Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64 /* UDP Tunnel offloads */
65 struct udp_tunnel_info;
66 struct bpf_prog;
67
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 const struct ethtool_ops *ops);
70
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73 #define NET_RX_DROP 1 /* packet dropped */
74
75 /*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously; in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89 * others are propagated to higher layers.
90 */
91
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS 0x00
94 #define NET_XMIT_DROP 0x01 /* skb dropped */
95 #define NET_XMIT_CN 0x02 /* congestion notification */
96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
97
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99 * indicates that the device will soon be dropping packets, or already drops
100 * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK 0xf0
106
107 enum netdev_tx {
108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
109 NETDEV_TX_OK = 0x00, /* driver took care of packet */
110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113
114 /*
115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117 */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 /*
121 * Positive cases with an skb consumed by a driver:
122 * - successful transmission (rc == NETDEV_TX_OK)
123 * - error while transmitting (rc < 0)
124 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 */
126 if (likely(rc < NET_XMIT_MASK))
127 return true;
128
129 return false;
130 }
131
132 /*
133 * Compute the worst-case header length according to the protocols
134 * used.
135 */
136
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 # define LL_MAX_HEADER 128
142 # else
143 # define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155
156 /*
157 * Old network device statistics. Fields are native words
158 * (unsigned long) so they can be read and written atomically.
159 */
160
161 struct net_device_stats {
162 unsigned long rx_packets;
163 unsigned long tx_packets;
164 unsigned long rx_bytes;
165 unsigned long tx_bytes;
166 unsigned long rx_errors;
167 unsigned long tx_errors;
168 unsigned long rx_dropped;
169 unsigned long tx_dropped;
170 unsigned long multicast;
171 unsigned long collisions;
172 unsigned long rx_length_errors;
173 unsigned long rx_over_errors;
174 unsigned long rx_crc_errors;
175 unsigned long rx_frame_errors;
176 unsigned long rx_fifo_errors;
177 unsigned long rx_missed_errors;
178 unsigned long tx_aborted_errors;
179 unsigned long tx_carrier_errors;
180 unsigned long tx_fifo_errors;
181 unsigned long tx_heartbeat_errors;
182 unsigned long tx_window_errors;
183 unsigned long rx_compressed;
184 unsigned long tx_compressed;
185 };
186
187
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key rps_needed;
194 #endif
195
196 struct neighbour;
197 struct neigh_parms;
198 struct sk_buff;
199
200 struct netdev_hw_addr {
201 struct list_head list;
202 unsigned char addr[MAX_ADDR_LEN];
203 unsigned char type;
204 #define NETDEV_HW_ADDR_T_LAN 1
205 #define NETDEV_HW_ADDR_T_SAN 2
206 #define NETDEV_HW_ADDR_T_SLAVE 3
207 #define NETDEV_HW_ADDR_T_UNICAST 4
208 #define NETDEV_HW_ADDR_T_MULTICAST 5
209 bool global_use;
210 int sync_cnt;
211 int refcount;
212 int synced;
213 struct rcu_head rcu_head;
214 };
215
216 struct netdev_hw_addr_list {
217 struct list_head list;
218 int count;
219 };
220
221 #define netdev_hw_addr_list_count(l) ((l)->count)
222 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
223 #define netdev_hw_addr_list_for_each(ha, l) \
224 list_for_each_entry(ha, &(l)->list, list)
225
226 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
227 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
228 #define netdev_for_each_uc_addr(ha, dev) \
229 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
230
231 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
232 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
233 #define netdev_for_each_mc_addr(ha, dev) \
234 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
235
236 struct hh_cache {
237 u16 hh_len;
238 u16 __pad;
239 seqlock_t hh_lock;
240
241 /* cached hardware header; allow for machine alignment needs. */
242 #define HH_DATA_MOD 16
243 #define HH_DATA_OFF(__len) \
244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251 * Alternative is:
252 * dev->hard_header_len ? (dev->hard_header_len +
253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254 *
255 * We could use other alignment values, but we must maintain the
256 * relationship HH alignment <= LL alignment.
257 */
258 #define LL_RESERVED_SPACE(dev) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262
263 struct header_ops {
264 int (*create) (struct sk_buff *skb, struct net_device *dev,
265 unsigned short type, const void *daddr,
266 const void *saddr, unsigned int len);
267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 void (*cache_update)(struct hh_cache *hh,
270 const struct net_device *dev,
271 const unsigned char *haddr);
272 bool (*validate)(const char *ll_header, unsigned int len);
273 };
274
275 /* These flag bits are private to the generic network queueing
276 * layer; they may not be explicitly referenced by any other
277 * code.
278 */
279
280 enum netdev_state_t {
281 __LINK_STATE_START,
282 __LINK_STATE_PRESENT,
283 __LINK_STATE_NOCARRIER,
284 __LINK_STATE_LINKWATCH_PENDING,
285 __LINK_STATE_DORMANT,
286 };
287
288
289 /*
290 * This structure holds boot-time configured netdevice settings. They
291 * are then used in the device probing.
292 */
293 struct netdev_boot_setup {
294 char name[IFNAMSIZ];
295 struct ifmap map;
296 };
297 #define NETDEV_BOOT_SETUP_MAX 8
298
299 int __init netdev_boot_setup(char *str);
300
301 /*
302 * Structure for NAPI scheduling similar to tasklet but with weighting
303 */
304 struct napi_struct {
305 /* The poll_list must only be managed by the entity which
306 * changes the state of the NAPI_STATE_SCHED bit. This means
307 * whoever atomically sets that bit can add this napi_struct
308 * to the per-CPU poll_list, and whoever clears that bit
309 * can remove from the list right before clearing the bit.
310 */
311 struct list_head poll_list;
312
313 unsigned long state;
314 int weight;
315 unsigned int gro_count;
316 int (*poll)(struct napi_struct *, int);
317 #ifdef CONFIG_NETPOLL
318 spinlock_t poll_lock;
319 int poll_owner;
320 #endif
321 struct net_device *dev;
322 struct sk_buff *gro_list;
323 struct sk_buff *skb;
324 struct hrtimer timer;
325 struct list_head dev_list;
326 struct hlist_node napi_hash_node;
327 unsigned int napi_id;
328 };
329
330 enum {
331 NAPI_STATE_SCHED, /* Poll is scheduled */
332 NAPI_STATE_DISABLE, /* Disable pending */
333 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
334 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
335 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
336 };
337
338 enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed the skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other way.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler decides the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388 enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 void __napi_schedule(struct napi_struct *n);
398 void __napi_schedule_irqoff(struct napi_struct *n);
399
400 static inline bool napi_disable_pending(struct napi_struct *n)
401 {
402 return test_bit(NAPI_STATE_DISABLE, &n->state);
403 }
404
405 /**
406 * napi_schedule_prep - check if NAPI can be scheduled
407 * @n: NAPI context
408 *
409 * Test if NAPI routine is already running, and if not mark
410 * it as running. This is used as a condition variable to
411 * insure only one NAPI poll instance runs. We also make
412 * sure there is no pending NAPI disable.
413 */
414 static inline bool napi_schedule_prep(struct napi_struct *n)
415 {
416 return !napi_disable_pending(n) &&
417 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
418 }
419
420 /**
421 * napi_schedule - schedule NAPI poll
422 * @n: NAPI context
423 *
424 * Schedule NAPI poll routine to be called if it is not already
425 * running.
426 */
427 static inline void napi_schedule(struct napi_struct *n)
428 {
429 if (napi_schedule_prep(n))
430 __napi_schedule(n);
431 }
432
433 /**
434 * napi_schedule_irqoff - schedule NAPI poll
435 * @n: NAPI context
436 *
437 * Variant of napi_schedule(), assuming hard irqs are masked.
438 */
439 static inline void napi_schedule_irqoff(struct napi_struct *n)
440 {
441 if (napi_schedule_prep(n))
442 __napi_schedule_irqoff(n);
443 }
444
445 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
446 static inline bool napi_reschedule(struct napi_struct *napi)
447 {
448 if (napi_schedule_prep(napi)) {
449 __napi_schedule(napi);
450 return true;
451 }
452 return false;
453 }
454
455 void __napi_complete(struct napi_struct *n);
456 void napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458 * napi_complete - NAPI processing complete
459 * @n: NAPI context
460 *
461 * Mark NAPI processing as complete.
462 * Consider using napi_complete_done() instead.
463 */
464 static inline void napi_complete(struct napi_struct *n)
465 {
466 return napi_complete_done(n, 0);
467 }
468
469 /**
470 * napi_hash_add - add a NAPI to global hashtable
471 * @napi: NAPI context
472 *
473 * Generate a new napi_id and store a @napi under it in napi_hash.
474 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
475 * Note: This is normally automatically done from netif_napi_add(),
476 * so might disappear in a future Linux version.
477 */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: NAPI context
483 *
484 * Warning: caller must observe RCU grace period
485 * before freeing memory containing @napi, if
486 * this function returns true.
487 * Note: core networking stack automatically calls it
488 * from netif_napi_del().
489 * Drivers might want to call this helper to combine all
490 * the needed RCU grace periods into a single one.
491 */
492 bool napi_hash_del(struct napi_struct *napi);
493
494 /**
495 * napi_disable - prevent NAPI from scheduling
496 * @n: NAPI context
497 *
498 * Stop NAPI from being scheduled on this context.
499 * Waits till any outstanding processing completes.
500 */
501 void napi_disable(struct napi_struct *n);
502
503 /**
504 * napi_enable - enable NAPI scheduling
505 * @n: NAPI context
506 *
507 * Resume NAPI from being scheduled on this context.
508 * Must be paired with napi_disable.
509 */
510 static inline void napi_enable(struct napi_struct *n)
511 {
512 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
513 smp_mb__before_atomic();
514 clear_bit(NAPI_STATE_SCHED, &n->state);
515 clear_bit(NAPI_STATE_NPSVC, &n->state);
516 }
517
518 /**
519 * napi_synchronize - wait until NAPI is not running
520 * @n: NAPI context
521 *
522 * Wait until NAPI is done being scheduled on this context.
523 * Waits till any outstanding processing completes but
524 * does not disable future activations.
525 */
526 static inline void napi_synchronize(const struct napi_struct *n)
527 {
528 if (IS_ENABLED(CONFIG_SMP))
529 while (test_bit(NAPI_STATE_SCHED, &n->state))
530 msleep(1);
531 else
532 barrier();
533 }
534
535 enum netdev_queue_state_t {
536 __QUEUE_STATE_DRV_XOFF,
537 __QUEUE_STATE_STACK_XOFF,
538 __QUEUE_STATE_FROZEN,
539 };
540
541 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
542 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
544
545 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
547 QUEUE_STATE_FROZEN)
548 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
549 QUEUE_STATE_FROZEN)
550
551 /*
552 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
553 * netif_tx_* functions below are used to manipulate this flag. The
554 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
555 * queue independently. The netif_xmit_*stopped functions below are called
556 * to check if the queue has been stopped by the driver or stack (either
557 * of the XOFF bits are set in the state). Drivers should not need to call
558 * netif_xmit*stopped functions, they should only be using netif_tx_*.
559 */
560
561 struct netdev_queue {
562 /*
563 * read-mostly part
564 */
565 struct net_device *dev;
566 struct Qdisc __rcu *qdisc;
567 struct Qdisc *qdisc_sleeping;
568 #ifdef CONFIG_SYSFS
569 struct kobject kobj;
570 #endif
571 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
572 int numa_node;
573 #endif
574 unsigned long tx_maxrate;
575 /*
576 * Number of TX timeouts for this queue
577 * (/sys/class/net/DEV/Q/trans_timeout)
578 */
579 unsigned long trans_timeout;
580 /*
581 * write-mostly part
582 */
583 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
584 int xmit_lock_owner;
585 /*
586 * Time (in jiffies) of last Tx
587 */
588 unsigned long trans_start;
589
590 unsigned long state;
591
592 #ifdef CONFIG_BQL
593 struct dql dql;
594 #endif
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 return q->numa_node;
601 #else
602 return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615 * This structure holds an RPS map which can be of variable length. The
616 * map is an array of CPUs.
617 */
618 struct rps_map {
619 unsigned int len;
620 struct rcu_head rcu;
621 u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627 * tail pointer for that CPU's input queue at the time of last enqueue, and
628 * a hardware filter index.
629 */
630 struct rps_dev_flow {
631 u16 cpu;
632 u16 filter;
633 unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638 * The rps_dev_flow_table structure contains a table of flow mappings.
639 */
640 struct rps_dev_flow_table {
641 unsigned int mask;
642 struct rcu_head rcu;
643 struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646 ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649 * The rps_sock_flow_table contains mappings of flows to the last CPU
650 * on which they were processed by the application (set in recvmsg).
651 * Each entry is a 32bit value. Upper part is the high-order bits
652 * of flow hash, lower part is CPU number.
653 * rps_cpu_mask is used to partition the space, depending on number of
654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656 * meaning we use 32-6=26 bits for the hash.
657 */
658 struct rps_sock_flow_table {
659 u32 mask;
660
661 u32 ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672 {
673 if (table && hash) {
674 unsigned int index = hash & table->mask;
675 u32 val = hash & ~rps_cpu_mask;
676
677 /* We only give a hint, preemption can change CPU under us */
678 val |= raw_smp_processor_id();
679
680 if (table->ents[index] != val)
681 table->ents[index] = val;
682 }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 struct rps_map __rcu *rps_map;
695 struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697 struct kobject kobj;
698 struct net_device *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702 * RX queue sysfs structures and functions.
703 */
704 struct rx_queue_attribute {
705 struct attribute attr;
706 ssize_t (*show)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, char *buf);
708 ssize_t (*store)(struct netdev_rx_queue *queue,
709 struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714 * This structure holds an XPS map which can be of variable length. The
715 * map is an array of queues.
716 */
717 struct xps_map {
718 unsigned int len;
719 unsigned int alloc_len;
720 struct rcu_head rcu;
721 u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725 - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728 * This structure holds all XPS maps for device. Maps are indexed by CPU.
729 */
730 struct xps_dev_maps {
731 struct rcu_head rcu;
732 struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
735 (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE 16
739 #define TC_BITMASK 15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 u16 count;
743 u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748 * This structure is to hold information about the device
749 * configured to run FCoE protocol stack.
750 */
751 struct netdev_fcoe_hbainfo {
752 char manufacturer[64];
753 char serial_number[64];
754 char hardware_version[64];
755 char driver_version[64];
756 char optionrom_version[64];
757 char firmware_version[64];
758 char model[256];
759 char model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766 * physical item (port for example) used by a netdevice.
767 */
768 struct netdev_phys_item_id {
769 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 struct netdev_phys_item_id *b)
775 {
776 return a->id_len == b->id_len &&
777 memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784 * that are being passed to the netdevice through the setup_tc op.
785 */
786 enum {
787 TC_SETUP_MQPRIO,
788 TC_SETUP_CLSU32,
789 TC_SETUP_CLSFLOWER,
790 TC_SETUP_MATCHALL,
791 };
792
793 struct tc_cls_u32_offload;
794
795 struct tc_to_netdev {
796 unsigned int type;
797 union {
798 u8 tc;
799 struct tc_cls_u32_offload *cls_u32;
800 struct tc_cls_flower_offload *cls_flower;
801 struct tc_cls_matchall_offload *cls_mall;
802 };
803 };
804
805 /* These structures hold the attributes of xdp state that are being passed
806 * to the netdevice through the xdp op.
807 */
808 enum xdp_netdev_command {
809 /* Set or clear a bpf program used in the earliest stages of packet
810 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
811 * is responsible for calling bpf_prog_put on any old progs that are
812 * stored. In case of error, the callee need not release the new prog
813 * reference, but on success it takes ownership and must bpf_prog_put
814 * when it is no longer used.
815 */
816 XDP_SETUP_PROG,
817 /* Check if a bpf program is set on the device. The callee should
818 * return true if a program is currently attached and running.
