Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46
47 #include <linux/ethtool.h>
48 #include <net/net_namespace.h>
49 #include <net/dsa.h>
50 #ifdef CONFIG_DCB
51 #include <net/dcbnl.h>
52 #endif
53
54 #include <linux/netdev_features.h>
55
56 struct vlan_group;
57 struct netpoll_info;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* source back-compat hooks */
62 #define SET_ETHTOOL_OPS(netdev,ops) \
63 ( (netdev)->ethtool_ops = (ops) )
64
65 /* hardware address assignment types */
66 #define NET_ADDR_PERM 0 /* address is permanent (default) */
67 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
68 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
69
70 /* Backlog congestion levels */
71 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
72 #define NET_RX_DROP 1 /* packet dropped */
73
74 /*
75 * Transmit return codes: transmit return codes originate from three different
76 * namespaces:
77 *
78 * - qdisc return codes
79 * - driver transmit return codes
80 * - errno values
81 *
82 * Drivers are allowed to return any one of those in their hard_start_xmit()
83 * function. Real network devices commonly used with qdiscs should only return
84 * the driver transmit return codes though - when qdiscs are used, the actual
85 * transmission happens asynchronously, so the value is not propagated to
86 * higher layers. Virtual network devices transmit synchronously, in this case
87 * the driver transmit return codes are consumed by dev_queue_xmit(), all
88 * others are propagated to higher layers.
89 */
90
91 /* qdisc ->enqueue() return codes. */
92 #define NET_XMIT_SUCCESS 0x00
93 #define NET_XMIT_DROP 0x01 /* skb dropped */
94 #define NET_XMIT_CN 0x02 /* congestion notification */
95 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
97
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99 * indicates that the device will soon be dropping packets, or already drops
100 * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK 0xf0
106
107 enum netdev_tx {
108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
109 NETDEV_TX_OK = 0x00, /* driver took care of packet */
110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
111 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
112 };
113 typedef enum netdev_tx netdev_tx_t;
114
115 /*
116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118 */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 /*
122 * Positive cases with an skb consumed by a driver:
123 * - successful transmission (rc == NETDEV_TX_OK)
124 * - error while transmitting (rc < 0)
125 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 */
127 if (likely(rc < NET_XMIT_MASK))
128 return true;
129
130 return false;
131 }
132
133 #endif
134
135 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
136
137 /* Initial net device group. All devices belong to group 0 by default. */
138 #define INIT_NETDEV_GROUP 0
139
140 #ifdef __KERNEL__
141 /*
142 * Compute the worst case header length according to the protocols
143 * used.
144 */
145
146 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
147 # if defined(CONFIG_MAC80211_MESH)
148 # define LL_MAX_HEADER 128
149 # else
150 # define LL_MAX_HEADER 96
151 # endif
152 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
153 # define LL_MAX_HEADER 48
154 #else
155 # define LL_MAX_HEADER 32
156 #endif
157
158 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
159 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
160 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
161 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
162 #define MAX_HEADER LL_MAX_HEADER
163 #else
164 #define MAX_HEADER (LL_MAX_HEADER + 48)
165 #endif
166
167 /*
168 * Old network device statistics. Fields are native words
169 * (unsigned long) so they can be read and written atomically.
170 */
171
172 struct net_device_stats {
173 unsigned long rx_packets;
174 unsigned long tx_packets;
175 unsigned long rx_bytes;
176 unsigned long tx_bytes;
177 unsigned long rx_errors;
178 unsigned long tx_errors;
179 unsigned long rx_dropped;
180 unsigned long tx_dropped;
181 unsigned long multicast;
182 unsigned long collisions;
183 unsigned long rx_length_errors;
184 unsigned long rx_over_errors;
185 unsigned long rx_crc_errors;
186 unsigned long rx_frame_errors;
187 unsigned long rx_fifo_errors;
188 unsigned long rx_missed_errors;
189 unsigned long tx_aborted_errors;
190 unsigned long tx_carrier_errors;
191 unsigned long tx_fifo_errors;
192 unsigned long tx_heartbeat_errors;
193 unsigned long tx_window_errors;
194 unsigned long rx_compressed;
195 unsigned long tx_compressed;
196 };
197
198 #endif /* __KERNEL__ */
199
200
201 /* Media selection options. */
202 enum {
203 IF_PORT_UNKNOWN = 0,
204 IF_PORT_10BASE2,
205 IF_PORT_10BASET,
206 IF_PORT_AUI,
207 IF_PORT_100BASET,
208 IF_PORT_100BASETX,
209 IF_PORT_100BASEFX
210 };
211
212 #ifdef __KERNEL__
213
214 #include <linux/cache.h>
215 #include <linux/skbuff.h>
216
217 #ifdef CONFIG_RPS
218 #include <linux/jump_label.h>
219 extern struct jump_label_key rps_needed;
220 #endif
221
222 struct neighbour;
223 struct neigh_parms;
224 struct sk_buff;
225
226 struct netdev_hw_addr {
227 struct list_head list;
228 unsigned char addr[MAX_ADDR_LEN];
229 unsigned char type;
230 #define NETDEV_HW_ADDR_T_LAN 1
231 #define NETDEV_HW_ADDR_T_SAN 2
232 #define NETDEV_HW_ADDR_T_SLAVE 3
233 #define NETDEV_HW_ADDR_T_UNICAST 4
234 #define NETDEV_HW_ADDR_T_MULTICAST 5
235 bool synced;
236 bool global_use;
237 int refcount;
238 struct rcu_head rcu_head;
239 };
240
241 struct netdev_hw_addr_list {
242 struct list_head list;
243 int count;
244 };
245
246 #define netdev_hw_addr_list_count(l) ((l)->count)
247 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
248 #define netdev_hw_addr_list_for_each(ha, l) \
249 list_for_each_entry(ha, &(l)->list, list)
250
251 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
252 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
253 #define netdev_for_each_uc_addr(ha, dev) \
254 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
255
256 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
257 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
258 #define netdev_for_each_mc_addr(ha, dev) \
259 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
260
261 struct hh_cache {
262 u16 hh_len;
263 u16 __pad;
264 seqlock_t hh_lock;
265
266 /* cached hardware header; allow for machine alignment needs. */
267 #define HH_DATA_MOD 16
268 #define HH_DATA_OFF(__len) \
269 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274
275 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
276 * Alternative is:
277 * dev->hard_header_len ? (dev->hard_header_len +
278 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279 *
280 * We could use other alignment values, but we must maintain the
281 * relationship HH alignment <= LL alignment.
282 */
283 #define LL_RESERVED_SPACE(dev) \
284 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287
288 struct header_ops {
289 int (*create) (struct sk_buff *skb, struct net_device *dev,
290 unsigned short type, const void *daddr,
291 const void *saddr, unsigned len);
292 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 int (*rebuild)(struct sk_buff *skb);
294 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
295 void (*cache_update)(struct hh_cache *hh,
296 const struct net_device *dev,
297 const unsigned char *haddr);
298 };
299
300 /* These flag bits are private to the generic network queueing
301 * layer, they may not be explicitly referenced by any other
302 * code.
303 */
304
305 enum netdev_state_t {
306 __LINK_STATE_START,
307 __LINK_STATE_PRESENT,
308 __LINK_STATE_NOCARRIER,
309 __LINK_STATE_LINKWATCH_PENDING,
310 __LINK_STATE_DORMANT,
311 };
312
313
314 /*
315 * This structure holds at boot time configured netdevice settings. They
316 * are then used in the device probing.
317 */
318 struct netdev_boot_setup {
319 char name[IFNAMSIZ];
320 struct ifmap map;
321 };
322 #define NETDEV_BOOT_SETUP_MAX 8
323
324 extern int __init netdev_boot_setup(char *str);
325
326 /*
327 * Structure for NAPI scheduling similar to tasklet but with weighting
328 */
329 struct napi_struct {
330 /* The poll_list must only be managed by the entity which
331 * changes the state of the NAPI_STATE_SCHED bit. This means
332 * whoever atomically sets that bit can add this napi_struct
333 * to the per-cpu poll_list, and whoever clears that bit
334 * can remove from the list right before clearing the bit.
335 */
336 struct list_head poll_list;
337
338 unsigned long state;
339 int weight;
340 int (*poll)(struct napi_struct *, int);
341 #ifdef CONFIG_NETPOLL
342 spinlock_t poll_lock;
343 int poll_owner;
344 #endif
345
346 unsigned int gro_count;
347
348 struct net_device *dev;
349 struct list_head dev_list;
350 struct sk_buff *gro_list;
351 struct sk_buff *skb;
352 };
353
354 enum {
355 NAPI_STATE_SCHED, /* Poll is scheduled */
356 NAPI_STATE_DISABLE, /* Disable pending */
357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
358 };
359
360 enum gro_result {
361 GRO_MERGED,
362 GRO_MERGED_FREE,
363 GRO_HELD,
364 GRO_NORMAL,
365 GRO_DROP,
366 };
367 typedef enum gro_result gro_result_t;
368
369 /*
370 * enum rx_handler_result - Possible return values for rx_handlers.
371 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
372 * further.
373 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
374 * case skb->dev was changed by rx_handler.
375 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
376 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
377 *
378 * rx_handlers are functions called from inside __netif_receive_skb(), to do
379 * special processing of the skb, prior to delivery to protocol handlers.
380 *
381 * Currently, a net_device can only have a single rx_handler registered. Trying
382 * to register a second rx_handler will return -EBUSY.
383 *
384 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
385 * To unregister a rx_handler on a net_device, use
386 * netdev_rx_handler_unregister().
387 *
388 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
389 * do with the skb.
390 *
391 * If the rx_handler consumed to skb in some way, it should return
392 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
393 * the skb to be delivered in some other ways.
394 *
395 * If the rx_handler changed skb->dev, to divert the skb to another
396 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
397 * new device will be called if it exists.
