Merge tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/bug.h>
37 #include <linux/delay.h>
38 #include <linux/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55
56 #include <linux/netdev_features.h>
57 #include <linux/neighbour.h>
58
59 struct netpoll_info;
60 struct device;
61 struct phy_device;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* source back-compat hooks */
65 #define SET_ETHTOOL_OPS(netdev,ops) \
66 ( (netdev)->ethtool_ops = (ops) )
67
68 /* hardware address assignment types */
69 #define NET_ADDR_PERM 0 /* address is permanent (default) */
70 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
71 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 #endif
137
138 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
139
140 /* Initial net device group. All devices belong to group 0 by default. */
141 #define INIT_NETDEV_GROUP 0
142
143 #ifdef __KERNEL__
144 /*
145 * Compute the worst case header length according to the protocols
146 * used.
147 */
148
149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 # define LL_MAX_HEADER 128
152 # else
153 # define LL_MAX_HEADER 96
154 # endif
155 #elif IS_ENABLED(CONFIG_TR)
156 # define LL_MAX_HEADER 48
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160
161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167
168 /*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173 struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197 };
198
199 #endif /* __KERNEL__ */
200
201
202 /* Media selection options. */
203 enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211 };
212
213 #ifdef __KERNEL__
214
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217
218 #ifdef CONFIG_RPS
219 #include <linux/static_key.h>
220 extern struct static_key rps_needed;
221 #endif
222
223 struct neighbour;
224 struct neigh_parms;
225 struct sk_buff;
226
227 struct netdev_hw_addr {
228 struct list_head list;
229 unsigned char addr[MAX_ADDR_LEN];
230 unsigned char type;
231 #define NETDEV_HW_ADDR_T_LAN 1
232 #define NETDEV_HW_ADDR_T_SAN 2
233 #define NETDEV_HW_ADDR_T_SLAVE 3
234 #define NETDEV_HW_ADDR_T_UNICAST 4
235 #define NETDEV_HW_ADDR_T_MULTICAST 5
236 bool synced;
237 bool global_use;
238 int refcount;
239 struct rcu_head rcu_head;
240 };
241
242 struct netdev_hw_addr_list {
243 struct list_head list;
244 int count;
245 };
246
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 list_for_each_entry(ha, &(l)->list, list)
251
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261
262 struct hh_cache {
263 u16 hh_len;
264 u16 __pad;
265 seqlock_t hh_lock;
266
267 /* cached hardware header; allow for machine alignment needs. */
268 #define HH_DATA_MOD 16
269 #define HH_DATA_OFF(__len) \
270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271 #define HH_DATA_ALIGN(__len) \
272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274 };
275
276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277 * Alternative is:
278 * dev->hard_header_len ? (dev->hard_header_len +
279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280 *
281 * We could use other alignment values, but we must maintain the
282 * relationship HH alignment <= LL alignment.
283 */
284 #define LL_RESERVED_SPACE(dev) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288
289 struct header_ops {
290 int (*create) (struct sk_buff *skb, struct net_device *dev,
291 unsigned short type, const void *daddr,
292 const void *saddr, unsigned int len);
293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 int (*rebuild)(struct sk_buff *skb);
295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 void (*cache_update)(struct hh_cache *hh,
297 const struct net_device *dev,
298 const unsigned char *haddr);
299 };
300
301 /* These flag bits are private to the generic network queueing
302 * layer, they may not be explicitly referenced by any other
303 * code.
304 */
305
306 enum netdev_state_t {
307 __LINK_STATE_START,
308 __LINK_STATE_PRESENT,
309 __LINK_STATE_NOCARRIER,
310 __LINK_STATE_LINKWATCH_PENDING,
311 __LINK_STATE_DORMANT,
312 };
313
314
315 /*
316 * This structure holds at boot time configured netdevice settings. They
317 * are then used in the device probing.
318 */
319 struct netdev_boot_setup {
320 char name[IFNAMSIZ];
321 struct ifmap map;
322 };
323 #define NETDEV_BOOT_SETUP_MAX 8
324
325 extern int __init netdev_boot_setup(char *str);
326
327 /*
328 * Structure for NAPI scheduling similar to tasklet but with weighting
329 */
330 struct napi_struct {
331 /* The poll_list must only be managed by the entity which
332 * changes the state of the NAPI_STATE_SCHED bit. This means
333 * whoever atomically sets that bit can add this napi_struct
334 * to the per-cpu poll_list, and whoever clears that bit
335 * can remove from the list right before clearing the bit.
336 */
337 struct list_head poll_list;
338
339 unsigned long state;
340 int weight;
341 int (*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 spinlock_t poll_lock;
344 int poll_owner;
345 #endif
346
347 unsigned int gro_count;
348
349 struct net_device *dev;
350 struct list_head dev_list;
351 struct sk_buff *gro_list;
352 struct sk_buff *skb;
353 };
354
355 enum {
356 NAPI_STATE_SCHED, /* Poll is scheduled */
357 NAPI_STATE_DISABLE, /* Disable pending */
358 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
359 };
360
361 enum gro_result {
362 GRO_MERGED,
363 GRO_MERGED_FREE,
364 GRO_HELD,
365 GRO_NORMAL,
366 GRO_DROP,
367 };
368 typedef enum gro_result gro_result_t;
369
370 /*
371 * enum rx_handler_result - Possible return values for rx_handlers.
372 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
373 * further.
374 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
375 * case skb->dev was changed by rx_handler.
376 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
377 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
378 *
379 * rx_handlers are functions called from inside __netif_receive_skb(), to do
380 * special processing of the skb, prior to delivery to protocol handlers.
381 *
382 * Currently, a net_device can only have a single rx_handler registered. Trying
383 * to register a second rx_handler will return -EBUSY.
384 *
385 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
386 * To unregister a rx_handler on a net_device, use
387 * netdev_rx_handler_unregister().
388 *
389 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
390 * do with the skb.
391 *
392 * If the rx_handler consumed to skb in some way, it should return
393 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
394 * the skb to be delivered in some other ways.
395 *
396 * If the rx_handler changed skb->dev, to divert the skb to another
397 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
398 * new device will be called if it exists.
399 *
400 * If the rx_handler consider the skb should be ignored, it should return
401 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
402 * are registred on exact device (ptype->dev == skb->dev).
403 *
404 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
405 * delivered, it should return RX_HANDLER_PASS.
406 *
407 * A device without a registered rx_handler will behave as if rx_handler
408 * returned RX_HANDLER_PASS.
409 */
410
411 enum rx_handler_result {
412 RX_HANDLER_CONSUMED,
413 RX_HANDLER_ANOTHER,
414 RX_HANDLER_EXACT,
415 RX_HANDLER_PASS,
416 };
417 typedef enum rx_handler_result rx_handler_result_t;
418 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
419
420 extern void __napi_schedule(struct napi_struct *n);
421
422 static inline bool napi_disable_pending(struct napi_struct *n)
423 {
424 return test_bit(NAPI_STATE_DISABLE, &n->state);
425 }
426
427 /**
428 * napi_schedule_prep - check if napi can be scheduled
429 * @n: napi context
430 *
431 * Test if NAPI routine is already running, and if not mark
432 * it as running. This is used as a condition variable
433 * insure only one NAPI poll instance runs. We also make
434 * sure there is no pending NAPI disable.
435 */
436 static inline bool napi_schedule_prep(struct napi_struct *n)
437 {
438 return !napi_disable_pending(n) &&
439 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
440 }
441
442 /**
443 * napi_schedule - schedule NAPI poll
444 * @n: napi context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453 }
454
455 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
456 static inline bool napi_reschedule(struct napi_struct *napi)
457 {
458 if (napi_schedule_prep(napi)) {
459 __napi_schedule(napi);
460 return true;
461 }
462 return false;
463 }
464
465 /**
466 * napi_complete - NAPI processing complete
467 * @n: napi context
468 *
469 * Mark NAPI processing as complete.
470 */
471 extern void __napi_complete(struct napi_struct *n);
472 extern void napi_complete(struct napi_struct *n);
473
474 /**
475 * napi_disable - prevent NAPI from scheduling
476 * @n: napi context
477 *
478 * Stop NAPI from being scheduled on this context.
479 * Waits till any outstanding processing completes.
480 */
481 static inline void napi_disable(struct napi_struct *n)
482 {
483 set_bit(NAPI_STATE_DISABLE, &n->state);
484 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486 clear_bit(NAPI_STATE_DISABLE, &n->state);
487 }
488
489 /**
490 * napi_enable - enable NAPI scheduling
491 * @n: napi context
492 *
493 * Resume NAPI from being scheduled on this context.
494 * Must be paired with napi_disable.
495 */
496 static inline void napi_enable(struct napi_struct *n)
497 {
498 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
499 smp_mb__before_clear_bit();
500 clear_bit(NAPI_STATE_SCHED, &n->state);
501 }
502
503 #ifdef CONFIG_SMP
504 /**
505 * napi_synchronize - wait until NAPI is not running
506 * @n: napi context
507 *
508 * Wait until NAPI is done being scheduled on this context.
509 * Waits till any outstanding processing completes but
510 * does not disable future activations.
511 */
512 static inline void napi_synchronize(const struct napi_struct *n)
513 {
514 while (test_bit(NAPI_STATE_SCHED, &n->state))
515 msleep(1);
516 }
517 #else
518 # define napi_synchronize(n) barrier()
519 #endif
520
521 enum netdev_queue_state_t {
522 __QUEUE_STATE_DRV_XOFF,
523 __QUEUE_STATE_STACK_XOFF,
524 __QUEUE_STATE_FROZEN,
525 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
526 (1 << __QUEUE_STATE_STACK_XOFF))
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528 (1 << __QUEUE_STATE_FROZEN))
529 };
530 /*
531 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
532 * netif_tx_* functions below are used to manipulate this flag. The
533 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
534 * queue independently. The netif_xmit_*stopped functions below are called
535 * to check if the queue has been stopped by the driver or stack (either
536 * of the XOFF bits are set in the state). Drivers should not need to call
537 * netif_xmit*stopped functions, they should only be using netif_tx_*.