819 */
820 XDP_QUERY_PROG,
821 };
822
823 struct netdev_xdp {
824 enum xdp_netdev_command command;
825 union {
826 /* XDP_SETUP_PROG */
827 struct bpf_prog *prog;
828 /* XDP_QUERY_PROG */
829 bool prog_attached;
830 };
831 };
832
833 /*
834 * This structure defines the management hooks for network devices.
835 * The following hooks can be defined; unless noted otherwise, they are
836 * optional and can be filled with a null pointer.
837 *
838 * int (*ndo_init)(struct net_device *dev);
839 * This function is called once when a network device is registered.
840 * The network device can use this for any late stage initialization
841 * or semantic validation. It can fail with an error code which will
842 * be propagated back to register_netdev.
843 *
844 * void (*ndo_uninit)(struct net_device *dev);
845 * This function is called when device is unregistered or when registration
846 * fails. It is not called if init fails.
847 *
848 * int (*ndo_open)(struct net_device *dev);
849 * This function is called when a network device transitions to the up
850 * state.
851 *
852 * int (*ndo_stop)(struct net_device *dev);
853 * This function is called when a network device transitions to the down
854 * state.
855 *
856 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
857 * struct net_device *dev);
858 * Called when a packet needs to be transmitted.
859 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
860 * the queue before that can happen; it's for obsolete devices and weird
861 * corner cases, but the stack really does a non-trivial amount
862 * of useless work if you return NETDEV_TX_BUSY.
863 * Required; cannot be NULL.
864 *
865 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
866 * netdev_features_t features);
867 * Adjusts the requested feature flags according to device-specific
868 * constraints, and returns the resulting flags. Must not modify
869 * the device state.
870 *
871 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
872 * void *accel_priv, select_queue_fallback_t fallback);
873 * Called to decide which queue to use when device supports multiple
874 * transmit queues.
875 *
876 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
877 * This function is called to allow device receiver to make
878 * changes to configuration when multicast or promiscuous is enabled.
879 *
880 * void (*ndo_set_rx_mode)(struct net_device *dev);
881 * This function is called device changes address list filtering.
882 * If driver handles unicast address filtering, it should set
883 * IFF_UNICAST_FLT in its priv_flags.
884 *
885 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
886 * This function is called when the Media Access Control address
887 * needs to be changed. If this interface is not defined, the
888 * MAC address can not be changed.
889 *
890 * int (*ndo_validate_addr)(struct net_device *dev);
891 * Test if Media Access Control address is valid for the device.
892 *
893 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
894 * Called when a user requests an ioctl which can't be handled by
895 * the generic interface code. If not defined ioctls return
896 * not supported error code.
897 *
898 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
899 * Used to set network devices bus interface parameters. This interface
900 * is retained for legacy reasons; new devices should use the bus
901 * interface (PCI) for low level management.
902 *
903 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
904 * Called when a user wants to change the Maximum Transfer Unit
905 * of a device. If not defined, any request to change MTU will
906 * will return an error.
907 *
908 * void (*ndo_tx_timeout)(struct net_device *dev);
909 * Callback used when the transmitter has not made any progress
910 * for dev->watchdog ticks.
911 *
912 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
913 * struct rtnl_link_stats64 *storage);
914 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
915 * Called when a user wants to get the network device usage
916 * statistics. Drivers must do one of the following:
917 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
918 * rtnl_link_stats64 structure passed by the caller.
919 * 2. Define @ndo_get_stats to update a net_device_stats structure
920 * (which should normally be dev->stats) and return a pointer to
921 * it. The structure may be changed asynchronously only if each
922 * field is written atomically.
923 * 3. Update dev->stats asynchronously and atomically, and define
924 * neither operation.
925 *
926 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
927 * If device supports VLAN filtering this function is called when a
928 * VLAN id is registered.
929 *
930 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
931 * If device supports VLAN filtering this function is called when a
932 * VLAN id is unregistered.
933 *
934 * void (*ndo_poll_controller)(struct net_device *dev);
935 *
936 * SR-IOV management functions.
937 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
938 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
939 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
940 * int max_tx_rate);
941 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
942 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
943 * int (*ndo_get_vf_config)(struct net_device *dev,
944 * int vf, struct ifla_vf_info *ivf);
945 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
946 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
947 * struct nlattr *port[]);
948 *
949 * Enable or disable the VF ability to query its RSS Redirection Table and
950 * Hash Key. This is needed since on some devices VF share this information
951 * with PF and querying it may introduce a theoretical security risk.
952 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
953 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
954 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
955 * Called to setup 'tc' number of traffic classes in the net device. This
956 * is always called from the stack with the rtnl lock held and netif tx
957 * queues stopped. This allows the netdevice to perform queue management
958 * safely.
959 *
960 * Fiber Channel over Ethernet (FCoE) offload functions.
961 * int (*ndo_fcoe_enable)(struct net_device *dev);
962 * Called when the FCoE protocol stack wants to start using LLD for FCoE
963 * so the underlying device can perform whatever needed configuration or
964 * initialization to support acceleration of FCoE traffic.
965 *
966 * int (*ndo_fcoe_disable)(struct net_device *dev);
967 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
968 * so the underlying device can perform whatever needed clean-ups to
969 * stop supporting acceleration of FCoE traffic.
970 *
971 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
972 * struct scatterlist *sgl, unsigned int sgc);
973 * Called when the FCoE Initiator wants to initialize an I/O that
974 * is a possible candidate for Direct Data Placement (DDP). The LLD can
975 * perform necessary setup and returns 1 to indicate the device is set up
976 * successfully to perform DDP on this I/O, otherwise this returns 0.
977 *
978 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
979 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
980 * indicated by the FC exchange id 'xid', so the underlying device can
981 * clean up and reuse resources for later DDP requests.
982 *
983 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
984 * struct scatterlist *sgl, unsigned int sgc);
985 * Called when the FCoE Target wants to initialize an I/O that
986 * is a possible candidate for Direct Data Placement (DDP). The LLD can
987 * perform necessary setup and returns 1 to indicate the device is set up
988 * successfully to perform DDP on this I/O, otherwise this returns 0.
989 *
990 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
991 * struct netdev_fcoe_hbainfo *hbainfo);
992 * Called when the FCoE Protocol stack wants information on the underlying
993 * device. This information is utilized by the FCoE protocol stack to
994 * register attributes with Fiber Channel management service as per the
995 * FC-GS Fabric Device Management Information(FDMI) specification.
996 *
997 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
998 * Called when the underlying device wants to override default World Wide
999 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1000 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1001 * protocol stack to use.
1002 *
1003 * RFS acceleration.
1004 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1005 * u16 rxq_index, u32 flow_id);
1006 * Set hardware filter for RFS. rxq_index is the target queue index;
1007 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1008 * Return the filter ID on success, or a negative error code.
1009 *
1010 * Slave management functions (for bridge, bonding, etc).
1011 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1012 * Called to make another netdev an underling.
1013 *
1014 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1015 * Called to release previously enslaved netdev.
1016 *
1017 * Feature/offload setting functions.
1018 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1019 * Called to update device configuration to new features. Passed
1020 * feature set might be less than what was returned by ndo_fix_features()).
1021 * Must return >0 or -errno if it changed dev->features itself.
1022 *
1023 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1024 * struct net_device *dev,
1025 * const unsigned char *addr, u16 vid, u16 flags)
1026 * Adds an FDB entry to dev for addr.
1027 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1028 * struct net_device *dev,
1029 * const unsigned char *addr, u16 vid)
1030 * Deletes the FDB entry from dev coresponding to addr.
1031 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1032 * struct net_device *dev, struct net_device *filter_dev,
1033 * int idx)
1034 * Used to add FDB entries to dump requests. Implementers should add
1035 * entries to skb and update idx with the number of entries.
1036 *
1037 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1038 * u16 flags)
1039 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1040 * struct net_device *dev, u32 filter_mask,
1041 * int nlflags)
1042 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1043 * u16 flags);
1044 *
1045 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1046 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1047 * which do not represent real hardware may define this to allow their
1048 * userspace components to manage their virtual carrier state. Devices
1049 * that determine carrier state from physical hardware properties (eg
1050 * network cables) or protocol-dependent mechanisms (eg
1051 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1052 *
1053 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1054 * struct netdev_phys_item_id *ppid);
1055 * Called to get ID of physical port of this device. If driver does
1056 * not implement this, it is assumed that the hw is not able to have
1057 * multiple net devices on single physical port.
1058 *
1059 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1060 * struct udp_tunnel_info *ti);
1061 * Called by UDP tunnel to notify a driver about the UDP port and socket
1062 * address family that a UDP tunnel is listnening to. It is called only
1063 * when a new port starts listening. The operation is protected by the
1064 * RTNL.
1065 *
1066 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1067 * struct udp_tunnel_info *ti);
1068 * Called by UDP tunnel to notify the driver about a UDP port and socket
1069 * address family that the UDP tunnel is not listening to anymore. The
1070 * operation is protected by the RTNL.
1071 *
1072 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1073 * struct net_device *dev)
1074 * Called by upper layer devices to accelerate switching or other
1075 * station functionality into hardware. 'pdev is the lowerdev
1076 * to use for the offload and 'dev' is the net device that will
1077 * back the offload. Returns a pointer to the private structure
1078 * the upper layer will maintain.
1079 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1080 * Called by upper layer device to delete the station created
1081 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1082 * the station and priv is the structure returned by the add
1083 * operation.
1084 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1085 * struct net_device *dev,
1086 * void *priv);
1087 * Callback to use for xmit over the accelerated station. This
1088 * is used in place of ndo_start_xmit on accelerated net
1089 * devices.
1090 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1091 * struct net_device *dev
1092 * netdev_features_t features);
1093 * Called by core transmit path to determine if device is capable of
1094 * performing offload operations on a given packet. This is to give
1095 * the device an opportunity to implement any restrictions that cannot
1096 * be otherwise expressed by feature flags. The check is called with
1097 * the set of features that the stack has calculated and it returns
1098 * those the driver believes to be appropriate.
1099 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1100 * int queue_index, u32 maxrate);
1101 * Called when a user wants to set a max-rate limitation of specific
1102 * TX queue.
1103 * int (*ndo_get_iflink)(const struct net_device *dev);
1104 * Called to get the iflink value of this device.
1105 * void (*ndo_change_proto_down)(struct net_device *dev,
1106 * bool proto_down);
1107 * This function is used to pass protocol port error state information
1108 * to the switch driver. The switch driver can react to the proto_down
1109 * by doing a phys down on the associated switch port.
1110 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1111 * This function is used to get egress tunnel information for given skb.
1112 * This is useful for retrieving outer tunnel header parameters while
1113 * sampling packet.
1114 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1115 * This function is used to specify the headroom that the skb must
1116 * consider when allocation skb during packet reception. Setting
1117 * appropriate rx headroom value allows avoiding skb head copy on
1118 * forward. Setting a negative value resets the rx headroom to the
1119 * default value.
1120 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1121 * This function is used to set or query state related to XDP on the
1122 * netdevice. See definition of enum xdp_netdev_command for details.
1123 *
1124 */
1125 struct net_device_ops {
1126 int (*ndo_init)(struct net_device *dev);
1127 void (*ndo_uninit)(struct net_device *dev);
1128 int (*ndo_open)(struct net_device *dev);
1129 int (*ndo_stop)(struct net_device *dev);
1130 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1131 struct net_device *dev);
1132 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1133 struct net_device *dev,
1134 netdev_features_t features);
1135 u16 (*ndo_select_queue)(struct net_device *dev,
1136 struct sk_buff *skb,
1137 void *accel_priv,
1138 select_queue_fallback_t fallback);
1139 void (*ndo_change_rx_flags)(struct net_device *dev,
1140 int flags);
1141 void (*ndo_set_rx_mode)(struct net_device *dev);
1142 int (*ndo_set_mac_address)(struct net_device *dev,
1143 void *addr);
1144 int (*ndo_validate_addr)(struct net_device *dev);
1145 int (*ndo_do_ioctl)(struct net_device *dev,
1146 struct ifreq *ifr, int cmd);
1147 int (*ndo_set_config)(struct net_device *dev,
1148 struct ifmap *map);
1149 int (*ndo_change_mtu)(struct net_device *dev,
1150 int new_mtu);
1151 int (*ndo_neigh_setup)(struct net_device *dev,
1152 struct neigh_parms *);
1153 void (*ndo_tx_timeout) (struct net_device *dev);
1154
1155 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1156 struct rtnl_link_stats64 *storage);
1157 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1158
1159 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1160 __be16 proto, u16 vid);
1161 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1162 __be16 proto, u16 vid);
1163 #ifdef CONFIG_NET_POLL_CONTROLLER
1164 void (*ndo_poll_controller)(struct net_device *dev);
1165 int (*ndo_netpoll_setup)(struct net_device *dev,
1166 struct netpoll_info *info);
1167 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1168 #endif
1169 #ifdef CONFIG_NET_RX_BUSY_POLL
1170 int (*ndo_busy_poll)(struct napi_struct *dev);
1171 #endif
1172 int (*ndo_set_vf_mac)(struct net_device *dev,
1173 int queue, u8 *mac);
1174 int (*ndo_set_vf_vlan)(struct net_device *dev,
1175 int queue, u16 vlan, u8 qos);
1176 int (*ndo_set_vf_rate)(struct net_device *dev,
1177 int vf, int min_tx_rate,
1178 int max_tx_rate);
1179 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1180 int vf, bool setting);
1181 int (*ndo_set_vf_trust)(struct net_device *dev,
1182 int vf, bool setting);
1183 int (*ndo_get_vf_config)(struct net_device *dev,
1184 int vf,
1185 struct ifla_vf_info *ivf);
1186 int (*ndo_set_vf_link_state)(struct net_device *dev,
1187 int vf, int link_state);
1188 int (*ndo_get_vf_stats)(struct net_device *dev,
1189 int vf,
1190 struct ifla_vf_stats
1191 *vf_stats);
1192 int (*ndo_set_vf_port)(struct net_device *dev,
1193 int vf,
1194 struct nlattr *port[]);
1195 int (*ndo_get_vf_port)(struct net_device *dev,
1196 int vf, struct sk_buff *skb);
1197 int (*ndo_set_vf_guid)(struct net_device *dev,
1198 int vf, u64 guid,
1199 int guid_type);
1200 int (*ndo_set_vf_rss_query_en)(
1201 struct net_device *dev,
1202 int vf, bool setting);
1203 int (*ndo_setup_tc)(struct net_device *dev,
1204 u32 handle,
1205 __be16 protocol,
1206 struct tc_to_netdev *tc);
1207 #if IS_ENABLED(CONFIG_FCOE)
1208 int (*ndo_fcoe_enable)(struct net_device *dev);
1209 int (*ndo_fcoe_disable)(struct net_device *dev);
1210 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1211 u16 xid,
1212 struct scatterlist *sgl,
1213 unsigned int sgc);
1214 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1215 u16 xid);
1216 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1217 u16 xid,
1218 struct scatterlist *sgl,
1219 unsigned int sgc);
1220 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1221 struct netdev_fcoe_hbainfo *hbainfo);
1222 #endif
1223
1224 #if IS_ENABLED(CONFIG_LIBFCOE)
1225 #define NETDEV_FCOE_WWNN 0
1226 #define NETDEV_FCOE_WWPN 1
1227 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1228 u64 *wwn, int type);
1229 #endif
1230
1231 #ifdef CONFIG_RFS_ACCEL
1232 int (*ndo_rx_flow_steer)(struct net_device *dev,
1233 const struct sk_buff *skb,
1234 u16 rxq_index,
1235 u32 flow_id);
1236 #endif
1237 int (*ndo_add_slave)(struct net_device *dev,
1238 struct net_device *slave_dev);
1239 int (*ndo_del_slave)(struct net_device *dev,
1240 struct net_device *slave_dev);
1241 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1242 netdev_features_t features);
1243 int (*ndo_set_features)(struct net_device *dev,
1244 netdev_features_t features);
1245 int (*ndo_neigh_construct)(struct net_device *dev,
1246 struct neighbour *n);
1247 void (*ndo_neigh_destroy)(struct net_device *dev,
1248 struct neighbour *n);
1249
1250 int (*ndo_fdb_add)(struct ndmsg *ndm,
1251 struct nlattr *tb[],
1252 struct net_device *dev,
1253 const unsigned char *addr,
1254 u16 vid,
1255 u16 flags);
1256 int (*ndo_fdb_del)(struct ndmsg *ndm,
1257 struct nlattr *tb[],
1258 struct net_device *dev,
1259 const unsigned char *addr,
1260 u16 vid);
1261 int (*ndo_fdb_dump)(struct sk_buff *skb,
1262 struct netlink_callback *cb,
1263 struct net_device *dev,
1264 struct net_device *filter_dev,
1265 int idx);
1266
1267 int (*ndo_bridge_setlink)(struct net_device *dev,
1268 struct nlmsghdr *nlh,
1269 u16 flags);
1270 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1271 u32 pid, u32 seq,
1272 struct net_device *dev,
1273 u32 filter_mask,
1274 int nlflags);
1275 int (*ndo_bridge_dellink)(struct net_device *dev,
1276 struct nlmsghdr *nlh,
1277 u16 flags);
1278 int (*ndo_change_carrier)(struct net_device *dev,
1279 bool new_carrier);
1280 int (*ndo_get_phys_port_id)(struct net_device *dev,
1281 struct netdev_phys_item_id *ppid);
1282 int (*ndo_get_phys_port_name)(struct net_device *dev,
1283 char *name, size_t len);
1284 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1285 struct udp_tunnel_info *ti);
1286 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1287 struct udp_tunnel_info *ti);
1288 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1289 struct net_device *dev);
1290 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1291 void *priv);
1292
1293 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1294 struct net_device *dev,
1295 void *priv);
1296 int (*ndo_get_lock_subclass)(struct net_device *dev);
1297 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1298 int queue_index,
1299 u32 maxrate);
1300 int (*ndo_get_iflink)(const struct net_device *dev);
1301 int (*ndo_change_proto_down)(struct net_device *dev,
1302 bool proto_down);
1303 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1304 struct sk_buff *skb);
1305 void (*ndo_set_rx_headroom)(struct net_device *dev,
1306 int needed_headroom);
1307 int (*ndo_xdp)(struct net_device *dev,
1308 struct netdev_xdp *xdp);
1309 };
1310
1311 /**
1312 * enum net_device_priv_flags - &struct net_device priv_flags
1313 *
1314 * These are the &struct net_device, they are only set internally
1315 * by drivers and used in the kernel. These flags are invisible to
1316 * userspace; this means that the order of these flags can change
1317 * during any kernel release.