398 *
399 * If the rx_handler consider the skb should be ignored, it should return
400 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
401 * are registred on exact device (ptype->dev == skb->dev).
402 *
403 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
404 * delivered, it should return RX_HANDLER_PASS.
405 *
406 * A device without a registered rx_handler will behave as if rx_handler
407 * returned RX_HANDLER_PASS.
408 */
409
410 enum rx_handler_result {
411 RX_HANDLER_CONSUMED,
412 RX_HANDLER_ANOTHER,
413 RX_HANDLER_EXACT,
414 RX_HANDLER_PASS,
415 };
416 typedef enum rx_handler_result rx_handler_result_t;
417 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
418
419 extern void __napi_schedule(struct napi_struct *n);
420
421 static inline int napi_disable_pending(struct napi_struct *n)
422 {
423 return test_bit(NAPI_STATE_DISABLE, &n->state);
424 }
425
426 /**
427 * napi_schedule_prep - check if napi can be scheduled
428 * @n: napi context
429 *
430 * Test if NAPI routine is already running, and if not mark
431 * it as running. This is used as a condition variable
432 * insure only one NAPI poll instance runs. We also make
433 * sure there is no pending NAPI disable.
434 */
435 static inline int napi_schedule_prep(struct napi_struct *n)
436 {
437 return !napi_disable_pending(n) &&
438 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
439 }
440
441 /**
442 * napi_schedule - schedule NAPI poll
443 * @n: napi context
444 *
445 * Schedule NAPI poll routine to be called if it is not already
446 * running.
447 */
448 static inline void napi_schedule(struct napi_struct *n)
449 {
450 if (napi_schedule_prep(n))
451 __napi_schedule(n);
452 }
453
454 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
455 static inline int napi_reschedule(struct napi_struct *napi)
456 {
457 if (napi_schedule_prep(napi)) {
458 __napi_schedule(napi);
459 return 1;
460 }
461 return 0;
462 }
463
464 /**
465 * napi_complete - NAPI processing complete
466 * @n: napi context
467 *
468 * Mark NAPI processing as complete.
469 */
470 extern void __napi_complete(struct napi_struct *n);
471 extern void napi_complete(struct napi_struct *n);
472
473 /**
474 * napi_disable - prevent NAPI from scheduling
475 * @n: napi context
476 *
477 * Stop NAPI from being scheduled on this context.
478 * Waits till any outstanding processing completes.
479 */
480 static inline void napi_disable(struct napi_struct *n)
481 {
482 set_bit(NAPI_STATE_DISABLE, &n->state);
483 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
484 msleep(1);
485 clear_bit(NAPI_STATE_DISABLE, &n->state);
486 }
487
488 /**
489 * napi_enable - enable NAPI scheduling
490 * @n: napi context
491 *
492 * Resume NAPI from being scheduled on this context.
493 * Must be paired with napi_disable.
494 */
495 static inline void napi_enable(struct napi_struct *n)
496 {
497 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
498 smp_mb__before_clear_bit();
499 clear_bit(NAPI_STATE_SCHED, &n->state);
500 }
501
502 #ifdef CONFIG_SMP
503 /**
504 * napi_synchronize - wait until NAPI is not running
505 * @n: napi context
506 *
507 * Wait until NAPI is done being scheduled on this context.
508 * Waits till any outstanding processing completes but
509 * does not disable future activations.
510 */
511 static inline void napi_synchronize(const struct napi_struct *n)
512 {
513 while (test_bit(NAPI_STATE_SCHED, &n->state))
514 msleep(1);
515 }
516 #else
517 # define napi_synchronize(n) barrier()
518 #endif
519
520 enum netdev_queue_state_t {
521 __QUEUE_STATE_XOFF,
522 __QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
524 (1 << __QUEUE_STATE_FROZEN))
525 };
526
527 struct netdev_queue {
528 /*
529 * read mostly part
530 */
531 struct net_device *dev;
532 struct Qdisc *qdisc;
533 unsigned long state;
534 struct Qdisc *qdisc_sleeping;
535 #ifdef CONFIG_SYSFS
536 struct kobject kobj;
537 #endif
538 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
539 int numa_node;
540 #endif
541 /*
542 * write mostly part
543 */
544 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
545 int xmit_lock_owner;
546 /*
547 * please use this field instead of dev->trans_start
548 */
549 unsigned long trans_start;
550
551 /*
552 * Number of TX timeouts for this queue
553 * (/sys/class/net/DEV/Q/trans_timeout)
554 */
555 unsigned long trans_timeout;
556 } ____cacheline_aligned_in_smp;
557
558 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
559 {
560 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
561 return q->numa_node;
562 #else
563 return NUMA_NO_NODE;
564 #endif
565 }
566
567 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
568 {
569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570 q->numa_node = node;
571 #endif
572 }
573
574 #ifdef CONFIG_RPS
575 /*
576 * This structure holds an RPS map which can be of variable length. The
577 * map is an array of CPUs.
578 */
579 struct rps_map {
580 unsigned int len;
581 struct rcu_head rcu;
582 u16 cpus[0];
583 };
584 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
585
586 /*
587 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
588 * tail pointer for that CPU's input queue at the time of last enqueue, and
589 * a hardware filter index.
590 */
591 struct rps_dev_flow {
592 u16 cpu;
593 u16 filter;
594 unsigned int last_qtail;
595 };
596 #define RPS_NO_FILTER 0xffff
597
598 /*
599 * The rps_dev_flow_table structure contains a table of flow mappings.
600 */
601 struct rps_dev_flow_table {
602 unsigned int mask;
603 struct rcu_head rcu;
604 struct work_struct free_work;
605 struct rps_dev_flow flows[0];
606 };
607 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
608 (_num * sizeof(struct rps_dev_flow)))
609
610 /*
611 * The rps_sock_flow_table contains mappings of flows to the last CPU
612 * on which they were processed by the application (set in recvmsg).
613 */
614 struct rps_sock_flow_table {
615 unsigned int mask;
616 u16 ents[0];
617 };
618 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
619 (_num * sizeof(u16)))
620
621 #define RPS_NO_CPU 0xffff
622
623 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
624 u32 hash)
625 {
626 if (table && hash) {
627 unsigned int cpu, index = hash & table->mask;
628
629 /* We only give a hint, preemption can change cpu under us */
630 cpu = raw_smp_processor_id();
631
632 if (table->ents[index] != cpu)
633 table->ents[index] = cpu;
634 }
635 }
636
637 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
638 u32 hash)
639 {
640 if (table && hash)
641 table->ents[hash & table->mask] = RPS_NO_CPU;
642 }
643
644 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
645
646 #ifdef CONFIG_RFS_ACCEL
647 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
648 u32 flow_id, u16 filter_id);
649 #endif
650
651 /* This structure contains an instance of an RX queue. */
652 struct netdev_rx_queue {
653 struct rps_map __rcu *rps_map;
654 struct rps_dev_flow_table __rcu *rps_flow_table;
655 struct kobject kobj;
656 struct net_device *dev;
657 } ____cacheline_aligned_in_smp;
658 #endif /* CONFIG_RPS */
659
660 #ifdef CONFIG_XPS
661 /*
662 * This structure holds an XPS map which can be of variable length. The
663 * map is an array of queues.
664 */
665 struct xps_map {
666 unsigned int len;
667 unsigned int alloc_len;
668 struct rcu_head rcu;
669 u16 queues[0];
670 };
671 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
672 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
673 / sizeof(u16))
674
675 /*
676 * This structure holds all XPS maps for device. Maps are indexed by CPU.
677 */
678 struct xps_dev_maps {
679 struct rcu_head rcu;
680 struct xps_map __rcu *cpu_map[0];
681 };
682 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
683 (nr_cpu_ids * sizeof(struct xps_map *)))
684 #endif /* CONFIG_XPS */
685
686 #define TC_MAX_QUEUE 16
687 #define TC_BITMASK 15
688 /* HW offloaded queuing disciplines txq count and offset maps */
689 struct netdev_tc_txq {
690 u16 count;
691 u16 offset;
692 };
693
694 /*
695 * This structure defines the management hooks for network devices.
696 * The following hooks can be defined; unless noted otherwise, they are
697 * optional and can be filled with a null pointer.
698 *
699 * int (*ndo_init)(struct net_device *dev);
700 * This function is called once when network device is registered.
701 * The network device can use this to any late stage initializaton
702 * or semantic validattion. It can fail with an error code which will
703 * be propogated back to register_netdev
704 *
705 * void (*ndo_uninit)(struct net_device *dev);
706 * This function is called when device is unregistered or when registration
707 * fails. It is not called if init fails.
708 *
709 * int (*ndo_open)(struct net_device *dev);
710 * This function is called when network device transistions to the up
711 * state.
712 *
713 * int (*ndo_stop)(struct net_device *dev);
714 * This function is called when network device transistions to the down
715 * state.
716 *
717 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
718 * struct net_device *dev);
719 * Called when a packet needs to be transmitted.
720 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
721 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
722 * Required can not be NULL.
723 *
724 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
725 * Called to decide which queue to when device supports multiple
726 * transmit queues.
727 *
728 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
729 * This function is called to allow device receiver to make
730 * changes to configuration when multicast or promiscious is enabled.
731 *
732 * void (*ndo_set_rx_mode)(struct net_device *dev);
733 * This function is called device changes address list filtering.
734 * If driver handles unicast address filtering, it should set
735 * IFF_UNICAST_FLT to its priv_flags.
736 *
737 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
738 * This function is called when the Media Access Control address
739 * needs to be changed. If this interface is not defined, the
740 * mac address can not be changed.
741 *
742 * int (*ndo_validate_addr)(struct net_device *dev);
743 * Test if Media Access Control address is valid for the device.
744 *
745 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
746 * Called when a user request an ioctl which can't be handled by
747 * the generic interface code. If not defined ioctl's return
748 * not supported error code.