538 */
539
540 struct netdev_queue {
541 /*
542 * read mostly part
543 */
544 struct net_device *dev;
545 struct Qdisc *qdisc;
546 struct Qdisc *qdisc_sleeping;
547 #ifdef CONFIG_SYSFS
548 struct kobject kobj;
549 #endif
550 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
551 int numa_node;
552 #endif
553 /*
554 * write mostly part
555 */
556 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
557 int xmit_lock_owner;
558 /*
559 * please use this field instead of dev->trans_start
560 */
561 unsigned long trans_start;
562
563 /*
564 * Number of TX timeouts for this queue
565 * (/sys/class/net/DEV/Q/trans_timeout)
566 */
567 unsigned long trans_timeout;
568
569 unsigned long state;
570
571 #ifdef CONFIG_BQL
572 struct dql dql;
573 #endif
574 } ____cacheline_aligned_in_smp;
575
576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 return q->numa_node;
580 #else
581 return NUMA_NO_NODE;
582 #endif
583 }
584
585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 q->numa_node = node;
589 #endif
590 }
591
592 #ifdef CONFIG_RPS
593 /*
594 * This structure holds an RPS map which can be of variable length. The
595 * map is an array of CPUs.
596 */
597 struct rps_map {
598 unsigned int len;
599 struct rcu_head rcu;
600 u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
603
604 /*
605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606 * tail pointer for that CPU's input queue at the time of last enqueue, and
607 * a hardware filter index.
608 */
609 struct rps_dev_flow {
610 u16 cpu;
611 u16 filter;
612 unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615
616 /*
617 * The rps_dev_flow_table structure contains a table of flow mappings.
618 */
619 struct rps_dev_flow_table {
620 unsigned int mask;
621 struct rcu_head rcu;
622 struct work_struct free_work;
623 struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626 ((_num) * sizeof(struct rps_dev_flow)))
627
628 /*
629 * The rps_sock_flow_table contains mappings of flows to the last CPU
630 * on which they were processed by the application (set in recvmsg).
631 */
632 struct rps_sock_flow_table {
633 unsigned int mask;
634 u16 ents[0];
635 };
636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637 ((_num) * sizeof(u16)))
638
639 #define RPS_NO_CPU 0xffff
640
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 u32 hash)
643 {
644 if (table && hash) {
645 unsigned int cpu, index = hash & table->mask;
646
647 /* We only give a hint, preemption can change cpu under us */
648 cpu = raw_smp_processor_id();
649
650 if (table->ents[index] != cpu)
651 table->ents[index] = cpu;
652 }
653 }
654
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 u32 hash)
657 {
658 if (table && hash)
659 table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 u32 flow_id, u16 filter_id);
667 #endif
668
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 struct rps_map __rcu *rps_map;
672 struct rps_dev_flow_table __rcu *rps_flow_table;
673 struct kobject kobj;
674 struct net_device *dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677
678 #ifdef CONFIG_XPS
679 /*
680 * This structure holds an XPS map which can be of variable length. The
681 * map is an array of queues.
682 */
683 struct xps_map {
684 unsigned int len;
685 unsigned int alloc_len;
686 struct rcu_head rcu;
687 u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
691 / sizeof(u16))
692
693 /*
694 * This structure holds all XPS maps for device. Maps are indexed by CPU.
695 */
696 struct xps_dev_maps {
697 struct rcu_head rcu;
698 struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
701 (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703
704 #define TC_MAX_QUEUE 16
705 #define TC_BITMASK 15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 u16 count;
709 u16 offset;
710 };
711
712 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
713 /*
714 * This structure is to hold information about the device
715 * configured to run FCoE protocol stack.
716 */
717 struct netdev_fcoe_hbainfo {
718 char manufacturer[64];
719 char serial_number[64];
720 char hardware_version[64];
721 char driver_version[64];
722 char optionrom_version[64];
723 char firmware_version[64];
724 char model[256];
725 char model_description[256];
726 };
727 #endif
728
729 /*
730 * This structure defines the management hooks for network devices.
731 * The following hooks can be defined; unless noted otherwise, they are
732 * optional and can be filled with a null pointer.
733 *
734 * int (*ndo_init)(struct net_device *dev);
735 * This function is called once when network device is registered.
736 * The network device can use this to any late stage initializaton
737 * or semantic validattion. It can fail with an error code which will
738 * be propogated back to register_netdev
739 *
740 * void (*ndo_uninit)(struct net_device *dev);
741 * This function is called when device is unregistered or when registration
742 * fails. It is not called if init fails.
743 *
744 * int (*ndo_open)(struct net_device *dev);
745 * This function is called when network device transistions to the up
746 * state.
747 *
748 * int (*ndo_stop)(struct net_device *dev);
749 * This function is called when network device transistions to the down
750 * state.
751 *
752 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
753 * struct net_device *dev);
754 * Called when a packet needs to be transmitted.
755 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
756 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
757 * Required can not be NULL.
758 *
759 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
760 * Called to decide which queue to when device supports multiple
761 * transmit queues.
762 *
763 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
764 * This function is called to allow device receiver to make
765 * changes to configuration when multicast or promiscious is enabled.
766 *
767 * void (*ndo_set_rx_mode)(struct net_device *dev);
768 * This function is called device changes address list filtering.
769 * If driver handles unicast address filtering, it should set
770 * IFF_UNICAST_FLT to its priv_flags.
771 *
772 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
773 * This function is called when the Media Access Control address
774 * needs to be changed. If this interface is not defined, the
775 * mac address can not be changed.
776 *
777 * int (*ndo_validate_addr)(struct net_device *dev);
778 * Test if Media Access Control address is valid for the device.
779 *
780 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
781 * Called when a user request an ioctl which can't be handled by
782 * the generic interface code. If not defined ioctl's return
783 * not supported error code.
784 *
785 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
786 * Used to set network devices bus interface parameters. This interface
787 * is retained for legacy reason, new devices should use the bus
788 * interface (PCI) for low level management.
789 *
790 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
791 * Called when a user wants to change the Maximum Transfer Unit
792 * of a device. If not defined, any request to change MTU will
793 * will return an error.
794 *
795 * void (*ndo_tx_timeout)(struct net_device *dev);
796 * Callback uses when the transmitter has not made any progress
797 * for dev->watchdog ticks.
798 *
799 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
800 * struct rtnl_link_stats64 *storage);
801 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
802 * Called when a user wants to get the network device usage
803 * statistics. Drivers must do one of the following:
804 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
805 * rtnl_link_stats64 structure passed by the caller.
806 * 2. Define @ndo_get_stats to update a net_device_stats structure
807 * (which should normally be dev->stats) and return a pointer to
808 * it. The structure may be changed asynchronously only if each
809 * field is written atomically.
810 * 3. Update dev->stats asynchronously and atomically, and define
811 * neither operation.
812 *
813 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
814 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
815 * this function is called when a VLAN id is registered.
816 *
817 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
818 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
819 * this function is called when a VLAN id is unregistered.
820 *
821 * void (*ndo_poll_controller)(struct net_device *dev);
822 *
823 * SR-IOV management functions.
824 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
825 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
826 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
827 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
828 * int (*ndo_get_vf_config)(struct net_device *dev,
829 * int vf, struct ifla_vf_info *ivf);
830 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
831 * struct nlattr *port[]);
832 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
833 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
834 * Called to setup 'tc' number of traffic classes in the net device. This
835 * is always called from the stack with the rtnl lock held and netif tx
836 * queues stopped. This allows the netdevice to perform queue management
837 * safely.
838 *
839 * Fiber Channel over Ethernet (FCoE) offload functions.
840 * int (*ndo_fcoe_enable)(struct net_device *dev);
841 * Called when the FCoE protocol stack wants to start using LLD for FCoE
842 * so the underlying device can perform whatever needed configuration or
843 * initialization to support acceleration of FCoE traffic.
844 *
845 * int (*ndo_fcoe_disable)(struct net_device *dev);
846 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
847 * so the underlying device can perform whatever needed clean-ups to
848 * stop supporting acceleration of FCoE traffic.
849 *
850 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
851 * struct scatterlist *sgl, unsigned int sgc);
852 * Called when the FCoE Initiator wants to initialize an I/O that
853 * is a possible candidate for Direct Data Placement (DDP). The LLD can
854 * perform necessary setup and returns 1 to indicate the device is set up
855 * successfully to perform DDP on this I/O, otherwise this returns 0.
856 *
857 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
858 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
859 * indicated by the FC exchange id 'xid', so the underlying device can
860 * clean up and reuse resources for later DDP requests.
861 *
862 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
863 * struct scatterlist *sgl, unsigned int sgc);
864 * Called when the FCoE Target wants to initialize an I/O that
865 * is a possible candidate for Direct Data Placement (DDP). The LLD can
866 * perform necessary setup and returns 1 to indicate the device is set up
867 * successfully to perform DDP on this I/O, otherwise this returns 0.
868 *
869 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
870 * struct netdev_fcoe_hbainfo *hbainfo);
871 * Called when the FCoE Protocol stack wants information on the underlying
872 * device. This information is utilized by the FCoE protocol stack to
873 * register attributes with Fiber Channel management service as per the
874 * FC-GS Fabric Device Management Information(FDMI) specification.
875 *
876 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
877 * Called when the underlying device wants to override default World Wide
878 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
879 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
880 * protocol stack to use.
881 *
882 * RFS acceleration.
883 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
884 * u16 rxq_index, u32 flow_id);
885 * Set hardware filter for RFS. rxq_index is the target queue index;
886 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
887 * Return the filter ID on success, or a negative error code.
888 *
889 * Slave management functions (for bridge, bonding, etc). User should
890 * call netdev_set_master() to set dev->master properly.
