Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth...
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/bug.h>
37 #include <linux/delay.h>
38 #include <linux/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55
56 #include <linux/netdev_features.h>
57 #include <linux/neighbour.h>
58
59 struct netpoll_info;
60 struct device;
61 struct phy_device;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* source back-compat hooks */
65 #define SET_ETHTOOL_OPS(netdev,ops) \
66 ( (netdev)->ethtool_ops = (ops) )
67
68 /* hardware address assignment types */
69 #define NET_ADDR_PERM 0 /* address is permanent (default) */
70 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
71 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 #endif
137
138 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
139
140 /* Initial net device group. All devices belong to group 0 by default. */
141 #define INIT_NETDEV_GROUP 0
142
143 #ifdef __KERNEL__
144 /*
145 * Compute the worst case header length according to the protocols
146 * used.
147 */
148
149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 # define LL_MAX_HEADER 128
152 # else
153 # define LL_MAX_HEADER 96
154 # endif
155 #elif IS_ENABLED(CONFIG_TR)
156 # define LL_MAX_HEADER 48
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160
161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167
168 /*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173 struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197 };
198
199 #endif /* __KERNEL__ */
200
201
202 /* Media selection options. */
203 enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211 };
212
213 #ifdef __KERNEL__
214
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217
218 #ifdef CONFIG_RPS
219 #include <linux/static_key.h>
220 extern struct static_key rps_needed;
221 #endif
222
223 struct neighbour;
224 struct neigh_parms;
225 struct sk_buff;
226
227 struct netdev_hw_addr {
228 struct list_head list;
229 unsigned char addr[MAX_ADDR_LEN];
230 unsigned char type;
231 #define NETDEV_HW_ADDR_T_LAN 1
232 #define NETDEV_HW_ADDR_T_SAN 2
233 #define NETDEV_HW_ADDR_T_SLAVE 3
234 #define NETDEV_HW_ADDR_T_UNICAST 4
235 #define NETDEV_HW_ADDR_T_MULTICAST 5
236 bool synced;
237 bool global_use;
238 int refcount;
239 struct rcu_head rcu_head;
240 };
241
242 struct netdev_hw_addr_list {
243 struct list_head list;
244 int count;
245 };
246
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 list_for_each_entry(ha, &(l)->list, list)
251
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261
262 struct hh_cache {
263 u16 hh_len;
264 u16 __pad;
265 seqlock_t hh_lock;
266
267 /* cached hardware header; allow for machine alignment needs. */
268 #define HH_DATA_MOD 16
269 #define HH_DATA_OFF(__len) \
270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271 #define HH_DATA_ALIGN(__len) \
272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274 };
275
276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277 * Alternative is:
278 * dev->hard_header_len ? (dev->hard_header_len +
279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280 *
281 * We could use other alignment values, but we must maintain the
282 * relationship HH alignment <= LL alignment.
283 */
284 #define LL_RESERVED_SPACE(dev) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288
289 struct header_ops {
290 int (*create) (struct sk_buff *skb, struct net_device *dev,
291 unsigned short type, const void *daddr,
292 const void *saddr, unsigned int len);
293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 int (*rebuild)(struct sk_buff *skb);
295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 void (*cache_update)(struct hh_cache *hh,
297 const struct net_device *dev,
298 const unsigned char *haddr);
299 };
300
301 /* These flag bits are private to the generic network queueing
302 * layer, they may not be explicitly referenced by any other
303 * code.
304 */
305
306 enum netdev_state_t {
307 __LINK_STATE_START,
308 __LINK_STATE_PRESENT,
309 __LINK_STATE_NOCARRIER,
310 __LINK_STATE_LINKWATCH_PENDING,
311 __LINK_STATE_DORMANT,
312 };
313
314
315 /*
316 * This structure holds at boot time configured netdevice settings. They
317 * are then used in the device probing.
318 */
319 struct netdev_boot_setup {
320 char name[IFNAMSIZ];
321 struct ifmap map;
322 };
323 #define NETDEV_BOOT_SETUP_MAX 8
324
325 extern int __init netdev_boot_setup(char *str);
326
327 /*
328 * Structure for NAPI scheduling similar to tasklet but with weighting
329 */
330 struct napi_struct {
331 /* The poll_list must only be managed by the entity which
332 * changes the state of the NAPI_STATE_SCHED bit. This means
333 * whoever atomically sets that bit can add this napi_struct
334 * to the per-cpu poll_list, and whoever clears that bit
335 * can remove from the list right before clearing the bit.
336 */
337 struct list_head poll_list;
338
339 unsigned long state;
340 int weight;
341 int (*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 spinlock_t poll_lock;
344 int poll_owner;
345 #endif
346
347 unsigned int gro_count;
348
349 struct net_device *dev;
350 struct list_head dev_list;
351 struct sk_buff *gro_list;
352 struct sk_buff *skb;
353 };
354
355 enum {
356 NAPI_STATE_SCHED, /* Poll is scheduled */
357 NAPI_STATE_DISABLE, /* Disable pending */
358 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
359 };
360
361 enum gro_result {
362 GRO_MERGED,
363 GRO_MERGED_FREE,
364 GRO_HELD,
365 GRO_NORMAL,
366 GRO_DROP,
367 };
368 typedef enum gro_result gro_result_t;
369
370 /*
371 * enum rx_handler_result - Possible return values for rx_handlers.
372 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
373 * further.
374 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
375 * case skb->dev was changed by rx_handler.
376 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
377 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
378 *
379 * rx_handlers are functions called from inside __netif_receive_skb(), to do
380 * special processing of the skb, prior to delivery to protocol handlers.
381 *
382 * Currently, a net_device can only have a single rx_handler registered. Trying
383 * to register a second rx_handler will return -EBUSY.
384 *
385 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
386 * To unregister a rx_handler on a net_device, use
387 * netdev_rx_handler_unregister().
388 *
389 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
390 * do with the skb.
391 *
392 * If the rx_handler consumed to skb in some way, it should return
393 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
394 * the skb to be delivered in some other ways.
395 *
396 * If the rx_handler changed skb->dev, to divert the skb to another
397 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
398 * new device will be called if it exists.
399 *
400 * If the rx_handler consider the skb should be ignored, it should return
401 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
402 * are registred on exact device (ptype->dev == skb->dev).
403 *
404 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
405 * delivered, it should return RX_HANDLER_PASS.
406 *
407 * A device without a registered rx_handler will behave as if rx_handler
408 * returned RX_HANDLER_PASS.
409 */
410
411 enum rx_handler_result {
412 RX_HANDLER_CONSUMED,
413 RX_HANDLER_ANOTHER,
414 RX_HANDLER_EXACT,
415 RX_HANDLER_PASS,
416 };
417 typedef enum rx_handler_result rx_handler_result_t;
418 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
419
420 extern void __napi_schedule(struct napi_struct *n);
421
422 static inline bool napi_disable_pending(struct napi_struct *n)
423 {
424 return test_bit(NAPI_STATE_DISABLE, &n->state);
425 }
426
427 /**
428 * napi_schedule_prep - check if napi can be scheduled
429 * @n: napi context
430 *
431 * Test if NAPI routine is already running, and if not mark
432 * it as running. This is used as a condition variable
433 * insure only one NAPI poll instance runs. We also make
434 * sure there is no pending NAPI disable.
435 */
436 static inline bool napi_schedule_prep(struct napi_struct *n)
437 {
438 return !napi_disable_pending(n) &&
439 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
440 }
441
442 /**
443 * napi_schedule - schedule NAPI poll
444 * @n: napi context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453 }
454
455 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
456 static inline bool napi_reschedule(struct napi_struct *napi)
457 {
458 if (napi_schedule_prep(napi)) {
459 __napi_schedule(napi);
460 return true;
461 }
462 return false;
463 }
464
465 /**
466 * napi_complete - NAPI processing complete
467 * @n: napi context
468 *
469 * Mark NAPI processing as complete.
470 */
471 extern void __napi_complete(struct napi_struct *n);
472 extern void napi_complete(struct napi_struct *n);
473
474 /**
475 * napi_disable - prevent NAPI from scheduling
476 * @n: napi context
477 *
478 * Stop NAPI from being scheduled on this context.
479 * Waits till any outstanding processing completes.
480 */
481 static inline void napi_disable(struct napi_struct *n)
482 {
483 set_bit(NAPI_STATE_DISABLE, &n->state);
484 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486 clear_bit(NAPI_STATE_DISABLE, &n->state);
487 }
488
489 /**
490 * napi_enable - enable NAPI scheduling
491 * @n: napi context
492 *
493 * Resume NAPI from being scheduled on this context.
494 * Must be paired with napi_disable.
495 */
496 static inline void napi_enable(struct napi_struct *n)
497 {
498 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
499 smp_mb__before_clear_bit();
500 clear_bit(NAPI_STATE_SCHED, &n->state);
501 }
502
503 #ifdef CONFIG_SMP
504 /**
505 * napi_synchronize - wait until NAPI is not running
506 * @n: napi context
507 *
508 * Wait until NAPI is done being scheduled on this context.
509 * Waits till any outstanding processing completes but
510 * does not disable future activations.
511 */
512 static inline void napi_synchronize(const struct napi_struct *n)
513 {
514 while (test_bit(NAPI_STATE_SCHED, &n->state))
515 msleep(1);
516 }
517 #else
518 # define napi_synchronize(n) barrier()
519 #endif
520
521 enum netdev_queue_state_t {
522 __QUEUE_STATE_DRV_XOFF,
523 __QUEUE_STATE_STACK_XOFF,
524 __QUEUE_STATE_FROZEN,
525 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
526 (1 << __QUEUE_STATE_STACK_XOFF))
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528 (1 << __QUEUE_STATE_FROZEN))
529 };
530 /*
531 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
532 * netif_tx_* functions below are used to manipulate this flag. The
533 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
534 * queue independently. The netif_xmit_*stopped functions below are called
535 * to check if the queue has been stopped by the driver or stack (either
536 * of the XOFF bits are set in the state). Drivers should not need to call
537 * netif_xmit*stopped functions, they should only be using netif_tx_*.