749 *
750 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
751 * Used to set network devices bus interface parameters. This interface
752 * is retained for legacy reason, new devices should use the bus
753 * interface (PCI) for low level management.
754 *
755 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
756 * Called when a user wants to change the Maximum Transfer Unit
757 * of a device. If not defined, any request to change MTU will
758 * will return an error.
759 *
760 * void (*ndo_tx_timeout)(struct net_device *dev);
761 * Callback uses when the transmitter has not made any progress
762 * for dev->watchdog ticks.
763 *
764 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
765 * struct rtnl_link_stats64 *storage);
766 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
767 * Called when a user wants to get the network device usage
768 * statistics. Drivers must do one of the following:
769 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
770 * rtnl_link_stats64 structure passed by the caller.
771 * 2. Define @ndo_get_stats to update a net_device_stats structure
772 * (which should normally be dev->stats) and return a pointer to
773 * it. The structure may be changed asynchronously only if each
774 * field is written atomically.
775 * 3. Update dev->stats asynchronously and atomically, and define
776 * neither operation.
777 *
778 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
779 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
780 * this function is called when a VLAN id is registered.
781 *
782 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
783 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
784 * this function is called when a VLAN id is unregistered.
785 *
786 * void (*ndo_poll_controller)(struct net_device *dev);
787 *
788 * SR-IOV management functions.
789 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
790 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
791 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
792 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
793 * int (*ndo_get_vf_config)(struct net_device *dev,
794 * int vf, struct ifla_vf_info *ivf);
795 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
796 * struct nlattr *port[]);
797 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
798 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
799 * Called to setup 'tc' number of traffic classes in the net device. This
800 * is always called from the stack with the rtnl lock held and netif tx
801 * queues stopped. This allows the netdevice to perform queue management
802 * safely.
803 *
804 * Fiber Channel over Ethernet (FCoE) offload functions.
805 * int (*ndo_fcoe_enable)(struct net_device *dev);
806 * Called when the FCoE protocol stack wants to start using LLD for FCoE
807 * so the underlying device can perform whatever needed configuration or
808 * initialization to support acceleration of FCoE traffic.
809 *
810 * int (*ndo_fcoe_disable)(struct net_device *dev);
811 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
812 * so the underlying device can perform whatever needed clean-ups to
813 * stop supporting acceleration of FCoE traffic.
814 *
815 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
816 * struct scatterlist *sgl, unsigned int sgc);
817 * Called when the FCoE Initiator wants to initialize an I/O that
818 * is a possible candidate for Direct Data Placement (DDP). The LLD can
819 * perform necessary setup and returns 1 to indicate the device is set up
820 * successfully to perform DDP on this I/O, otherwise this returns 0.
821 *
822 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
823 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
824 * indicated by the FC exchange id 'xid', so the underlying device can
825 * clean up and reuse resources for later DDP requests.
826 *
827 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
828 * struct scatterlist *sgl, unsigned int sgc);
829 * Called when the FCoE Target wants to initialize an I/O that
830 * is a possible candidate for Direct Data Placement (DDP). The LLD can
831 * perform necessary setup and returns 1 to indicate the device is set up
832 * successfully to perform DDP on this I/O, otherwise this returns 0.
833 *
834 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
835 * Called when the underlying device wants to override default World Wide
836 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
837 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
838 * protocol stack to use.
839 *
840 * RFS acceleration.
841 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
842 * u16 rxq_index, u32 flow_id);
843 * Set hardware filter for RFS. rxq_index is the target queue index;
844 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
845 * Return the filter ID on success, or a negative error code.
846 *
847 * Slave management functions (for bridge, bonding, etc). User should
848 * call netdev_set_master() to set dev->master properly.
849 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
850 * Called to make another netdev an underling.
851 *
852 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
853 * Called to release previously enslaved netdev.
854 *
855 * Feature/offload setting functions.
856 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
857 * netdev_features_t features);
858 * Adjusts the requested feature flags according to device-specific
859 * constraints, and returns the resulting flags. Must not modify
860 * the device state.
861 *
862 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
863 * Called to update device configuration to new features. Passed
864 * feature set might be less than what was returned by ndo_fix_features()).
865 * Must return >0 or -errno if it changed dev->features itself.
866 *
867 */
868 struct net_device_ops {
869 int (*ndo_init)(struct net_device *dev);
870 void (*ndo_uninit)(struct net_device *dev);
871 int (*ndo_open)(struct net_device *dev);
872 int (*ndo_stop)(struct net_device *dev);
873 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
874 struct net_device *dev);
875 u16 (*ndo_select_queue)(struct net_device *dev,
876 struct sk_buff *skb);
877 void (*ndo_change_rx_flags)(struct net_device *dev,
878 int flags);
879 void (*ndo_set_rx_mode)(struct net_device *dev);
880 int (*ndo_set_mac_address)(struct net_device *dev,
881 void *addr);
882 int (*ndo_validate_addr)(struct net_device *dev);
883 int (*ndo_do_ioctl)(struct net_device *dev,
884 struct ifreq *ifr, int cmd);
885 int (*ndo_set_config)(struct net_device *dev,
886 struct ifmap *map);
887 int (*ndo_change_mtu)(struct net_device *dev,
888 int new_mtu);
889 int (*ndo_neigh_setup)(struct net_device *dev,
890 struct neigh_parms *);
891 void (*ndo_tx_timeout) (struct net_device *dev);
892
893 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
894 struct rtnl_link_stats64 *storage);
895 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
896
897 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
898 unsigned short vid);
899 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
900 unsigned short vid);
901 #ifdef CONFIG_NET_POLL_CONTROLLER
902 void (*ndo_poll_controller)(struct net_device *dev);
903 int (*ndo_netpoll_setup)(struct net_device *dev,
904 struct netpoll_info *info);
905 void (*ndo_netpoll_cleanup)(struct net_device *dev);
906 #endif
907 int (*ndo_set_vf_mac)(struct net_device *dev,
908 int queue, u8 *mac);
909 int (*ndo_set_vf_vlan)(struct net_device *dev,
910 int queue, u16 vlan, u8 qos);
911 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
912 int vf, int rate);
913 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
914 int vf, bool setting);
915 int (*ndo_get_vf_config)(struct net_device *dev,
916 int vf,
917 struct ifla_vf_info *ivf);
918 int (*ndo_set_vf_port)(struct net_device *dev,
919 int vf,
920 struct nlattr *port[]);
921 int (*ndo_get_vf_port)(struct net_device *dev,
922 int vf, struct sk_buff *skb);
923 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
924 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
925 int (*ndo_fcoe_enable)(struct net_device *dev);
926 int (*ndo_fcoe_disable)(struct net_device *dev);
927 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
928 u16 xid,
929 struct scatterlist *sgl,
930 unsigned int sgc);
931 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
932 u16 xid);
933 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
934 u16 xid,
935 struct scatterlist *sgl,
936 unsigned int sgc);
937 #endif
938
939 #if defined(CONFIG_LIBFCOE) || defined(CONFIG_LIBFCOE_MODULE)
940 #define NETDEV_FCOE_WWNN 0
941 #define NETDEV_FCOE_WWPN 1
942 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
943 u64 *wwn, int type);
944 #endif
945
946 #ifdef CONFIG_RFS_ACCEL
947 int (*ndo_rx_flow_steer)(struct net_device *dev,
948 const struct sk_buff *skb,
949 u16 rxq_index,
950 u32 flow_id);
951 #endif
952 int (*ndo_add_slave)(struct net_device *dev,
953 struct net_device *slave_dev);
954 int (*ndo_del_slave)(struct net_device *dev,
955 struct net_device *slave_dev);
956 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
957 netdev_features_t features);
958 int (*ndo_set_features)(struct net_device *dev,
959 netdev_features_t features);
960 };
961
962 /*
963 * The DEVICE structure.
964 * Actually, this whole structure is a big mistake. It mixes I/O
965 * data with strictly "high-level" data, and it has to know about
966 * almost every data structure used in the INET module.
967 *
968 * FIXME: cleanup struct net_device such that network protocol info
969 * moves out.
970 */
971
972 struct net_device {
973
974 /*
975 * This is the first field of the "visible" part of this structure
976 * (i.e. as seen by users in the "Space.c" file). It is the name
977 * of the interface.
978 */
979 char name[IFNAMSIZ];
980
981 struct pm_qos_request pm_qos_req;
982
983 /* device name hash chain */
984 struct hlist_node name_hlist;
985 /* snmp alias */
986 char *ifalias;
987
988 /*
989 * I/O specific fields
990 * FIXME: Merge these and struct ifmap into one
991 */
992 unsigned long mem_end; /* shared mem end */
993 unsigned long mem_start; /* shared mem start */
994 unsigned long base_addr; /* device I/O address */
995 unsigned int irq; /* device IRQ number */
996
997 /*
998 * Some hardware also needs these fields, but they are not
999 * part of the usual set specified in Space.c.
1000 */
1001
1002 unsigned long state;
1003
1004 struct list_head dev_list;
1005 struct list_head napi_list;
1006 struct list_head unreg_list;
1007
1008 /* currently active device features */
1009 netdev_features_t features;
1010 /* user-changeable features */
1011 netdev_features_t hw_features;
1012 /* user-requested features */
1013 netdev_features_t wanted_features;
1014 /* mask of features inheritable by VLAN devices */
1015 netdev_features_t vlan_features;
1016
1017 /* Interface index. Unique device identifier */
1018 int ifindex;
1019 int iflink;
1020
1021 struct net_device_stats stats;
1022 atomic_long_t rx_dropped; /* dropped packets by core network
1023 * Do not use this in drivers.
1024 */
1025
1026 #ifdef CONFIG_WIRELESS_EXT
1027 /* List of functions to handle Wireless Extensions (instead of ioctl).