891 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
892 * Called to make another netdev an underling.
893 *
894 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
895 * Called to release previously enslaved netdev.
896 *
897 * Feature/offload setting functions.
898 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
899 * netdev_features_t features);
900 * Adjusts the requested feature flags according to device-specific
901 * constraints, and returns the resulting flags. Must not modify
902 * the device state.
903 *
904 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
905 * Called to update device configuration to new features. Passed
906 * feature set might be less than what was returned by ndo_fix_features()).
907 * Must return >0 or -errno if it changed dev->features itself.
908 *
909 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev,
910 * unsigned char *addr, u16 flags)
911 * Adds an FDB entry to dev for addr.
912 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
913 * unsigned char *addr)
914 * Deletes the FDB entry from dev coresponding to addr.
915 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
916 * struct net_device *dev, int idx)
917 * Used to add FDB entries to dump requests. Implementers should add
918 * entries to skb and update idx with the number of entries.
919 */
920 struct net_device_ops {
921 int (*ndo_init)(struct net_device *dev);
922 void (*ndo_uninit)(struct net_device *dev);
923 int (*ndo_open)(struct net_device *dev);
924 int (*ndo_stop)(struct net_device *dev);
925 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
926 struct net_device *dev);
927 u16 (*ndo_select_queue)(struct net_device *dev,
928 struct sk_buff *skb);
929 void (*ndo_change_rx_flags)(struct net_device *dev,
930 int flags);
931 void (*ndo_set_rx_mode)(struct net_device *dev);
932 int (*ndo_set_mac_address)(struct net_device *dev,
933 void *addr);
934 int (*ndo_validate_addr)(struct net_device *dev);
935 int (*ndo_do_ioctl)(struct net_device *dev,
936 struct ifreq *ifr, int cmd);
937 int (*ndo_set_config)(struct net_device *dev,
938 struct ifmap *map);
939 int (*ndo_change_mtu)(struct net_device *dev,
940 int new_mtu);
941 int (*ndo_neigh_setup)(struct net_device *dev,
942 struct neigh_parms *);
943 void (*ndo_tx_timeout) (struct net_device *dev);
944
945 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
946 struct rtnl_link_stats64 *storage);
947 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
948
949 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
950 unsigned short vid);
951 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
952 unsigned short vid);
953 #ifdef CONFIG_NET_POLL_CONTROLLER
954 void (*ndo_poll_controller)(struct net_device *dev);
955 int (*ndo_netpoll_setup)(struct net_device *dev,
956 struct netpoll_info *info,
957 gfp_t gfp);
958 void (*ndo_netpoll_cleanup)(struct net_device *dev);
959 #endif
960 int (*ndo_set_vf_mac)(struct net_device *dev,
961 int queue, u8 *mac);
962 int (*ndo_set_vf_vlan)(struct net_device *dev,
963 int queue, u16 vlan, u8 qos);
964 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
965 int vf, int rate);
966 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
967 int vf, bool setting);
968 int (*ndo_get_vf_config)(struct net_device *dev,
969 int vf,
970 struct ifla_vf_info *ivf);
971 int (*ndo_set_vf_port)(struct net_device *dev,
972 int vf,
973 struct nlattr *port[]);
974 int (*ndo_get_vf_port)(struct net_device *dev,
975 int vf, struct sk_buff *skb);
976 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
977 #if IS_ENABLED(CONFIG_FCOE)
978 int (*ndo_fcoe_enable)(struct net_device *dev);
979 int (*ndo_fcoe_disable)(struct net_device *dev);
980 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
981 u16 xid,
982 struct scatterlist *sgl,
983 unsigned int sgc);
984 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
985 u16 xid);
986 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
987 u16 xid,
988 struct scatterlist *sgl,
989 unsigned int sgc);
990 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
991 struct netdev_fcoe_hbainfo *hbainfo);
992 #endif
993
994 #if IS_ENABLED(CONFIG_LIBFCOE)
995 #define NETDEV_FCOE_WWNN 0
996 #define NETDEV_FCOE_WWPN 1
997 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
998 u64 *wwn, int type);
999 #endif
1000
1001 #ifdef CONFIG_RFS_ACCEL
1002 int (*ndo_rx_flow_steer)(struct net_device *dev,
1003 const struct sk_buff *skb,
1004 u16 rxq_index,
1005 u32 flow_id);
1006 #endif
1007 int (*ndo_add_slave)(struct net_device *dev,
1008 struct net_device *slave_dev);
1009 int (*ndo_del_slave)(struct net_device *dev,
1010 struct net_device *slave_dev);
1011 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1012 netdev_features_t features);
1013 int (*ndo_set_features)(struct net_device *dev,
1014 netdev_features_t features);
1015 int (*ndo_neigh_construct)(struct neighbour *n);
1016 void (*ndo_neigh_destroy)(struct neighbour *n);
1017
1018 int (*ndo_fdb_add)(struct ndmsg *ndm,
1019 struct net_device *dev,
1020 unsigned char *addr,
1021 u16 flags);
1022 int (*ndo_fdb_del)(struct ndmsg *ndm,
1023 struct net_device *dev,
1024 unsigned char *addr);
1025 int (*ndo_fdb_dump)(struct sk_buff *skb,
1026 struct netlink_callback *cb,
1027 struct net_device *dev,
1028 int idx);
1029 };
1030
1031 /*
1032 * The DEVICE structure.
1033 * Actually, this whole structure is a big mistake. It mixes I/O
1034 * data with strictly "high-level" data, and it has to know about
1035 * almost every data structure used in the INET module.
1036 *
1037 * FIXME: cleanup struct net_device such that network protocol info
1038 * moves out.
1039 */
1040
1041 struct net_device {
1042
1043 /*
1044 * This is the first field of the "visible" part of this structure
1045 * (i.e. as seen by users in the "Space.c" file). It is the name
1046 * of the interface.
1047 */
1048 char name[IFNAMSIZ];
1049
1050 /* device name hash chain, please keep it close to name[] */
1051 struct hlist_node name_hlist;
1052
1053 /* snmp alias */
1054 char *ifalias;
1055
1056 /*
1057 * I/O specific fields
1058 * FIXME: Merge these and struct ifmap into one
1059 */
1060 unsigned long mem_end; /* shared mem end */
1061 unsigned long mem_start; /* shared mem start */
1062 unsigned long base_addr; /* device I/O address */
1063 unsigned int irq; /* device IRQ number */
1064
1065 /*
1066 * Some hardware also needs these fields, but they are not
1067 * part of the usual set specified in Space.c.
1068 */
1069
1070 unsigned long state;
1071
1072 struct list_head dev_list;
1073 struct list_head napi_list;
1074 struct list_head unreg_list;
1075
1076 /* currently active device features */
1077 netdev_features_t features;
1078 /* user-changeable features */
1079 netdev_features_t hw_features;
1080 /* user-requested features */
1081 netdev_features_t wanted_features;
1082 /* mask of features inheritable by VLAN devices */
1083 netdev_features_t vlan_features;
1084
1085 /* Interface index. Unique device identifier */
1086 int ifindex;
1087 int iflink;
1088
1089 struct net_device_stats stats;
1090 atomic_long_t rx_dropped; /* dropped packets by core network
1091 * Do not use this in drivers.
1092 */
1093
1094 #ifdef CONFIG_WIRELESS_EXT
1095 /* List of functions to handle Wireless Extensions (instead of ioctl).
1096 * See <net/iw_handler.h> for details. Jean II */
1097 const struct iw_handler_def * wireless_handlers;
1098 /* Instance data managed by the core of Wireless Extensions. */
1099 struct iw_public_data * wireless_data;
1100 #endif
1101 /* Management operations */
1102 const struct net_device_ops *netdev_ops;
1103 const struct ethtool_ops *ethtool_ops;
1104
1105 /* Hardware header description */
1106 const struct header_ops *header_ops;
1107
1108 unsigned int flags; /* interface flags (a la BSD) */
1109 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1110 * See if.h for definitions. */
1111 unsigned short gflags;
1112 unsigned short padded; /* How much padding added by alloc_netdev() */
1113
1114 unsigned char operstate; /* RFC2863 operstate */
1115 unsigned char link_mode; /* mapping policy to operstate */
1116
1117 unsigned char if_port; /* Selectable AUI, TP,..*/
1118 unsigned char dma; /* DMA channel */
1119
1120 unsigned int mtu; /* interface MTU value */
1121 unsigned short type; /* interface hardware type */
1122 unsigned short hard_header_len; /* hardware hdr length */
1123
1124 /* extra head- and tailroom the hardware may need, but not in all cases
1125 * can this be guaranteed, especially tailroom. Some cases also use
1126 * LL_MAX_HEADER instead to allocate the skb.
1127 */
1128 unsigned short needed_headroom;
1129 unsigned short needed_tailroom;
1130
1131 /* Interface address info. */
1132 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1133 unsigned char addr_assign_type; /* hw address assignment type */
1134 unsigned char addr_len; /* hardware address length */
1135 unsigned char neigh_priv_len;
1136 unsigned short dev_id; /* for shared network cards */
1137
1138 spinlock_t addr_list_lock;
1139 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1140 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1141 bool uc_promisc;
1142 unsigned int promiscuity;
1143 unsigned int allmulti;
1144
1145
1146 /* Protocol specific pointers */
1147
1148 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1149 struct vlan_info __rcu *vlan_info; /* VLAN info */
1150 #endif
1151 #if IS_ENABLED(CONFIG_NET_DSA)
1152 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1153 #endif
1154 void *atalk_ptr; /* AppleTalk link */
1155 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1156 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1157 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1158 void *ax25_ptr; /* AX.25 specific data */
1159 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1160 assign before registering */
1161
1162 /*
1163 * Cache lines mostly used on receive path (including eth_type_trans())
1164 */
1165 unsigned long last_rx; /* Time of last Rx
1166 * This should not be set in
1167 * drivers, unless really needed,
1168 * because network stack (bonding)
1169 * use it if/when necessary, to
1170 * avoid dirtying this cache line.