1318 *
1319 * You should have a pretty good reason to be extending these flags.
1320 *
1321 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1322 * @IFF_EBRIDGE: Ethernet bridging device
1323 * @IFF_BONDING: bonding master or slave
1324 * @IFF_ISATAP: ISATAP interface (RFC4214)
1325 * @IFF_WAN_HDLC: WAN HDLC device
1326 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1327 * release skb->dst
1328 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1329 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1330 * @IFF_MACVLAN_PORT: device used as macvlan port
1331 * @IFF_BRIDGE_PORT: device used as bridge port
1332 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1333 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1334 * @IFF_UNICAST_FLT: Supports unicast filtering
1335 * @IFF_TEAM_PORT: device used as team port
1336 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1337 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1338 * change when it's running
1339 * @IFF_MACVLAN: Macvlan device
1340 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1341 * underlying stacked devices
1342 * @IFF_IPVLAN_MASTER: IPvlan master device
1343 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1344 * @IFF_L3MDEV_MASTER: device is an L3 master device
1345 * @IFF_NO_QUEUE: device can run without qdisc attached
1346 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1347 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1348 * @IFF_TEAM: device is a team device
1349 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1350 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1351 * entity (i.e. the master device for bridged veth)
1352 * @IFF_MACSEC: device is a MACsec device
1353 */
1354 enum netdev_priv_flags {
1355 IFF_802_1Q_VLAN = 1<<0,
1356 IFF_EBRIDGE = 1<<1,
1357 IFF_BONDING = 1<<2,
1358 IFF_ISATAP = 1<<3,
1359 IFF_WAN_HDLC = 1<<4,
1360 IFF_XMIT_DST_RELEASE = 1<<5,
1361 IFF_DONT_BRIDGE = 1<<6,
1362 IFF_DISABLE_NETPOLL = 1<<7,
1363 IFF_MACVLAN_PORT = 1<<8,
1364 IFF_BRIDGE_PORT = 1<<9,
1365 IFF_OVS_DATAPATH = 1<<10,
1366 IFF_TX_SKB_SHARING = 1<<11,
1367 IFF_UNICAST_FLT = 1<<12,
1368 IFF_TEAM_PORT = 1<<13,
1369 IFF_SUPP_NOFCS = 1<<14,
1370 IFF_LIVE_ADDR_CHANGE = 1<<15,
1371 IFF_MACVLAN = 1<<16,
1372 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1373 IFF_IPVLAN_MASTER = 1<<18,
1374 IFF_IPVLAN_SLAVE = 1<<19,
1375 IFF_L3MDEV_MASTER = 1<<20,
1376 IFF_NO_QUEUE = 1<<21,
1377 IFF_OPENVSWITCH = 1<<22,
1378 IFF_L3MDEV_SLAVE = 1<<23,
1379 IFF_TEAM = 1<<24,
1380 IFF_RXFH_CONFIGURED = 1<<25,
1381 IFF_PHONY_HEADROOM = 1<<26,
1382 IFF_MACSEC = 1<<27,
1383 };
1384
1385 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1386 #define IFF_EBRIDGE IFF_EBRIDGE
1387 #define IFF_BONDING IFF_BONDING
1388 #define IFF_ISATAP IFF_ISATAP
1389 #define IFF_WAN_HDLC IFF_WAN_HDLC
1390 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1391 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1392 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1393 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1394 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1395 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1396 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1397 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1398 #define IFF_TEAM_PORT IFF_TEAM_PORT
1399 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1400 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1401 #define IFF_MACVLAN IFF_MACVLAN
1402 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1403 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1404 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1405 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1406 #define IFF_NO_QUEUE IFF_NO_QUEUE
1407 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1408 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1409 #define IFF_TEAM IFF_TEAM
1410 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1411 #define IFF_MACSEC IFF_MACSEC
1412
1413 /**
1414 * struct net_device - The DEVICE structure.
1415 * Actually, this whole structure is a big mistake. It mixes I/O
1416 * data with strictly "high-level" data, and it has to know about
1417 * almost every data structure used in the INET module.
1418 *
1419 * @name: This is the first field of the "visible" part of this structure
1420 * (i.e. as seen by users in the "Space.c" file). It is the name
1421 * of the interface.
1422 *
1423 * @name_hlist: Device name hash chain, please keep it close to name[]
1424 * @ifalias: SNMP alias
1425 * @mem_end: Shared memory end
1426 * @mem_start: Shared memory start
1427 * @base_addr: Device I/O address
1428 * @irq: Device IRQ number
1429 *
1430 * @carrier_changes: Stats to monitor carrier on<->off transitions
1431 *
1432 * @state: Generic network queuing layer state, see netdev_state_t
1433 * @dev_list: The global list of network devices
1434 * @napi_list: List entry used for polling NAPI devices
1435 * @unreg_list: List entry when we are unregistering the
1436 * device; see the function unregister_netdev
1437 * @close_list: List entry used when we are closing the device
1438 * @ptype_all: Device-specific packet handlers for all protocols
1439 * @ptype_specific: Device-specific, protocol-specific packet handlers
1440 *
1441 * @adj_list: Directly linked devices, like slaves for bonding
1442 * @all_adj_list: All linked devices, *including* neighbours
1443 * @features: Currently active device features
1444 * @hw_features: User-changeable features
1445 *
1446 * @wanted_features: User-requested features
1447 * @vlan_features: Mask of features inheritable by VLAN devices
1448 *
1449 * @hw_enc_features: Mask of features inherited by encapsulating devices
1450 * This field indicates what encapsulation
1451 * offloads the hardware is capable of doing,
1452 * and drivers will need to set them appropriately.
1453 *
1454 * @mpls_features: Mask of features inheritable by MPLS
1455 *
1456 * @ifindex: interface index
1457 * @group: The group the device belongs to
1458 *
1459 * @stats: Statistics struct, which was left as a legacy, use
1460 * rtnl_link_stats64 instead
1461 *
1462 * @rx_dropped: Dropped packets by core network,
1463 * do not use this in drivers
1464 * @tx_dropped: Dropped packets by core network,
1465 * do not use this in drivers
1466 * @rx_nohandler: nohandler dropped packets by core network on
1467 * inactive devices, do not use this in drivers
1468 *
1469 * @wireless_handlers: List of functions to handle Wireless Extensions,
1470 * instead of ioctl,
1471 * see <net/iw_handler.h> for details.
1472 * @wireless_data: Instance data managed by the core of wireless extensions
1473 *
1474 * @netdev_ops: Includes several pointers to callbacks,
1475 * if one wants to override the ndo_*() functions
1476 * @ethtool_ops: Management operations
1477 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1478 * discovery handling. Necessary for e.g. 6LoWPAN.
1479 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1480 * of Layer 2 headers.
1481 *
1482 * @flags: Interface flags (a la BSD)
1483 * @priv_flags: Like 'flags' but invisible to userspace,
1484 * see if.h for the definitions
1485 * @gflags: Global flags ( kept as legacy )
1486 * @padded: How much padding added by alloc_netdev()
1487 * @operstate: RFC2863 operstate
1488 * @link_mode: Mapping policy to operstate
1489 * @if_port: Selectable AUI, TP, ...
1490 * @dma: DMA channel
1491 * @mtu: Interface MTU value
1492 * @type: Interface hardware type
1493 * @hard_header_len: Maximum hardware header length.
1494 *
1495 * @needed_headroom: Extra headroom the hardware may need, but not in all
1496 * cases can this be guaranteed
1497 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1498 * cases can this be guaranteed. Some cases also use
1499 * LL_MAX_HEADER instead to allocate the skb
1500 *
1501 * interface address info:
1502 *
1503 * @perm_addr: Permanent hw address
1504 * @addr_assign_type: Hw address assignment type
1505 * @addr_len: Hardware address length
1506 * @neigh_priv_len: Used in neigh_alloc()
1507 * @dev_id: Used to differentiate devices that share
1508 * the same link layer address
1509 * @dev_port: Used to differentiate devices that share
1510 * the same function
1511 * @addr_list_lock: XXX: need comments on this one
1512 * @uc_promisc: Counter that indicates promiscuous mode
1513 * has been enabled due to the need to listen to
1514 * additional unicast addresses in a device that
1515 * does not implement ndo_set_rx_mode()
1516 * @uc: unicast mac addresses
1517 * @mc: multicast mac addresses
1518 * @dev_addrs: list of device hw addresses
1519 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1520 * @promiscuity: Number of times the NIC is told to work in
1521 * promiscuous mode; if it becomes 0 the NIC will
1522 * exit promiscuous mode
1523 * @allmulti: Counter, enables or disables allmulticast mode
1524 *
1525 * @vlan_info: VLAN info
1526 * @dsa_ptr: dsa specific data
1527 * @tipc_ptr: TIPC specific data
1528 * @atalk_ptr: AppleTalk link
1529 * @ip_ptr: IPv4 specific data
1530 * @dn_ptr: DECnet specific data
1531 * @ip6_ptr: IPv6 specific data
1532 * @ax25_ptr: AX.25 specific data
1533 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1534 *
1535 * @last_rx: Time of last Rx
1536 * @dev_addr: Hw address (before bcast,
1537 * because most packets are unicast)
1538 *
1539 * @_rx: Array of RX queues
1540 * @num_rx_queues: Number of RX queues
1541 * allocated at register_netdev() time
1542 * @real_num_rx_queues: Number of RX queues currently active in device
1543 *
1544 * @rx_handler: handler for received packets
1545 * @rx_handler_data: XXX: need comments on this one
1546 * @ingress_queue: XXX: need comments on this one
1547 * @broadcast: hw bcast address
1548 *
1549 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1550 * indexed by RX queue number. Assigned by driver.
1551 * This must only be set if the ndo_rx_flow_steer
1552 * operation is defined
1553 * @index_hlist: Device index hash chain
1554 *
1555 * @_tx: Array of TX queues
1556 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1557 * @real_num_tx_queues: Number of TX queues currently active in device
1558 * @qdisc: Root qdisc from userspace point of view
1559 * @tx_queue_len: Max frames per queue allowed
1560 * @tx_global_lock: XXX: need comments on this one
1561 *
1562 * @xps_maps: XXX: need comments on this one
1563 *
1564 * @offload_fwd_mark: Offload device fwding mark
1565 *
1566 * @watchdog_timeo: Represents the timeout that is used by
1567 * the watchdog (see dev_watchdog())
1568 * @watchdog_timer: List of timers
1569 *
1570 * @pcpu_refcnt: Number of references to this device
1571 * @todo_list: Delayed register/unregister
1572 * @link_watch_list: XXX: need comments on this one
1573 *
1574 * @reg_state: Register/unregister state machine
1575 * @dismantle: Device is going to be freed
1576 * @rtnl_link_state: This enum represents the phases of creating
1577 * a new link
1578 *
1579 * @destructor: Called from unregister,
1580 * can be used to call free_netdev
1581 * @npinfo: XXX: need comments on this one
1582 * @nd_net: Network namespace this network device is inside
1583 *
1584 * @ml_priv: Mid-layer private
1585 * @lstats: Loopback statistics
1586 * @tstats: Tunnel statistics
1587 * @dstats: Dummy statistics
1588 * @vstats: Virtual ethernet statistics
1589 *
1590 * @garp_port: GARP
1591 * @mrp_port: MRP
1592 *
1593 * @dev: Class/net/name entry
1594 * @sysfs_groups: Space for optional device, statistics and wireless
1595 * sysfs groups
1596 *
1597 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1598 * @rtnl_link_ops: Rtnl_link_ops
1599 *
1600 * @gso_max_size: Maximum size of generic segmentation offload
1601 * @gso_max_segs: Maximum number of segments that can be passed to the
1602 * NIC for GSO
1603 *
1604 * @dcbnl_ops: Data Center Bridging netlink ops
1605 * @num_tc: Number of traffic classes in the net device
1606 * @tc_to_txq: XXX: need comments on this one
1607 * @prio_tc_map XXX: need comments on this one
1608 *
1609 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1610 *
1611 * @priomap: XXX: need comments on this one
1612 * @phydev: Physical device may attach itself
1613 * for hardware timestamping
1614 *
1615 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1616 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1617 *
1618 * @proto_down: protocol port state information can be sent to the
1619 * switch driver and used to set the phys state of the
1620 * switch port.
1621 *
1622 * FIXME: cleanup struct net_device such that network protocol info
1623 * moves out.
1624 */
1625
1626 struct net_device {
1627 char name[IFNAMSIZ];
1628 struct hlist_node name_hlist;
1629 char *ifalias;
1630 /*
1631 * I/O specific fields
1632 * FIXME: Merge these and struct ifmap into one
1633 */
1634 unsigned long mem_end;
1635 unsigned long mem_start;
1636 unsigned long base_addr;
1637 int irq;
1638
1639 atomic_t carrier_changes;
1640
1641 /*
1642 * Some hardware also needs these fields (state,dev_list,
1643 * napi_list,unreg_list,close_list) but they are not
1644 * part of the usual set specified in Space.c.