538 */
539
540 struct netdev_queue {
541 /*
542 * read mostly part
543 */
544 struct net_device *dev;
545 struct Qdisc *qdisc;
546 struct Qdisc *qdisc_sleeping;
547 #ifdef CONFIG_SYSFS
548 struct kobject kobj;
549 #endif
550 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
551 int numa_node;
552 #endif
553 /*
554 * write mostly part
555 */
556 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
557 int xmit_lock_owner;
558 /*
559 * please use this field instead of dev->trans_start
560 */
561 unsigned long trans_start;
562
563 /*
564 * Number of TX timeouts for this queue
565 * (/sys/class/net/DEV/Q/trans_timeout)
566 */
567 unsigned long trans_timeout;
568
569 unsigned long state;
570
571 #ifdef CONFIG_BQL
572 struct dql dql;
573 #endif
574 } ____cacheline_aligned_in_smp;
575
576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 return q->numa_node;
580 #else
581 return NUMA_NO_NODE;
582 #endif
583 }
584
585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 q->numa_node = node;
589 #endif
590 }
591
592 #ifdef CONFIG_RPS
593 /*
594 * This structure holds an RPS map which can be of variable length. The
595 * map is an array of CPUs.
596 */
597 struct rps_map {
598 unsigned int len;
599 struct rcu_head rcu;
600 u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
603
604 /*
605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606 * tail pointer for that CPU's input queue at the time of last enqueue, and
607 * a hardware filter index.
608 */
609 struct rps_dev_flow {
610 u16 cpu;
611 u16 filter;
612 unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615
616 /*
617 * The rps_dev_flow_table structure contains a table of flow mappings.
618 */
619 struct rps_dev_flow_table {
620 unsigned int mask;
621 struct rcu_head rcu;
622 struct work_struct free_work;
623 struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626 ((_num) * sizeof(struct rps_dev_flow)))
627
628 /*
629 * The rps_sock_flow_table contains mappings of flows to the last CPU
630 * on which they were processed by the application (set in recvmsg).
631 */
632 struct rps_sock_flow_table {
633 unsigned int mask;
634 u16 ents[0];
635 };
636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637 ((_num) * sizeof(u16)))
638
639 #define RPS_NO_CPU 0xffff
640
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 u32 hash)
643 {
644 if (table && hash) {
645 unsigned int cpu, index = hash & table->mask;
646
647 /* We only give a hint, preemption can change cpu under us */
648 cpu = raw_smp_processor_id();
649
650 if (table->ents[index] != cpu)
651 table->ents[index] = cpu;
652 }
653 }
654
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 u32 hash)
657 {
658 if (table && hash)
659 table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 u32 flow_id, u16 filter_id);
667 #endif
668
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 struct rps_map __rcu *rps_map;
672 struct rps_dev_flow_table __rcu *rps_flow_table;
673 struct kobject kobj;
674 struct net_device *dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677
678 #ifdef CONFIG_XPS
679 /*
680 * This structure holds an XPS map which can be of variable length. The
681 * map is an array of queues.
682 */
683 struct xps_map {
684 unsigned int len;
685 unsigned int alloc_len;
686 struct rcu_head rcu;
687 u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
691 / sizeof(u16))
692
693 /*
694 * This structure holds all XPS maps for device. Maps are indexed by CPU.
695 */
696 struct xps_dev_maps {
697 struct rcu_head rcu;
698 struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
701 (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703
704 #define TC_MAX_QUEUE 16
705 #define TC_BITMASK 15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 u16 count;
709 u16 offset;
710 };
711
712 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
713 /*
714 * This structure is to hold information about the device
715 * configured to run FCoE protocol stack.
716 */
717 struct netdev_fcoe_hbainfo {
718 char manufacturer[64];
719 char serial_number[64];
720 char hardware_version[64];
721 char driver_version[64];
722 char optionrom_version[64];
723 char firmware_version[64];
724 char model[256];
725 char model_description[256];
726 };
727 #endif
728
729 /*
730 * This structure defines the management hooks for network devices.
731 * The following hooks can be defined; unless noted otherwise, they are
732 * optional and can be filled with a null pointer.
733 *
734 * int (*ndo_init)(struct net_device *dev);
735 * This function is called once when network device is registered.
736 * The network device can use this to any late stage initializaton
737 * or semantic validattion. It can fail with an error code which will
738 * be propogated back to register_netdev
739 *
740 * void (*ndo_uninit)(struct net_device *dev);
741 * This function is called when device is unregistered or when registration
742 * fails. It is not called if init fails.
743 *
744 * int (*ndo_open)(struct net_device *dev);
745 * This function is called when network device transistions to the up
746 * state.
747 *
748 * int (*ndo_stop)(struct net_device *dev);
749 * This function is called when network device transistions to the down
750 * state.
751 *
752 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
753 * struct net_device *dev);
754 * Called when a packet needs to be transmitted.
755 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
756 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
757 * Required can not be NULL.
758 *
759 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
760 * Called to decide which queue to when device supports multiple
761 * transmit queues.
762 *
763 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
764 * This function is called to allow device receiver to make
765 * changes to configuration when multicast or promiscious is enabled.
766 *
767 * void (*ndo_set_rx_mode)(struct net_device *dev);
768 * This function is called device changes address list filtering.
769 * If driver handles unicast address filtering, it should set
770 * IFF_UNICAST_FLT to its priv_flags.
771 *
772 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
773 * This function is called when the Media Access Control address
774 * needs to be changed. If this interface is not defined, the
775 * mac address can not be changed.
776 *
777 * int (*ndo_validate_addr)(struct net_device *dev);
778 * Test if Media Access Control address is valid for the device.
779 *
780 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
781 * Called when a user request an ioctl which can't be handled by
782 * the generic interface code. If not defined ioctl's return
783 * not supported error code.
784 *
785 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
786 * Used to set network devices bus interface parameters. This interface
787 * is retained for legacy reason, new devices should use the bus
788 * interface (PCI) for low level management.
789 *
790 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
791 * Called when a user wants to change the Maximum Transfer Unit
792 * of a device. If not defined, any request to change MTU will
793 * will return an error.
794 *
795 * void (*ndo_tx_timeout)(struct net_device *dev);
796 * Callback uses when the transmitter has not made any progress
797 * for dev->watchdog ticks.
798 *
799 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
800 * struct rtnl_link_stats64 *storage);
801 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
802 * Called when a user wants to get the network device usage
803 * statistics. Drivers must do one of the following:
804 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
805 * rtnl_link_stats64 structure passed by the caller.
806 * 2. Define @ndo_get_stats to update a net_device_stats structure
807 * (which should normally be dev->stats) and return a pointer to
808 * it. The structure may be changed asynchronously only if each
809 * field is written atomically.
810 * 3. Update dev->stats asynchronously and atomically, and define
811 * neither operation.
812 *
813 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
814 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
815 * this function is called when a VLAN id is registered.
816 *
817 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
818 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
819 * this function is called when a VLAN id is unregistered.
820 *
821 * void (*ndo_poll_controller)(struct net_device *dev);
822 *
823 * SR-IOV management functions.
824 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
825 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
826 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
827 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
828 * int (*ndo_get_vf_config)(struct net_device *dev,
829 * int vf, struct ifla_vf_info *ivf);
830 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
831 * struct nlattr *port[]);
832 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
833 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
834 * Called to setup 'tc' number of traffic classes in the net device. This
835 * is always called from the stack with the rtnl lock held and netif tx
836 * queues stopped. This allows the netdevice to perform queue management
837 * safely.
838 *
839 * Fiber Channel over Ethernet (FCoE) offload functions.
840 * int (*ndo_fcoe_enable)(struct net_device *dev);
841 * Called when the FCoE protocol stack wants to start using LLD for FCoE
842 * so the underlying device can perform whatever needed configuration or
843 * initialization to support acceleration of FCoE traffic.
844 *
845 * int (*ndo_fcoe_disable)(struct net_device *dev);
846 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
847 * so the underlying device can perform whatever needed clean-ups to
848 * stop supporting acceleration of FCoE traffic.
849 *
850 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
851 * struct scatterlist *sgl, unsigned int sgc);
852 * Called when the FCoE Initiator wants to initialize an I/O that
853 * is a possible candidate for Direct Data Placement (DDP). The LLD can
854 * perform necessary setup and returns 1 to indicate the device is set up
855 * successfully to perform DDP on this I/O, otherwise this returns 0.
856 *
857 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
858 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
859 * indicated by the FC exchange id 'xid', so the underlying device can
860 * clean up and reuse resources for later DDP requests.
861 *
862 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
863 * struct scatterlist *sgl, unsigned int sgc);
864 * Called when the FCoE Target wants to initialize an I/O that
865 * is a possible candidate for Direct Data Placement (DDP). The LLD can
866 * perform necessary setup and returns 1 to indicate the device is set up
867 * successfully to perform DDP on this I/O, otherwise this returns 0.
868 *
869 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
870 * struct netdev_fcoe_hbainfo *hbainfo);
871 * Called when the FCoE Protocol stack wants information on the underlying
872 * device. This information is utilized by the FCoE protocol stack to
873 * register attributes with Fiber Channel management service as per the
874 * FC-GS Fabric Device Management Information(FDMI) specification.
875 *
876 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
877 * Called when the underlying device wants to override default World Wide
878 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
879 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
880 * protocol stack to use.
881 *
882 * RFS acceleration.
883 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
884 * u16 rxq_index, u32 flow_id);
885 * Set hardware filter for RFS. rxq_index is the target queue index;
886 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
887 * Return the filter ID on success, or a negative error code.
888 *
889 * Slave management functions (for bridge, bonding, etc). User should
890 * call netdev_set_master() to set dev->master properly.