1171 */
1172
1173 struct net_device *master; /* Pointer to master device of a group,
1174 * which this device is member of.
1175 */
1176
1177 /* Interface address info used in eth_type_trans() */
1178 unsigned char *dev_addr; /* hw address, (before bcast
1179 because most packets are
1180 unicast) */
1181
1182 struct netdev_hw_addr_list dev_addrs; /* list of device
1183 hw addresses */
1184
1185 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1186
1187 #ifdef CONFIG_SYSFS
1188 struct kset *queues_kset;
1189 #endif
1190
1191 #ifdef CONFIG_RPS
1192 struct netdev_rx_queue *_rx;
1193
1194 /* Number of RX queues allocated at register_netdev() time */
1195 unsigned int num_rx_queues;
1196
1197 /* Number of RX queues currently active in device */
1198 unsigned int real_num_rx_queues;
1199
1200 #ifdef CONFIG_RFS_ACCEL
1201 /* CPU reverse-mapping for RX completion interrupts, indexed
1202 * by RX queue number. Assigned by driver. This must only be
1203 * set if the ndo_rx_flow_steer operation is defined. */
1204 struct cpu_rmap *rx_cpu_rmap;
1205 #endif
1206 #endif
1207
1208 rx_handler_func_t __rcu *rx_handler;
1209 void __rcu *rx_handler_data;
1210
1211 struct netdev_queue __rcu *ingress_queue;
1212
1213 /*
1214 * Cache lines mostly used on transmit path
1215 */
1216 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1217
1218 /* Number of TX queues allocated at alloc_netdev_mq() time */
1219 unsigned int num_tx_queues;
1220
1221 /* Number of TX queues currently active in device */
1222 unsigned int real_num_tx_queues;
1223
1224 /* root qdisc from userspace point of view */
1225 struct Qdisc *qdisc;
1226
1227 unsigned long tx_queue_len; /* Max frames per queue allowed */
1228 spinlock_t tx_global_lock;
1229
1230 #ifdef CONFIG_XPS
1231 struct xps_dev_maps __rcu *xps_maps;
1232 #endif
1233
1234 /* These may be needed for future network-power-down code. */
1235
1236 /*
1237 * trans_start here is expensive for high speed devices on SMP,
1238 * please use netdev_queue->trans_start instead.
1239 */
1240 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1241
1242 int watchdog_timeo; /* used by dev_watchdog() */
1243 struct timer_list watchdog_timer;
1244
1245 /* Number of references to this device */
1246 int __percpu *pcpu_refcnt;
1247
1248 /* delayed register/unregister */
1249 struct list_head todo_list;
1250 /* device index hash chain */
1251 struct hlist_node index_hlist;
1252
1253 struct list_head link_watch_list;
1254
1255 /* register/unregister state machine */
1256 enum { NETREG_UNINITIALIZED=0,
1257 NETREG_REGISTERED, /* completed register_netdevice */
1258 NETREG_UNREGISTERING, /* called unregister_netdevice */
1259 NETREG_UNREGISTERED, /* completed unregister todo */
1260 NETREG_RELEASED, /* called free_netdev */
1261 NETREG_DUMMY, /* dummy device for NAPI poll */
1262 } reg_state:8;
1263
1264 bool dismantle; /* device is going do be freed */
1265
1266 enum {
1267 RTNL_LINK_INITIALIZED,
1268 RTNL_LINK_INITIALIZING,
1269 } rtnl_link_state:16;
1270
1271 /* Called from unregister, can be used to call free_netdev */
1272 void (*destructor)(struct net_device *dev);
1273
1274 #ifdef CONFIG_NETPOLL
1275 struct netpoll_info *npinfo;
1276 #endif
1277
1278 #ifdef CONFIG_NET_NS
1279 /* Network namespace this network device is inside */
1280 struct net *nd_net;
1281 #endif
1282
1283 /* mid-layer private */
1284 union {
1285 void *ml_priv;
1286 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1287 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1288 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1289 };
1290 /* GARP */
1291 struct garp_port __rcu *garp_port;
1292
1293 /* class/net/name entry */
1294 struct device dev;
1295 /* space for optional device, statistics, and wireless sysfs groups */
1296 const struct attribute_group *sysfs_groups[4];
1297
1298 /* rtnetlink link ops */
1299 const struct rtnl_link_ops *rtnl_link_ops;
1300
1301 /* for setting kernel sock attribute on TCP connection setup */
1302 #define GSO_MAX_SIZE 65536
1303 unsigned int gso_max_size;
1304 #define GSO_MAX_SEGS 65535
1305 u16 gso_max_segs;
1306
1307 #ifdef CONFIG_DCB
1308 /* Data Center Bridging netlink ops */
1309 const struct dcbnl_rtnl_ops *dcbnl_ops;
1310 #endif
1311 u8 num_tc;
1312 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1313 u8 prio_tc_map[TC_BITMASK + 1];
1314
1315 #if IS_ENABLED(CONFIG_FCOE)
1316 /* max exchange id for FCoE LRO by ddp */
1317 unsigned int fcoe_ddp_xid;
1318 #endif
1319 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1320 struct netprio_map __rcu *priomap;
1321 #endif
1322 /* phy device may attach itself for hardware timestamping */
1323 struct phy_device *phydev;
1324
1325 /* group the device belongs to */
1326 int group;
1327
1328 struct pm_qos_request pm_qos_req;
1329 };
1330 #define to_net_dev(d) container_of(d, struct net_device, dev)
1331
1332 #define NETDEV_ALIGN 32
1333
1334 static inline
1335 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1336 {
1337 return dev->prio_tc_map[prio & TC_BITMASK];
1338 }
1339
1340 static inline
1341 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1342 {
1343 if (tc >= dev->num_tc)
1344 return -EINVAL;
1345
1346 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1347 return 0;
1348 }
1349
1350 static inline
1351 void netdev_reset_tc(struct net_device *dev)
1352 {
1353 dev->num_tc = 0;
1354 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1355 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1356 }
1357
1358 static inline
1359 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1360 {
1361 if (tc >= dev->num_tc)
1362 return -EINVAL;
1363
1364 dev->tc_to_txq[tc].count = count;
1365 dev->tc_to_txq[tc].offset = offset;
1366 return 0;
1367 }
1368
1369 static inline
1370 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1371 {
1372 if (num_tc > TC_MAX_QUEUE)
1373 return -EINVAL;
1374
1375 dev->num_tc = num_tc;
1376 return 0;
1377 }
1378
1379 static inline
1380 int netdev_get_num_tc(struct net_device *dev)
1381 {
1382 return dev->num_tc;
1383 }
1384
1385 static inline
1386 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1387 unsigned int index)
1388 {
1389 return &dev->_tx[index];
1390 }
1391
1392 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1393 void (*f)(struct net_device *,
1394 struct netdev_queue *,
1395 void *),
1396 void *arg)
1397 {
1398 unsigned int i;
1399
1400 for (i = 0; i < dev->num_tx_queues; i++)
1401 f(dev, &dev->_tx[i], arg);
1402 }
1403
1404 /*
1405 * Net namespace inlines
1406 */
1407 static inline
1408 struct net *dev_net(const struct net_device *dev)
1409 {
1410 return read_pnet(&dev->nd_net);
1411 }
1412
1413 static inline
1414 void dev_net_set(struct net_device *dev, struct net *net)
1415 {
1416 #ifdef CONFIG_NET_NS
1417 release_net(dev->nd_net);
1418 dev->nd_net = hold_net(net);
1419 #endif
1420 }
1421
1422 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1423 {
1424 #ifdef CONFIG_NET_DSA_TAG_DSA
1425 if (dev->dsa_ptr != NULL)
1426 return dsa_uses_dsa_tags(dev->dsa_ptr);
1427 #endif
1428
1429 return 0;
1430 }
1431
1432 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1433 {
1434 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1435 if (dev->dsa_ptr != NULL)
1436 return dsa_uses_trailer_tags(dev->dsa_ptr);
1437 #endif
1438
1439 return 0;
1440 }
1441
1442 /**
1443 * netdev_priv - access network device private data
1444 * @dev: network device
1445 *
1446 * Get network device private data
1447 */
1448 static inline void *netdev_priv(const struct net_device *dev)
1449 {
1450 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1451 }
1452
1453 /* Set the sysfs physical device reference for the network logical device
1454 * if set prior to registration will cause a symlink during initialization.
1455 */
1456 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1457
1458 /* Set the sysfs device type for the network logical device to allow
1459 * fin grained indentification of different network device types. For
1460 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1461 */
1462 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1463
1464 /**
1465 * netif_napi_add - initialize a napi context
1466 * @dev: network device
1467 * @napi: napi context
1468 * @poll: polling function
1469 * @weight: default weight
1470 *
1471 * netif_napi_add() must be used to initialize a napi context prior to calling
1472 * *any* of the other napi related functions.
1473 */
1474 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1475 int (*poll)(struct napi_struct *, int), int weight);
1476
1477 /**
1478 * netif_napi_del - remove a napi context
1479 * @napi: napi context
1480 *
1481 * netif_napi_del() removes a napi context from the network device napi list
1482 */
1483 void netif_napi_del(struct napi_struct *napi);
1484
1485 struct napi_gro_cb {
1486 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1487 void *frag0;
1488
1489 /* Length of frag0. */
1490 unsigned int frag0_len;
1491
1492 /* This indicates where we are processing relative to skb->data. */
1493 int data_offset;
1494
1495 /* This is non-zero if the packet may be of the same flow. */
1496 int same_flow;
1497
1498 /* This is non-zero if the packet cannot be merged with the new skb. */
1499 int flush;
1500
1501 /* Number of segments aggregated. */
1502 int count;
1503
1504 /* Free the skb? */
1505 int free;
1506 #define NAPI_GRO_FREE 1
1507 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1508 };
1509
1510 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1511
1512 struct packet_type {
1513 __be16 type; /* This is really htons(ether_type). */
1514 struct net_device *dev; /* NULL is wildcarded here */
1515 int (*func) (struct sk_buff *,
1516 struct net_device *,
1517 struct packet_type *,
1518 struct net_device *);
1519 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1520 netdev_features_t features);
1521 int (*gso_send_check)(struct sk_buff *skb);
1522 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1523 struct sk_buff *skb);
1524 int (*gro_complete)(struct sk_buff *skb);
1525 bool (*id_match)(struct packet_type *ptype,
1526 struct sock *sk);
1527 void *af_packet_priv;
1528 struct list_head list;
1529 };
1530
1531 #include <linux/notifier.h>
1532
1533 /* netdevice notifier chain. Please remember to update the rtnetlink
1534 * notification exclusion list in rtnetlink_event() when adding new
1535 * types.