1645 */
1646
1647 unsigned long state;
1648
1649 struct list_head dev_list;
1650 struct list_head napi_list;
1651 struct list_head unreg_list;
1652 struct list_head close_list;
1653 struct list_head ptype_all;
1654 struct list_head ptype_specific;
1655
1656 struct {
1657 struct list_head upper;
1658 struct list_head lower;
1659 } adj_list;
1660
1661 struct {
1662 struct list_head upper;
1663 struct list_head lower;
1664 } all_adj_list;
1665
1666 netdev_features_t features;
1667 netdev_features_t hw_features;
1668 netdev_features_t wanted_features;
1669 netdev_features_t vlan_features;
1670 netdev_features_t hw_enc_features;
1671 netdev_features_t mpls_features;
1672 netdev_features_t gso_partial_features;
1673
1674 int ifindex;
1675 int group;
1676
1677 struct net_device_stats stats;
1678
1679 atomic_long_t rx_dropped;
1680 atomic_long_t tx_dropped;
1681 atomic_long_t rx_nohandler;
1682
1683 #ifdef CONFIG_WIRELESS_EXT
1684 const struct iw_handler_def *wireless_handlers;
1685 struct iw_public_data *wireless_data;
1686 #endif
1687 const struct net_device_ops *netdev_ops;
1688 const struct ethtool_ops *ethtool_ops;
1689 #ifdef CONFIG_NET_SWITCHDEV
1690 const struct switchdev_ops *switchdev_ops;
1691 #endif
1692 #ifdef CONFIG_NET_L3_MASTER_DEV
1693 const struct l3mdev_ops *l3mdev_ops;
1694 #endif
1695 #if IS_ENABLED(CONFIG_IPV6)
1696 const struct ndisc_ops *ndisc_ops;
1697 #endif
1698
1699 const struct header_ops *header_ops;
1700
1701 unsigned int flags;
1702 unsigned int priv_flags;
1703
1704 unsigned short gflags;
1705 unsigned short padded;
1706
1707 unsigned char operstate;
1708 unsigned char link_mode;
1709
1710 unsigned char if_port;
1711 unsigned char dma;
1712
1713 unsigned int mtu;
1714 unsigned short type;
1715 unsigned short hard_header_len;
1716
1717 unsigned short needed_headroom;
1718 unsigned short needed_tailroom;
1719
1720 /* Interface address info. */
1721 unsigned char perm_addr[MAX_ADDR_LEN];
1722 unsigned char addr_assign_type;
1723 unsigned char addr_len;
1724 unsigned short neigh_priv_len;
1725 unsigned short dev_id;
1726 unsigned short dev_port;
1727 spinlock_t addr_list_lock;
1728 unsigned char name_assign_type;
1729 bool uc_promisc;
1730 struct netdev_hw_addr_list uc;
1731 struct netdev_hw_addr_list mc;
1732 struct netdev_hw_addr_list dev_addrs;
1733
1734 #ifdef CONFIG_SYSFS
1735 struct kset *queues_kset;
1736 #endif
1737 unsigned int promiscuity;
1738 unsigned int allmulti;
1739
1740
1741 /* Protocol-specific pointers */
1742
1743 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1744 struct vlan_info __rcu *vlan_info;
1745 #endif
1746 #if IS_ENABLED(CONFIG_NET_DSA)
1747 struct dsa_switch_tree *dsa_ptr;
1748 #endif
1749 #if IS_ENABLED(CONFIG_TIPC)
1750 struct tipc_bearer __rcu *tipc_ptr;
1751 #endif
1752 void *atalk_ptr;
1753 struct in_device __rcu *ip_ptr;
1754 struct dn_dev __rcu *dn_ptr;
1755 struct inet6_dev __rcu *ip6_ptr;
1756 void *ax25_ptr;
1757 struct wireless_dev *ieee80211_ptr;
1758 struct wpan_dev *ieee802154_ptr;
1759 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1760 struct mpls_dev __rcu *mpls_ptr;
1761 #endif
1762
1763 /*
1764 * Cache lines mostly used on receive path (including eth_type_trans())
1765 */
1766 unsigned long last_rx;
1767
1768 /* Interface address info used in eth_type_trans() */
1769 unsigned char *dev_addr;
1770
1771 #ifdef CONFIG_SYSFS
1772 struct netdev_rx_queue *_rx;
1773
1774 unsigned int num_rx_queues;
1775 unsigned int real_num_rx_queues;
1776 #endif
1777
1778 unsigned long gro_flush_timeout;
1779 rx_handler_func_t __rcu *rx_handler;
1780 void __rcu *rx_handler_data;
1781
1782 #ifdef CONFIG_NET_CLS_ACT
1783 struct tcf_proto __rcu *ingress_cl_list;
1784 #endif
1785 struct netdev_queue __rcu *ingress_queue;
1786 #ifdef CONFIG_NETFILTER_INGRESS
1787 struct list_head nf_hooks_ingress;
1788 #endif
1789
1790 unsigned char broadcast[MAX_ADDR_LEN];
1791 #ifdef CONFIG_RFS_ACCEL
1792 struct cpu_rmap *rx_cpu_rmap;
1793 #endif
1794 struct hlist_node index_hlist;
1795
1796 /*
1797 * Cache lines mostly used on transmit path
1798 */
1799 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1800 unsigned int num_tx_queues;
1801 unsigned int real_num_tx_queues;
1802 struct Qdisc *qdisc;
1803 unsigned long tx_queue_len;
1804 spinlock_t tx_global_lock;
1805 int watchdog_timeo;
1806
1807 #ifdef CONFIG_XPS
1808 struct xps_dev_maps __rcu *xps_maps;
1809 #endif
1810 #ifdef CONFIG_NET_CLS_ACT
1811 struct tcf_proto __rcu *egress_cl_list;
1812 #endif
1813 #ifdef CONFIG_NET_SWITCHDEV
1814 u32 offload_fwd_mark;
1815 #endif
1816
1817 /* These may be needed for future network-power-down code. */
1818 struct timer_list watchdog_timer;
1819
1820 int __percpu *pcpu_refcnt;
1821 struct list_head todo_list;
1822
1823 struct list_head link_watch_list;
1824
1825 enum { NETREG_UNINITIALIZED=0,
1826 NETREG_REGISTERED, /* completed register_netdevice */
1827 NETREG_UNREGISTERING, /* called unregister_netdevice */
1828 NETREG_UNREGISTERED, /* completed unregister todo */
1829 NETREG_RELEASED, /* called free_netdev */
1830 NETREG_DUMMY, /* dummy device for NAPI poll */
1831 } reg_state:8;
1832
1833 bool dismantle;
1834
1835 enum {
1836 RTNL_LINK_INITIALIZED,
1837 RTNL_LINK_INITIALIZING,
1838 } rtnl_link_state:16;
1839
1840 void (*destructor)(struct net_device *dev);
1841
1842 #ifdef CONFIG_NETPOLL
1843 struct netpoll_info __rcu *npinfo;
1844 #endif
1845
1846 possible_net_t nd_net;
1847
1848 /* mid-layer private */
1849 union {
1850 void *ml_priv;
1851 struct pcpu_lstats __percpu *lstats;
1852 struct pcpu_sw_netstats __percpu *tstats;
1853 struct pcpu_dstats __percpu *dstats;
1854 struct pcpu_vstats __percpu *vstats;
1855 };
1856
1857 struct garp_port __rcu *garp_port;
1858 struct mrp_port __rcu *mrp_port;
1859
1860 struct device dev;
1861 const struct attribute_group *sysfs_groups[4];
1862 const struct attribute_group *sysfs_rx_queue_group;
1863
1864 const struct rtnl_link_ops *rtnl_link_ops;
1865
1866 /* for setting kernel sock attribute on TCP connection setup */
1867 #define GSO_MAX_SIZE 65536
1868 unsigned int gso_max_size;
1869 #define GSO_MAX_SEGS 65535
1870 u16 gso_max_segs;
1871
1872 #ifdef CONFIG_DCB
1873 const struct dcbnl_rtnl_ops *dcbnl_ops;
1874 #endif
1875 u8 num_tc;
1876 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1877 u8 prio_tc_map[TC_BITMASK + 1];
1878
1879 #if IS_ENABLED(CONFIG_FCOE)
1880 unsigned int fcoe_ddp_xid;
1881 #endif
1882 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1883 struct netprio_map __rcu *priomap;
1884 #endif
1885 struct phy_device *phydev;
1886 struct lock_class_key *qdisc_tx_busylock;
1887 struct lock_class_key *qdisc_running_key;
1888 bool proto_down;
1889 };
1890 #define to_net_dev(d) container_of(d, struct net_device, dev)
1891
1892 #define NETDEV_ALIGN 32
1893
1894 static inline
1895 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1896 {
1897 return dev->prio_tc_map[prio & TC_BITMASK];
1898 }
1899
1900 static inline
1901 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1902 {
1903 if (tc >= dev->num_tc)
1904 return -EINVAL;
1905
1906 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1907 return 0;
1908 }
1909
1910 static inline
1911 void netdev_reset_tc(struct net_device *dev)
1912 {
1913 dev->num_tc = 0;
1914 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1915 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1916 }
1917
1918 static inline
1919 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1920 {
1921 if (tc >= dev->num_tc)
1922 return -EINVAL;
1923
1924 dev->tc_to_txq[tc].count = count;
1925 dev->tc_to_txq[tc].offset = offset;
1926 return 0;
1927 }
1928
1929 static inline
1930 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1931 {
1932 if (num_tc > TC_MAX_QUEUE)
1933 return -EINVAL;
1934
1935 dev->num_tc = num_tc;
1936 return 0;
1937 }
1938
1939 static inline
1940 int netdev_get_num_tc(struct net_device *dev)
1941 {
1942 return dev->num_tc;
1943 }
1944
1945 static inline
1946 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1947 unsigned int index)
1948 {
1949 return &dev->_tx[index];
1950 }
1951
1952 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1953 const struct sk_buff *skb)
1954 {
1955 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1956 }
1957
1958 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1959 void (*f)(struct net_device *,
1960 struct netdev_queue *,
1961 void *),
1962 void *arg)
1963 {
1964 unsigned int i;
1965
1966 for (i = 0; i < dev->num_tx_queues; i++)
1967 f(dev, &dev->_tx[i], arg);
1968 }
1969
1970 #define netdev_lockdep_set_classes(dev) \
1971 { \
1972 static struct lock_class_key qdisc_tx_busylock_key; \
1973 static struct lock_class_key qdisc_running_key; \
1974 static struct lock_class_key qdisc_xmit_lock_key; \
1975 static struct lock_class_key dev_addr_list_lock_key; \
1976 unsigned int i; \
1977 \
1978 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1979 (dev)->qdisc_running_key = &qdisc_running_key; \
1980 lockdep_set_class(&(dev)->addr_list_lock, \
1981 &dev_addr_list_lock_key); \
1982 for (i = 0; i < (dev)->num_tx_queues; i++) \
1983 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1984 &qdisc_xmit_lock_key); \
1985 }
1986
1987 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1988 struct sk_buff *skb,
1989 void *accel_priv);
1990
1991 /* returns the headroom that the master device needs to take in account
1992 * when forwarding to this dev
1993 */
1994 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1995 {
1996 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1997 }
1998
1999 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2000 {
2001 if (dev->netdev_ops->ndo_set_rx_headroom)
2002 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2003 }
2004
2005 /* set the device rx headroom to the dev's default */
2006 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2007 {
2008 netdev_set_rx_headroom(dev, -1);
2009 }
2010
2011 /*
2012 * Net namespace inlines
2013 */
2014 static inline
2015 struct net *dev_net(const struct net_device *dev)
2016 {
2017 return read_pnet(&dev->nd_net);
2018 }
2019
2020 static inline
2021 void dev_net_set(struct net_device *dev, struct net *net)
2022 {
2023 write_pnet(&dev->nd_net, net);
2024 }
2025
2026 static inline bool netdev_uses_dsa(struct net_device *dev)
2027 {
2028 #if IS_ENABLED(CONFIG_NET_DSA)
2029 if (dev->dsa_ptr != NULL)
2030 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2031 #endif
2032 return false;
2033 }
2034
2035 /**
2036 * netdev_priv - access network device private data
2037 * @dev: network device
2038 *
2039 * Get network device private data
2040 */
2041 static inline void *netdev_priv(const struct net_device *dev)
2042 {
2043 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2044 }
2045
2046 /* Set the sysfs physical device reference for the network logical device
2047 * if set prior to registration will cause a symlink during initialization.
2048 */
2049 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2050
2051 /* Set the sysfs device type for the network logical device to allow
2052 * fine-grained identification of different network device types. For
2053 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2054 */
2055 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2056
2057 /* Default NAPI poll() weight
2058 * Device drivers are strongly advised to not use bigger value
2059 */
2060 #define NAPI_POLL_WEIGHT 64
2061
2062 /**
2063 * netif_napi_add - initialize a NAPI context
2064 * @dev: network device
2065 * @napi: NAPI context
2066 * @poll: polling function
2067 * @weight: default weight
2068 *
2069 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2070 * *any* of the other NAPI-related functions.
2071 */
2072 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2073 int (*poll)(struct napi_struct *, int), int weight);
2074
2075 /**
2076 * netif_tx_napi_add - initialize a NAPI context
2077 * @dev: network device
2078 * @napi: NAPI context
2079 * @poll: polling function
2080 * @weight: default weight
2081 *
2082 * This variant of netif_napi_add() should be used from drivers using NAPI
2083 * to exclusively poll a TX queue.
2084 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2085 */
2086 static inline void netif_tx_napi_add(struct net_device *dev,
2087 struct napi_struct *napi,
2088 int (*poll)(struct napi_struct *, int),
2089 int weight)
2090 {
2091 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2092 netif_napi_add(dev, napi, poll, weight);
2093 }
2094
2095 /**
2096 * netif_napi_del - remove a NAPI context
2097 * @napi: NAPI context
2098 *
2099 * netif_napi_del() removes a NAPI context from the network device NAPI list
2100 */
2101 void netif_napi_del(struct napi_struct *napi);
2102
2103 struct napi_gro_cb {
2104 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2105 void *frag0;
2106
2107 /* Length of frag0. */
2108 unsigned int frag0_len;
2109
2110 /* This indicates where we are processing relative to skb->data. */
2111 int data_offset;
2112
2113 /* This is non-zero if the packet cannot be merged with the new skb. */
2114 u16 flush;
2115
2116 /* Save the IP ID here and check when we get to the transport layer */
2117 u16 flush_id;
2118
2119 /* Number of segments aggregated. */
2120 u16 count;
2121
2122 /* Start offset for remote checksum offload */
2123 u16 gro_remcsum_start;
2124
2125 /* jiffies when first packet was created/queued */
2126 unsigned long age;
2127
2128 /* Used in ipv6_gro_receive() and foo-over-udp */
2129 u16 proto;
2130
2131 /* This is non-zero if the packet may be of the same flow. */
2132 u8 same_flow:1;
2133
2134 /* Used in tunnel GRO receive */
2135 u8 encap_mark:1;
2136
2137 /* GRO checksum is valid */
2138 u8 csum_valid:1;
2139
2140 /* Number of checksums via CHECKSUM_UNNECESSARY */
2141 u8 csum_cnt:3;
2142
2143 /* Free the skb? */
2144 u8 free:2;
2145 #define NAPI_GRO_FREE 1
2146 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2147
2148 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2149 u8 is_ipv6:1;
2150
2151 /* Used in GRE, set in fou/gue_gro_receive */
2152 u8 is_fou:1;
2153
2154 /* Used to determine if flush_id can be ignored */
2155 u8 is_atomic:1;
2156
2157 /* 5 bit hole */
2158
2159 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2160 __wsum csum;
2161
2162 /* used in skb_gro_receive() slow path */
2163 struct sk_buff *last;
2164 };
2165
2166 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2167
2168 struct packet_type {
2169 __be16 type; /* This is really htons(ether_type). */
2170 struct net_device *dev; /* NULL is wildcarded here */
2171 int (*func) (struct sk_buff *,
2172 struct net_device *,
2173 struct packet_type *,
2174 struct net_device *);
2175 bool (*id_match)(struct packet_type *ptype,
2176 struct sock *sk);
2177 void *af_packet_priv;
2178 struct list_head list;
2179 };
2180
2181 struct offload_callbacks {
2182 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2183 netdev_features_t features);
2184 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2185 struct sk_buff *skb);
2186 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2187 };
2188
2189 struct packet_offload {
2190 __be16 type; /* This is really htons(ether_type). */
2191 u16 priority;
2192 struct offload_callbacks callbacks;
2193 struct list_head list;
2194 };
2195
2196 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2197 struct pcpu_sw_netstats {
2198 u64 rx_packets;
2199 u64 rx_bytes;
2200 u64 tx_packets;
2201 u64 tx_bytes;
2202 struct u64_stats_sync syncp;
2203 };
2204
2205 #define __netdev_alloc_pcpu_stats(type, gfp) \
2206 ({ \
2207 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2208 if (pcpu_stats) { \
2209 int __cpu; \
2210 for_each_possible_cpu(__cpu) { \
2211 typeof(type) *stat; \
2212 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2213 u64_stats_init(&stat->syncp); \
2214 } \
2215 } \
2216 pcpu_stats; \
2217 })
2218
2219 #define netdev_alloc_pcpu_stats(type) \
2220 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2221
2222 enum netdev_lag_tx_type {
2223 NETDEV_LAG_TX_TYPE_UNKNOWN,
2224 NETDEV_LAG_TX_TYPE_RANDOM,
2225 NETDEV_LAG_TX_TYPE_BROADCAST,
2226 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2227 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2228 NETDEV_LAG_TX_TYPE_HASH,
2229 };
2230
2231 struct netdev_lag_upper_info {
2232 enum netdev_lag_tx_type tx_type;
2233 };
2234
2235 struct netdev_lag_lower_state_info {
2236 u8 link_up : 1,
2237 tx_enabled : 1;
2238 };
2239
2240 #include <linux/notifier.h>
2241
2242 /* netdevice notifier chain. Please remember to update the rtnetlink
2243 * notification exclusion list in rtnetlink_event() when adding new
2244 * types.