891 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
892 * Called to make another netdev an underling.
893 *
894 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
895 * Called to release previously enslaved netdev.
896 *
897 * Feature/offload setting functions.
898 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
899 * netdev_features_t features);
900 * Adjusts the requested feature flags according to device-specific
901 * constraints, and returns the resulting flags. Must not modify
902 * the device state.
903 *
904 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
905 * Called to update device configuration to new features. Passed
906 * feature set might be less than what was returned by ndo_fix_features()).
907 * Must return >0 or -errno if it changed dev->features itself.
908 *
909 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev,
910 * unsigned char *addr, u16 flags)
911 * Adds an FDB entry to dev for addr.
912 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
913 * unsigned char *addr)
914 * Deletes the FDB entry from dev coresponding to addr.
915 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
916 * struct net_device *dev, int idx)
917 * Used to add FDB entries to dump requests. Implementers should add
918 * entries to skb and update idx with the number of entries.
919 */
920 struct net_device_ops {
921 int (*ndo_init)(struct net_device *dev);
922 void (*ndo_uninit)(struct net_device *dev);
923 int (*ndo_open)(struct net_device *dev);
924 int (*ndo_stop)(struct net_device *dev);
925 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
926 struct net_device *dev);
927 u16 (*ndo_select_queue)(struct net_device *dev,
928 struct sk_buff *skb);
929 void (*ndo_change_rx_flags)(struct net_device *dev,
930 int flags);
931 void (*ndo_set_rx_mode)(struct net_device *dev);
932 int (*ndo_set_mac_address)(struct net_device *dev,
933 void *addr);
934 int (*ndo_validate_addr)(struct net_device *dev);
935 int (*ndo_do_ioctl)(struct net_device *dev,
936 struct ifreq *ifr, int cmd);
937 int (*ndo_set_config)(struct net_device *dev,
938 struct ifmap *map);
939 int (*ndo_change_mtu)(struct net_device *dev,
940 int new_mtu);
941 int (*ndo_neigh_setup)(struct net_device *dev,
942 struct neigh_parms *);
943 void (*ndo_tx_timeout) (struct net_device *dev);
944
945 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
946 struct rtnl_link_stats64 *storage);
947 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
948
949 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
950 unsigned short vid);
951 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
952 unsigned short vid);
953 #ifdef CONFIG_NET_POLL_CONTROLLER
954 void (*ndo_poll_controller)(struct net_device *dev);
955 int (*ndo_netpoll_setup)(struct net_device *dev,
956 struct netpoll_info *info);
957 void (*ndo_netpoll_cleanup)(struct net_device *dev);
958 #endif
959 int (*ndo_set_vf_mac)(struct net_device *dev,
960 int queue, u8 *mac);
961 int (*ndo_set_vf_vlan)(struct net_device *dev,
962 int queue, u16 vlan, u8 qos);
963 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
964 int vf, int rate);
965 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
966 int vf, bool setting);
967 int (*ndo_get_vf_config)(struct net_device *dev,
968 int vf,
969 struct ifla_vf_info *ivf);
970 int (*ndo_set_vf_port)(struct net_device *dev,
971 int vf,
972 struct nlattr *port[]);
973 int (*ndo_get_vf_port)(struct net_device *dev,
974 int vf, struct sk_buff *skb);
975 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
976 #if IS_ENABLED(CONFIG_FCOE)
977 int (*ndo_fcoe_enable)(struct net_device *dev);
978 int (*ndo_fcoe_disable)(struct net_device *dev);
979 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
980 u16 xid,
981 struct scatterlist *sgl,
982 unsigned int sgc);
983 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
984 u16 xid);
985 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
986 u16 xid,
987 struct scatterlist *sgl,
988 unsigned int sgc);
989 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
990 struct netdev_fcoe_hbainfo *hbainfo);
991 #endif
992
993 #if IS_ENABLED(CONFIG_LIBFCOE)
994 #define NETDEV_FCOE_WWNN 0
995 #define NETDEV_FCOE_WWPN 1
996 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
997 u64 *wwn, int type);
998 #endif
999
1000 #ifdef CONFIG_RFS_ACCEL
1001 int (*ndo_rx_flow_steer)(struct net_device *dev,
1002 const struct sk_buff *skb,
1003 u16 rxq_index,
1004 u32 flow_id);
1005 #endif
1006 int (*ndo_add_slave)(struct net_device *dev,
1007 struct net_device *slave_dev);
1008 int (*ndo_del_slave)(struct net_device *dev,
1009 struct net_device *slave_dev);
1010 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1011 netdev_features_t features);
1012 int (*ndo_set_features)(struct net_device *dev,
1013 netdev_features_t features);
1014 int (*ndo_neigh_construct)(struct neighbour *n);
1015 void (*ndo_neigh_destroy)(struct neighbour *n);
1016
1017 int (*ndo_fdb_add)(struct ndmsg *ndm,
1018 struct net_device *dev,
1019 unsigned char *addr,
1020 u16 flags);
1021 int (*ndo_fdb_del)(struct ndmsg *ndm,
1022 struct net_device *dev,
1023 unsigned char *addr);
1024 int (*ndo_fdb_dump)(struct sk_buff *skb,
1025 struct netlink_callback *cb,
1026 struct net_device *dev,
1027 int idx);
1028 };
1029
1030 /*
1031 * The DEVICE structure.
1032 * Actually, this whole structure is a big mistake. It mixes I/O
1033 * data with strictly "high-level" data, and it has to know about
1034 * almost every data structure used in the INET module.
1035 *
1036 * FIXME: cleanup struct net_device such that network protocol info
1037 * moves out.
1038 */
1039
1040 struct net_device {
1041
1042 /*
1043 * This is the first field of the "visible" part of this structure
1044 * (i.e. as seen by users in the "Space.c" file). It is the name
1045 * of the interface.
1046 */
1047 char name[IFNAMSIZ];
1048
1049 /* device name hash chain, please keep it close to name[] */
1050 struct hlist_node name_hlist;
1051
1052 /* snmp alias */
1053 char *ifalias;
1054
1055 /*
1056 * I/O specific fields
1057 * FIXME: Merge these and struct ifmap into one
1058 */
1059 unsigned long mem_end; /* shared mem end */
1060 unsigned long mem_start; /* shared mem start */
1061 unsigned long base_addr; /* device I/O address */
1062 unsigned int irq; /* device IRQ number */
1063
1064 /*
1065 * Some hardware also needs these fields, but they are not
1066 * part of the usual set specified in Space.c.
1067 */
1068
1069 unsigned long state;
1070
1071 struct list_head dev_list;
1072 struct list_head napi_list;
1073 struct list_head unreg_list;
1074
1075 /* currently active device features */
1076 netdev_features_t features;
1077 /* user-changeable features */
1078 netdev_features_t hw_features;
1079 /* user-requested features */
1080 netdev_features_t wanted_features;
1081 /* mask of features inheritable by VLAN devices */
1082 netdev_features_t vlan_features;
1083
1084 /* Interface index. Unique device identifier */
1085 int ifindex;
1086 int iflink;
1087
1088 struct net_device_stats stats;
1089 atomic_long_t rx_dropped; /* dropped packets by core network
1090 * Do not use this in drivers.
1091 */
1092
1093 #ifdef CONFIG_WIRELESS_EXT
1094 /* List of functions to handle Wireless Extensions (instead of ioctl).
1095 * See <net/iw_handler.h> for details. Jean II */
1096 const struct iw_handler_def * wireless_handlers;
1097 /* Instance data managed by the core of Wireless Extensions. */
1098 struct iw_public_data * wireless_data;
1099 #endif
1100 /* Management operations */
1101 const struct net_device_ops *netdev_ops;
1102 const struct ethtool_ops *ethtool_ops;
1103
1104 /* Hardware header description */
1105 const struct header_ops *header_ops;
1106
1107 unsigned int flags; /* interface flags (a la BSD) */
1108 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1109 * See if.h for definitions. */
1110 unsigned short gflags;
1111 unsigned short padded; /* How much padding added by alloc_netdev() */
1112
1113 unsigned char operstate; /* RFC2863 operstate */
1114 unsigned char link_mode; /* mapping policy to operstate */
1115
1116 unsigned char if_port; /* Selectable AUI, TP,..*/
1117 unsigned char dma; /* DMA channel */
1118
1119 unsigned int mtu; /* interface MTU value */
1120 unsigned short type; /* interface hardware type */
1121 unsigned short hard_header_len; /* hardware hdr length */
1122
1123 /* extra head- and tailroom the hardware may need, but not in all cases
1124 * can this be guaranteed, especially tailroom. Some cases also use
1125 * LL_MAX_HEADER instead to allocate the skb.
1126 */
1127 unsigned short needed_headroom;
1128 unsigned short needed_tailroom;
1129
1130 /* Interface address info. */
1131 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1132 unsigned char addr_assign_type; /* hw address assignment type */
1133 unsigned char addr_len; /* hardware address length */
1134 unsigned char neigh_priv_len;
1135 unsigned short dev_id; /* for shared network cards */
1136
1137 spinlock_t addr_list_lock;
1138 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1139 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1140 bool uc_promisc;
1141 unsigned int promiscuity;
1142 unsigned int allmulti;
1143
1144
1145 /* Protocol specific pointers */
1146
1147 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1148 struct vlan_info __rcu *vlan_info; /* VLAN info */
1149 #endif
1150 #if IS_ENABLED(CONFIG_NET_DSA)
1151 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1152 #endif
1153 void *atalk_ptr; /* AppleTalk link */
1154 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1155 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1156 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1157 void *ax25_ptr; /* AX.25 specific data */
1158 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1159 assign before registering */
1160
1161 /*
1162 * Cache lines mostly used on receive path (including eth_type_trans())
1163 */
1164 unsigned long last_rx; /* Time of last Rx
1165 * This should not be set in
1166 * drivers, unless really needed,
1167 * because network stack (bonding)
1168 * use it if/when necessary, to
1169 * avoid dirtying this cache line.