1028 * See <net/iw_handler.h> for details. Jean II */
1029 const struct iw_handler_def * wireless_handlers;
1030 /* Instance data managed by the core of Wireless Extensions. */
1031 struct iw_public_data * wireless_data;
1032 #endif
1033 /* Management operations */
1034 const struct net_device_ops *netdev_ops;
1035 const struct ethtool_ops *ethtool_ops;
1036
1037 /* Hardware header description */
1038 const struct header_ops *header_ops;
1039
1040 unsigned int flags; /* interface flags (a la BSD) */
1041 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1042 unsigned short gflags;
1043 unsigned short padded; /* How much padding added by alloc_netdev() */
1044
1045 unsigned char operstate; /* RFC2863 operstate */
1046 unsigned char link_mode; /* mapping policy to operstate */
1047
1048 unsigned char if_port; /* Selectable AUI, TP,..*/
1049 unsigned char dma; /* DMA channel */
1050
1051 unsigned int mtu; /* interface MTU value */
1052 unsigned short type; /* interface hardware type */
1053 unsigned short hard_header_len; /* hardware hdr length */
1054
1055 /* extra head- and tailroom the hardware may need, but not in all cases
1056 * can this be guaranteed, especially tailroom. Some cases also use
1057 * LL_MAX_HEADER instead to allocate the skb.
1058 */
1059 unsigned short needed_headroom;
1060 unsigned short needed_tailroom;
1061
1062 /* Interface address info. */
1063 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1064 unsigned char addr_assign_type; /* hw address assignment type */
1065 unsigned char addr_len; /* hardware address length */
1066 unsigned short dev_id; /* for shared network cards */
1067
1068 spinlock_t addr_list_lock;
1069 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1070 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1071 bool uc_promisc;
1072 unsigned int promiscuity;
1073 unsigned int allmulti;
1074
1075
1076 /* Protocol specific pointers */
1077
1078 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1079 struct vlan_group __rcu *vlgrp; /* VLAN group */
1080 #endif
1081 #ifdef CONFIG_NET_DSA
1082 void *dsa_ptr; /* dsa specific data */
1083 #endif
1084 void *atalk_ptr; /* AppleTalk link */
1085 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1086 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1087 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1088 void *ec_ptr; /* Econet specific data */
1089 void *ax25_ptr; /* AX.25 specific data */
1090 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1091 assign before registering */
1092
1093 /*
1094 * Cache lines mostly used on receive path (including eth_type_trans())
1095 */
1096 unsigned long last_rx; /* Time of last Rx
1097 * This should not be set in
1098 * drivers, unless really needed,
1099 * because network stack (bonding)
1100 * use it if/when necessary, to
1101 * avoid dirtying this cache line.
1102 */
1103
1104 struct net_device *master; /* Pointer to master device of a group,
1105 * which this device is member of.
1106 */
1107
1108 /* Interface address info used in eth_type_trans() */
1109 unsigned char *dev_addr; /* hw address, (before bcast
1110 because most packets are
1111 unicast) */
1112
1113 struct netdev_hw_addr_list dev_addrs; /* list of device
1114 hw addresses */
1115
1116 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1117
1118 #ifdef CONFIG_SYSFS
1119 struct kset *queues_kset;
1120 #endif
1121
1122 #ifdef CONFIG_RPS
1123 struct netdev_rx_queue *_rx;
1124
1125 /* Number of RX queues allocated at register_netdev() time */
1126 unsigned int num_rx_queues;
1127
1128 /* Number of RX queues currently active in device */
1129 unsigned int real_num_rx_queues;
1130
1131 #ifdef CONFIG_RFS_ACCEL
1132 /* CPU reverse-mapping for RX completion interrupts, indexed
1133 * by RX queue number. Assigned by driver. This must only be
1134 * set if the ndo_rx_flow_steer operation is defined. */
1135 struct cpu_rmap *rx_cpu_rmap;
1136 #endif
1137 #endif
1138
1139 rx_handler_func_t __rcu *rx_handler;
1140 void __rcu *rx_handler_data;
1141
1142 struct netdev_queue __rcu *ingress_queue;
1143
1144 /*
1145 * Cache lines mostly used on transmit path
1146 */
1147 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1148
1149 /* Number of TX queues allocated at alloc_netdev_mq() time */
1150 unsigned int num_tx_queues;
1151
1152 /* Number of TX queues currently active in device */
1153 unsigned int real_num_tx_queues;
1154
1155 /* root qdisc from userspace point of view */
1156 struct Qdisc *qdisc;
1157
1158 unsigned long tx_queue_len; /* Max frames per queue allowed */
1159 spinlock_t tx_global_lock;
1160
1161 #ifdef CONFIG_XPS
1162 struct xps_dev_maps __rcu *xps_maps;
1163 #endif
1164
1165 /* These may be needed for future network-power-down code. */
1166
1167 /*
1168 * trans_start here is expensive for high speed devices on SMP,
1169 * please use netdev_queue->trans_start instead.
1170 */
1171 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1172
1173 int watchdog_timeo; /* used by dev_watchdog() */
1174 struct timer_list watchdog_timer;
1175
1176 /* Number of references to this device */
1177 int __percpu *pcpu_refcnt;
1178
1179 /* delayed register/unregister */
1180 struct list_head todo_list;
1181 /* device index hash chain */
1182 struct hlist_node index_hlist;
1183
1184 struct list_head link_watch_list;
1185
1186 /* register/unregister state machine */
1187 enum { NETREG_UNINITIALIZED=0,
1188 NETREG_REGISTERED, /* completed register_netdevice */
1189 NETREG_UNREGISTERING, /* called unregister_netdevice */
1190 NETREG_UNREGISTERED, /* completed unregister todo */
1191 NETREG_RELEASED, /* called free_netdev */
1192 NETREG_DUMMY, /* dummy device for NAPI poll */
1193 } reg_state:8;
1194
1195 bool dismantle; /* device is going do be freed */
1196
1197 enum {
1198 RTNL_LINK_INITIALIZED,
1199 RTNL_LINK_INITIALIZING,
1200 } rtnl_link_state:16;
1201
1202 /* Called from unregister, can be used to call free_netdev */
1203 void (*destructor)(struct net_device *dev);
1204
1205 #ifdef CONFIG_NETPOLL
1206 struct netpoll_info *npinfo;
1207 #endif
1208
1209 #ifdef CONFIG_NET_NS
1210 /* Network namespace this network device is inside */
1211 struct net *nd_net;
1212 #endif
1213
1214 /* mid-layer private */
1215 union {
1216 void *ml_priv;
1217 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1218 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1219 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1220 };
1221 /* GARP */
1222 struct garp_port __rcu *garp_port;
1223
1224 /* class/net/name entry */
1225 struct device dev;
1226 /* space for optional device, statistics, and wireless sysfs groups */
1227 const struct attribute_group *sysfs_groups[4];
1228
1229 /* rtnetlink link ops */
1230 const struct rtnl_link_ops *rtnl_link_ops;
1231
1232 /* for setting kernel sock attribute on TCP connection setup */
1233 #define GSO_MAX_SIZE 65536
1234 unsigned int gso_max_size;
1235
1236 #ifdef CONFIG_DCB
1237 /* Data Center Bridging netlink ops */
1238 const struct dcbnl_rtnl_ops *dcbnl_ops;
1239 #endif
1240 u8 num_tc;
1241 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1242 u8 prio_tc_map[TC_BITMASK + 1];
1243
1244 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1245 /* max exchange id for FCoE LRO by ddp */
1246 unsigned int fcoe_ddp_xid;
1247 #endif
1248 /* phy device may attach itself for hardware timestamping */
1249 struct phy_device *phydev;
1250
1251 /* group the device belongs to */
1252 int group;
1253 };
1254 #define to_net_dev(d) container_of(d, struct net_device, dev)
1255
1256 #define NETDEV_ALIGN 32
1257
1258 static inline
1259 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1260 {
1261 return dev->prio_tc_map[prio & TC_BITMASK];
1262 }
1263
1264 static inline
1265 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1266 {
1267 if (tc >= dev->num_tc)
1268 return -EINVAL;
1269
1270 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1271 return 0;
1272 }
1273
1274 static inline
1275 void netdev_reset_tc(struct net_device *dev)
1276 {
1277 dev->num_tc = 0;
1278 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1279 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1280 }
1281
1282 static inline
1283 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1284 {
1285 if (tc >= dev->num_tc)
1286 return -EINVAL;
1287
1288 dev->tc_to_txq[tc].count = count;
1289 dev->tc_to_txq[tc].offset = offset;
1290 return 0;
1291 }
1292
1293 static inline
1294 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1295 {
1296 if (num_tc > TC_MAX_QUEUE)
1297 return -EINVAL;
1298
1299 dev->num_tc = num_tc;
1300 return 0;
1301 }
1302
1303 static inline
1304 int netdev_get_num_tc(struct net_device *dev)
1305 {
1306 return dev->num_tc;
1307 }
1308
1309 static inline
1310 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1311 unsigned int index)
1312 {
1313 return &dev->_tx[index];
1314 }
1315
1316 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1317 void (*f)(struct net_device *,
1318 struct netdev_queue *,
1319 void *),
1320 void *arg)
1321 {
1322 unsigned int i;
1323
1324 for (i = 0; i < dev->num_tx_queues; i++)
1325 f(dev, &dev->_tx[i], arg);
1326 }
1327
1328 /*
1329 * Net namespace inlines
1330 */
1331 static inline
1332 struct net *dev_net(const struct net_device *dev)
1333 {
1334 return read_pnet(&dev->nd_net);
1335 }
1336
1337 static inline
1338 void dev_net_set(struct net_device *dev, struct net *net)
1339 {
1340 #ifdef CONFIG_NET_NS
1341 release_net(dev->nd_net);
1342 dev->nd_net = hold_net(net);
1343 #endif
1344 }
1345
1346 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1347 {
1348 #ifdef CONFIG_NET_DSA_TAG_DSA
1349 if (dev->dsa_ptr != NULL)
1350 return dsa_uses_dsa_tags(dev->dsa_ptr);
1351 #endif
1352
1353 return 0;
1354 }
1355
1356 #ifndef CONFIG_NET_NS
1357 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1358 {
1359 skb->dev = dev;
1360 }
1361 #else /* CONFIG_NET_NS */
1362 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1363 #endif
1364
1365 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1366 {
1367 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1368 if (dev->dsa_ptr != NULL)
1369 return dsa_uses_trailer_tags(dev->dsa_ptr);
1370 #endif
1371
1372 return 0;
1373 }
1374
1375 /**
1376 * netdev_priv - access network device private data
1377 * @dev: network device
1378 *
1379 * Get network device private data
1380 */
1381 static inline void *netdev_priv(const struct net_device *dev)
1382 {
1383 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1384 }
1385
1386 /* Set the sysfs physical device reference for the network logical device
1387 * if set prior to registration will cause a symlink during initialization.