2245 */
2246 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2247 #define NETDEV_DOWN 0x0002
2248 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2249 detected a hardware crash and restarted
2250 - we can use this eg to kick tcp sessions
2251 once done */
2252 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2253 #define NETDEV_REGISTER 0x0005
2254 #define NETDEV_UNREGISTER 0x0006
2255 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2256 #define NETDEV_CHANGEADDR 0x0008
2257 #define NETDEV_GOING_DOWN 0x0009
2258 #define NETDEV_CHANGENAME 0x000A
2259 #define NETDEV_FEAT_CHANGE 0x000B
2260 #define NETDEV_BONDING_FAILOVER 0x000C
2261 #define NETDEV_PRE_UP 0x000D
2262 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2263 #define NETDEV_POST_TYPE_CHANGE 0x000F
2264 #define NETDEV_POST_INIT 0x0010
2265 #define NETDEV_UNREGISTER_FINAL 0x0011
2266 #define NETDEV_RELEASE 0x0012
2267 #define NETDEV_NOTIFY_PEERS 0x0013
2268 #define NETDEV_JOIN 0x0014
2269 #define NETDEV_CHANGEUPPER 0x0015
2270 #define NETDEV_RESEND_IGMP 0x0016
2271 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2272 #define NETDEV_CHANGEINFODATA 0x0018
2273 #define NETDEV_BONDING_INFO 0x0019
2274 #define NETDEV_PRECHANGEUPPER 0x001A
2275 #define NETDEV_CHANGELOWERSTATE 0x001B
2276 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2277 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2278
2279 int register_netdevice_notifier(struct notifier_block *nb);
2280 int unregister_netdevice_notifier(struct notifier_block *nb);
2281
2282 struct netdev_notifier_info {
2283 struct net_device *dev;
2284 };
2285
2286 struct netdev_notifier_change_info {
2287 struct netdev_notifier_info info; /* must be first */
2288 unsigned int flags_changed;
2289 };
2290
2291 struct netdev_notifier_changeupper_info {
2292 struct netdev_notifier_info info; /* must be first */
2293 struct net_device *upper_dev; /* new upper dev */
2294 bool master; /* is upper dev master */
2295 bool linking; /* is the notification for link or unlink */
2296 void *upper_info; /* upper dev info */
2297 };
2298
2299 struct netdev_notifier_changelowerstate_info {
2300 struct netdev_notifier_info info; /* must be first */
2301 void *lower_state_info; /* is lower dev state */
2302 };
2303
2304 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2305 struct net_device *dev)
2306 {
2307 info->dev = dev;
2308 }
2309
2310 static inline struct net_device *
2311 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2312 {
2313 return info->dev;
2314 }
2315
2316 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2317
2318
2319 extern rwlock_t dev_base_lock; /* Device list lock */
2320
2321 #define for_each_netdev(net, d) \
2322 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2323 #define for_each_netdev_reverse(net, d) \
2324 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2325 #define for_each_netdev_rcu(net, d) \
2326 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2327 #define for_each_netdev_safe(net, d, n) \
2328 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2329 #define for_each_netdev_continue(net, d) \
2330 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2331 #define for_each_netdev_continue_rcu(net, d) \
2332 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2333 #define for_each_netdev_in_bond_rcu(bond, slave) \
2334 for_each_netdev_rcu(&init_net, slave) \
2335 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2336 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2337
2338 static inline struct net_device *next_net_device(struct net_device *dev)
2339 {
2340 struct list_head *lh;
2341 struct net *net;
2342
2343 net = dev_net(dev);
2344 lh = dev->dev_list.next;
2345 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2346 }
2347
2348 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2349 {
2350 struct list_head *lh;
2351 struct net *net;
2352
2353 net = dev_net(dev);
2354 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2355 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2356 }
2357
2358 static inline struct net_device *first_net_device(struct net *net)
2359 {
2360 return list_empty(&net->dev_base_head) ? NULL :
2361 net_device_entry(net->dev_base_head.next);
2362 }
2363
2364 static inline struct net_device *first_net_device_rcu(struct net *net)
2365 {
2366 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2367
2368 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2369 }
2370
2371 int netdev_boot_setup_check(struct net_device *dev);
2372 unsigned long netdev_boot_base(const char *prefix, int unit);
2373 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2374 const char *hwaddr);
2375 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2376 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2377 void dev_add_pack(struct packet_type *pt);
2378 void dev_remove_pack(struct packet_type *pt);
2379 void __dev_remove_pack(struct packet_type *pt);
2380 void dev_add_offload(struct packet_offload *po);
2381 void dev_remove_offload(struct packet_offload *po);
2382
2383 int dev_get_iflink(const struct net_device *dev);
2384 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2385 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2386 unsigned short mask);
2387 struct net_device *dev_get_by_name(struct net *net, const char *name);
2388 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2389 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2390 int dev_alloc_name(struct net_device *dev, const char *name);
2391 int dev_open(struct net_device *dev);
2392 int dev_close(struct net_device *dev);
2393 int dev_close_many(struct list_head *head, bool unlink);
2394 void dev_disable_lro(struct net_device *dev);
2395 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2396 int dev_queue_xmit(struct sk_buff *skb);
2397 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2398 int register_netdevice(struct net_device *dev);
2399 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2400 void unregister_netdevice_many(struct list_head *head);
2401 static inline void unregister_netdevice(struct net_device *dev)
2402 {
2403 unregister_netdevice_queue(dev, NULL);
2404 }
2405
2406 int netdev_refcnt_read(const struct net_device *dev);
2407 void free_netdev(struct net_device *dev);
2408 void netdev_freemem(struct net_device *dev);
2409 void synchronize_net(void);
2410 int init_dummy_netdev(struct net_device *dev);
2411
2412 DECLARE_PER_CPU(int, xmit_recursion);
2413 #define XMIT_RECURSION_LIMIT 10
2414
2415 static inline int dev_recursion_level(void)
2416 {
2417 return this_cpu_read(xmit_recursion);
2418 }
2419
2420 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2421 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2422 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2423 int netdev_get_name(struct net *net, char *name, int ifindex);
2424 int dev_restart(struct net_device *dev);
2425 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2426
2427 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2428 {
2429 return NAPI_GRO_CB(skb)->data_offset;
2430 }
2431
2432 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2433 {
2434 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2435 }
2436
2437 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2438 {
2439 NAPI_GRO_CB(skb)->data_offset += len;
2440 }
2441
2442 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2443 unsigned int offset)
2444 {
2445 return NAPI_GRO_CB(skb)->frag0 + offset;
2446 }
2447
2448 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2449 {
2450 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2451 }
2452
2453 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2454 unsigned int offset)
2455 {
2456 if (!pskb_may_pull(skb, hlen))
2457 return NULL;
2458
2459 NAPI_GRO_CB(skb)->frag0 = NULL;
2460 NAPI_GRO_CB(skb)->frag0_len = 0;
2461 return skb->data + offset;
2462 }
2463
2464 static inline void *skb_gro_network_header(struct sk_buff *skb)
2465 {
2466 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2467 skb_network_offset(skb);
2468 }
2469
2470 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2471 const void *start, unsigned int len)
2472 {
2473 if (NAPI_GRO_CB(skb)->csum_valid)
2474 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2475 csum_partial(start, len, 0));
2476 }
2477
2478 /* GRO checksum functions. These are logical equivalents of the normal
2479 * checksum functions (in skbuff.h) except that they operate on the GRO
2480 * offsets and fields in sk_buff.
2481 */
2482
2483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2484
2485 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2486 {
2487 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2488 }
2489
2490 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2491 bool zero_okay,
2492 __sum16 check)
2493 {
2494 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2495 skb_checksum_start_offset(skb) <
2496 skb_gro_offset(skb)) &&
2497 !skb_at_gro_remcsum_start(skb) &&
2498 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2499 (!zero_okay || check));
2500 }
2501
2502 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2503 __wsum psum)
2504 {
2505 if (NAPI_GRO_CB(skb)->csum_valid &&
2506 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2507 return 0;
2508
2509 NAPI_GRO_CB(skb)->csum = psum;
2510
2511 return __skb_gro_checksum_complete(skb);
2512 }
2513
2514 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2515 {
2516 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2517 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2518 NAPI_GRO_CB(skb)->csum_cnt--;
2519 } else {
2520 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2521 * verified a new top level checksum or an encapsulated one
2522 * during GRO. This saves work if we fallback to normal path.
2523 */
2524 __skb_incr_checksum_unnecessary(skb);
2525 }
2526 }
2527
2528 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2529 compute_pseudo) \
2530 ({ \
2531 __sum16 __ret = 0; \
2532 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2533 __ret = __skb_gro_checksum_validate_complete(skb, \
2534 compute_pseudo(skb, proto)); \
2535 if (__ret) \
2536 __skb_mark_checksum_bad(skb); \
2537 else \
2538 skb_gro_incr_csum_unnecessary(skb); \
2539 __ret; \
2540 })
2541
2542 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2543 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2544
2545 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2546 compute_pseudo) \
2547 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2548
2549 #define skb_gro_checksum_simple_validate(skb) \
2550 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2551
2552 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2553 {
2554 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2555 !NAPI_GRO_CB(skb)->csum_valid);
2556 }
2557
2558 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2559 __sum16 check, __wsum pseudo)
2560 {
2561 NAPI_GRO_CB(skb)->csum = ~pseudo;
2562 NAPI_GRO_CB(skb)->csum_valid = 1;
2563 }
2564
2565 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2566 do { \
2567 if (__skb_gro_checksum_convert_check(skb)) \
2568 __skb_gro_checksum_convert(skb, check, \
2569 compute_pseudo(skb, proto)); \
2570 } while (0)
2571
2572 struct gro_remcsum {
2573 int offset;
2574 __wsum delta;
2575 };
2576
2577 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2578 {
2579 grc->offset = 0;
2580 grc->delta = 0;
2581 }
2582
2583 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2584 unsigned int off, size_t hdrlen,
2585 int start, int offset,
2586 struct gro_remcsum *grc,
2587 bool nopartial)
2588 {
2589 __wsum delta;
2590 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2591
2592 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2593
2594 if (!nopartial) {
2595 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2596 return ptr;
2597 }
2598
2599 ptr = skb_gro_header_fast(skb, off);
2600 if (skb_gro_header_hard(skb, off + plen)) {
2601 ptr = skb_gro_header_slow(skb, off + plen, off);
2602 if (!ptr)
2603 return NULL;
2604 }
2605
2606 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2607 start, offset);
2608
2609 /* Adjust skb->csum since we changed the packet */
2610 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2611
2612 grc->offset = off + hdrlen + offset;
2613 grc->delta = delta;
2614
2615 return ptr;
2616 }
2617
2618 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2619 struct gro_remcsum *grc)
2620 {
2621 void *ptr;
2622 size_t plen = grc->offset + sizeof(u16);
2623
2624 if (!grc->delta)
2625 return;
2626
2627 ptr = skb_gro_header_fast(skb, grc->offset);
2628 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2629 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2630 if (!ptr)
2631 return;
2632 }
2633
2634 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2635 }
2636
2637 struct skb_csum_offl_spec {
2638 __u16 ipv4_okay:1,
2639 ipv6_okay:1,
2640 encap_okay:1,
2641 ip_options_okay:1,
2642 ext_hdrs_okay:1,
2643 tcp_okay:1,
2644 udp_okay:1,
2645 sctp_okay:1,
2646 vlan_okay:1,
2647 no_encapped_ipv6:1,
2648 no_not_encapped:1;
2649 };
2650
2651 bool __skb_csum_offload_chk(struct sk_buff *skb,
2652 const struct skb_csum_offl_spec *spec,
2653 bool *csum_encapped,
2654 bool csum_help);
2655
2656 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2657 const struct skb_csum_offl_spec *spec,
2658 bool *csum_encapped,
2659 bool csum_help)
2660 {
2661 if (skb->ip_summed != CHECKSUM_PARTIAL)
2662 return false;
2663
2664 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2665 }
2666
2667 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2668 const struct skb_csum_offl_spec *spec)
2669 {
2670 bool csum_encapped;
2671
2672 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2673 }
2674
2675 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2676 {
2677 static const struct skb_csum_offl_spec csum_offl_spec = {
2678 .ipv4_okay = 1,
2679 .ip_options_okay = 1,
2680 .ipv6_okay = 1,
2681 .vlan_okay = 1,
2682 .tcp_okay = 1,
2683 .udp_okay = 1,
2684 };
2685
2686 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2687 }
2688
2689 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2690 {
2691 static const struct skb_csum_offl_spec csum_offl_spec = {
2692 .ipv4_okay = 1,
2693 .ip_options_okay = 1,
2694 .tcp_okay = 1,
2695 .udp_okay = 1,
2696 .vlan_okay = 1,
2697 };
2698
2699 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2700 }
2701
2702 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2703 unsigned short type,
2704 const void *daddr, const void *saddr,
2705 unsigned int len)
2706 {
2707 if (!dev->header_ops || !dev->header_ops->create)
2708 return 0;
2709
2710 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2711 }
2712
2713 static inline int dev_parse_header(const struct sk_buff *skb,
2714 unsigned char *haddr)
2715 {
2716 const struct net_device *dev = skb->dev;
2717
2718 if (!dev->header_ops || !dev->header_ops->parse)
2719 return 0;
2720 return dev->header_ops->parse(skb, haddr);
2721 }
2722
2723 /* ll_header must have at least hard_header_len allocated */
2724 static inline bool dev_validate_header(const struct net_device *dev,
2725 char *ll_header, int len)
2726 {
2727 if (likely(len >= dev->hard_header_len))
2728 return true;
2729
2730 if (capable(CAP_SYS_RAWIO)) {
2731 memset(ll_header + len, 0, dev->hard_header_len - len);
2732 return true;
2733 }
2734
2735 if (dev->header_ops && dev->header_ops->validate)
2736 return dev->header_ops->validate(ll_header, len);
2737
2738 return false;
2739 }
2740
2741 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2742 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2743 static inline int unregister_gifconf(unsigned int family)
2744 {
2745 return register_gifconf(family, NULL);
2746 }
2747
2748 #ifdef CONFIG_NET_FLOW_LIMIT
2749 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2750 struct sd_flow_limit {
2751 u64 count;
2752 unsigned int num_buckets;
2753 unsigned int history_head;
2754 u16 history[FLOW_LIMIT_HISTORY];
2755 u8 buckets[];
2756 };
2757
2758 extern int netdev_flow_limit_table_len;
2759 #endif /* CONFIG_NET_FLOW_LIMIT */
2760
2761 /*
2762 * Incoming packets are placed on per-CPU queues
2763 */
2764 struct softnet_data {
2765 struct list_head poll_list;
2766 struct sk_buff_head process_queue;
2767
2768 /* stats */
2769 unsigned int processed;
2770 unsigned int time_squeeze;
2771 unsigned int received_rps;
2772 #ifdef CONFIG_RPS
2773 struct softnet_data *rps_ipi_list;
2774 #endif
2775 #ifdef CONFIG_NET_FLOW_LIMIT
2776 struct sd_flow_limit __rcu *flow_limit;
2777 #endif
2778 struct Qdisc *output_queue;
2779 struct Qdisc **output_queue_tailp;
2780 struct sk_buff *completion_queue;
2781
2782 #ifdef CONFIG_RPS
2783 /* input_queue_head should be written by cpu owning this struct,
2784 * and only read by other cpus. Worth using a cache line.