1170 */
1171
1172 struct net_device *master; /* Pointer to master device of a group,
1173 * which this device is member of.
1174 */
1175
1176 /* Interface address info used in eth_type_trans() */
1177 unsigned char *dev_addr; /* hw address, (before bcast
1178 because most packets are
1179 unicast) */
1180
1181 struct netdev_hw_addr_list dev_addrs; /* list of device
1182 hw addresses */
1183
1184 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1185
1186 #ifdef CONFIG_SYSFS
1187 struct kset *queues_kset;
1188 #endif
1189
1190 #ifdef CONFIG_RPS
1191 struct netdev_rx_queue *_rx;
1192
1193 /* Number of RX queues allocated at register_netdev() time */
1194 unsigned int num_rx_queues;
1195
1196 /* Number of RX queues currently active in device */
1197 unsigned int real_num_rx_queues;
1198
1199 #ifdef CONFIG_RFS_ACCEL
1200 /* CPU reverse-mapping for RX completion interrupts, indexed
1201 * by RX queue number. Assigned by driver. This must only be
1202 * set if the ndo_rx_flow_steer operation is defined. */
1203 struct cpu_rmap *rx_cpu_rmap;
1204 #endif
1205 #endif
1206
1207 rx_handler_func_t __rcu *rx_handler;
1208 void __rcu *rx_handler_data;
1209
1210 struct netdev_queue __rcu *ingress_queue;
1211
1212 /*
1213 * Cache lines mostly used on transmit path
1214 */
1215 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1216
1217 /* Number of TX queues allocated at alloc_netdev_mq() time */
1218 unsigned int num_tx_queues;
1219
1220 /* Number of TX queues currently active in device */
1221 unsigned int real_num_tx_queues;
1222
1223 /* root qdisc from userspace point of view */
1224 struct Qdisc *qdisc;
1225
1226 unsigned long tx_queue_len; /* Max frames per queue allowed */
1227 spinlock_t tx_global_lock;
1228
1229 #ifdef CONFIG_XPS
1230 struct xps_dev_maps __rcu *xps_maps;
1231 #endif
1232
1233 /* These may be needed for future network-power-down code. */
1234
1235 /*
1236 * trans_start here is expensive for high speed devices on SMP,
1237 * please use netdev_queue->trans_start instead.
1238 */
1239 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1240
1241 int watchdog_timeo; /* used by dev_watchdog() */
1242 struct timer_list watchdog_timer;
1243
1244 /* Number of references to this device */
1245 int __percpu *pcpu_refcnt;
1246
1247 /* delayed register/unregister */
1248 struct list_head todo_list;
1249 /* device index hash chain */
1250 struct hlist_node index_hlist;
1251
1252 struct list_head link_watch_list;
1253
1254 /* register/unregister state machine */
1255 enum { NETREG_UNINITIALIZED=0,
1256 NETREG_REGISTERED, /* completed register_netdevice */
1257 NETREG_UNREGISTERING, /* called unregister_netdevice */
1258 NETREG_UNREGISTERED, /* completed unregister todo */
1259 NETREG_RELEASED, /* called free_netdev */
1260 NETREG_DUMMY, /* dummy device for NAPI poll */
1261 } reg_state:8;
1262
1263 bool dismantle; /* device is going do be freed */
1264
1265 enum {
1266 RTNL_LINK_INITIALIZED,
1267 RTNL_LINK_INITIALIZING,
1268 } rtnl_link_state:16;
1269
1270 /* Called from unregister, can be used to call free_netdev */
1271 void (*destructor)(struct net_device *dev);
1272
1273 #ifdef CONFIG_NETPOLL
1274 struct netpoll_info *npinfo;
1275 #endif
1276
1277 #ifdef CONFIG_NET_NS
1278 /* Network namespace this network device is inside */
1279 struct net *nd_net;
1280 #endif
1281
1282 /* mid-layer private */
1283 union {
1284 void *ml_priv;
1285 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1286 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1287 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1288 };
1289 /* GARP */
1290 struct garp_port __rcu *garp_port;
1291
1292 /* class/net/name entry */
1293 struct device dev;
1294 /* space for optional device, statistics, and wireless sysfs groups */
1295 const struct attribute_group *sysfs_groups[4];
1296
1297 /* rtnetlink link ops */
1298 const struct rtnl_link_ops *rtnl_link_ops;
1299
1300 /* for setting kernel sock attribute on TCP connection setup */
1301 #define GSO_MAX_SIZE 65536
1302 unsigned int gso_max_size;
1303 #define GSO_MAX_SEGS 65535
1304 u16 gso_max_segs;
1305
1306 #ifdef CONFIG_DCB
1307 /* Data Center Bridging netlink ops */
1308 const struct dcbnl_rtnl_ops *dcbnl_ops;
1309 #endif
1310 u8 num_tc;
1311 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1312 u8 prio_tc_map[TC_BITMASK + 1];
1313
1314 #if IS_ENABLED(CONFIG_FCOE)
1315 /* max exchange id for FCoE LRO by ddp */
1316 unsigned int fcoe_ddp_xid;
1317 #endif
1318 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1319 struct netprio_map __rcu *priomap;
1320 #endif
1321 /* phy device may attach itself for hardware timestamping */
1322 struct phy_device *phydev;
1323
1324 /* group the device belongs to */
1325 int group;
1326
1327 struct pm_qos_request pm_qos_req;
1328 };
1329 #define to_net_dev(d) container_of(d, struct net_device, dev)
1330
1331 #define NETDEV_ALIGN 32
1332
1333 static inline
1334 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1335 {
1336 return dev->prio_tc_map[prio & TC_BITMASK];
1337 }
1338
1339 static inline
1340 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1341 {
1342 if (tc >= dev->num_tc)
1343 return -EINVAL;
1344
1345 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1346 return 0;
1347 }
1348
1349 static inline
1350 void netdev_reset_tc(struct net_device *dev)
1351 {
1352 dev->num_tc = 0;
1353 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1354 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1355 }
1356
1357 static inline
1358 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1359 {
1360 if (tc >= dev->num_tc)
1361 return -EINVAL;
1362
1363 dev->tc_to_txq[tc].count = count;
1364 dev->tc_to_txq[tc].offset = offset;
1365 return 0;
1366 }
1367
1368 static inline
1369 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1370 {
1371 if (num_tc > TC_MAX_QUEUE)
1372 return -EINVAL;
1373
1374 dev->num_tc = num_tc;
1375 return 0;
1376 }
1377
1378 static inline
1379 int netdev_get_num_tc(struct net_device *dev)
1380 {
1381 return dev->num_tc;
1382 }
1383
1384 static inline
1385 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1386 unsigned int index)
1387 {
1388 return &dev->_tx[index];
1389 }
1390
1391 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1392 void (*f)(struct net_device *,
1393 struct netdev_queue *,
1394 void *),
1395 void *arg)
1396 {
1397 unsigned int i;
1398
1399 for (i = 0; i < dev->num_tx_queues; i++)
1400 f(dev, &dev->_tx[i], arg);
1401 }
1402
1403 /*
1404 * Net namespace inlines
1405 */
1406 static inline
1407 struct net *dev_net(const struct net_device *dev)
1408 {
1409 return read_pnet(&dev->nd_net);
1410 }
1411
1412 static inline
1413 void dev_net_set(struct net_device *dev, struct net *net)
1414 {
1415 #ifdef CONFIG_NET_NS
1416 release_net(dev->nd_net);
1417 dev->nd_net = hold_net(net);
1418 #endif
1419 }
1420
1421 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1422 {
1423 #ifdef CONFIG_NET_DSA_TAG_DSA
1424 if (dev->dsa_ptr != NULL)
1425 return dsa_uses_dsa_tags(dev->dsa_ptr);
1426 #endif
1427
1428 return 0;
1429 }
1430
1431 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1432 {
1433 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1434 if (dev->dsa_ptr != NULL)
1435 return dsa_uses_trailer_tags(dev->dsa_ptr);
1436 #endif
1437
1438 return 0;
1439 }
1440
1441 /**
1442 * netdev_priv - access network device private data
1443 * @dev: network device
1444 *
1445 * Get network device private data
1446 */
1447 static inline void *netdev_priv(const struct net_device *dev)
1448 {
1449 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1450 }
1451
1452 /* Set the sysfs physical device reference for the network logical device
1453 * if set prior to registration will cause a symlink during initialization.
1454 */
1455 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1456
1457 /* Set the sysfs device type for the network logical device to allow
1458 * fin grained indentification of different network device types. For
1459 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1460 */
1461 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1462
1463 /**
1464 * netif_napi_add - initialize a napi context
1465 * @dev: network device
1466 * @napi: napi context
1467 * @poll: polling function
1468 * @weight: default weight
1469 *
1470 * netif_napi_add() must be used to initialize a napi context prior to calling
1471 * *any* of the other napi related functions.
1472 */
1473 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1474 int (*poll)(struct napi_struct *, int), int weight);
1475
1476 /**
1477 * netif_napi_del - remove a napi context
1478 * @napi: napi context
1479 *
1480 * netif_napi_del() removes a napi context from the network device napi list
1481 */
1482 void netif_napi_del(struct napi_struct *napi);
1483
1484 struct napi_gro_cb {
1485 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1486 void *frag0;
1487
1488 /* Length of frag0. */
1489 unsigned int frag0_len;
1490
1491 /* This indicates where we are processing relative to skb->data. */
1492 int data_offset;
1493
1494 /* This is non-zero if the packet may be of the same flow. */
1495 int same_flow;
1496
1497 /* This is non-zero if the packet cannot be merged with the new skb. */
1498 int flush;
1499
1500 /* Number of segments aggregated. */
1501 int count;
1502
1503 /* Free the skb? */
1504 int free;
1505 #define NAPI_GRO_FREE 1
1506 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1507 };
1508
1509 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1510
1511 struct packet_type {
1512 __be16 type; /* This is really htons(ether_type). */
1513 struct net_device *dev; /* NULL is wildcarded here */
1514 int (*func) (struct sk_buff *,
1515 struct net_device *,
1516 struct packet_type *,
1517 struct net_device *);
1518 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1519 netdev_features_t features);
1520 int (*gso_send_check)(struct sk_buff *skb);
1521 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1522 struct sk_buff *skb);
1523 int (*gro_complete)(struct sk_buff *skb);
1524 void *af_packet_priv;
1525 struct list_head list;
1526 };
1527
1528 #include <linux/notifier.h>
1529
1530 /* netdevice notifier chain. Please remember to update the rtnetlink
1531 * notification exclusion list in rtnetlink_event() when adding new
1532 * types.