1388 */
1389 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1390
1391 /* Set the sysfs device type for the network logical device to allow
1392 * fin grained indentification of different network device types. For
1393 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1394 */
1395 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1396
1397 /**
1398 * netif_napi_add - initialize a napi context
1399 * @dev: network device
1400 * @napi: napi context
1401 * @poll: polling function
1402 * @weight: default weight
1403 *
1404 * netif_napi_add() must be used to initialize a napi context prior to calling
1405 * *any* of the other napi related functions.
1406 */
1407 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1408 int (*poll)(struct napi_struct *, int), int weight);
1409
1410 /**
1411 * netif_napi_del - remove a napi context
1412 * @napi: napi context
1413 *
1414 * netif_napi_del() removes a napi context from the network device napi list
1415 */
1416 void netif_napi_del(struct napi_struct *napi);
1417
1418 struct napi_gro_cb {
1419 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1420 void *frag0;
1421
1422 /* Length of frag0. */
1423 unsigned int frag0_len;
1424
1425 /* This indicates where we are processing relative to skb->data. */
1426 int data_offset;
1427
1428 /* This is non-zero if the packet may be of the same flow. */
1429 int same_flow;
1430
1431 /* This is non-zero if the packet cannot be merged with the new skb. */
1432 int flush;
1433
1434 /* Number of segments aggregated. */
1435 int count;
1436
1437 /* Free the skb? */
1438 int free;
1439 };
1440
1441 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1442
1443 struct packet_type {
1444 __be16 type; /* This is really htons(ether_type). */
1445 struct net_device *dev; /* NULL is wildcarded here */
1446 int (*func) (struct sk_buff *,
1447 struct net_device *,
1448 struct packet_type *,
1449 struct net_device *);
1450 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1451 netdev_features_t features);
1452 int (*gso_send_check)(struct sk_buff *skb);
1453 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1454 struct sk_buff *skb);
1455 int (*gro_complete)(struct sk_buff *skb);
1456 void *af_packet_priv;
1457 struct list_head list;
1458 };
1459
1460 #include <linux/notifier.h>
1461
1462 /* netdevice notifier chain. Please remember to update the rtnetlink
1463 * notification exclusion list in rtnetlink_event() when adding new
1464 * types.
1465 */
1466 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1467 #define NETDEV_DOWN 0x0002
1468 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1469 detected a hardware crash and restarted
1470 - we can use this eg to kick tcp sessions
1471 once done */
1472 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1473 #define NETDEV_REGISTER 0x0005
1474 #define NETDEV_UNREGISTER 0x0006
1475 #define NETDEV_CHANGEMTU 0x0007
1476 #define NETDEV_CHANGEADDR 0x0008
1477 #define NETDEV_GOING_DOWN 0x0009
1478 #define NETDEV_CHANGENAME 0x000A
1479 #define NETDEV_FEAT_CHANGE 0x000B
1480 #define NETDEV_BONDING_FAILOVER 0x000C
1481 #define NETDEV_PRE_UP 0x000D
1482 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1483 #define NETDEV_POST_TYPE_CHANGE 0x000F
1484 #define NETDEV_POST_INIT 0x0010
1485 #define NETDEV_UNREGISTER_BATCH 0x0011
1486 #define NETDEV_RELEASE 0x0012
1487 #define NETDEV_NOTIFY_PEERS 0x0013
1488 #define NETDEV_JOIN 0x0014
1489
1490 extern int register_netdevice_notifier(struct notifier_block *nb);
1491 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1492 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1493
1494
1495 extern rwlock_t dev_base_lock; /* Device list lock */
1496
1497
1498 #define for_each_netdev(net, d) \
1499 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1500 #define for_each_netdev_reverse(net, d) \
1501 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1502 #define for_each_netdev_rcu(net, d) \
1503 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1504 #define for_each_netdev_safe(net, d, n) \
1505 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1506 #define for_each_netdev_continue(net, d) \
1507 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1508 #define for_each_netdev_continue_rcu(net, d) \
1509 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1510 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1511
1512 static inline struct net_device *next_net_device(struct net_device *dev)
1513 {
1514 struct list_head *lh;
1515 struct net *net;
1516
1517 net = dev_net(dev);
1518 lh = dev->dev_list.next;
1519 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1520 }
1521
1522 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1523 {
1524 struct list_head *lh;
1525 struct net *net;
1526
1527 net = dev_net(dev);
1528 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1529 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1530 }
1531
1532 static inline struct net_device *first_net_device(struct net *net)
1533 {
1534 return list_empty(&net->dev_base_head) ? NULL :
1535 net_device_entry(net->dev_base_head.next);
1536 }
1537
1538 static inline struct net_device *first_net_device_rcu(struct net *net)
1539 {
1540 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1541
1542 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1543 }
1544
1545 extern int netdev_boot_setup_check(struct net_device *dev);
1546 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1547 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1548 const char *hwaddr);
1549 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1550 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1551 extern void dev_add_pack(struct packet_type *pt);
1552 extern void dev_remove_pack(struct packet_type *pt);
1553 extern void __dev_remove_pack(struct packet_type *pt);
1554
1555 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1556 unsigned short mask);
1557 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1558 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1559 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1560 extern int dev_alloc_name(struct net_device *dev, const char *name);
1561 extern int dev_open(struct net_device *dev);
1562 extern int dev_close(struct net_device *dev);
1563 extern void dev_disable_lro(struct net_device *dev);
1564 extern int dev_queue_xmit(struct sk_buff *skb);
1565 extern int register_netdevice(struct net_device *dev);
1566 extern void unregister_netdevice_queue(struct net_device *dev,
1567 struct list_head *head);
1568 extern void unregister_netdevice_many(struct list_head *head);
1569 static inline void unregister_netdevice(struct net_device *dev)
1570 {
1571 unregister_netdevice_queue(dev, NULL);
1572 }
1573
1574 extern int netdev_refcnt_read(const struct net_device *dev);
1575 extern void free_netdev(struct net_device *dev);
1576 extern void synchronize_net(void);
1577 extern int init_dummy_netdev(struct net_device *dev);
1578 extern void netdev_resync_ops(struct net_device *dev);
1579
1580 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1581 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1582 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1583 extern int dev_restart(struct net_device *dev);
1584 #ifdef CONFIG_NETPOLL_TRAP
1585 extern int netpoll_trap(void);
1586 #endif
1587 extern int skb_gro_receive(struct sk_buff **head,
1588 struct sk_buff *skb);
1589 extern void skb_gro_reset_offset(struct sk_buff *skb);
1590
1591 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1592 {
1593 return NAPI_GRO_CB(skb)->data_offset;
1594 }
1595
1596 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1597 {
1598 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1599 }
1600
1601 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1602 {
1603 NAPI_GRO_CB(skb)->data_offset += len;
1604 }
1605
1606 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1607 unsigned int offset)
1608 {
1609 return NAPI_GRO_CB(skb)->frag0 + offset;
1610 }
1611
1612 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1613 {
1614 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1615 }
1616
1617 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1618 unsigned int offset)
1619 {
1620 if (!pskb_may_pull(skb, hlen))
1621 return NULL;
1622
1623 NAPI_GRO_CB(skb)->frag0 = NULL;
1624 NAPI_GRO_CB(skb)->frag0_len = 0;
1625 return skb->data + offset;
1626 }
1627
1628 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1629 {
1630 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1631 }
1632
1633 static inline void *skb_gro_network_header(struct sk_buff *skb)
1634 {
1635 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1636 skb_network_offset(skb);
1637 }
1638
1639 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1640 unsigned short type,
1641 const void *daddr, const void *saddr,
1642 unsigned len)
1643 {
1644 if (!dev->header_ops || !dev->header_ops->create)
1645 return 0;
1646
1647 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1648 }
1649
1650 static inline int dev_parse_header(const struct sk_buff *skb,
1651 unsigned char *haddr)
1652 {
1653 const struct net_device *dev = skb->dev;
1654
1655 if (!dev->header_ops || !dev->header_ops->parse)
1656 return 0;
1657 return dev->header_ops->parse(skb, haddr);
1658 }
1659
1660 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1661 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1662 static inline int unregister_gifconf(unsigned int family)
1663 {
1664 return register_gifconf(family, NULL);
1665 }
1666
1667 /*
1668 * Incoming packets are placed on per-cpu queues
1669 */
1670 struct softnet_data {
1671 struct Qdisc *output_queue;
1672 struct Qdisc **output_queue_tailp;
1673 struct list_head poll_list;
1674 struct sk_buff *completion_queue;
1675 struct sk_buff_head process_queue;
1676
1677 /* stats */
1678 unsigned int processed;
1679 unsigned int time_squeeze;
1680 unsigned int cpu_collision;
1681 unsigned int received_rps;
1682
1683 #ifdef CONFIG_RPS
1684 struct softnet_data *rps_ipi_list;
1685
1686 /* Elements below can be accessed between CPUs for RPS */
1687 struct call_single_data csd ____cacheline_aligned_in_smp;
1688 struct softnet_data *rps_ipi_next;
1689 unsigned int cpu;
1690 unsigned int input_queue_head;
1691 unsigned int input_queue_tail;
1692 #endif
1693 unsigned dropped;
1694 struct sk_buff_head input_pkt_queue;
1695 struct napi_struct backlog;
1696 };
1697
1698 static inline void input_queue_head_incr(struct softnet_data *sd)
1699 {
1700 #ifdef CONFIG_RPS
1701 sd->input_queue_head++;
1702 #endif
1703 }
1704
1705 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1706 unsigned int *qtail)
1707 {
1708 #ifdef CONFIG_RPS
1709 *qtail = ++sd->input_queue_tail;
1710 #endif
1711 }
1712
1713 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1714
1715 extern void __netif_schedule(struct Qdisc *q);
1716
1717 static inline void netif_schedule_queue(struct netdev_queue *txq)
1718 {
1719 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1720 __netif_schedule(txq->qdisc);
1721 }
1722
1723 static inline void netif_tx_schedule_all(struct net_device *dev)
1724 {
1725 unsigned int i;
1726
1727 for (i = 0; i < dev->num_tx_queues; i++)
1728 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1729 }
1730
1731 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1732 {
1733 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1734 }
1735
1736 /**
1737 * netif_start_queue - allow transmit
1738 * @dev: network device
1739 *
1740 * Allow upper layers to call the device hard_start_xmit routine.