1536 */
1537 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1538 #define NETDEV_DOWN 0x0002
1539 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1540 detected a hardware crash and restarted
1541 - we can use this eg to kick tcp sessions
1542 once done */
1543 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1544 #define NETDEV_REGISTER 0x0005
1545 #define NETDEV_UNREGISTER 0x0006
1546 #define NETDEV_CHANGEMTU 0x0007
1547 #define NETDEV_CHANGEADDR 0x0008
1548 #define NETDEV_GOING_DOWN 0x0009
1549 #define NETDEV_CHANGENAME 0x000A
1550 #define NETDEV_FEAT_CHANGE 0x000B
1551 #define NETDEV_BONDING_FAILOVER 0x000C
1552 #define NETDEV_PRE_UP 0x000D
1553 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1554 #define NETDEV_POST_TYPE_CHANGE 0x000F
1555 #define NETDEV_POST_INIT 0x0010
1556 #define NETDEV_UNREGISTER_BATCH 0x0011
1557 #define NETDEV_RELEASE 0x0012
1558 #define NETDEV_NOTIFY_PEERS 0x0013
1559 #define NETDEV_JOIN 0x0014
1560
1561 extern int register_netdevice_notifier(struct notifier_block *nb);
1562 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1563 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1564
1565
1566 extern rwlock_t dev_base_lock; /* Device list lock */
1567
1568
1569 #define for_each_netdev(net, d) \
1570 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1571 #define for_each_netdev_reverse(net, d) \
1572 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1573 #define for_each_netdev_rcu(net, d) \
1574 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1575 #define for_each_netdev_safe(net, d, n) \
1576 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1577 #define for_each_netdev_continue(net, d) \
1578 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1579 #define for_each_netdev_continue_rcu(net, d) \
1580 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1581 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1582
1583 static inline struct net_device *next_net_device(struct net_device *dev)
1584 {
1585 struct list_head *lh;
1586 struct net *net;
1587
1588 net = dev_net(dev);
1589 lh = dev->dev_list.next;
1590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1591 }
1592
1593 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1594 {
1595 struct list_head *lh;
1596 struct net *net;
1597
1598 net = dev_net(dev);
1599 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1600 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1601 }
1602
1603 static inline struct net_device *first_net_device(struct net *net)
1604 {
1605 return list_empty(&net->dev_base_head) ? NULL :
1606 net_device_entry(net->dev_base_head.next);
1607 }
1608
1609 static inline struct net_device *first_net_device_rcu(struct net *net)
1610 {
1611 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1612
1613 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1614 }
1615
1616 extern int netdev_boot_setup_check(struct net_device *dev);
1617 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1618 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1619 const char *hwaddr);
1620 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1621 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1622 extern void dev_add_pack(struct packet_type *pt);
1623 extern void dev_remove_pack(struct packet_type *pt);
1624 extern void __dev_remove_pack(struct packet_type *pt);
1625
1626 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1627 unsigned short mask);
1628 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1629 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1630 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1631 extern int dev_alloc_name(struct net_device *dev, const char *name);
1632 extern int dev_open(struct net_device *dev);
1633 extern int dev_close(struct net_device *dev);
1634 extern void dev_disable_lro(struct net_device *dev);
1635 extern int dev_loopback_xmit(struct sk_buff *newskb);
1636 extern int dev_queue_xmit(struct sk_buff *skb);
1637 extern int register_netdevice(struct net_device *dev);
1638 extern void unregister_netdevice_queue(struct net_device *dev,
1639 struct list_head *head);
1640 extern void unregister_netdevice_many(struct list_head *head);
1641 static inline void unregister_netdevice(struct net_device *dev)
1642 {
1643 unregister_netdevice_queue(dev, NULL);
1644 }
1645
1646 extern int netdev_refcnt_read(const struct net_device *dev);
1647 extern void free_netdev(struct net_device *dev);
1648 extern void synchronize_net(void);
1649 extern int init_dummy_netdev(struct net_device *dev);
1650 extern void netdev_resync_ops(struct net_device *dev);
1651
1652 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1653 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1654 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1655 extern int dev_restart(struct net_device *dev);
1656 #ifdef CONFIG_NETPOLL_TRAP
1657 extern int netpoll_trap(void);
1658 #endif
1659 extern int skb_gro_receive(struct sk_buff **head,
1660 struct sk_buff *skb);
1661 extern void skb_gro_reset_offset(struct sk_buff *skb);
1662
1663 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1664 {
1665 return NAPI_GRO_CB(skb)->data_offset;
1666 }
1667
1668 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1669 {
1670 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1671 }
1672
1673 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1674 {
1675 NAPI_GRO_CB(skb)->data_offset += len;
1676 }
1677
1678 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1679 unsigned int offset)
1680 {
1681 return NAPI_GRO_CB(skb)->frag0 + offset;
1682 }
1683
1684 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1685 {
1686 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1687 }
1688
1689 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1690 unsigned int offset)
1691 {
1692 if (!pskb_may_pull(skb, hlen))
1693 return NULL;
1694
1695 NAPI_GRO_CB(skb)->frag0 = NULL;
1696 NAPI_GRO_CB(skb)->frag0_len = 0;
1697 return skb->data + offset;
1698 }
1699
1700 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1701 {
1702 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1703 }
1704
1705 static inline void *skb_gro_network_header(struct sk_buff *skb)
1706 {
1707 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1708 skb_network_offset(skb);
1709 }
1710
1711 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1712 unsigned short type,
1713 const void *daddr, const void *saddr,
1714 unsigned int len)
1715 {
1716 if (!dev->header_ops || !dev->header_ops->create)
1717 return 0;
1718
1719 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1720 }
1721
1722 static inline int dev_parse_header(const struct sk_buff *skb,
1723 unsigned char *haddr)
1724 {
1725 const struct net_device *dev = skb->dev;
1726
1727 if (!dev->header_ops || !dev->header_ops->parse)
1728 return 0;
1729 return dev->header_ops->parse(skb, haddr);
1730 }
1731
1732 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1733 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1734 static inline int unregister_gifconf(unsigned int family)
1735 {
1736 return register_gifconf(family, NULL);
1737 }
1738
1739 /*
1740 * Incoming packets are placed on per-cpu queues
1741 */
1742 struct softnet_data {
1743 struct Qdisc *output_queue;
1744 struct Qdisc **output_queue_tailp;
1745 struct list_head poll_list;
1746 struct sk_buff *completion_queue;
1747 struct sk_buff_head process_queue;
1748
1749 /* stats */
1750 unsigned int processed;
1751 unsigned int time_squeeze;
1752 unsigned int cpu_collision;
1753 unsigned int received_rps;
1754
1755 #ifdef CONFIG_RPS
1756 struct softnet_data *rps_ipi_list;
1757
1758 /* Elements below can be accessed between CPUs for RPS */
1759 struct call_single_data csd ____cacheline_aligned_in_smp;
1760 struct softnet_data *rps_ipi_next;
1761 unsigned int cpu;
1762 unsigned int input_queue_head;
1763 unsigned int input_queue_tail;
1764 #endif
1765 unsigned int dropped;
1766 struct sk_buff_head input_pkt_queue;
1767 struct napi_struct backlog;
1768 };
1769
1770 static inline void input_queue_head_incr(struct softnet_data *sd)
1771 {
1772 #ifdef CONFIG_RPS
1773 sd->input_queue_head++;
1774 #endif
1775 }
1776
1777 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1778 unsigned int *qtail)
1779 {
1780 #ifdef CONFIG_RPS
1781 *qtail = ++sd->input_queue_tail;
1782 #endif
1783 }
1784
1785 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1786
1787 extern void __netif_schedule(struct Qdisc *q);
1788
1789 static inline void netif_schedule_queue(struct netdev_queue *txq)
1790 {
1791 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1792 __netif_schedule(txq->qdisc);
1793 }
1794
1795 static inline void netif_tx_schedule_all(struct net_device *dev)
1796 {
1797 unsigned int i;
1798
1799 for (i = 0; i < dev->num_tx_queues; i++)
1800 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1801 }
1802
1803 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1804 {
1805 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1806 }
1807
1808 /**
1809 * netif_start_queue - allow transmit
1810 * @dev: network device
1811 *
1812 * Allow upper layers to call the device hard_start_xmit routine.
1813 */
1814 static inline void netif_start_queue(struct net_device *dev)
1815 {
1816 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1817 }
1818
1819 static inline void netif_tx_start_all_queues(struct net_device *dev)
1820 {
1821 unsigned int i;
1822
1823 for (i = 0; i < dev->num_tx_queues; i++) {
1824 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1825 netif_tx_start_queue(txq);
1826 }
1827 }
1828
1829 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1830 {
1831 #ifdef CONFIG_NETPOLL_TRAP
1832 if (netpoll_trap()) {
1833 netif_tx_start_queue(dev_queue);
1834 return;
1835 }
1836 #endif
1837 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1838 __netif_schedule(dev_queue->qdisc);
1839 }
1840
1841 /**
1842 * netif_wake_queue - restart transmit
1843 * @dev: network device
1844 *
1845 * Allow upper layers to call the device hard_start_xmit routine.