1533 */
1534 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1535 #define NETDEV_DOWN 0x0002
1536 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1537 detected a hardware crash and restarted
1538 - we can use this eg to kick tcp sessions
1539 once done */
1540 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1541 #define NETDEV_REGISTER 0x0005
1542 #define NETDEV_UNREGISTER 0x0006
1543 #define NETDEV_CHANGEMTU 0x0007
1544 #define NETDEV_CHANGEADDR 0x0008
1545 #define NETDEV_GOING_DOWN 0x0009
1546 #define NETDEV_CHANGENAME 0x000A
1547 #define NETDEV_FEAT_CHANGE 0x000B
1548 #define NETDEV_BONDING_FAILOVER 0x000C
1549 #define NETDEV_PRE_UP 0x000D
1550 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1551 #define NETDEV_POST_TYPE_CHANGE 0x000F
1552 #define NETDEV_POST_INIT 0x0010
1553 #define NETDEV_UNREGISTER_BATCH 0x0011
1554 #define NETDEV_RELEASE 0x0012
1555 #define NETDEV_NOTIFY_PEERS 0x0013
1556 #define NETDEV_JOIN 0x0014
1557
1558 extern int register_netdevice_notifier(struct notifier_block *nb);
1559 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1560 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1561
1562
1563 extern rwlock_t dev_base_lock; /* Device list lock */
1564
1565
1566 #define for_each_netdev(net, d) \
1567 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1568 #define for_each_netdev_reverse(net, d) \
1569 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1570 #define for_each_netdev_rcu(net, d) \
1571 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1572 #define for_each_netdev_safe(net, d, n) \
1573 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1574 #define for_each_netdev_continue(net, d) \
1575 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1576 #define for_each_netdev_continue_rcu(net, d) \
1577 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1578 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1579
1580 static inline struct net_device *next_net_device(struct net_device *dev)
1581 {
1582 struct list_head *lh;
1583 struct net *net;
1584
1585 net = dev_net(dev);
1586 lh = dev->dev_list.next;
1587 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1588 }
1589
1590 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1591 {
1592 struct list_head *lh;
1593 struct net *net;
1594
1595 net = dev_net(dev);
1596 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1597 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1598 }
1599
1600 static inline struct net_device *first_net_device(struct net *net)
1601 {
1602 return list_empty(&net->dev_base_head) ? NULL :
1603 net_device_entry(net->dev_base_head.next);
1604 }
1605
1606 static inline struct net_device *first_net_device_rcu(struct net *net)
1607 {
1608 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1609
1610 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1611 }
1612
1613 extern int netdev_boot_setup_check(struct net_device *dev);
1614 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1615 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1616 const char *hwaddr);
1617 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1618 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1619 extern void dev_add_pack(struct packet_type *pt);
1620 extern void dev_remove_pack(struct packet_type *pt);
1621 extern void __dev_remove_pack(struct packet_type *pt);
1622
1623 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1624 unsigned short mask);
1625 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1626 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1627 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1628 extern int dev_alloc_name(struct net_device *dev, const char *name);
1629 extern int dev_open(struct net_device *dev);
1630 extern int dev_close(struct net_device *dev);
1631 extern void dev_disable_lro(struct net_device *dev);
1632 extern int dev_loopback_xmit(struct sk_buff *newskb);
1633 extern int dev_queue_xmit(struct sk_buff *skb);
1634 extern int register_netdevice(struct net_device *dev);
1635 extern void unregister_netdevice_queue(struct net_device *dev,
1636 struct list_head *head);
1637 extern void unregister_netdevice_many(struct list_head *head);
1638 static inline void unregister_netdevice(struct net_device *dev)
1639 {
1640 unregister_netdevice_queue(dev, NULL);
1641 }
1642
1643 extern int netdev_refcnt_read(const struct net_device *dev);
1644 extern void free_netdev(struct net_device *dev);
1645 extern void synchronize_net(void);
1646 extern int init_dummy_netdev(struct net_device *dev);
1647 extern void netdev_resync_ops(struct net_device *dev);
1648
1649 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1650 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1651 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1652 extern int dev_restart(struct net_device *dev);
1653 #ifdef CONFIG_NETPOLL_TRAP
1654 extern int netpoll_trap(void);
1655 #endif
1656 extern int skb_gro_receive(struct sk_buff **head,
1657 struct sk_buff *skb);
1658 extern void skb_gro_reset_offset(struct sk_buff *skb);
1659
1660 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1661 {
1662 return NAPI_GRO_CB(skb)->data_offset;
1663 }
1664
1665 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1666 {
1667 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1668 }
1669
1670 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1671 {
1672 NAPI_GRO_CB(skb)->data_offset += len;
1673 }
1674
1675 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1676 unsigned int offset)
1677 {
1678 return NAPI_GRO_CB(skb)->frag0 + offset;
1679 }
1680
1681 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1682 {
1683 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1684 }
1685
1686 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1687 unsigned int offset)
1688 {
1689 if (!pskb_may_pull(skb, hlen))
1690 return NULL;
1691
1692 NAPI_GRO_CB(skb)->frag0 = NULL;
1693 NAPI_GRO_CB(skb)->frag0_len = 0;
1694 return skb->data + offset;
1695 }
1696
1697 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1698 {
1699 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1700 }
1701
1702 static inline void *skb_gro_network_header(struct sk_buff *skb)
1703 {
1704 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1705 skb_network_offset(skb);
1706 }
1707
1708 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1709 unsigned short type,
1710 const void *daddr, const void *saddr,
1711 unsigned int len)
1712 {
1713 if (!dev->header_ops || !dev->header_ops->create)
1714 return 0;
1715
1716 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1717 }
1718
1719 static inline int dev_parse_header(const struct sk_buff *skb,
1720 unsigned char *haddr)
1721 {
1722 const struct net_device *dev = skb->dev;
1723
1724 if (!dev->header_ops || !dev->header_ops->parse)
1725 return 0;
1726 return dev->header_ops->parse(skb, haddr);
1727 }
1728
1729 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1730 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1731 static inline int unregister_gifconf(unsigned int family)
1732 {
1733 return register_gifconf(family, NULL);
1734 }
1735
1736 /*
1737 * Incoming packets are placed on per-cpu queues
1738 */
1739 struct softnet_data {
1740 struct Qdisc *output_queue;
1741 struct Qdisc **output_queue_tailp;
1742 struct list_head poll_list;
1743 struct sk_buff *completion_queue;
1744 struct sk_buff_head process_queue;
1745
1746 /* stats */
1747 unsigned int processed;
1748 unsigned int time_squeeze;
1749 unsigned int cpu_collision;
1750 unsigned int received_rps;
1751
1752 #ifdef CONFIG_RPS
1753 struct softnet_data *rps_ipi_list;
1754
1755 /* Elements below can be accessed between CPUs for RPS */
1756 struct call_single_data csd ____cacheline_aligned_in_smp;
1757 struct softnet_data *rps_ipi_next;
1758 unsigned int cpu;
1759 unsigned int input_queue_head;
1760 unsigned int input_queue_tail;
1761 #endif
1762 unsigned int dropped;
1763 struct sk_buff_head input_pkt_queue;
1764 struct napi_struct backlog;
1765 };
1766
1767 static inline void input_queue_head_incr(struct softnet_data *sd)
1768 {
1769 #ifdef CONFIG_RPS
1770 sd->input_queue_head++;
1771 #endif
1772 }
1773
1774 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1775 unsigned int *qtail)
1776 {
1777 #ifdef CONFIG_RPS
1778 *qtail = ++sd->input_queue_tail;
1779 #endif
1780 }
1781
1782 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1783
1784 extern void __netif_schedule(struct Qdisc *q);
1785
1786 static inline void netif_schedule_queue(struct netdev_queue *txq)
1787 {
1788 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1789 __netif_schedule(txq->qdisc);
1790 }
1791
1792 static inline void netif_tx_schedule_all(struct net_device *dev)
1793 {
1794 unsigned int i;
1795
1796 for (i = 0; i < dev->num_tx_queues; i++)
1797 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1798 }
1799
1800 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1801 {
1802 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1803 }
1804
1805 /**
1806 * netif_start_queue - allow transmit
1807 * @dev: network device
1808 *
1809 * Allow upper layers to call the device hard_start_xmit routine.
1810 */
1811 static inline void netif_start_queue(struct net_device *dev)
1812 {
1813 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1814 }
1815
1816 static inline void netif_tx_start_all_queues(struct net_device *dev)
1817 {
1818 unsigned int i;
1819
1820 for (i = 0; i < dev->num_tx_queues; i++) {
1821 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1822 netif_tx_start_queue(txq);
1823 }
1824 }
1825
1826 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1827 {
1828 #ifdef CONFIG_NETPOLL_TRAP
1829 if (netpoll_trap()) {
1830 netif_tx_start_queue(dev_queue);
1831 return;
1832 }
1833 #endif
1834 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1835 __netif_schedule(dev_queue->qdisc);
1836 }
1837
1838 /**
1839 * netif_wake_queue - restart transmit
1840 * @dev: network device
1841 *
1842 * Allow upper layers to call the device hard_start_xmit routine.