1741 */
1742 static inline void netif_start_queue(struct net_device *dev)
1743 {
1744 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1745 }
1746
1747 static inline void netif_tx_start_all_queues(struct net_device *dev)
1748 {
1749 unsigned int i;
1750
1751 for (i = 0; i < dev->num_tx_queues; i++) {
1752 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1753 netif_tx_start_queue(txq);
1754 }
1755 }
1756
1757 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1758 {
1759 #ifdef CONFIG_NETPOLL_TRAP
1760 if (netpoll_trap()) {
1761 netif_tx_start_queue(dev_queue);
1762 return;
1763 }
1764 #endif
1765 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1766 __netif_schedule(dev_queue->qdisc);
1767 }
1768
1769 /**
1770 * netif_wake_queue - restart transmit
1771 * @dev: network device
1772 *
1773 * Allow upper layers to call the device hard_start_xmit routine.
1774 * Used for flow control when transmit resources are available.
1775 */
1776 static inline void netif_wake_queue(struct net_device *dev)
1777 {
1778 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1779 }
1780
1781 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1782 {
1783 unsigned int i;
1784
1785 for (i = 0; i < dev->num_tx_queues; i++) {
1786 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1787 netif_tx_wake_queue(txq);
1788 }
1789 }
1790
1791 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1792 {
1793 if (WARN_ON(!dev_queue)) {
1794 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1795 return;
1796 }
1797 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1798 }
1799
1800 /**
1801 * netif_stop_queue - stop transmitted packets
1802 * @dev: network device
1803 *
1804 * Stop upper layers calling the device hard_start_xmit routine.
1805 * Used for flow control when transmit resources are unavailable.
1806 */
1807 static inline void netif_stop_queue(struct net_device *dev)
1808 {
1809 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1810 }
1811
1812 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1813 {
1814 unsigned int i;
1815
1816 for (i = 0; i < dev->num_tx_queues; i++) {
1817 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1818 netif_tx_stop_queue(txq);
1819 }
1820 }
1821
1822 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1823 {
1824 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1825 }
1826
1827 /**
1828 * netif_queue_stopped - test if transmit queue is flowblocked
1829 * @dev: network device
1830 *
1831 * Test if transmit queue on device is currently unable to send.
1832 */
1833 static inline int netif_queue_stopped(const struct net_device *dev)
1834 {
1835 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1836 }
1837
1838 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1839 {
1840 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1841 }
1842
1843 /**
1844 * netif_running - test if up
1845 * @dev: network device
1846 *
1847 * Test if the device has been brought up.
1848 */
1849 static inline int netif_running(const struct net_device *dev)
1850 {
1851 return test_bit(__LINK_STATE_START, &dev->state);
1852 }
1853
1854 /*
1855 * Routines to manage the subqueues on a device. We only need start
1856 * stop, and a check if it's stopped. All other device management is
1857 * done at the overall netdevice level.
1858 * Also test the device if we're multiqueue.
1859 */
1860
1861 /**
1862 * netif_start_subqueue - allow sending packets on subqueue
1863 * @dev: network device
1864 * @queue_index: sub queue index
1865 *
1866 * Start individual transmit queue of a device with multiple transmit queues.
1867 */
1868 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1869 {
1870 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1871
1872 netif_tx_start_queue(txq);
1873 }
1874
1875 /**
1876 * netif_stop_subqueue - stop sending packets on subqueue
1877 * @dev: network device
1878 * @queue_index: sub queue index
1879 *
1880 * Stop individual transmit queue of a device with multiple transmit queues.
1881 */
1882 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1883 {
1884 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1885 #ifdef CONFIG_NETPOLL_TRAP
1886 if (netpoll_trap())
1887 return;
1888 #endif
1889 netif_tx_stop_queue(txq);
1890 }
1891
1892 /**
1893 * netif_subqueue_stopped - test status of subqueue
1894 * @dev: network device
1895 * @queue_index: sub queue index
1896 *
1897 * Check individual transmit queue of a device with multiple transmit queues.
1898 */
1899 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1900 u16 queue_index)
1901 {
1902 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1903
1904 return netif_tx_queue_stopped(txq);
1905 }
1906
1907 static inline int netif_subqueue_stopped(const struct net_device *dev,
1908 struct sk_buff *skb)
1909 {
1910 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1911 }
1912
1913 /**
1914 * netif_wake_subqueue - allow sending packets on subqueue
1915 * @dev: network device
1916 * @queue_index: sub queue index
1917 *
1918 * Resume individual transmit queue of a device with multiple transmit queues.
1919 */
1920 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1921 {
1922 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1923 #ifdef CONFIG_NETPOLL_TRAP
1924 if (netpoll_trap())
1925 return;
1926 #endif
1927 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1928 __netif_schedule(txq->qdisc);
1929 }
1930
1931 /*
1932 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1933 * as a distribution range limit for the returned value.
1934 */
1935 static inline u16 skb_tx_hash(const struct net_device *dev,
1936 const struct sk_buff *skb)
1937 {
1938 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1939 }
1940
1941 /**
1942 * netif_is_multiqueue - test if device has multiple transmit queues
1943 * @dev: network device
1944 *
1945 * Check if device has multiple transmit queues
1946 */
1947 static inline int netif_is_multiqueue(const struct net_device *dev)
1948 {
1949 return dev->num_tx_queues > 1;
1950 }
1951
1952 extern int netif_set_real_num_tx_queues(struct net_device *dev,
1953 unsigned int txq);
1954
1955 #ifdef CONFIG_RPS
1956 extern int netif_set_real_num_rx_queues(struct net_device *dev,
1957 unsigned int rxq);
1958 #else
1959 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
1960 unsigned int rxq)
1961 {
1962 return 0;
1963 }
1964 #endif
1965
1966 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
1967 const struct net_device *from_dev)
1968 {
1969 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
1970 #ifdef CONFIG_RPS
1971 return netif_set_real_num_rx_queues(to_dev,
1972 from_dev->real_num_rx_queues);
1973 #else
1974 return 0;
1975 #endif
1976 }
1977
1978 /* Use this variant when it is known for sure that it
1979 * is executing from hardware interrupt context or with hardware interrupts
1980 * disabled.
1981 */
1982 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1983
1984 /* Use this variant in places where it could be invoked
1985 * from either hardware interrupt or other context, with hardware interrupts
1986 * either disabled or enabled.
1987 */
1988 extern void dev_kfree_skb_any(struct sk_buff *skb);
1989
1990 extern int netif_rx(struct sk_buff *skb);
1991 extern int netif_rx_ni(struct sk_buff *skb);
1992 extern int netif_receive_skb(struct sk_buff *skb);
1993 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1994 struct sk_buff *skb);
1995 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1996 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
1997 struct sk_buff *skb);
1998 extern void napi_gro_flush(struct napi_struct *napi);
1999 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2000 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2001 struct sk_buff *skb,
2002 gro_result_t ret);
2003 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2004 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2005
2006 static inline void napi_free_frags(struct napi_struct *napi)
2007 {
2008 kfree_skb(napi->skb);
2009 napi->skb = NULL;
2010 }
2011
2012 extern int netdev_rx_handler_register(struct net_device *dev,
2013 rx_handler_func_t *rx_handler,
2014 void *rx_handler_data);
2015 extern void netdev_rx_handler_unregister(struct net_device *dev);
2016
2017 extern int dev_valid_name(const char *name);
2018 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2019 extern int dev_ethtool(struct net *net, struct ifreq *);
2020 extern unsigned dev_get_flags(const struct net_device *);
2021 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2022 extern int dev_change_flags(struct net_device *, unsigned);
2023 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2024 extern int dev_change_name(struct net_device *, const char *);
2025 extern int dev_set_alias(struct net_device *, const char *, size_t);
2026 extern int dev_change_net_namespace(struct net_device *,
2027 struct net *, const char *);
2028 extern int dev_set_mtu(struct net_device *, int);
2029 extern void dev_set_group(struct net_device *, int);
2030 extern int dev_set_mac_address(struct net_device *,
2031 struct sockaddr *);
2032 extern int dev_hard_start_xmit(struct sk_buff *skb,
2033 struct net_device *dev,
2034 struct netdev_queue *txq);
2035 extern int dev_forward_skb(struct net_device *dev,
2036 struct sk_buff *skb);
2037
2038 extern int netdev_budget;
2039
2040 /* Called by rtnetlink.c:rtnl_unlock() */
2041 extern void netdev_run_todo(void);
2042
2043 /**
2044 * dev_put - release reference to device
2045 * @dev: network device
2046 *
2047 * Release reference to device to allow it to be freed.