1846 * Used for flow control when transmit resources are available.
1847 */
1848 static inline void netif_wake_queue(struct net_device *dev)
1849 {
1850 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1851 }
1852
1853 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1854 {
1855 unsigned int i;
1856
1857 for (i = 0; i < dev->num_tx_queues; i++) {
1858 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1859 netif_tx_wake_queue(txq);
1860 }
1861 }
1862
1863 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1864 {
1865 if (WARN_ON(!dev_queue)) {
1866 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1867 return;
1868 }
1869 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1870 }
1871
1872 /**
1873 * netif_stop_queue - stop transmitted packets
1874 * @dev: network device
1875 *
1876 * Stop upper layers calling the device hard_start_xmit routine.
1877 * Used for flow control when transmit resources are unavailable.
1878 */
1879 static inline void netif_stop_queue(struct net_device *dev)
1880 {
1881 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1882 }
1883
1884 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1885 {
1886 unsigned int i;
1887
1888 for (i = 0; i < dev->num_tx_queues; i++) {
1889 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1890 netif_tx_stop_queue(txq);
1891 }
1892 }
1893
1894 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1895 {
1896 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1897 }
1898
1899 /**
1900 * netif_queue_stopped - test if transmit queue is flowblocked
1901 * @dev: network device
1902 *
1903 * Test if transmit queue on device is currently unable to send.
1904 */
1905 static inline bool netif_queue_stopped(const struct net_device *dev)
1906 {
1907 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1908 }
1909
1910 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1911 {
1912 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1913 }
1914
1915 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1916 {
1917 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1918 }
1919
1920 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1921 unsigned int bytes)
1922 {
1923 #ifdef CONFIG_BQL
1924 dql_queued(&dev_queue->dql, bytes);
1925
1926 if (likely(dql_avail(&dev_queue->dql) >= 0))
1927 return;
1928
1929 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1930
1931 /*
1932 * The XOFF flag must be set before checking the dql_avail below,
1933 * because in netdev_tx_completed_queue we update the dql_completed
1934 * before checking the XOFF flag.
1935 */
1936 smp_mb();
1937
1938 /* check again in case another CPU has just made room avail */
1939 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1940 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1941 #endif
1942 }
1943
1944 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1945 {
1946 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1947 }
1948
1949 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1950 unsigned int pkts, unsigned int bytes)
1951 {
1952 #ifdef CONFIG_BQL
1953 if (unlikely(!bytes))
1954 return;
1955
1956 dql_completed(&dev_queue->dql, bytes);
1957
1958 /*
1959 * Without the memory barrier there is a small possiblity that
1960 * netdev_tx_sent_queue will miss the update and cause the queue to
1961 * be stopped forever
1962 */
1963 smp_mb();
1964
1965 if (dql_avail(&dev_queue->dql) < 0)
1966 return;
1967
1968 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1969 netif_schedule_queue(dev_queue);
1970 #endif
1971 }
1972
1973 static inline void netdev_completed_queue(struct net_device *dev,
1974 unsigned int pkts, unsigned int bytes)
1975 {
1976 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1977 }
1978
1979 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1980 {
1981 #ifdef CONFIG_BQL
1982 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1983 dql_reset(&q->dql);
1984 #endif
1985 }
1986
1987 static inline void netdev_reset_queue(struct net_device *dev_queue)
1988 {
1989 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1990 }
1991
1992 /**
1993 * netif_running - test if up
1994 * @dev: network device
1995 *
1996 * Test if the device has been brought up.
1997 */
1998 static inline bool netif_running(const struct net_device *dev)
1999 {
2000 return test_bit(__LINK_STATE_START, &dev->state);
2001 }
2002
2003 /*
2004 * Routines to manage the subqueues on a device. We only need start
2005 * stop, and a check if it's stopped. All other device management is
2006 * done at the overall netdevice level.
2007 * Also test the device if we're multiqueue.
2008 */
2009
2010 /**
2011 * netif_start_subqueue - allow sending packets on subqueue
2012 * @dev: network device
2013 * @queue_index: sub queue index
2014 *
2015 * Start individual transmit queue of a device with multiple transmit queues.
2016 */
2017 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2018 {
2019 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2020
2021 netif_tx_start_queue(txq);
2022 }
2023
2024 /**
2025 * netif_stop_subqueue - stop sending packets on subqueue
2026 * @dev: network device
2027 * @queue_index: sub queue index
2028 *
2029 * Stop individual transmit queue of a device with multiple transmit queues.
2030 */
2031 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2032 {
2033 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2034 #ifdef CONFIG_NETPOLL_TRAP
2035 if (netpoll_trap())
2036 return;
2037 #endif
2038 netif_tx_stop_queue(txq);
2039 }
2040
2041 /**
2042 * netif_subqueue_stopped - test status of subqueue
2043 * @dev: network device
2044 * @queue_index: sub queue index
2045 *
2046 * Check individual transmit queue of a device with multiple transmit queues.
2047 */
2048 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2049 u16 queue_index)
2050 {
2051 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2052
2053 return netif_tx_queue_stopped(txq);
2054 }
2055
2056 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2057 struct sk_buff *skb)
2058 {
2059 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2060 }
2061
2062 /**
2063 * netif_wake_subqueue - allow sending packets on subqueue
2064 * @dev: network device
2065 * @queue_index: sub queue index
2066 *
2067 * Resume individual transmit queue of a device with multiple transmit queues.
2068 */
2069 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2070 {
2071 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2072 #ifdef CONFIG_NETPOLL_TRAP
2073 if (netpoll_trap())
2074 return;
2075 #endif
2076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2077 __netif_schedule(txq->qdisc);
2078 }
2079
2080 /*
2081 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2082 * as a distribution range limit for the returned value.
2083 */
2084 static inline u16 skb_tx_hash(const struct net_device *dev,
2085 const struct sk_buff *skb)
2086 {
2087 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2088 }
2089
2090 /**
2091 * netif_is_multiqueue - test if device has multiple transmit queues
2092 * @dev: network device
2093 *
2094 * Check if device has multiple transmit queues
2095 */
2096 static inline bool netif_is_multiqueue(const struct net_device *dev)
2097 {
2098 return dev->num_tx_queues > 1;
2099 }
2100
2101 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2102 unsigned int txq);
2103
2104 #ifdef CONFIG_RPS
2105 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2106 unsigned int rxq);
2107 #else
2108 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2109 unsigned int rxq)
2110 {
2111 return 0;
2112 }
2113 #endif
2114
2115 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2116 const struct net_device *from_dev)
2117 {
2118 int err;
2119
2120 err = netif_set_real_num_tx_queues(to_dev,
2121 from_dev->real_num_tx_queues);
2122 if (err)
2123 return err;
2124 #ifdef CONFIG_RPS
2125 return netif_set_real_num_rx_queues(to_dev,
2126 from_dev->real_num_rx_queues);
2127 #else
2128 return 0;
2129 #endif
2130 }
2131
2132 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2133 extern int netif_get_num_default_rss_queues(void);
2134
2135 /* Use this variant when it is known for sure that it
2136 * is executing from hardware interrupt context or with hardware interrupts
2137 * disabled.
2138 */
2139 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2140
2141 /* Use this variant in places where it could be invoked
2142 * from either hardware interrupt or other context, with hardware interrupts
2143 * either disabled or enabled.
2144 */
2145 extern void dev_kfree_skb_any(struct sk_buff *skb);
2146
2147 extern int netif_rx(struct sk_buff *skb);
2148 extern int netif_rx_ni(struct sk_buff *skb);
2149 extern int netif_receive_skb(struct sk_buff *skb);
2150 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2151 struct sk_buff *skb);
2152 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2153 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2154 struct sk_buff *skb);
2155 extern void napi_gro_flush(struct napi_struct *napi);
2156 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2157 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2158 struct sk_buff *skb,
2159 gro_result_t ret);
2160 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2161
2162 static inline void napi_free_frags(struct napi_struct *napi)
2163 {
2164 kfree_skb(napi->skb);
2165 napi->skb = NULL;
2166 }
2167
2168 extern int netdev_rx_handler_register(struct net_device *dev,
2169 rx_handler_func_t *rx_handler,
2170 void *rx_handler_data);
2171 extern void netdev_rx_handler_unregister(struct net_device *dev);
2172
2173 extern bool dev_valid_name(const char *name);
2174 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2175 extern int dev_ethtool(struct net *net, struct ifreq *);
2176 extern unsigned int dev_get_flags(const struct net_device *);
2177 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2178 extern int dev_change_flags(struct net_device *, unsigned int);
2179 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2180 extern int dev_change_name(struct net_device *, const char *);
2181 extern int dev_set_alias(struct net_device *, const char *, size_t);
2182 extern int dev_change_net_namespace(struct net_device *,
2183 struct net *, const char *);
2184 extern int dev_set_mtu(struct net_device *, int);
2185 extern void dev_set_group(struct net_device *, int);
2186 extern int dev_set_mac_address(struct net_device *,
2187 struct sockaddr *);
2188 extern int dev_hard_start_xmit(struct sk_buff *skb,
2189 struct net_device *dev,
2190 struct netdev_queue *txq);
2191 extern int dev_forward_skb(struct net_device *dev,
2192 struct sk_buff *skb);
2193
2194 extern int netdev_budget;
2195
2196 /* Called by rtnetlink.c:rtnl_unlock() */
2197 extern void netdev_run_todo(void);
2198
2199 /**
2200 * dev_put - release reference to device
2201 * @dev: network device
2202 *
2203 * Release reference to device to allow it to be freed.
2204 */
2205 static inline void dev_put(struct net_device *dev)
2206 {
2207 this_cpu_dec(*dev->pcpu_refcnt);
2208 }
2209
2210 /**
2211 * dev_hold - get reference to device
2212 * @dev: network device
2213 *
2214 * Hold reference to device to keep it from being freed.