1843 * Used for flow control when transmit resources are available.
1844 */
1845 static inline void netif_wake_queue(struct net_device *dev)
1846 {
1847 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1848 }
1849
1850 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1851 {
1852 unsigned int i;
1853
1854 for (i = 0; i < dev->num_tx_queues; i++) {
1855 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1856 netif_tx_wake_queue(txq);
1857 }
1858 }
1859
1860 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1861 {
1862 if (WARN_ON(!dev_queue)) {
1863 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1864 return;
1865 }
1866 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1867 }
1868
1869 /**
1870 * netif_stop_queue - stop transmitted packets
1871 * @dev: network device
1872 *
1873 * Stop upper layers calling the device hard_start_xmit routine.
1874 * Used for flow control when transmit resources are unavailable.
1875 */
1876 static inline void netif_stop_queue(struct net_device *dev)
1877 {
1878 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1879 }
1880
1881 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1882 {
1883 unsigned int i;
1884
1885 for (i = 0; i < dev->num_tx_queues; i++) {
1886 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1887 netif_tx_stop_queue(txq);
1888 }
1889 }
1890
1891 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1892 {
1893 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1894 }
1895
1896 /**
1897 * netif_queue_stopped - test if transmit queue is flowblocked
1898 * @dev: network device
1899 *
1900 * Test if transmit queue on device is currently unable to send.
1901 */
1902 static inline bool netif_queue_stopped(const struct net_device *dev)
1903 {
1904 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1905 }
1906
1907 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1908 {
1909 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1910 }
1911
1912 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1913 {
1914 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1915 }
1916
1917 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1918 unsigned int bytes)
1919 {
1920 #ifdef CONFIG_BQL
1921 dql_queued(&dev_queue->dql, bytes);
1922
1923 if (likely(dql_avail(&dev_queue->dql) >= 0))
1924 return;
1925
1926 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1927
1928 /*
1929 * The XOFF flag must be set before checking the dql_avail below,
1930 * because in netdev_tx_completed_queue we update the dql_completed
1931 * before checking the XOFF flag.
1932 */
1933 smp_mb();
1934
1935 /* check again in case another CPU has just made room avail */
1936 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1937 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1938 #endif
1939 }
1940
1941 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1942 {
1943 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1944 }
1945
1946 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1947 unsigned int pkts, unsigned int bytes)
1948 {
1949 #ifdef CONFIG_BQL
1950 if (unlikely(!bytes))
1951 return;
1952
1953 dql_completed(&dev_queue->dql, bytes);
1954
1955 /*
1956 * Without the memory barrier there is a small possiblity that
1957 * netdev_tx_sent_queue will miss the update and cause the queue to
1958 * be stopped forever
1959 */
1960 smp_mb();
1961
1962 if (dql_avail(&dev_queue->dql) < 0)
1963 return;
1964
1965 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1966 netif_schedule_queue(dev_queue);
1967 #endif
1968 }
1969
1970 static inline void netdev_completed_queue(struct net_device *dev,
1971 unsigned int pkts, unsigned int bytes)
1972 {
1973 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1974 }
1975
1976 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1977 {
1978 #ifdef CONFIG_BQL
1979 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1980 dql_reset(&q->dql);
1981 #endif
1982 }
1983
1984 static inline void netdev_reset_queue(struct net_device *dev_queue)
1985 {
1986 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1987 }
1988
1989 /**
1990 * netif_running - test if up
1991 * @dev: network device
1992 *
1993 * Test if the device has been brought up.
1994 */
1995 static inline bool netif_running(const struct net_device *dev)
1996 {
1997 return test_bit(__LINK_STATE_START, &dev->state);
1998 }
1999
2000 /*
2001 * Routines to manage the subqueues on a device. We only need start
2002 * stop, and a check if it's stopped. All other device management is
2003 * done at the overall netdevice level.
2004 * Also test the device if we're multiqueue.
2005 */
2006
2007 /**
2008 * netif_start_subqueue - allow sending packets on subqueue
2009 * @dev: network device
2010 * @queue_index: sub queue index
2011 *
2012 * Start individual transmit queue of a device with multiple transmit queues.
2013 */
2014 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2015 {
2016 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2017
2018 netif_tx_start_queue(txq);
2019 }
2020
2021 /**
2022 * netif_stop_subqueue - stop sending packets on subqueue
2023 * @dev: network device
2024 * @queue_index: sub queue index
2025 *
2026 * Stop individual transmit queue of a device with multiple transmit queues.
2027 */
2028 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2029 {
2030 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2031 #ifdef CONFIG_NETPOLL_TRAP
2032 if (netpoll_trap())
2033 return;
2034 #endif
2035 netif_tx_stop_queue(txq);
2036 }
2037
2038 /**
2039 * netif_subqueue_stopped - test status of subqueue
2040 * @dev: network device
2041 * @queue_index: sub queue index
2042 *
2043 * Check individual transmit queue of a device with multiple transmit queues.
2044 */
2045 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2046 u16 queue_index)
2047 {
2048 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2049
2050 return netif_tx_queue_stopped(txq);
2051 }
2052
2053 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2054 struct sk_buff *skb)
2055 {
2056 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2057 }
2058
2059 /**
2060 * netif_wake_subqueue - allow sending packets on subqueue
2061 * @dev: network device
2062 * @queue_index: sub queue index
2063 *
2064 * Resume individual transmit queue of a device with multiple transmit queues.
2065 */
2066 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2067 {
2068 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2069 #ifdef CONFIG_NETPOLL_TRAP
2070 if (netpoll_trap())
2071 return;
2072 #endif
2073 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2074 __netif_schedule(txq->qdisc);
2075 }
2076
2077 /*
2078 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2079 * as a distribution range limit for the returned value.
2080 */
2081 static inline u16 skb_tx_hash(const struct net_device *dev,
2082 const struct sk_buff *skb)
2083 {
2084 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2085 }
2086
2087 /**
2088 * netif_is_multiqueue - test if device has multiple transmit queues
2089 * @dev: network device
2090 *
2091 * Check if device has multiple transmit queues
2092 */
2093 static inline bool netif_is_multiqueue(const struct net_device *dev)
2094 {
2095 return dev->num_tx_queues > 1;
2096 }
2097
2098 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2099 unsigned int txq);
2100
2101 #ifdef CONFIG_RPS
2102 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2103 unsigned int rxq);
2104 #else
2105 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2106 unsigned int rxq)
2107 {
2108 return 0;
2109 }
2110 #endif
2111
2112 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2113 const struct net_device *from_dev)
2114 {
2115 int err;
2116
2117 err = netif_set_real_num_tx_queues(to_dev,
2118 from_dev->real_num_tx_queues);
2119 if (err)
2120 return err;
2121 #ifdef CONFIG_RPS
2122 return netif_set_real_num_rx_queues(to_dev,
2123 from_dev->real_num_rx_queues);
2124 #else
2125 return 0;
2126 #endif
2127 }
2128
2129 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2130 extern int netif_get_num_default_rss_queues(void);
2131
2132 /* Use this variant when it is known for sure that it
2133 * is executing from hardware interrupt context or with hardware interrupts
2134 * disabled.
2135 */
2136 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2137
2138 /* Use this variant in places where it could be invoked
2139 * from either hardware interrupt or other context, with hardware interrupts
2140 * either disabled or enabled.
2141 */
2142 extern void dev_kfree_skb_any(struct sk_buff *skb);
2143
2144 extern int netif_rx(struct sk_buff *skb);
2145 extern int netif_rx_ni(struct sk_buff *skb);
2146 extern int netif_receive_skb(struct sk_buff *skb);
2147 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2148 struct sk_buff *skb);
2149 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2150 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2151 struct sk_buff *skb);
2152 extern void napi_gro_flush(struct napi_struct *napi);
2153 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2154 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2155 struct sk_buff *skb,
2156 gro_result_t ret);
2157 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2158
2159 static inline void napi_free_frags(struct napi_struct *napi)
2160 {
2161 kfree_skb(napi->skb);
2162 napi->skb = NULL;
2163 }
2164
2165 extern int netdev_rx_handler_register(struct net_device *dev,
2166 rx_handler_func_t *rx_handler,
2167 void *rx_handler_data);
2168 extern void netdev_rx_handler_unregister(struct net_device *dev);
2169
2170 extern bool dev_valid_name(const char *name);
2171 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2172 extern int dev_ethtool(struct net *net, struct ifreq *);
2173 extern unsigned int dev_get_flags(const struct net_device *);
2174 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2175 extern int dev_change_flags(struct net_device *, unsigned int);
2176 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2177 extern int dev_change_name(struct net_device *, const char *);
2178 extern int dev_set_alias(struct net_device *, const char *, size_t);
2179 extern int dev_change_net_namespace(struct net_device *,
2180 struct net *, const char *);
2181 extern int dev_set_mtu(struct net_device *, int);
2182 extern void dev_set_group(struct net_device *, int);
2183 extern int dev_set_mac_address(struct net_device *,
2184 struct sockaddr *);
2185 extern int dev_hard_start_xmit(struct sk_buff *skb,
2186 struct net_device *dev,
2187 struct netdev_queue *txq);
2188 extern int dev_forward_skb(struct net_device *dev,
2189 struct sk_buff *skb);
2190
2191 extern int netdev_budget;
2192
2193 /* Called by rtnetlink.c:rtnl_unlock() */
2194 extern void netdev_run_todo(void);
2195
2196 /**
2197 * dev_put - release reference to device
2198 * @dev: network device
2199 *
2200 * Release reference to device to allow it to be freed.
2201 */
2202 static inline void dev_put(struct net_device *dev)
2203 {
2204 this_cpu_dec(*dev->pcpu_refcnt);
2205 }
2206
2207 /**
2208 * dev_hold - get reference to device
2209 * @dev: network device
2210 *
2211 * Hold reference to device to keep it from being freed.