2048 */
2049 static inline void dev_put(struct net_device *dev)
2050 {
2051 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2052 }
2053
2054 /**
2055 * dev_hold - get reference to device
2056 * @dev: network device
2057 *
2058 * Hold reference to device to keep it from being freed.
2059 */
2060 static inline void dev_hold(struct net_device *dev)
2061 {
2062 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2063 }
2064
2065 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2066 * and _off may be called from IRQ context, but it is caller
2067 * who is responsible for serialization of these calls.
2068 *
2069 * The name carrier is inappropriate, these functions should really be
2070 * called netif_lowerlayer_*() because they represent the state of any
2071 * kind of lower layer not just hardware media.
2072 */
2073
2074 extern void linkwatch_fire_event(struct net_device *dev);
2075 extern void linkwatch_forget_dev(struct net_device *dev);
2076
2077 /**
2078 * netif_carrier_ok - test if carrier present
2079 * @dev: network device
2080 *
2081 * Check if carrier is present on device
2082 */
2083 static inline int netif_carrier_ok(const struct net_device *dev)
2084 {
2085 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2086 }
2087
2088 extern unsigned long dev_trans_start(struct net_device *dev);
2089
2090 extern void __netdev_watchdog_up(struct net_device *dev);
2091
2092 extern void netif_carrier_on(struct net_device *dev);
2093
2094 extern void netif_carrier_off(struct net_device *dev);
2095
2096 extern void netif_notify_peers(struct net_device *dev);
2097
2098 /**
2099 * netif_dormant_on - mark device as dormant.
2100 * @dev: network device
2101 *
2102 * Mark device as dormant (as per RFC2863).
2103 *
2104 * The dormant state indicates that the relevant interface is not
2105 * actually in a condition to pass packets (i.e., it is not 'up') but is
2106 * in a "pending" state, waiting for some external event. For "on-
2107 * demand" interfaces, this new state identifies the situation where the
2108 * interface is waiting for events to place it in the up state.
2109 *
2110 */
2111 static inline void netif_dormant_on(struct net_device *dev)
2112 {
2113 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2114 linkwatch_fire_event(dev);
2115 }
2116
2117 /**
2118 * netif_dormant_off - set device as not dormant.
2119 * @dev: network device
2120 *
2121 * Device is not in dormant state.
2122 */
2123 static inline void netif_dormant_off(struct net_device *dev)
2124 {
2125 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2126 linkwatch_fire_event(dev);
2127 }
2128
2129 /**
2130 * netif_dormant - test if carrier present
2131 * @dev: network device
2132 *
2133 * Check if carrier is present on device
2134 */
2135 static inline int netif_dormant(const struct net_device *dev)
2136 {
2137 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2138 }
2139
2140
2141 /**
2142 * netif_oper_up - test if device is operational
2143 * @dev: network device
2144 *
2145 * Check if carrier is operational
2146 */
2147 static inline int netif_oper_up(const struct net_device *dev)
2148 {
2149 return (dev->operstate == IF_OPER_UP ||
2150 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2151 }
2152
2153 /**
2154 * netif_device_present - is device available or removed
2155 * @dev: network device
2156 *
2157 * Check if device has not been removed from system.
2158 */
2159 static inline int netif_device_present(struct net_device *dev)
2160 {
2161 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2162 }
2163
2164 extern void netif_device_detach(struct net_device *dev);
2165
2166 extern void netif_device_attach(struct net_device *dev);
2167
2168 /*
2169 * Network interface message level settings
2170 */
2171
2172 enum {
2173 NETIF_MSG_DRV = 0x0001,
2174 NETIF_MSG_PROBE = 0x0002,
2175 NETIF_MSG_LINK = 0x0004,
2176 NETIF_MSG_TIMER = 0x0008,
2177 NETIF_MSG_IFDOWN = 0x0010,
2178 NETIF_MSG_IFUP = 0x0020,
2179 NETIF_MSG_RX_ERR = 0x0040,
2180 NETIF_MSG_TX_ERR = 0x0080,
2181 NETIF_MSG_TX_QUEUED = 0x0100,
2182 NETIF_MSG_INTR = 0x0200,
2183 NETIF_MSG_TX_DONE = 0x0400,
2184 NETIF_MSG_RX_STATUS = 0x0800,
2185 NETIF_MSG_PKTDATA = 0x1000,
2186 NETIF_MSG_HW = 0x2000,
2187 NETIF_MSG_WOL = 0x4000,
2188 };
2189
2190 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2191 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2192 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2193 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2194 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2195 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2196 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2197 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2198 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2199 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2200 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2201 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2202 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2203 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2204 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2205
2206 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2207 {
2208 /* use default */
2209 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2210 return default_msg_enable_bits;
2211 if (debug_value == 0) /* no output */
2212 return 0;
2213 /* set low N bits */
2214 return (1 << debug_value) - 1;
2215 }
2216
2217 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2218 {
2219 spin_lock(&txq->_xmit_lock);
2220 txq->xmit_lock_owner = cpu;
2221 }
2222
2223 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2224 {
2225 spin_lock_bh(&txq->_xmit_lock);
2226 txq->xmit_lock_owner = smp_processor_id();
2227 }
2228
2229 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2230 {
2231 int ok = spin_trylock(&txq->_xmit_lock);
2232 if (likely(ok))
2233 txq->xmit_lock_owner = smp_processor_id();
2234 return ok;
2235 }
2236
2237 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2238 {
2239 txq->xmit_lock_owner = -1;
2240 spin_unlock(&txq->_xmit_lock);
2241 }
2242
2243 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2244 {
2245 txq->xmit_lock_owner = -1;
2246 spin_unlock_bh(&txq->_xmit_lock);
2247 }
2248
2249 static inline void txq_trans_update(struct netdev_queue *txq)
2250 {
2251 if (txq->xmit_lock_owner != -1)
2252 txq->trans_start = jiffies;
2253 }
2254
2255 /**
2256 * netif_tx_lock - grab network device transmit lock
2257 * @dev: network device
2258 *
2259 * Get network device transmit lock
2260 */
2261 static inline void netif_tx_lock(struct net_device *dev)
2262 {
2263 unsigned int i;
2264 int cpu;
2265
2266 spin_lock(&dev->tx_global_lock);
2267 cpu = smp_processor_id();
2268 for (i = 0; i < dev->num_tx_queues; i++) {
2269 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2270
2271 /* We are the only thread of execution doing a
2272 * freeze, but we have to grab the _xmit_lock in
2273 * order to synchronize with threads which are in
2274 * the ->hard_start_xmit() handler and already
2275 * checked the frozen bit.
2276 */
2277 __netif_tx_lock(txq, cpu);
2278 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2279 __netif_tx_unlock(txq);
2280 }
2281 }
2282
2283 static inline void netif_tx_lock_bh(struct net_device *dev)
2284 {
2285 local_bh_disable();
2286 netif_tx_lock(dev);
2287 }
2288
2289 static inline void netif_tx_unlock(struct net_device *dev)
2290 {
2291 unsigned int i;
2292
2293 for (i = 0; i < dev->num_tx_queues; i++) {
2294 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2295
2296 /* No need to grab the _xmit_lock here. If the
2297 * queue is not stopped for another reason, we
2298 * force a schedule.
2299 */
2300 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2301 netif_schedule_queue(txq);
2302 }
2303 spin_unlock(&dev->tx_global_lock);
2304 }
2305
2306 static inline void netif_tx_unlock_bh(struct net_device *dev)
2307 {
2308 netif_tx_unlock(dev);
2309 local_bh_enable();
2310 }
2311
2312 #define HARD_TX_LOCK(dev, txq, cpu) { \
2313 if ((dev->features & NETIF_F_LLTX) == 0) { \
2314 __netif_tx_lock(txq, cpu); \
2315 } \
2316 }
2317
2318 #define HARD_TX_UNLOCK(dev, txq) { \
2319 if ((dev->features & NETIF_F_LLTX) == 0) { \
2320 __netif_tx_unlock(txq); \
2321 } \
2322 }
2323
2324 static inline void netif_tx_disable(struct net_device *dev)
2325 {
2326 unsigned int i;
2327 int cpu;
2328
2329 local_bh_disable();
2330 cpu = smp_processor_id();
2331 for (i = 0; i < dev->num_tx_queues; i++) {
2332 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2333
2334 __netif_tx_lock(txq, cpu);
2335 netif_tx_stop_queue(txq);
2336 __netif_tx_unlock(txq);
2337 }
2338 local_bh_enable();
2339 }
2340
2341 static inline void netif_addr_lock(struct net_device *dev)
2342 {
2343 spin_lock(&dev->addr_list_lock);
2344 }
2345
2346 static inline void netif_addr_lock_bh(struct net_device *dev)
2347 {
2348 spin_lock_bh(&dev->addr_list_lock);
2349 }
2350
2351 static inline void netif_addr_unlock(struct net_device *dev)
2352 {
2353 spin_unlock(&dev->addr_list_lock);
2354 }
2355
2356 static inline void netif_addr_unlock_bh(struct net_device *dev)
2357 {
2358 spin_unlock_bh(&dev->addr_list_lock);
2359 }
2360
2361 /*
2362 * dev_addrs walker. Should be used only for read access. Call with
2363 * rcu_read_lock held.