2785 */
2786 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2787
2788 /* Elements below can be accessed between CPUs for RPS/RFS */
2789 struct call_single_data csd ____cacheline_aligned_in_smp;
2790 struct softnet_data *rps_ipi_next;
2791 unsigned int cpu;
2792 unsigned int input_queue_tail;
2793 #endif
2794 unsigned int dropped;
2795 struct sk_buff_head input_pkt_queue;
2796 struct napi_struct backlog;
2797
2798 };
2799
2800 static inline void input_queue_head_incr(struct softnet_data *sd)
2801 {
2802 #ifdef CONFIG_RPS
2803 sd->input_queue_head++;
2804 #endif
2805 }
2806
2807 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2808 unsigned int *qtail)
2809 {
2810 #ifdef CONFIG_RPS
2811 *qtail = ++sd->input_queue_tail;
2812 #endif
2813 }
2814
2815 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2816
2817 void __netif_schedule(struct Qdisc *q);
2818 void netif_schedule_queue(struct netdev_queue *txq);
2819
2820 static inline void netif_tx_schedule_all(struct net_device *dev)
2821 {
2822 unsigned int i;
2823
2824 for (i = 0; i < dev->num_tx_queues; i++)
2825 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2826 }
2827
2828 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2829 {
2830 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2831 }
2832
2833 /**
2834 * netif_start_queue - allow transmit
2835 * @dev: network device
2836 *
2837 * Allow upper layers to call the device hard_start_xmit routine.
2838 */
2839 static inline void netif_start_queue(struct net_device *dev)
2840 {
2841 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2842 }
2843
2844 static inline void netif_tx_start_all_queues(struct net_device *dev)
2845 {
2846 unsigned int i;
2847
2848 for (i = 0; i < dev->num_tx_queues; i++) {
2849 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2850 netif_tx_start_queue(txq);
2851 }
2852 }
2853
2854 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2855
2856 /**
2857 * netif_wake_queue - restart transmit
2858 * @dev: network device
2859 *
2860 * Allow upper layers to call the device hard_start_xmit routine.
2861 * Used for flow control when transmit resources are available.
2862 */
2863 static inline void netif_wake_queue(struct net_device *dev)
2864 {
2865 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2866 }
2867
2868 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2869 {
2870 unsigned int i;
2871
2872 for (i = 0; i < dev->num_tx_queues; i++) {
2873 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2874 netif_tx_wake_queue(txq);
2875 }
2876 }
2877
2878 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2879 {
2880 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2881 }
2882
2883 /**
2884 * netif_stop_queue - stop transmitted packets
2885 * @dev: network device
2886 *
2887 * Stop upper layers calling the device hard_start_xmit routine.
2888 * Used for flow control when transmit resources are unavailable.
2889 */
2890 static inline void netif_stop_queue(struct net_device *dev)
2891 {
2892 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2893 }
2894
2895 void netif_tx_stop_all_queues(struct net_device *dev);
2896
2897 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2898 {
2899 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2900 }
2901
2902 /**
2903 * netif_queue_stopped - test if transmit queue is flowblocked
2904 * @dev: network device
2905 *
2906 * Test if transmit queue on device is currently unable to send.
2907 */
2908 static inline bool netif_queue_stopped(const struct net_device *dev)
2909 {
2910 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2911 }
2912
2913 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2914 {
2915 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2916 }
2917
2918 static inline bool
2919 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2920 {
2921 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2922 }
2923
2924 static inline bool
2925 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2926 {
2927 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2928 }
2929
2930 /**
2931 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2932 * @dev_queue: pointer to transmit queue
2933 *
2934 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2935 * to give appropriate hint to the CPU.
2936 */
2937 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2938 {
2939 #ifdef CONFIG_BQL
2940 prefetchw(&dev_queue->dql.num_queued);
2941 #endif
2942 }
2943
2944 /**
2945 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2946 * @dev_queue: pointer to transmit queue
2947 *
2948 * BQL enabled drivers might use this helper in their TX completion path,
2949 * to give appropriate hint to the CPU.
2950 */
2951 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2952 {
2953 #ifdef CONFIG_BQL
2954 prefetchw(&dev_queue->dql.limit);
2955 #endif
2956 }
2957
2958 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2959 unsigned int bytes)
2960 {
2961 #ifdef CONFIG_BQL
2962 dql_queued(&dev_queue->dql, bytes);
2963
2964 if (likely(dql_avail(&dev_queue->dql) >= 0))
2965 return;
2966
2967 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2968
2969 /*
2970 * The XOFF flag must be set before checking the dql_avail below,
2971 * because in netdev_tx_completed_queue we update the dql_completed
2972 * before checking the XOFF flag.
2973 */
2974 smp_mb();
2975
2976 /* check again in case another CPU has just made room avail */
2977 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2978 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2979 #endif
2980 }
2981
2982 /**
2983 * netdev_sent_queue - report the number of bytes queued to hardware
2984 * @dev: network device
2985 * @bytes: number of bytes queued to the hardware device queue
2986 *
2987 * Report the number of bytes queued for sending/completion to the network
2988 * device hardware queue. @bytes should be a good approximation and should
2989 * exactly match netdev_completed_queue() @bytes
2990 */
2991 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2992 {
2993 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2994 }
2995
2996 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2997 unsigned int pkts, unsigned int bytes)
2998 {
2999 #ifdef CONFIG_BQL
3000 if (unlikely(!bytes))
3001 return;
3002
3003 dql_completed(&dev_queue->dql, bytes);
3004
3005 /*
3006 * Without the memory barrier there is a small possiblity that
3007 * netdev_tx_sent_queue will miss the update and cause the queue to
3008 * be stopped forever
3009 */
3010 smp_mb();
3011
3012 if (dql_avail(&dev_queue->dql) < 0)
3013 return;
3014
3015 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3016 netif_schedule_queue(dev_queue);
3017 #endif
3018 }
3019
3020 /**
3021 * netdev_completed_queue - report bytes and packets completed by device
3022 * @dev: network device
3023 * @pkts: actual number of packets sent over the medium
3024 * @bytes: actual number of bytes sent over the medium
3025 *
3026 * Report the number of bytes and packets transmitted by the network device
3027 * hardware queue over the physical medium, @bytes must exactly match the
3028 * @bytes amount passed to netdev_sent_queue()
3029 */
3030 static inline void netdev_completed_queue(struct net_device *dev,
3031 unsigned int pkts, unsigned int bytes)
3032 {
3033 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3034 }
3035
3036 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3037 {
3038 #ifdef CONFIG_BQL
3039 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3040 dql_reset(&q->dql);
3041 #endif
3042 }
3043
3044 /**
3045 * netdev_reset_queue - reset the packets and bytes count of a network device
3046 * @dev_queue: network device
3047 *
3048 * Reset the bytes and packet count of a network device and clear the
3049 * software flow control OFF bit for this network device
3050 */
3051 static inline void netdev_reset_queue(struct net_device *dev_queue)
3052 {
3053 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3054 }
3055
3056 /**
3057 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3058 * @dev: network device
3059 * @queue_index: given tx queue index
3060 *
3061 * Returns 0 if given tx queue index >= number of device tx queues,
3062 * otherwise returns the originally passed tx queue index.
3063 */
3064 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3065 {
3066 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3067 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3068 dev->name, queue_index,
3069 dev->real_num_tx_queues);
3070 return 0;
3071 }
3072
3073 return queue_index;
3074 }
3075
3076 /**
3077 * netif_running - test if up
3078 * @dev: network device
3079 *
3080 * Test if the device has been brought up.
3081 */
3082 static inline bool netif_running(const struct net_device *dev)
3083 {
3084 return test_bit(__LINK_STATE_START, &dev->state);
3085 }
3086
3087 /*
3088 * Routines to manage the subqueues on a device. We only need start,
3089 * stop, and a check if it's stopped. All other device management is
3090 * done at the overall netdevice level.
3091 * Also test the device if we're multiqueue.
3092 */
3093
3094 /**
3095 * netif_start_subqueue - allow sending packets on subqueue
3096 * @dev: network device
3097 * @queue_index: sub queue index
3098 *
3099 * Start individual transmit queue of a device with multiple transmit queues.
3100 */
3101 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3102 {
3103 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3104
3105 netif_tx_start_queue(txq);
3106 }
3107
3108 /**
3109 * netif_stop_subqueue - stop sending packets on subqueue
3110 * @dev: network device
3111 * @queue_index: sub queue index
3112 *
3113 * Stop individual transmit queue of a device with multiple transmit queues.
3114 */
3115 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3116 {
3117 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3118 netif_tx_stop_queue(txq);
3119 }
3120
3121 /**
3122 * netif_subqueue_stopped - test status of subqueue
3123 * @dev: network device
3124 * @queue_index: sub queue index
3125 *
3126 * Check individual transmit queue of a device with multiple transmit queues.
3127 */
3128 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3129 u16 queue_index)
3130 {
3131 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3132
3133 return netif_tx_queue_stopped(txq);
3134 }
3135
3136 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3137 struct sk_buff *skb)
3138 {
3139 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3140 }
3141
3142 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3143
3144 #ifdef CONFIG_XPS
3145 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3146 u16 index);
3147 #else
3148 static inline int netif_set_xps_queue(struct net_device *dev,
3149 const struct cpumask *mask,
3150 u16 index)
3151 {
3152 return 0;
3153 }
3154 #endif
3155
3156 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3157 unsigned int num_tx_queues);
3158
3159 /*
3160 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3161 * as a distribution range limit for the returned value.
3162 */
3163 static inline u16 skb_tx_hash(const struct net_device *dev,
3164 struct sk_buff *skb)
3165 {
3166 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3167 }
3168
3169 /**
3170 * netif_is_multiqueue - test if device has multiple transmit queues
3171 * @dev: network device
3172 *
3173 * Check if device has multiple transmit queues
3174 */
3175 static inline bool netif_is_multiqueue(const struct net_device *dev)
3176 {
3177 return dev->num_tx_queues > 1;
3178 }
3179
3180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3181
3182 #ifdef CONFIG_SYSFS
3183 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3184 #else
3185 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3186 unsigned int rxq)
3187 {
3188 return 0;
3189 }
3190 #endif
3191
3192 #ifdef CONFIG_SYSFS
3193 static inline unsigned int get_netdev_rx_queue_index(
3194 struct netdev_rx_queue *queue)
3195 {
3196 struct net_device *dev = queue->dev;
3197 int index = queue - dev->_rx;
3198
3199 BUG_ON(index >= dev->num_rx_queues);
3200 return index;
3201 }
3202 #endif
3203
3204 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3205 int netif_get_num_default_rss_queues(void);
3206
3207 enum skb_free_reason {
3208 SKB_REASON_CONSUMED,
3209 SKB_REASON_DROPPED,
3210 };
3211
3212 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3213 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3214
3215 /*
3216 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3217 * interrupt context or with hardware interrupts being disabled.
3218 * (in_irq() || irqs_disabled())
3219 *
3220 * We provide four helpers that can be used in following contexts :
3221 *
3222 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3223 * replacing kfree_skb(skb)
3224 *
3225 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3226 * Typically used in place of consume_skb(skb) in TX completion path
3227 *
3228 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3229 * replacing kfree_skb(skb)
3230 *
3231 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3232 * and consumed a packet. Used in place of consume_skb(skb)
3233 */
3234 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3235 {
3236 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3237 }
3238
3239 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3240 {
3241 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3242 }
3243
3244 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3245 {
3246 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3247 }
3248
3249 static inline void dev_consume_skb_any(struct sk_buff *skb)
3250 {
3251 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3252 }
3253
3254 int netif_rx(struct sk_buff *skb);
3255 int netif_rx_ni(struct sk_buff *skb);
3256 int netif_receive_skb(struct sk_buff *skb);
3257 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3258 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3259 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3260 gro_result_t napi_gro_frags(struct napi_struct *napi);
3261 struct packet_offload *gro_find_receive_by_type(__be16 type);
3262 struct packet_offload *gro_find_complete_by_type(__be16 type);
3263
3264 static inline void napi_free_frags(struct napi_struct *napi)
3265 {
3266 kfree_skb(napi->skb);
3267 napi->skb = NULL;
3268 }
3269
3270 bool netdev_is_rx_handler_busy(struct net_device *dev);
3271 int netdev_rx_handler_register(struct net_device *dev,
3272 rx_handler_func_t *rx_handler,
3273 void *rx_handler_data);
3274 void netdev_rx_handler_unregister(struct net_device *dev);
3275
3276 bool dev_valid_name(const char *name);
3277 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3278 int dev_ethtool(struct net *net, struct ifreq *);
3279 unsigned int dev_get_flags(const struct net_device *);
3280 int __dev_change_flags(struct net_device *, unsigned int flags);
3281 int dev_change_flags(struct net_device *, unsigned int);
3282 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3283 unsigned int gchanges);
3284 int dev_change_name(struct net_device *, const char *);
3285 int dev_set_alias(struct net_device *, const char *, size_t);
3286 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3287 int dev_set_mtu(struct net_device *, int);
3288 void dev_set_group(struct net_device *, int);
3289 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3290 int dev_change_carrier(struct net_device *, bool new_carrier);
3291 int dev_get_phys_port_id(struct net_device *dev,
3292 struct netdev_phys_item_id *ppid);
3293 int dev_get_phys_port_name(struct net_device *dev,
3294 char *name, size_t len);
3295 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3296 int dev_change_xdp_fd(struct net_device *dev, int fd);
3297 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3299 struct netdev_queue *txq, int *ret);
3300 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3302 bool is_skb_forwardable(const struct net_device *dev,
3303 const struct sk_buff *skb);
3304
3305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3306
3307 extern int netdev_budget;
3308
3309 /* Called by rtnetlink.c:rtnl_unlock() */
3310 void netdev_run_todo(void);
3311
3312 /**
3313 * dev_put - release reference to device
3314 * @dev: network device
3315 *
3316 * Release reference to device to allow it to be freed.
3317 */
3318 static inline void dev_put(struct net_device *dev)
3319 {
3320 this_cpu_dec(*dev->pcpu_refcnt);
3321 }
3322
3323 /**
3324 * dev_hold - get reference to device
3325 * @dev: network device
3326 *
3327 * Hold reference to device to keep it from being freed.
3328 */
3329 static inline void dev_hold(struct net_device *dev)
3330 {
3331 this_cpu_inc(*dev->pcpu_refcnt);
3332 }
3333
3334 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3335 * and _off may be called from IRQ context, but it is caller
3336 * who is responsible for serialization of these calls.
3337 *
3338 * The name carrier is inappropriate, these functions should really be
3339 * called netif_lowerlayer_*() because they represent the state of any
3340 * kind of lower layer not just hardware media.