2212 */
2213 static inline void dev_hold(struct net_device *dev)
2214 {
2215 this_cpu_inc(*dev->pcpu_refcnt);
2216 }
2217
2218 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2219 * and _off may be called from IRQ context, but it is caller
2220 * who is responsible for serialization of these calls.
2221 *
2222 * The name carrier is inappropriate, these functions should really be
2223 * called netif_lowerlayer_*() because they represent the state of any
2224 * kind of lower layer not just hardware media.
2225 */
2226
2227 extern void linkwatch_fire_event(struct net_device *dev);
2228 extern void linkwatch_forget_dev(struct net_device *dev);
2229
2230 /**
2231 * netif_carrier_ok - test if carrier present
2232 * @dev: network device
2233 *
2234 * Check if carrier is present on device
2235 */
2236 static inline bool netif_carrier_ok(const struct net_device *dev)
2237 {
2238 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2239 }
2240
2241 extern unsigned long dev_trans_start(struct net_device *dev);
2242
2243 extern void __netdev_watchdog_up(struct net_device *dev);
2244
2245 extern void netif_carrier_on(struct net_device *dev);
2246
2247 extern void netif_carrier_off(struct net_device *dev);
2248
2249 extern void netif_notify_peers(struct net_device *dev);
2250
2251 /**
2252 * netif_dormant_on - mark device as dormant.
2253 * @dev: network device
2254 *
2255 * Mark device as dormant (as per RFC2863).
2256 *
2257 * The dormant state indicates that the relevant interface is not
2258 * actually in a condition to pass packets (i.e., it is not 'up') but is
2259 * in a "pending" state, waiting for some external event. For "on-
2260 * demand" interfaces, this new state identifies the situation where the
2261 * interface is waiting for events to place it in the up state.
2262 *
2263 */
2264 static inline void netif_dormant_on(struct net_device *dev)
2265 {
2266 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2267 linkwatch_fire_event(dev);
2268 }
2269
2270 /**
2271 * netif_dormant_off - set device as not dormant.
2272 * @dev: network device
2273 *
2274 * Device is not in dormant state.
2275 */
2276 static inline void netif_dormant_off(struct net_device *dev)
2277 {
2278 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2279 linkwatch_fire_event(dev);
2280 }
2281
2282 /**
2283 * netif_dormant - test if carrier present
2284 * @dev: network device
2285 *
2286 * Check if carrier is present on device
2287 */
2288 static inline bool netif_dormant(const struct net_device *dev)
2289 {
2290 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2291 }
2292
2293
2294 /**
2295 * netif_oper_up - test if device is operational
2296 * @dev: network device
2297 *
2298 * Check if carrier is operational
2299 */
2300 static inline bool netif_oper_up(const struct net_device *dev)
2301 {
2302 return (dev->operstate == IF_OPER_UP ||
2303 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2304 }
2305
2306 /**
2307 * netif_device_present - is device available or removed
2308 * @dev: network device
2309 *
2310 * Check if device has not been removed from system.
2311 */
2312 static inline bool netif_device_present(struct net_device *dev)
2313 {
2314 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2315 }
2316
2317 extern void netif_device_detach(struct net_device *dev);
2318
2319 extern void netif_device_attach(struct net_device *dev);
2320
2321 /*
2322 * Network interface message level settings
2323 */
2324
2325 enum {
2326 NETIF_MSG_DRV = 0x0001,
2327 NETIF_MSG_PROBE = 0x0002,
2328 NETIF_MSG_LINK = 0x0004,
2329 NETIF_MSG_TIMER = 0x0008,
2330 NETIF_MSG_IFDOWN = 0x0010,
2331 NETIF_MSG_IFUP = 0x0020,
2332 NETIF_MSG_RX_ERR = 0x0040,
2333 NETIF_MSG_TX_ERR = 0x0080,
2334 NETIF_MSG_TX_QUEUED = 0x0100,
2335 NETIF_MSG_INTR = 0x0200,
2336 NETIF_MSG_TX_DONE = 0x0400,
2337 NETIF_MSG_RX_STATUS = 0x0800,
2338 NETIF_MSG_PKTDATA = 0x1000,
2339 NETIF_MSG_HW = 0x2000,
2340 NETIF_MSG_WOL = 0x4000,
2341 };
2342
2343 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2344 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2345 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2346 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2347 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2348 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2349 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2350 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2351 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2352 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2353 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2354 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2355 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2356 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2357 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2358
2359 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2360 {
2361 /* use default */
2362 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2363 return default_msg_enable_bits;
2364 if (debug_value == 0) /* no output */
2365 return 0;
2366 /* set low N bits */
2367 return (1 << debug_value) - 1;
2368 }
2369
2370 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2371 {
2372 spin_lock(&txq->_xmit_lock);
2373 txq->xmit_lock_owner = cpu;
2374 }
2375
2376 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2377 {
2378 spin_lock_bh(&txq->_xmit_lock);
2379 txq->xmit_lock_owner = smp_processor_id();
2380 }
2381
2382 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2383 {
2384 bool ok = spin_trylock(&txq->_xmit_lock);
2385 if (likely(ok))
2386 txq->xmit_lock_owner = smp_processor_id();
2387 return ok;
2388 }
2389
2390 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2391 {
2392 txq->xmit_lock_owner = -1;
2393 spin_unlock(&txq->_xmit_lock);
2394 }
2395
2396 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2397 {
2398 txq->xmit_lock_owner = -1;
2399 spin_unlock_bh(&txq->_xmit_lock);
2400 }
2401
2402 static inline void txq_trans_update(struct netdev_queue *txq)
2403 {
2404 if (txq->xmit_lock_owner != -1)
2405 txq->trans_start = jiffies;
2406 }
2407
2408 /**
2409 * netif_tx_lock - grab network device transmit lock
2410 * @dev: network device
2411 *
2412 * Get network device transmit lock
2413 */
2414 static inline void netif_tx_lock(struct net_device *dev)
2415 {
2416 unsigned int i;
2417 int cpu;
2418
2419 spin_lock(&dev->tx_global_lock);
2420 cpu = smp_processor_id();
2421 for (i = 0; i < dev->num_tx_queues; i++) {
2422 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2423
2424 /* We are the only thread of execution doing a
2425 * freeze, but we have to grab the _xmit_lock in
2426 * order to synchronize with threads which are in
2427 * the ->hard_start_xmit() handler and already
2428 * checked the frozen bit.
2429 */
2430 __netif_tx_lock(txq, cpu);
2431 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2432 __netif_tx_unlock(txq);
2433 }
2434 }
2435
2436 static inline void netif_tx_lock_bh(struct net_device *dev)
2437 {
2438 local_bh_disable();
2439 netif_tx_lock(dev);
2440 }
2441
2442 static inline void netif_tx_unlock(struct net_device *dev)
2443 {
2444 unsigned int i;
2445
2446 for (i = 0; i < dev->num_tx_queues; i++) {
2447 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2448
2449 /* No need to grab the _xmit_lock here. If the
2450 * queue is not stopped for another reason, we
2451 * force a schedule.
2452 */
2453 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2454 netif_schedule_queue(txq);
2455 }
2456 spin_unlock(&dev->tx_global_lock);
2457 }
2458
2459 static inline void netif_tx_unlock_bh(struct net_device *dev)
2460 {
2461 netif_tx_unlock(dev);
2462 local_bh_enable();
2463 }
2464
2465 #define HARD_TX_LOCK(dev, txq, cpu) { \
2466 if ((dev->features & NETIF_F_LLTX) == 0) { \
2467 __netif_tx_lock(txq, cpu); \
2468 } \
2469 }
2470
2471 #define HARD_TX_UNLOCK(dev, txq) { \
2472 if ((dev->features & NETIF_F_LLTX) == 0) { \
2473 __netif_tx_unlock(txq); \
2474 } \
2475 }
2476
2477 static inline void netif_tx_disable(struct net_device *dev)
2478 {
2479 unsigned int i;
2480 int cpu;
2481
2482 local_bh_disable();
2483 cpu = smp_processor_id();
2484 for (i = 0; i < dev->num_tx_queues; i++) {
2485 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2486
2487 __netif_tx_lock(txq, cpu);
2488 netif_tx_stop_queue(txq);
2489 __netif_tx_unlock(txq);
2490 }
2491 local_bh_enable();
2492 }
2493
2494 static inline void netif_addr_lock(struct net_device *dev)
2495 {
2496 spin_lock(&dev->addr_list_lock);
2497 }
2498
2499 static inline void netif_addr_lock_nested(struct net_device *dev)
2500 {
2501 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2502 }
2503
2504 static inline void netif_addr_lock_bh(struct net_device *dev)
2505 {
2506 spin_lock_bh(&dev->addr_list_lock);
2507 }
2508
2509 static inline void netif_addr_unlock(struct net_device *dev)
2510 {
2511 spin_unlock(&dev->addr_list_lock);
2512 }
2513
2514 static inline void netif_addr_unlock_bh(struct net_device *dev)
2515 {
2516 spin_unlock_bh(&dev->addr_list_lock);
2517 }
2518
2519 /*
2520 * dev_addrs walker. Should be used only for read access. Call with
2521 * rcu_read_lock held.