2215 */
2216 static inline void dev_hold(struct net_device *dev)
2217 {
2218 this_cpu_inc(*dev->pcpu_refcnt);
2219 }
2220
2221 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2222 * and _off may be called from IRQ context, but it is caller
2223 * who is responsible for serialization of these calls.
2224 *
2225 * The name carrier is inappropriate, these functions should really be
2226 * called netif_lowerlayer_*() because they represent the state of any
2227 * kind of lower layer not just hardware media.
2228 */
2229
2230 extern void linkwatch_fire_event(struct net_device *dev);
2231 extern void linkwatch_forget_dev(struct net_device *dev);
2232
2233 /**
2234 * netif_carrier_ok - test if carrier present
2235 * @dev: network device
2236 *
2237 * Check if carrier is present on device
2238 */
2239 static inline bool netif_carrier_ok(const struct net_device *dev)
2240 {
2241 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2242 }
2243
2244 extern unsigned long dev_trans_start(struct net_device *dev);
2245
2246 extern void __netdev_watchdog_up(struct net_device *dev);
2247
2248 extern void netif_carrier_on(struct net_device *dev);
2249
2250 extern void netif_carrier_off(struct net_device *dev);
2251
2252 extern void netif_notify_peers(struct net_device *dev);
2253
2254 /**
2255 * netif_dormant_on - mark device as dormant.
2256 * @dev: network device
2257 *
2258 * Mark device as dormant (as per RFC2863).
2259 *
2260 * The dormant state indicates that the relevant interface is not
2261 * actually in a condition to pass packets (i.e., it is not 'up') but is
2262 * in a "pending" state, waiting for some external event. For "on-
2263 * demand" interfaces, this new state identifies the situation where the
2264 * interface is waiting for events to place it in the up state.
2265 *
2266 */
2267 static inline void netif_dormant_on(struct net_device *dev)
2268 {
2269 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2270 linkwatch_fire_event(dev);
2271 }
2272
2273 /**
2274 * netif_dormant_off - set device as not dormant.
2275 * @dev: network device
2276 *
2277 * Device is not in dormant state.
2278 */
2279 static inline void netif_dormant_off(struct net_device *dev)
2280 {
2281 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2282 linkwatch_fire_event(dev);
2283 }
2284
2285 /**
2286 * netif_dormant - test if carrier present
2287 * @dev: network device
2288 *
2289 * Check if carrier is present on device
2290 */
2291 static inline bool netif_dormant(const struct net_device *dev)
2292 {
2293 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2294 }
2295
2296
2297 /**
2298 * netif_oper_up - test if device is operational
2299 * @dev: network device
2300 *
2301 * Check if carrier is operational
2302 */
2303 static inline bool netif_oper_up(const struct net_device *dev)
2304 {
2305 return (dev->operstate == IF_OPER_UP ||
2306 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2307 }
2308
2309 /**
2310 * netif_device_present - is device available or removed
2311 * @dev: network device
2312 *
2313 * Check if device has not been removed from system.
2314 */
2315 static inline bool netif_device_present(struct net_device *dev)
2316 {
2317 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2318 }
2319
2320 extern void netif_device_detach(struct net_device *dev);
2321
2322 extern void netif_device_attach(struct net_device *dev);
2323
2324 /*
2325 * Network interface message level settings
2326 */
2327
2328 enum {
2329 NETIF_MSG_DRV = 0x0001,
2330 NETIF_MSG_PROBE = 0x0002,
2331 NETIF_MSG_LINK = 0x0004,
2332 NETIF_MSG_TIMER = 0x0008,
2333 NETIF_MSG_IFDOWN = 0x0010,
2334 NETIF_MSG_IFUP = 0x0020,
2335 NETIF_MSG_RX_ERR = 0x0040,
2336 NETIF_MSG_TX_ERR = 0x0080,
2337 NETIF_MSG_TX_QUEUED = 0x0100,
2338 NETIF_MSG_INTR = 0x0200,
2339 NETIF_MSG_TX_DONE = 0x0400,
2340 NETIF_MSG_RX_STATUS = 0x0800,
2341 NETIF_MSG_PKTDATA = 0x1000,
2342 NETIF_MSG_HW = 0x2000,
2343 NETIF_MSG_WOL = 0x4000,
2344 };
2345
2346 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2347 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2348 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2349 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2350 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2351 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2352 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2353 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2354 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2355 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2356 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2357 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2358 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2359 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2360 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2361
2362 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2363 {
2364 /* use default */
2365 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2366 return default_msg_enable_bits;
2367 if (debug_value == 0) /* no output */
2368 return 0;
2369 /* set low N bits */
2370 return (1 << debug_value) - 1;
2371 }
2372
2373 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2374 {
2375 spin_lock(&txq->_xmit_lock);
2376 txq->xmit_lock_owner = cpu;
2377 }
2378
2379 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2380 {
2381 spin_lock_bh(&txq->_xmit_lock);
2382 txq->xmit_lock_owner = smp_processor_id();
2383 }
2384
2385 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2386 {
2387 bool ok = spin_trylock(&txq->_xmit_lock);
2388 if (likely(ok))
2389 txq->xmit_lock_owner = smp_processor_id();
2390 return ok;
2391 }
2392
2393 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2394 {
2395 txq->xmit_lock_owner = -1;
2396 spin_unlock(&txq->_xmit_lock);
2397 }
2398
2399 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2400 {
2401 txq->xmit_lock_owner = -1;
2402 spin_unlock_bh(&txq->_xmit_lock);
2403 }
2404
2405 static inline void txq_trans_update(struct netdev_queue *txq)
2406 {
2407 if (txq->xmit_lock_owner != -1)
2408 txq->trans_start = jiffies;
2409 }
2410
2411 /**
2412 * netif_tx_lock - grab network device transmit lock
2413 * @dev: network device
2414 *
2415 * Get network device transmit lock
2416 */
2417 static inline void netif_tx_lock(struct net_device *dev)
2418 {
2419 unsigned int i;
2420 int cpu;
2421
2422 spin_lock(&dev->tx_global_lock);
2423 cpu = smp_processor_id();
2424 for (i = 0; i < dev->num_tx_queues; i++) {
2425 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2426
2427 /* We are the only thread of execution doing a
2428 * freeze, but we have to grab the _xmit_lock in
2429 * order to synchronize with threads which are in
2430 * the ->hard_start_xmit() handler and already
2431 * checked the frozen bit.
2432 */
2433 __netif_tx_lock(txq, cpu);
2434 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2435 __netif_tx_unlock(txq);
2436 }
2437 }
2438
2439 static inline void netif_tx_lock_bh(struct net_device *dev)
2440 {
2441 local_bh_disable();
2442 netif_tx_lock(dev);
2443 }
2444
2445 static inline void netif_tx_unlock(struct net_device *dev)
2446 {
2447 unsigned int i;
2448
2449 for (i = 0; i < dev->num_tx_queues; i++) {
2450 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2451
2452 /* No need to grab the _xmit_lock here. If the
2453 * queue is not stopped for another reason, we
2454 * force a schedule.
2455 */
2456 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2457 netif_schedule_queue(txq);
2458 }
2459 spin_unlock(&dev->tx_global_lock);
2460 }
2461
2462 static inline void netif_tx_unlock_bh(struct net_device *dev)
2463 {
2464 netif_tx_unlock(dev);
2465 local_bh_enable();
2466 }
2467
2468 #define HARD_TX_LOCK(dev, txq, cpu) { \
2469 if ((dev->features & NETIF_F_LLTX) == 0) { \
2470 __netif_tx_lock(txq, cpu); \
2471 } \
2472 }
2473
2474 #define HARD_TX_UNLOCK(dev, txq) { \
2475 if ((dev->features & NETIF_F_LLTX) == 0) { \
2476 __netif_tx_unlock(txq); \
2477 } \
2478 }
2479
2480 static inline void netif_tx_disable(struct net_device *dev)
2481 {
2482 unsigned int i;
2483 int cpu;
2484
2485 local_bh_disable();
2486 cpu = smp_processor_id();
2487 for (i = 0; i < dev->num_tx_queues; i++) {
2488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2489
2490 __netif_tx_lock(txq, cpu);
2491 netif_tx_stop_queue(txq);
2492 __netif_tx_unlock(txq);
2493 }
2494 local_bh_enable();
2495 }
2496
2497 static inline void netif_addr_lock(struct net_device *dev)
2498 {
2499 spin_lock(&dev->addr_list_lock);
2500 }
2501
2502 static inline void netif_addr_lock_nested(struct net_device *dev)
2503 {
2504 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2505 }
2506
2507 static inline void netif_addr_lock_bh(struct net_device *dev)
2508 {
2509 spin_lock_bh(&dev->addr_list_lock);
2510 }
2511
2512 static inline void netif_addr_unlock(struct net_device *dev)
2513 {
2514 spin_unlock(&dev->addr_list_lock);
2515 }
2516
2517 static inline void netif_addr_unlock_bh(struct net_device *dev)
2518 {
2519 spin_unlock_bh(&dev->addr_list_lock);
2520 }
2521
2522 /*
2523 * dev_addrs walker. Should be used only for read access. Call with
2524 * rcu_read_lock held.