3341 */
3342
3343 void linkwatch_init_dev(struct net_device *dev);
3344 void linkwatch_fire_event(struct net_device *dev);
3345 void linkwatch_forget_dev(struct net_device *dev);
3346
3347 /**
3348 * netif_carrier_ok - test if carrier present
3349 * @dev: network device
3350 *
3351 * Check if carrier is present on device
3352 */
3353 static inline bool netif_carrier_ok(const struct net_device *dev)
3354 {
3355 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3356 }
3357
3358 unsigned long dev_trans_start(struct net_device *dev);
3359
3360 void __netdev_watchdog_up(struct net_device *dev);
3361
3362 void netif_carrier_on(struct net_device *dev);
3363
3364 void netif_carrier_off(struct net_device *dev);
3365
3366 /**
3367 * netif_dormant_on - mark device as dormant.
3368 * @dev: network device
3369 *
3370 * Mark device as dormant (as per RFC2863).
3371 *
3372 * The dormant state indicates that the relevant interface is not
3373 * actually in a condition to pass packets (i.e., it is not 'up') but is
3374 * in a "pending" state, waiting for some external event. For "on-
3375 * demand" interfaces, this new state identifies the situation where the
3376 * interface is waiting for events to place it in the up state.
3377 */
3378 static inline void netif_dormant_on(struct net_device *dev)
3379 {
3380 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3381 linkwatch_fire_event(dev);
3382 }
3383
3384 /**
3385 * netif_dormant_off - set device as not dormant.
3386 * @dev: network device
3387 *
3388 * Device is not in dormant state.
3389 */
3390 static inline void netif_dormant_off(struct net_device *dev)
3391 {
3392 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3393 linkwatch_fire_event(dev);
3394 }
3395
3396 /**
3397 * netif_dormant - test if carrier present
3398 * @dev: network device
3399 *
3400 * Check if carrier is present on device
3401 */
3402 static inline bool netif_dormant(const struct net_device *dev)
3403 {
3404 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3405 }
3406
3407
3408 /**
3409 * netif_oper_up - test if device is operational
3410 * @dev: network device
3411 *
3412 * Check if carrier is operational
3413 */
3414 static inline bool netif_oper_up(const struct net_device *dev)
3415 {
3416 return (dev->operstate == IF_OPER_UP ||
3417 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3418 }
3419
3420 /**
3421 * netif_device_present - is device available or removed
3422 * @dev: network device
3423 *
3424 * Check if device has not been removed from system.
3425 */
3426 static inline bool netif_device_present(struct net_device *dev)
3427 {
3428 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3429 }
3430
3431 void netif_device_detach(struct net_device *dev);
3432
3433 void netif_device_attach(struct net_device *dev);
3434
3435 /*
3436 * Network interface message level settings
3437 */
3438
3439 enum {
3440 NETIF_MSG_DRV = 0x0001,
3441 NETIF_MSG_PROBE = 0x0002,
3442 NETIF_MSG_LINK = 0x0004,
3443 NETIF_MSG_TIMER = 0x0008,
3444 NETIF_MSG_IFDOWN = 0x0010,
3445 NETIF_MSG_IFUP = 0x0020,
3446 NETIF_MSG_RX_ERR = 0x0040,
3447 NETIF_MSG_TX_ERR = 0x0080,
3448 NETIF_MSG_TX_QUEUED = 0x0100,
3449 NETIF_MSG_INTR = 0x0200,
3450 NETIF_MSG_TX_DONE = 0x0400,
3451 NETIF_MSG_RX_STATUS = 0x0800,
3452 NETIF_MSG_PKTDATA = 0x1000,
3453 NETIF_MSG_HW = 0x2000,
3454 NETIF_MSG_WOL = 0x4000,
3455 };
3456
3457 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3458 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3459 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3460 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3461 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3462 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3463 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3464 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3465 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3466 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3467 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3468 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3469 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3470 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3471 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3472
3473 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3474 {
3475 /* use default */
3476 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3477 return default_msg_enable_bits;
3478 if (debug_value == 0) /* no output */
3479 return 0;
3480 /* set low N bits */
3481 return (1 << debug_value) - 1;
3482 }
3483
3484 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3485 {
3486 spin_lock(&txq->_xmit_lock);
3487 txq->xmit_lock_owner = cpu;
3488 }
3489
3490 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3491 {
3492 spin_lock_bh(&txq->_xmit_lock);
3493 txq->xmit_lock_owner = smp_processor_id();
3494 }
3495
3496 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3497 {
3498 bool ok = spin_trylock(&txq->_xmit_lock);
3499 if (likely(ok))
3500 txq->xmit_lock_owner = smp_processor_id();
3501 return ok;
3502 }
3503
3504 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3505 {
3506 txq->xmit_lock_owner = -1;
3507 spin_unlock(&txq->_xmit_lock);
3508 }
3509
3510 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3511 {
3512 txq->xmit_lock_owner = -1;
3513 spin_unlock_bh(&txq->_xmit_lock);
3514 }
3515
3516 static inline void txq_trans_update(struct netdev_queue *txq)
3517 {
3518 if (txq->xmit_lock_owner != -1)
3519 txq->trans_start = jiffies;
3520 }
3521
3522 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3523 static inline void netif_trans_update(struct net_device *dev)
3524 {
3525 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3526
3527 if (txq->trans_start != jiffies)
3528 txq->trans_start = jiffies;
3529 }
3530
3531 /**
3532 * netif_tx_lock - grab network device transmit lock
3533 * @dev: network device
3534 *
3535 * Get network device transmit lock
3536 */
3537 static inline void netif_tx_lock(struct net_device *dev)
3538 {
3539 unsigned int i;
3540 int cpu;
3541
3542 spin_lock(&dev->tx_global_lock);
3543 cpu = smp_processor_id();
3544 for (i = 0; i < dev->num_tx_queues; i++) {
3545 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3546
3547 /* We are the only thread of execution doing a
3548 * freeze, but we have to grab the _xmit_lock in
3549 * order to synchronize with threads which are in
3550 * the ->hard_start_xmit() handler and already
3551 * checked the frozen bit.
3552 */
3553 __netif_tx_lock(txq, cpu);
3554 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3555 __netif_tx_unlock(txq);
3556 }
3557 }
3558
3559 static inline void netif_tx_lock_bh(struct net_device *dev)
3560 {
3561 local_bh_disable();
3562 netif_tx_lock(dev);
3563 }
3564
3565 static inline void netif_tx_unlock(struct net_device *dev)
3566 {
3567 unsigned int i;
3568
3569 for (i = 0; i < dev->num_tx_queues; i++) {
3570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3571
3572 /* No need to grab the _xmit_lock here. If the
3573 * queue is not stopped for another reason, we
3574 * force a schedule.
3575 */
3576 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3577 netif_schedule_queue(txq);
3578 }
3579 spin_unlock(&dev->tx_global_lock);
3580 }
3581
3582 static inline void netif_tx_unlock_bh(struct net_device *dev)
3583 {
3584 netif_tx_unlock(dev);
3585 local_bh_enable();
3586 }
3587
3588 #define HARD_TX_LOCK(dev, txq, cpu) { \
3589 if ((dev->features & NETIF_F_LLTX) == 0) { \
3590 __netif_tx_lock(txq, cpu); \
3591 } \
3592 }
3593
3594 #define HARD_TX_TRYLOCK(dev, txq) \
3595 (((dev->features & NETIF_F_LLTX) == 0) ? \
3596 __netif_tx_trylock(txq) : \
3597 true )
3598
3599 #define HARD_TX_UNLOCK(dev, txq) { \
3600 if ((dev->features & NETIF_F_LLTX) == 0) { \
3601 __netif_tx_unlock(txq); \
3602 } \
3603 }
3604
3605 static inline void netif_tx_disable(struct net_device *dev)
3606 {
3607 unsigned int i;
3608 int cpu;
3609
3610 local_bh_disable();
3611 cpu = smp_processor_id();
3612 for (i = 0; i < dev->num_tx_queues; i++) {
3613 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3614
3615 __netif_tx_lock(txq, cpu);
3616 netif_tx_stop_queue(txq);
3617 __netif_tx_unlock(txq);
3618 }
3619 local_bh_enable();
3620 }
3621
3622 static inline void netif_addr_lock(struct net_device *dev)
3623 {
3624 spin_lock(&dev->addr_list_lock);
3625 }
3626
3627 static inline void netif_addr_lock_nested(struct net_device *dev)
3628 {
3629 int subclass = SINGLE_DEPTH_NESTING;
3630
3631 if (dev->netdev_ops->ndo_get_lock_subclass)
3632 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3633
3634 spin_lock_nested(&dev->addr_list_lock, subclass);
3635 }
3636
3637 static inline void netif_addr_lock_bh(struct net_device *dev)
3638 {
3639 spin_lock_bh(&dev->addr_list_lock);
3640 }
3641
3642 static inline void netif_addr_unlock(struct net_device *dev)
3643 {
3644 spin_unlock(&dev->addr_list_lock);
3645 }
3646
3647 static inline void netif_addr_unlock_bh(struct net_device *dev)
3648 {
3649 spin_unlock_bh(&dev->addr_list_lock);
3650 }
3651
3652 /*
3653 * dev_addrs walker. Should be used only for read access. Call with
3654 * rcu_read_lock held.
3655 */
3656 #define for_each_dev_addr(dev, ha) \
3657 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3658
3659 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3660
3661 void ether_setup(struct net_device *dev);
3662
3663 /* Support for loadable net-drivers */
3664 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3665 unsigned char name_assign_type,
3666 void (*setup)(struct net_device *),
3667 unsigned int txqs, unsigned int rxqs);
3668 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3669 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3670
3671 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3672 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3673 count)
3674
3675 int register_netdev(struct net_device *dev);
3676 void unregister_netdev(struct net_device *dev);
3677
3678 /* General hardware address lists handling functions */
3679 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3680 struct netdev_hw_addr_list *from_list, int addr_len);
3681 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3682 struct netdev_hw_addr_list *from_list, int addr_len);
3683 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3684 struct net_device *dev,
3685 int (*sync)(struct net_device *, const unsigned char *),
3686 int (*unsync)(struct net_device *,
3687 const unsigned char *));
3688 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3689 struct net_device *dev,
3690 int (*unsync)(struct net_device *,
3691 const unsigned char *));
3692 void __hw_addr_init(struct netdev_hw_addr_list *list);
3693
3694 /* Functions used for device addresses handling */
3695 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3696 unsigned char addr_type);
3697 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3698 unsigned char addr_type);
3699 void dev_addr_flush(struct net_device *dev);
3700 int dev_addr_init(struct net_device *dev);
3701
3702 /* Functions used for unicast addresses handling */
3703 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3704 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3705 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3706 int dev_uc_sync(struct net_device *to, struct net_device *from);
3707 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3708 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3709 void dev_uc_flush(struct net_device *dev);
3710 void dev_uc_init(struct net_device *dev);
3711
3712 /**
3713 * __dev_uc_sync - Synchonize device's unicast list
3714 * @dev: device to sync
3715 * @sync: function to call if address should be added
3716 * @unsync: function to call if address should be removed
3717 *
3718 * Add newly added addresses to the interface, and release
3719 * addresses that have been deleted.
3720 */
3721 static inline int __dev_uc_sync(struct net_device *dev,
3722 int (*sync)(struct net_device *,
3723 const unsigned char *),
3724 int (*unsync)(struct net_device *,
3725 const unsigned char *))
3726 {
3727 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3728 }
3729
3730 /**
3731 * __dev_uc_unsync - Remove synchronized addresses from device
3732 * @dev: device to sync
3733 * @unsync: function to call if address should be removed
3734 *
3735 * Remove all addresses that were added to the device by dev_uc_sync().
3736 */
3737 static inline void __dev_uc_unsync(struct net_device *dev,
3738 int (*unsync)(struct net_device *,
3739 const unsigned char *))
3740 {
3741 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3742 }
3743
3744 /* Functions used for multicast addresses handling */
3745 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3746 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3747 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3748 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3749 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3750 int dev_mc_sync(struct net_device *to, struct net_device *from);
3751 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3752 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3753 void dev_mc_flush(struct net_device *dev);
3754 void dev_mc_init(struct net_device *dev);
3755
3756 /**
3757 * __dev_mc_sync - Synchonize device's multicast list
3758 * @dev: device to sync
3759 * @sync: function to call if address should be added
3760 * @unsync: function to call if address should be removed
3761 *
3762 * Add newly added addresses to the interface, and release
3763 * addresses that have been deleted.
3764 */
3765 static inline int __dev_mc_sync(struct net_device *dev,
3766 int (*sync)(struct net_device *,
3767 const unsigned char *),
3768 int (*unsync)(struct net_device *,
3769 const unsigned char *))
3770 {
3771 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3772 }
3773
3774 /**
3775 * __dev_mc_unsync - Remove synchronized addresses from device
3776 * @dev: device to sync
3777 * @unsync: function to call if address should be removed
3778 *
3779 * Remove all addresses that were added to the device by dev_mc_sync().