2522 */
2523 #define for_each_dev_addr(dev, ha) \
2524 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2525
2526 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2527
2528 extern void ether_setup(struct net_device *dev);
2529
2530 /* Support for loadable net-drivers */
2531 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2532 void (*setup)(struct net_device *),
2533 unsigned int txqs, unsigned int rxqs);
2534 #define alloc_netdev(sizeof_priv, name, setup) \
2535 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2536
2537 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2538 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2539
2540 extern int register_netdev(struct net_device *dev);
2541 extern void unregister_netdev(struct net_device *dev);
2542
2543 /* General hardware address lists handling functions */
2544 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2545 struct netdev_hw_addr_list *from_list,
2546 int addr_len, unsigned char addr_type);
2547 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2548 struct netdev_hw_addr_list *from_list,
2549 int addr_len, unsigned char addr_type);
2550 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2551 struct netdev_hw_addr_list *from_list,
2552 int addr_len);
2553 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2554 struct netdev_hw_addr_list *from_list,
2555 int addr_len);
2556 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2557 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2558
2559 /* Functions used for device addresses handling */
2560 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2561 unsigned char addr_type);
2562 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2563 unsigned char addr_type);
2564 extern int dev_addr_add_multiple(struct net_device *to_dev,
2565 struct net_device *from_dev,
2566 unsigned char addr_type);
2567 extern int dev_addr_del_multiple(struct net_device *to_dev,
2568 struct net_device *from_dev,
2569 unsigned char addr_type);
2570 extern void dev_addr_flush(struct net_device *dev);
2571 extern int dev_addr_init(struct net_device *dev);
2572
2573 /* Functions used for unicast addresses handling */
2574 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2575 extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr);
2576 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2577 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2578 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2579 extern void dev_uc_flush(struct net_device *dev);
2580 extern void dev_uc_init(struct net_device *dev);
2581
2582 /* Functions used for multicast addresses handling */
2583 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2584 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2585 extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr);
2586 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2587 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2588 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2589 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2590 extern void dev_mc_flush(struct net_device *dev);
2591 extern void dev_mc_init(struct net_device *dev);
2592
2593 /* Functions used for secondary unicast and multicast support */
2594 extern void dev_set_rx_mode(struct net_device *dev);
2595 extern void __dev_set_rx_mode(struct net_device *dev);
2596 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2597 extern int dev_set_allmulti(struct net_device *dev, int inc);
2598 extern void netdev_state_change(struct net_device *dev);
2599 extern int netdev_bonding_change(struct net_device *dev,
2600 unsigned long event);
2601 extern void netdev_features_change(struct net_device *dev);
2602 /* Load a device via the kmod */
2603 extern void dev_load(struct net *net, const char *name);
2604 extern void dev_mcast_init(void);
2605 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2606 struct rtnl_link_stats64 *storage);
2607 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2608 const struct net_device_stats *netdev_stats);
2609
2610 extern int netdev_max_backlog;
2611 extern int netdev_tstamp_prequeue;
2612 extern int weight_p;
2613 extern int bpf_jit_enable;
2614 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2615 extern int netdev_set_bond_master(struct net_device *dev,
2616 struct net_device *master);
2617 extern int skb_checksum_help(struct sk_buff *skb);
2618 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2619 netdev_features_t features);
2620 #ifdef CONFIG_BUG
2621 extern void netdev_rx_csum_fault(struct net_device *dev);
2622 #else
2623 static inline void netdev_rx_csum_fault(struct net_device *dev)
2624 {
2625 }
2626 #endif
2627 /* rx skb timestamps */
2628 extern void net_enable_timestamp(void);
2629 extern void net_disable_timestamp(void);
2630
2631 #ifdef CONFIG_PROC_FS
2632 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2633 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2634 extern void dev_seq_stop(struct seq_file *seq, void *v);
2635 #endif
2636
2637 extern int netdev_class_create_file(struct class_attribute *class_attr);
2638 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2639
2640 extern struct kobj_ns_type_operations net_ns_type_operations;
2641
2642 extern const char *netdev_drivername(const struct net_device *dev);
2643
2644 extern void linkwatch_run_queue(void);
2645
2646 static inline netdev_features_t netdev_get_wanted_features(
2647 struct net_device *dev)
2648 {
2649 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2650 }
2651 netdev_features_t netdev_increment_features(netdev_features_t all,
2652 netdev_features_t one, netdev_features_t mask);
2653 int __netdev_update_features(struct net_device *dev);
2654 void netdev_update_features(struct net_device *dev);
2655 void netdev_change_features(struct net_device *dev);
2656
2657 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2658 struct net_device *dev);
2659
2660 netdev_features_t netif_skb_features(struct sk_buff *skb);
2661
2662 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2663 {
2664 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2665
2666 /* check flags correspondence */
2667 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2668 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2669 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2670 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2671 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2672 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2673
2674 return (features & feature) == feature;
2675 }
2676
2677 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2678 {
2679 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2680 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2681 }
2682
2683 static inline bool netif_needs_gso(struct sk_buff *skb,
2684 netdev_features_t features)
2685 {
2686 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2687 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2688 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2689 }
2690
2691 static inline void netif_set_gso_max_size(struct net_device *dev,
2692 unsigned int size)
2693 {
2694 dev->gso_max_size = size;
2695 }
2696
2697 static inline bool netif_is_bond_slave(struct net_device *dev)
2698 {
2699 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2700 }
2701
2702 static inline bool netif_supports_nofcs(struct net_device *dev)
2703 {
2704 return dev->priv_flags & IFF_SUPP_NOFCS;
2705 }
2706
2707 extern struct pernet_operations __net_initdata loopback_net_ops;
2708
2709 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2710
2711 /* netdev_printk helpers, similar to dev_printk */
2712
2713 static inline const char *netdev_name(const struct net_device *dev)
2714 {
2715 if (dev->reg_state != NETREG_REGISTERED)
2716 return "(unregistered net_device)";
2717 return dev->name;
2718 }
2719
2720 extern int __netdev_printk(const char *level, const struct net_device *dev,
2721 struct va_format *vaf);
2722
2723 extern __printf(3, 4)
2724 int netdev_printk(const char *level, const struct net_device *dev,
2725 const char *format, ...);
2726 extern __printf(2, 3)
2727 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2728 extern __printf(2, 3)
2729 int netdev_alert(const struct net_device *dev, const char *format, ...);
2730 extern __printf(2, 3)
2731 int netdev_crit(const struct net_device *dev, const char *format, ...);
2732 extern __printf(2, 3)
2733 int netdev_err(const struct net_device *dev, const char *format, ...);
2734 extern __printf(2, 3)
2735 int netdev_warn(const struct net_device *dev, const char *format, ...);
2736 extern __printf(2, 3)
2737 int netdev_notice(const struct net_device *dev, const char *format, ...);
2738 extern __printf(2, 3)
2739 int netdev_info(const struct net_device *dev, const char *format, ...);
2740
2741 #define MODULE_ALIAS_NETDEV(device) \
2742 MODULE_ALIAS("netdev-" device)
2743
2744 #if defined(CONFIG_DYNAMIC_DEBUG)
2745 #define netdev_dbg(__dev, format, args...) \
2746 do { \
2747 dynamic_netdev_dbg(__dev, format, ##args); \
2748 } while (0)
2749 #elif defined(DEBUG)
2750 #define netdev_dbg(__dev, format, args...) \
2751 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2752 #else
2753 #define netdev_dbg(__dev, format, args...) \
2754 ({ \
2755 if (0) \
2756 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2757 0; \
2758 })
2759 #endif
2760
2761 #if defined(VERBOSE_DEBUG)
2762 #define netdev_vdbg netdev_dbg
2763 #else
2764
2765 #define netdev_vdbg(dev, format, args...) \
2766 ({ \
2767 if (0) \
2768 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2769 0; \
2770 })
2771 #endif
2772
2773 /*
2774 * netdev_WARN() acts like dev_printk(), but with the key difference
2775 * of using a WARN/WARN_ON to get the message out, including the
2776 * file/line information and a backtrace.
2777 */
2778 #define netdev_WARN(dev, format, args...) \
2779 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2780
2781 /* netif printk helpers, similar to netdev_printk */
2782
2783 #define netif_printk(priv, type, level, dev, fmt, args...) \
2784 do { \
2785 if (netif_msg_##type(priv)) \
2786 netdev_printk(level, (dev), fmt, ##args); \
2787 } while (0)
2788
2789 #define netif_level(level, priv, type, dev, fmt, args...) \
2790 do { \
2791 if (netif_msg_##type(priv)) \
2792 netdev_##level(dev, fmt, ##args); \
2793 } while (0)
2794
2795 #define netif_emerg(priv, type, dev, fmt, args...) \
2796 netif_level(emerg, priv, type, dev, fmt, ##args)
2797 #define netif_alert(priv, type, dev, fmt, args...) \
2798 netif_level(alert, priv, type, dev, fmt, ##args)
2799 #define netif_crit(priv, type, dev, fmt, args...) \
2800 netif_level(crit, priv, type, dev, fmt, ##args)
2801 #define netif_err(priv, type, dev, fmt, args...) \
2802 netif_level(err, priv, type, dev, fmt, ##args)
2803 #define netif_warn(priv, type, dev, fmt, args...) \
2804 netif_level(warn, priv, type, dev, fmt, ##args)
2805 #define netif_notice(priv, type, dev, fmt, args...) \
2806 netif_level(notice, priv, type, dev, fmt, ##args)
2807 #define netif_info(priv, type, dev, fmt, args...) \
2808 netif_level(info, priv, type, dev, fmt, ##args)
2809
2810 #if defined(CONFIG_DYNAMIC_DEBUG)
2811 #define netif_dbg(priv, type, netdev, format, args...) \
2812 do { \
2813 if (netif_msg_##type(priv)) \
2814 dynamic_netdev_dbg(netdev, format, ##args); \
2815 } while (0)
2816 #elif defined(DEBUG)
2817 #define netif_dbg(priv, type, dev, format, args...) \
2818 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2819 #else
2820 #define netif_dbg(priv, type, dev, format, args...) \
2821 ({ \
2822 if (0) \
2823 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2824 0; \
2825 })
2826 #endif
2827
2828 #if defined(VERBOSE_DEBUG)
2829 #define netif_vdbg netif_dbg
2830 #else
2831 #define netif_vdbg(priv, type, dev, format, args...) \
2832 ({ \
2833 if (0) \
2834 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2835 0; \
2836 })
2837 #endif
2838
2839 #endif /* __KERNEL__ */
2840
2841 #endif /* _LINUX_NETDEVICE_H */
This page took 0.141836 seconds and 5 git commands to generate.