0004 802.2
4039 * 8035 RARP
4040 * 0005 SNAP
4041 * 0805 X.25
4042 * 0806 ARP
4043 * 8137 IPX
4044 * 0009 Localtalk
4045 * 86DD IPv6
4046 */
4047 #define PTYPE_HASH_SIZE (16)
4048 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4049
4050 #endif /* _LINUX_NETDEVICE_H */
This page took 0.119812 seconds and 5 git commands to generate.