2525 */
2526 #define for_each_dev_addr(dev, ha) \
2527 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2528
2529 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2530
2531 extern void ether_setup(struct net_device *dev);
2532
2533 /* Support for loadable net-drivers */
2534 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2535 void (*setup)(struct net_device *),
2536 unsigned int txqs, unsigned int rxqs);
2537 #define alloc_netdev(sizeof_priv, name, setup) \
2538 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2539
2540 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2541 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2542
2543 extern int register_netdev(struct net_device *dev);
2544 extern void unregister_netdev(struct net_device *dev);
2545
2546 /* General hardware address lists handling functions */
2547 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2548 struct netdev_hw_addr_list *from_list,
2549 int addr_len, unsigned char addr_type);
2550 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2551 struct netdev_hw_addr_list *from_list,
2552 int addr_len, unsigned char addr_type);
2553 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2554 struct netdev_hw_addr_list *from_list,
2555 int addr_len);
2556 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2557 struct netdev_hw_addr_list *from_list,
2558 int addr_len);
2559 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2560 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2561
2562 /* Functions used for device addresses handling */
2563 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2564 unsigned char addr_type);
2565 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2566 unsigned char addr_type);
2567 extern int dev_addr_add_multiple(struct net_device *to_dev,
2568 struct net_device *from_dev,
2569 unsigned char addr_type);
2570 extern int dev_addr_del_multiple(struct net_device *to_dev,
2571 struct net_device *from_dev,
2572 unsigned char addr_type);
2573 extern void dev_addr_flush(struct net_device *dev);
2574 extern int dev_addr_init(struct net_device *dev);
2575
2576 /* Functions used for unicast addresses handling */
2577 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2578 extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr);
2579 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2580 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2581 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2582 extern void dev_uc_flush(struct net_device *dev);
2583 extern void dev_uc_init(struct net_device *dev);
2584
2585 /* Functions used for multicast addresses handling */
2586 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2587 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2588 extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr);
2589 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2590 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2591 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2592 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2593 extern void dev_mc_flush(struct net_device *dev);
2594 extern void dev_mc_init(struct net_device *dev);
2595
2596 /* Functions used for secondary unicast and multicast support */
2597 extern void dev_set_rx_mode(struct net_device *dev);
2598 extern void __dev_set_rx_mode(struct net_device *dev);
2599 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2600 extern int dev_set_allmulti(struct net_device *dev, int inc);
2601 extern void netdev_state_change(struct net_device *dev);
2602 extern int netdev_bonding_change(struct net_device *dev,
2603 unsigned long event);
2604 extern void netdev_features_change(struct net_device *dev);
2605 /* Load a device via the kmod */
2606 extern void dev_load(struct net *net, const char *name);
2607 extern void dev_mcast_init(void);
2608 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2609 struct rtnl_link_stats64 *storage);
2610 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2611 const struct net_device_stats *netdev_stats);
2612
2613 extern int netdev_max_backlog;
2614 extern int netdev_tstamp_prequeue;
2615 extern int weight_p;
2616 extern int bpf_jit_enable;
2617 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2618 extern int netdev_set_bond_master(struct net_device *dev,
2619 struct net_device *master);
2620 extern int skb_checksum_help(struct sk_buff *skb);
2621 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2622 netdev_features_t features);
2623 #ifdef CONFIG_BUG
2624 extern void netdev_rx_csum_fault(struct net_device *dev);
2625 #else
2626 static inline void netdev_rx_csum_fault(struct net_device *dev)
2627 {
2628 }
2629 #endif
2630 /* rx skb timestamps */
2631 extern void net_enable_timestamp(void);
2632 extern void net_disable_timestamp(void);
2633
2634 #ifdef CONFIG_PROC_FS
2635 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2636 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2637 extern void dev_seq_stop(struct seq_file *seq, void *v);
2638 #endif
2639
2640 extern int netdev_class_create_file(struct class_attribute *class_attr);
2641 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2642
2643 extern struct kobj_ns_type_operations net_ns_type_operations;
2644
2645 extern const char *netdev_drivername(const struct net_device *dev);
2646
2647 extern void linkwatch_run_queue(void);
2648
2649 static inline netdev_features_t netdev_get_wanted_features(
2650 struct net_device *dev)
2651 {
2652 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2653 }
2654 netdev_features_t netdev_increment_features(netdev_features_t all,
2655 netdev_features_t one, netdev_features_t mask);
2656 int __netdev_update_features(struct net_device *dev);
2657 void netdev_update_features(struct net_device *dev);
2658 void netdev_change_features(struct net_device *dev);
2659
2660 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2661 struct net_device *dev);
2662
2663 netdev_features_t netif_skb_features(struct sk_buff *skb);
2664
2665 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2666 {
2667 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2668
2669 /* check flags correspondence */
2670 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2671 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2672 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2673 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2674 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2675 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2676
2677 return (features & feature) == feature;
2678 }
2679
2680 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2681 {
2682 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2683 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2684 }
2685
2686 static inline bool netif_needs_gso(struct sk_buff *skb,
2687 netdev_features_t features)
2688 {
2689 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2690 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2691 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2692 }
2693
2694 static inline void netif_set_gso_max_size(struct net_device *dev,
2695 unsigned int size)
2696 {
2697 dev->gso_max_size = size;
2698 }
2699
2700 static inline bool netif_is_bond_slave(struct net_device *dev)
2701 {
2702 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2703 }
2704
2705 static inline bool netif_supports_nofcs(struct net_device *dev)
2706 {
2707 return dev->priv_flags & IFF_SUPP_NOFCS;
2708 }
2709
2710 extern struct pernet_operations __net_initdata loopback_net_ops;
2711
2712 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2713
2714 /* netdev_printk helpers, similar to dev_printk */
2715
2716 static inline const char *netdev_name(const struct net_device *dev)
2717 {
2718 if (dev->reg_state != NETREG_REGISTERED)
2719 return "(unregistered net_device)";
2720 return dev->name;
2721 }
2722
2723 extern __printf(3, 4)
2724 int netdev_printk(const char *level, const struct net_device *dev,
2725 const char *format, ...);
2726 extern __printf(2, 3)
2727 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2728 extern __printf(2, 3)
2729 int netdev_alert(const struct net_device *dev, const char *format, ...);
2730 extern __printf(2, 3)
2731 int netdev_crit(const struct net_device *dev, const char *format, ...);
2732 extern __printf(2, 3)
2733 int netdev_err(const struct net_device *dev, const char *format, ...);
2734 extern __printf(2, 3)
2735 int netdev_warn(const struct net_device *dev, const char *format, ...);
2736 extern __printf(2, 3)
2737 int netdev_notice(const struct net_device *dev, const char *format, ...);
2738 extern __printf(2, 3)
2739 int netdev_info(const struct net_device *dev, const char *format, ...);
2740
2741 #define MODULE_ALIAS_NETDEV(device) \
2742 MODULE_ALIAS("netdev-" device)
2743
2744 #if defined(CONFIG_DYNAMIC_DEBUG)
2745 #define netdev_dbg(__dev, format, args...) \
2746 do { \
2747 dynamic_netdev_dbg(__dev, format, ##args); \
2748 } while (0)
2749 #elif defined(DEBUG)
2750 #define netdev_dbg(__dev, format, args...) \
2751 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2752 #else
2753 #define netdev_dbg(__dev, format, args...) \
2754 ({ \
2755 if (0) \
2756 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2757 0; \
2758 })
2759 #endif
2760
2761 #if defined(VERBOSE_DEBUG)
2762 #define netdev_vdbg netdev_dbg
2763 #else
2764
2765 #define netdev_vdbg(dev, format, args...) \
2766 ({ \
2767 if (0) \
2768 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2769 0; \
2770 })
2771 #endif
2772
2773 /*
2774 * netdev_WARN() acts like dev_printk(), but with the key difference
2775 * of using a WARN/WARN_ON to get the message out, including the
2776 * file/line information and a backtrace.
2777 */
2778 #define netdev_WARN(dev, format, args...) \
2779 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2780
2781 /* netif printk helpers, similar to netdev_printk */
2782
2783 #define netif_printk(priv, type, level, dev, fmt, args...) \
2784 do { \
2785 if (netif_msg_##type(priv)) \
2786 netdev_printk(level, (dev), fmt, ##args); \
2787 } while (0)
2788
2789 #define netif_level(level, priv, type, dev, fmt, args...) \
2790 do { \
2791 if (netif_msg_##type(priv)) \
2792 netdev_##level(dev, fmt, ##args); \
2793 } while (0)
2794
2795 #define netif_emerg(priv, type, dev, fmt, args...) \
2796 netif_level(emerg, priv, type, dev, fmt, ##args)
2797 #define netif_alert(priv, type, dev, fmt, args...) \
2798 netif_level(alert, priv, type, dev, fmt, ##args)
2799 #define netif_crit(priv, type, dev, fmt, args...) \
2800 netif_level(crit, priv, type, dev, fmt, ##args)
2801 #define netif_err(priv, type, dev, fmt, args...) \
2802 netif_level(err, priv, type, dev, fmt, ##args)
2803 #define netif_warn(priv, type, dev, fmt, args...) \
2804 netif_level(warn, priv, type, dev, fmt, ##args)
2805 #define netif_notice(priv, type, dev, fmt, args...) \
2806 netif_level(notice, priv, type, dev, fmt, ##args)
2807 #define netif_info(priv, type, dev, fmt, args...) \
2808 netif_level(info, priv, type, dev, fmt, ##args)
2809
2810 #if defined(CONFIG_DYNAMIC_DEBUG)
2811 #define netif_dbg(priv, type, netdev, format, args...) \
2812 do { \
2813 if (netif_msg_##type(priv)) \
2814 dynamic_netdev_dbg(netdev, format, ##args); \
2815 } while (0)
2816 #elif defined(DEBUG)
2817 #define netif_dbg(priv, type, dev, format, args...) \
2818 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2819 #else
2820 #define netif_dbg(priv, type, dev, format, args...) \
2821 ({ \
2822 if (0) \
2823 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2824 0; \
2825 })
2826 #endif
2827
2828 #if defined(VERBOSE_DEBUG)
2829 #define netif_vdbg netif_dbg
2830 #else
2831 #define netif_vdbg(priv, type, dev, format, args...) \
2832 ({ \
2833 if (0) \
2834 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2835 0; \
2836 })
2837 #endif
2838
2839 #endif /* __KERNEL__ */
2840
2841 #endif /* _LINUX_NETDEVICE_H */
This page took 0.086849 seconds and 6 git commands to generate.