3780 */
3781 static inline void __dev_mc_unsync(struct net_device *dev,
3782 int (*unsync)(struct net_device *,
3783 const unsigned char *))
3784 {
3785 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3786 }
3787
3788 /* Functions used for secondary unicast and multicast support */
3789 void dev_set_rx_mode(struct net_device *dev);
3790 void __dev_set_rx_mode(struct net_device *dev);
3791 int dev_set_promiscuity(struct net_device *dev, int inc);
3792 int dev_set_allmulti(struct net_device *dev, int inc);
3793 void netdev_state_change(struct net_device *dev);
3794 void netdev_notify_peers(struct net_device *dev);
3795 void netdev_features_change(struct net_device *dev);
3796 /* Load a device via the kmod */
3797 void dev_load(struct net *net, const char *name);
3798 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3799 struct rtnl_link_stats64 *storage);
3800 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3801 const struct net_device_stats *netdev_stats);
3802
3803 extern int netdev_max_backlog;
3804 extern int netdev_tstamp_prequeue;
3805 extern int weight_p;
3806
3807 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3808 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3809 struct list_head **iter);
3810 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3811 struct list_head **iter);
3812
3813 /* iterate through upper list, must be called under RCU read lock */
3814 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3815 for (iter = &(dev)->adj_list.upper, \
3816 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3817 updev; \
3818 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3819
3820 /* iterate through upper list, must be called under RCU read lock */
3821 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3822 for (iter = &(dev)->all_adj_list.upper, \
3823 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3824 updev; \
3825 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3826
3827 void *netdev_lower_get_next_private(struct net_device *dev,
3828 struct list_head **iter);
3829 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3830 struct list_head **iter);
3831
3832 #define netdev_for_each_lower_private(dev, priv, iter) \
3833 for (iter = (dev)->adj_list.lower.next, \
3834 priv = netdev_lower_get_next_private(dev, &(iter)); \
3835 priv; \
3836 priv = netdev_lower_get_next_private(dev, &(iter)))
3837
3838 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3839 for (iter = &(dev)->adj_list.lower, \
3840 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3841 priv; \
3842 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3843
3844 void *netdev_lower_get_next(struct net_device *dev,
3845 struct list_head **iter);
3846
3847 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3848 for (iter = (dev)->adj_list.lower.next, \
3849 ldev = netdev_lower_get_next(dev, &(iter)); \
3850 ldev; \
3851 ldev = netdev_lower_get_next(dev, &(iter)))
3852
3853 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3854 struct list_head **iter);
3855 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3856 struct list_head **iter);
3857
3858 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3859 for (iter = (dev)->all_adj_list.lower.next, \
3860 ldev = netdev_all_lower_get_next(dev, &(iter)); \
3861 ldev; \
3862 ldev = netdev_all_lower_get_next(dev, &(iter)))
3863
3864 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3865 for (iter = (dev)->all_adj_list.lower.next, \
3866 ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3867 ldev; \
3868 ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3869
3870 void *netdev_adjacent_get_private(struct list_head *adj_list);
3871 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3872 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3873 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3874 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3875 int netdev_master_upper_dev_link(struct net_device *dev,
3876 struct net_device *upper_dev,
3877 void *upper_priv, void *upper_info);
3878 void netdev_upper_dev_unlink(struct net_device *dev,
3879 struct net_device *upper_dev);
3880 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3881 void *netdev_lower_dev_get_private(struct net_device *dev,
3882 struct net_device *lower_dev);
3883 void netdev_lower_state_changed(struct net_device *lower_dev,
3884 void *lower_state_info);
3885 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3886 struct neighbour *n);
3887 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3888 struct neighbour *n);
3889
3890 /* RSS keys are 40 or 52 bytes long */
3891 #define NETDEV_RSS_KEY_LEN 52
3892 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3893 void netdev_rss_key_fill(void *buffer, size_t len);
3894
3895 int dev_get_nest_level(struct net_device *dev);
3896 int skb_checksum_help(struct sk_buff *skb);
3897 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3898 netdev_features_t features, bool tx_path);
3899 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3900 netdev_features_t features);
3901
3902 struct netdev_bonding_info {
3903 ifslave slave;
3904 ifbond master;
3905 };
3906
3907 struct netdev_notifier_bonding_info {
3908 struct netdev_notifier_info info; /* must be first */
3909 struct netdev_bonding_info bonding_info;
3910 };
3911
3912 void netdev_bonding_info_change(struct net_device *dev,
3913 struct netdev_bonding_info *bonding_info);
3914
3915 static inline
3916 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3917 {
3918 return __skb_gso_segment(skb, features, true);
3919 }
3920 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3921
3922 static inline bool can_checksum_protocol(netdev_features_t features,
3923 __be16 protocol)
3924 {
3925 if (protocol == htons(ETH_P_FCOE))
3926 return !!(features & NETIF_F_FCOE_CRC);
3927
3928 /* Assume this is an IP checksum (not SCTP CRC) */
3929
3930 if (features & NETIF_F_HW_CSUM) {
3931 /* Can checksum everything */
3932 return true;
3933 }
3934
3935 switch (protocol) {
3936 case htons(ETH_P_IP):
3937 return !!(features & NETIF_F_IP_CSUM);
3938 case htons(ETH_P_IPV6):
3939 return !!(features & NETIF_F_IPV6_CSUM);
3940 default:
3941 return false;
3942 }
3943 }
3944
3945 /* Map an ethertype into IP protocol if possible */
3946 static inline int eproto_to_ipproto(int eproto)
3947 {
3948 switch (eproto) {
3949 case htons(ETH_P_IP):
3950 return IPPROTO_IP;
3951 case htons(ETH_P_IPV6):
3952 return IPPROTO_IPV6;
3953 default:
3954 return -1;
3955 }
3956 }
3957
3958 #ifdef CONFIG_BUG
3959 void netdev_rx_csum_fault(struct net_device *dev);
3960 #else
3961 static inline void netdev_rx_csum_fault(struct net_device *dev)
3962 {
3963 }
3964 #endif
3965 /* rx skb timestamps */
3966 void net_enable_timestamp(void);
3967 void net_disable_timestamp(void);
3968
3969 #ifdef CONFIG_PROC_FS
3970 int __init dev_proc_init(void);
3971 #else
3972 #define dev_proc_init() 0
3973 #endif
3974
3975 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3976 struct sk_buff *skb, struct net_device *dev,
3977 bool more)
3978 {
3979 skb->xmit_more = more ? 1 : 0;
3980 return ops->ndo_start_xmit(skb, dev);
3981 }
3982
3983 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3984 struct netdev_queue *txq, bool more)
3985 {
3986 const struct net_device_ops *ops = dev->netdev_ops;
3987 int rc;
3988
3989 rc = __netdev_start_xmit(ops, skb, dev, more);
3990 if (rc == NETDEV_TX_OK)
3991 txq_trans_update(txq);
3992
3993 return rc;
3994 }
3995
3996 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3997 const void *ns);
3998 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3999 const void *ns);
4000
4001 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4002 {
4003 return netdev_class_create_file_ns(class_attr, NULL);
4004 }
4005
4006 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4007 {
4008 netdev_class_remove_file_ns(class_attr, NULL);
4009 }
4010
4011 extern struct kobj_ns_type_operations net_ns_type_operations;
4012
4013 const char *netdev_drivername(const struct net_device *dev);
4014
4015 void linkwatch_run_queue(void);
4016
4017 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4018 netdev_features_t f2)
4019 {
4020 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4021 if (f1 & NETIF_F_HW_CSUM)
4022 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4023 else
4024 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4025 }
4026
4027 return f1 & f2;
4028 }
4029
4030 static inline netdev_features_t netdev_get_wanted_features(
4031 struct net_device *dev)
4032 {
4033 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4034 }
4035 netdev_features_t netdev_increment_features(netdev_features_t all,
4036 netdev_features_t one, netdev_features_t mask);
4037
4038 /* Allow TSO being used on stacked device :
4039 * Performing the GSO segmentation before last device
4040 * is a performance improvement.
4041 */
4042 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4043 netdev_features_t mask)
4044 {
4045 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4046 }
4047
4048 int __netdev_update_features(struct net_device *dev);
4049 void netdev_update_features(struct net_device *dev);
4050 void netdev_change_features(struct net_device *dev);
4051
4052 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4053 struct net_device *dev);
4054
4055 netdev_features_t passthru_features_check(struct sk_buff *skb,
4056 struct net_device *dev,
4057 netdev_features_t features);
4058 netdev_features_t netif_skb_features(struct sk_buff *skb);
4059
4060 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4061 {
4062 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4063
4064 /* check flags correspondence */
4065 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4066 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4067 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4068 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4069 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4070 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4071 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4072 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4073 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4074 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4075 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4076 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4077 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4078 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4079 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4080 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4081
4082 return (features & feature) == feature;
4083 }
4084
4085 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4086 {
4087 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4088 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4089 }
4090
4091 static inline bool netif_needs_gso(struct sk_buff *skb,
4092 netdev_features_t features)
4093 {
4094 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4095 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4096 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4097 }
4098
4099 static inline void netif_set_gso_max_size(struct net_device *dev,
4100 unsigned int size)
4101 {
4102 dev->gso_max_size = size;
4103 }
4104
4105 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4106 int pulled_hlen, u16 mac_offset,
4107 int mac_len)
4108 {
4109 skb->protocol = protocol;
4110 skb->encapsulation = 1;
4111 skb_push(skb, pulled_hlen);
4112 skb_reset_transport_header(skb);
4113 skb->mac_header = mac_offset;
4114 skb->network_header = skb->mac_header + mac_len;
4115 skb->mac_len = mac_len;
4116 }
4117
4118 static inline bool netif_is_macsec(const struct net_device *dev)
4119 {
4120 return dev->priv_flags & IFF_MACSEC;
4121 }
4122
4123 static inline bool netif_is_macvlan(const struct net_device *dev)
4124 {
4125 return dev->priv_flags & IFF_MACVLAN;
4126 }
4127
4128 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4129 {
4130 return dev->priv_flags & IFF_MACVLAN_PORT;
4131 }
4132
4133 static inline bool netif_is_ipvlan(const struct net_device *dev)
4134 {
4135 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4136 }
4137
4138 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4139 {
4140 return dev->priv_flags & IFF_IPVLAN_MASTER;
4141 }
4142
4143 static inline bool netif_is_bond_master(const struct net_device *dev)
4144 {
4145 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4146 }
4147
4148 static inline bool netif_is_bond_slave(const struct net_device *dev)
4149 {
4150 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4151 }
4152
4153 static inline bool netif_supports_nofcs(struct net_device *dev)
4154 {
4155 return dev->priv_flags & IFF_SUPP_NOFCS;
4156 }
4157
4158 static inline bool netif_is_l3_master(const struct net_device *dev)
4159 {
4160 return dev->priv_flags & IFF_L3MDEV_MASTER;
4161 }
4162
4163 static inline bool netif_is_l3_slave(const struct net_device *dev)
4164 {
4165 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4166 }
4167
4168 static inline bool netif_is_bridge_master(const struct net_device *dev)
4169 {
4170 return dev->priv_flags & IFF_EBRIDGE;
4171 }
4172
4173 static inline bool netif_is_bridge_port(const struct net_device *dev)
4174 {
4175 return dev->priv_flags & IFF_BRIDGE_PORT;
4176 }
4177
4178 static inline bool netif_is_ovs_master(const struct net_device *dev)
4179 {
4180 return dev->priv_flags & IFF_OPENVSWITCH;
4181 }
4182
4183 static inline bool netif_is_team_master(const struct net_device *dev)
4184 {
4185 return dev->priv_flags & IFF_TEAM;
4186 }
4187
4188 static inline bool netif_is_team_port(const struct net_device *dev)
4189 {
4190 return dev->priv_flags & IFF_TEAM_PORT;
4191 }
4192
4193 static inline bool netif_is_lag_master(const struct net_device *dev)
4194 {
4195 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4196 }
4197
4198 static inline bool netif_is_lag_port(const struct net_device *dev)
4199 {
4200 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4201 }
4202
4203 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4204 {
4205 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4206 }
4207
4208 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4209 static inline void netif_keep_dst(struct net_device *dev)
4210 {
4211 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4212 }
4213
4214 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4215 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4216 {
4217 /* TODO: reserve and use an additional IFF bit, if we get more users */
4218 return dev->priv_flags & IFF_MACSEC;
4219 }
4220
4221 extern struct pernet_operations __net_initdata loopback_net_ops;
4222
4223 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4224
4225 /* netdev_printk helpers, similar to dev_printk */
4226
4227 static inline const char *netdev_name(const struct net_device *dev)
4228 {
4229 if (!dev->name[0] || strchr(dev->name, '%'))
4230 return "(unnamed net_device)";
4231 return dev->name;
4232 }
4233
4234 static inline const char *netdev_reg_state(const struct net_device *dev)
4235 {
4236 switch (dev->reg_state) {
4237 case NETREG_UNINITIALIZED: return " (uninitialized)";
4238 case NETREG_REGISTERED: return "";
4239 case NETREG_UNREGISTERING: return " (unregistering)";
4240 case NETREG_UNREGISTERED: return " (unregistered)";
4241 case NETREG_RELEASED: return " (released)";
4242 case NETREG_DUMMY: return " (dummy)";
4243 }
4244
4245 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4246 return " (unknown)";
4247 }
4248
4249 __printf(3, 4)
4250 void netdev_printk(const char *level, const struct net_device *dev,
4251 const char *format, ...);
4252 __printf(2, 3)
4253 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4254 __printf(2, 3)
4255 void netdev_alert(const struct net_device *dev, const char *format, ...);
4256 __printf(2, 3)
4257 void netdev_crit(const struct net_device *dev, const char *format, ...);
4258 __printf(2, 3)
4259 void netdev_err(const struct net_device *dev, const char *format, ...);
4260 __printf(2, 3)
4261 void netdev_warn(const struct net_device *dev, const char *format, ...);
4262 __printf(2, 3)
4263 void netdev_notice(const struct net_device *dev, const char *format, ...);
4264 __printf(2, 3)
4265 void netdev_info(const struct net_device *dev, const char *format, ...);
4266
4267 #define MODULE_ALIAS_NETDEV(device) \
4268 MODULE_ALIAS("netdev-" device)
4269
4270 #if defined(CONFIG_DYNAMIC_DEBUG)
4271 #define netdev_dbg(__dev, format, args...) \
4272 do { \
4273 dynamic_netdev_dbg(__dev, format, ##args); \
4274 } while (0)
4275 #elif defined(DEBUG)
4276 #define netdev_dbg(__dev, format, args...) \
4277 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4278 #else
4279 #define netdev_dbg(__dev, format, args...) \
4280 ({ \
4281 if (0) \
4282 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4283 })
4284 #endif
4285
4286 #if defined(VERBOSE_DEBUG)
4287 #define netdev_vdbg netdev_dbg
4288 #else
4289
4290 #define netdev_vdbg(dev, format, args...) \
4291 ({ \
4292 if (0) \
4293 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4294 0; \
4295 })
4296 #endif
4297
4298 /*
4299 * netdev_WARN() acts like dev_printk(), but with the key difference
4300 * of using a WARN/WARN_ON to get the message out, including the
4301 * file/line information and a backtrace.
4302 */
4303 #define netdev_WARN(dev, format, args...) \
4304 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4305 netdev_reg_state(dev), ##args)
4306
4307 /* netif printk helpers, similar to netdev_printk */
4308
4309 #define netif_printk(priv, type, level, dev, fmt, args...) \
4310 do { \
4311 if (netif_msg_##type(priv)) \
4312 netdev_printk(level, (dev), fmt, ##args); \
4313 } while (0)
4314
4315 #define netif_level(level, priv, type, dev, fmt, args...) \
4316 do { \
4317 if (netif_msg_##type(priv)) \
4318 netdev_##level(dev, fmt, ##args); \
4319 } while (0)
4320
4321 #define netif_emerg(priv, type, dev, fmt, args...) \
4322 netif_level(emerg, priv, type, dev, fmt, ##args)
4323 #define netif_alert(priv, type, dev, fmt, args...) \
4324 netif_level(alert, priv, type, dev, fmt, ##args)
4325 #define netif_crit(priv, type, dev, fmt, args...) \
4326 netif_level(crit, priv, type, dev, fmt, ##args)
4327 #define netif_err(priv, type, dev, fmt, args...) \
4328 netif_level(err, priv, type, dev, fmt, ##args)
4329 #define netif_warn(priv, type, dev, fmt, args...) \
4330 netif_level(warn, priv, type, dev, fmt, ##args)
4331 #define netif_notice(priv, type, dev, fmt, args...) \
4332 netif_level(notice, priv, type, dev, fmt, ##args)
4333 #define netif_info(priv, type, dev, fmt, args...) \
4334 netif_level(info, priv, type, dev, fmt, ##args)
4335
4336 #if defined(CONFIG_DYNAMIC_DEBUG)
4337 #define netif_dbg(priv, type, netdev, format, args...) \
4338 do { \
4339 if (netif_msg_##type(priv)) \
4340 dynamic_netdev_dbg(netdev, format, ##args); \
4341 } while (0)
4342 #elif defined(DEBUG)
4343 #define netif_dbg(priv, type, dev, format, args...) \
4344 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4345 #else
4346 #define netif_dbg(priv, type, dev, format, args...) \
4347 ({ \
4348 if (0) \
4349 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4350 0; \
4351 })
4352 #endif
4353
4354 #if defined(VERBOSE_DEBUG)
4355 #define netif_vdbg netif_dbg
4356 #else
4357 #define netif_vdbg(priv, type, dev, format, args...) \
4358 ({ \
4359 if (0) \
4360 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4361 0; \
4362 })
4363 #endif
4364
4365 /*
4366 * The list of packet types we will receive (as opposed to discard)
4367 * and the routines to invoke.
4368 *
4369 * Why 16. Because with 16 the only overlap we get on a hash of the
4370 * low nibble of the protocol value is RARP/SNAP/X.25.
4371 *
4372 * NOTE: That is no longer true with the addition of VLAN tags. Not
4373 * sure which should go first, but I bet it won't make much
4374 * difference if we are running VLANs. The good news is that
4375 * this protocol won't be in the list unless compiled in, so
4376 * the average user (w/out VLANs) will not be adversely affected.
4377 * --BLG
4378 *
4379 * 0800 IP
4380 * 8100 802.1Q VLAN
4381 * 0001 802.3
4382 * 0002 AX.25
4383 * 0004 802.2
4384 * 8035 RARP
4385 * 0005 SNAP
4386 * 0805 X.25
4387 * 0806 ARP
4388 * 8137 IPX
4389 * 0009 Localtalk
4390 * 86DD IPv6
4391 */
4392 #define PTYPE_HASH_SIZE (16)
4393 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4394
4395 #endif /* _LINUX_NETDEVICE_H */
This page took 0.120616 seconds and 5 git commands to generate.