2364 */
2365 #define for_each_dev_addr(dev, ha) \
2366 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2367
2368 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2369
2370 extern void ether_setup(struct net_device *dev);
2371
2372 /* Support for loadable net-drivers */
2373 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2374 void (*setup)(struct net_device *),
2375 unsigned int txqs, unsigned int rxqs);
2376 #define alloc_netdev(sizeof_priv, name, setup) \
2377 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2378
2379 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2380 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2381
2382 extern int register_netdev(struct net_device *dev);
2383 extern void unregister_netdev(struct net_device *dev);
2384
2385 /* General hardware address lists handling functions */
2386 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2387 struct netdev_hw_addr_list *from_list,
2388 int addr_len, unsigned char addr_type);
2389 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2390 struct netdev_hw_addr_list *from_list,
2391 int addr_len, unsigned char addr_type);
2392 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2393 struct netdev_hw_addr_list *from_list,
2394 int addr_len);
2395 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2396 struct netdev_hw_addr_list *from_list,
2397 int addr_len);
2398 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2399 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2400
2401 /* Functions used for device addresses handling */
2402 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2403 unsigned char addr_type);
2404 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2405 unsigned char addr_type);
2406 extern int dev_addr_add_multiple(struct net_device *to_dev,
2407 struct net_device *from_dev,
2408 unsigned char addr_type);
2409 extern int dev_addr_del_multiple(struct net_device *to_dev,
2410 struct net_device *from_dev,
2411 unsigned char addr_type);
2412 extern void dev_addr_flush(struct net_device *dev);
2413 extern int dev_addr_init(struct net_device *dev);
2414
2415 /* Functions used for unicast addresses handling */
2416 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2417 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2418 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2419 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2420 extern void dev_uc_flush(struct net_device *dev);
2421 extern void dev_uc_init(struct net_device *dev);
2422
2423 /* Functions used for multicast addresses handling */
2424 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2425 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2426 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2427 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2428 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2429 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2430 extern void dev_mc_flush(struct net_device *dev);
2431 extern void dev_mc_init(struct net_device *dev);
2432
2433 /* Functions used for secondary unicast and multicast support */
2434 extern void dev_set_rx_mode(struct net_device *dev);
2435 extern void __dev_set_rx_mode(struct net_device *dev);
2436 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2437 extern int dev_set_allmulti(struct net_device *dev, int inc);
2438 extern void netdev_state_change(struct net_device *dev);
2439 extern int netdev_bonding_change(struct net_device *dev,
2440 unsigned long event);
2441 extern void netdev_features_change(struct net_device *dev);
2442 /* Load a device via the kmod */
2443 extern void dev_load(struct net *net, const char *name);
2444 extern void dev_mcast_init(void);
2445 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2446 struct rtnl_link_stats64 *storage);
2447
2448 extern int netdev_max_backlog;
2449 extern int netdev_tstamp_prequeue;
2450 extern int weight_p;
2451 extern int bpf_jit_enable;
2452 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2453 extern int netdev_set_bond_master(struct net_device *dev,
2454 struct net_device *master);
2455 extern int skb_checksum_help(struct sk_buff *skb);
2456 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2457 netdev_features_t features);
2458 #ifdef CONFIG_BUG
2459 extern void netdev_rx_csum_fault(struct net_device *dev);
2460 #else
2461 static inline void netdev_rx_csum_fault(struct net_device *dev)
2462 {
2463 }
2464 #endif
2465 /* rx skb timestamps */
2466 extern void net_enable_timestamp(void);
2467 extern void net_disable_timestamp(void);
2468
2469 #ifdef CONFIG_PROC_FS
2470 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2471 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2472 extern void dev_seq_stop(struct seq_file *seq, void *v);
2473 #endif
2474
2475 extern int netdev_class_create_file(struct class_attribute *class_attr);
2476 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2477
2478 extern struct kobj_ns_type_operations net_ns_type_operations;
2479
2480 extern const char *netdev_drivername(const struct net_device *dev);
2481
2482 extern void linkwatch_run_queue(void);
2483
2484 static inline netdev_features_t netdev_get_wanted_features(
2485 struct net_device *dev)
2486 {
2487 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2488 }
2489 netdev_features_t netdev_increment_features(netdev_features_t all,
2490 netdev_features_t one, netdev_features_t mask);
2491 int __netdev_update_features(struct net_device *dev);
2492 void netdev_update_features(struct net_device *dev);
2493 void netdev_change_features(struct net_device *dev);
2494
2495 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2496 struct net_device *dev);
2497
2498 netdev_features_t netif_skb_features(struct sk_buff *skb);
2499
2500 static inline int net_gso_ok(netdev_features_t features, int gso_type)
2501 {
2502 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2503
2504 /* check flags correspondence */
2505 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2506 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2507 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2508 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2509 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2510 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2511
2512 return (features & feature) == feature;
2513 }
2514
2515 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2516 {
2517 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2518 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2519 }
2520
2521 static inline int netif_needs_gso(struct sk_buff *skb,
2522 netdev_features_t features)
2523 {
2524 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2525 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2526 }
2527
2528 static inline void netif_set_gso_max_size(struct net_device *dev,
2529 unsigned int size)
2530 {
2531 dev->gso_max_size = size;
2532 }
2533
2534 static inline int netif_is_bond_slave(struct net_device *dev)
2535 {
2536 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2537 }
2538
2539 extern struct pernet_operations __net_initdata loopback_net_ops;
2540
2541 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2542
2543 /* netdev_printk helpers, similar to dev_printk */
2544
2545 static inline const char *netdev_name(const struct net_device *dev)
2546 {
2547 if (dev->reg_state != NETREG_REGISTERED)
2548 return "(unregistered net_device)";
2549 return dev->name;
2550 }
2551
2552 extern int __netdev_printk(const char *level, const struct net_device *dev,
2553 struct va_format *vaf);
2554
2555 extern __printf(3, 4)
2556 int netdev_printk(const char *level, const struct net_device *dev,
2557 const char *format, ...);
2558 extern __printf(2, 3)
2559 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2560 extern __printf(2, 3)
2561 int netdev_alert(const struct net_device *dev, const char *format, ...);
2562 extern __printf(2, 3)
2563 int netdev_crit(const struct net_device *dev, const char *format, ...);
2564 extern __printf(2, 3)
2565 int netdev_err(const struct net_device *dev, const char *format, ...);
2566 extern __printf(2, 3)
2567 int netdev_warn(const struct net_device *dev, const char *format, ...);
2568 extern __printf(2, 3)
2569 int netdev_notice(const struct net_device *dev, const char *format, ...);
2570 extern __printf(2, 3)
2571 int netdev_info(const struct net_device *dev, const char *format, ...);
2572
2573 #define MODULE_ALIAS_NETDEV(device) \
2574 MODULE_ALIAS("netdev-" device)
2575
2576 #if defined(DEBUG)
2577 #define netdev_dbg(__dev, format, args...) \
2578 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2579 #elif defined(CONFIG_DYNAMIC_DEBUG)
2580 #define netdev_dbg(__dev, format, args...) \
2581 do { \
2582 dynamic_netdev_dbg(__dev, format, ##args); \
2583 } while (0)
2584 #else
2585 #define netdev_dbg(__dev, format, args...) \
2586 ({ \
2587 if (0) \
2588 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2589 0; \
2590 })
2591 #endif
2592
2593 #if defined(VERBOSE_DEBUG)
2594 #define netdev_vdbg netdev_dbg
2595 #else
2596
2597 #define netdev_vdbg(dev, format, args...) \
2598 ({ \
2599 if (0) \
2600 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2601 0; \
2602 })
2603 #endif
2604
2605 /*
2606 * netdev_WARN() acts like dev_printk(), but with the key difference
2607 * of using a WARN/WARN_ON to get the message out, including the
2608 * file/line information and a backtrace.
2609 */
2610 #define netdev_WARN(dev, format, args...) \
2611 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2612
2613 /* netif printk helpers, similar to netdev_printk */
2614
2615 #define netif_printk(priv, type, level, dev, fmt, args...) \
2616 do { \
2617 if (netif_msg_##type(priv)) \
2618 netdev_printk(level, (dev), fmt, ##args); \
2619 } while (0)
2620
2621 #define netif_level(level, priv, type, dev, fmt, args...) \
2622 do { \
2623 if (netif_msg_##type(priv)) \
2624 netdev_##level(dev, fmt, ##args); \
2625 } while (0)
2626
2627 #define netif_emerg(priv, type, dev, fmt, args...) \
2628 netif_level(emerg, priv, type, dev, fmt, ##args)
2629 #define netif_alert(priv, type, dev, fmt, args...) \
2630 netif_level(alert, priv, type, dev, fmt, ##args)
2631 #define netif_crit(priv, type, dev, fmt, args...) \
2632 netif_level(crit, priv, type, dev, fmt, ##args)
2633 #define netif_err(priv, type, dev, fmt, args...) \
2634 netif_level(err, priv, type, dev, fmt, ##args)
2635 #define netif_warn(priv, type, dev, fmt, args...) \
2636 netif_level(warn, priv, type, dev, fmt, ##args)
2637 #define netif_notice(priv, type, dev, fmt, args...) \
2638 netif_level(notice, priv, type, dev, fmt, ##args)
2639 #define netif_info(priv, type, dev, fmt, args...) \
2640 netif_level(info, priv, type, dev, fmt, ##args)
2641
2642 #if defined(DEBUG)
2643 #define netif_dbg(priv, type, dev, format, args...) \
2644 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2645 #elif defined(CONFIG_DYNAMIC_DEBUG)
2646 #define netif_dbg(priv, type, netdev, format, args...) \
2647 do { \
2648 if (netif_msg_##type(priv)) \
2649 dynamic_netdev_dbg(netdev, format, ##args); \
2650 } while (0)
2651 #else
2652 #define netif_dbg(priv, type, dev, format, args...) \
2653 ({ \
2654 if (0) \
2655 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2656 0; \
2657 })
2658 #endif
2659
2660 #if defined(VERBOSE_DEBUG)
2661 #define netif_vdbg netif_dbg
2662 #else
2663 #define netif_vdbg(priv, type, dev, format, args...) \
2664 ({ \
2665 if (0) \
2666 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2667 0; \
2668 })
2669 #endif
2670
2671 #endif /* __KERNEL__ */
2672
2673 #endif /* _LINUX_NETDEVICE_H */
This page took 0.085704 seconds and 6 git commands to generate.