powerpc: Convert last uses of __FUNCTION__ to __func__
[deliverable/linux.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22 enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */
28 AS_EXITING = __GFP_BITS_SHIFT + 5, /* final truncate in progress */
29 };
30
31 static inline void mapping_set_error(struct address_space *mapping, int error)
32 {
33 if (unlikely(error)) {
34 if (error == -ENOSPC)
35 set_bit(AS_ENOSPC, &mapping->flags);
36 else
37 set_bit(AS_EIO, &mapping->flags);
38 }
39 }
40
41 static inline void mapping_set_unevictable(struct address_space *mapping)
42 {
43 set_bit(AS_UNEVICTABLE, &mapping->flags);
44 }
45
46 static inline void mapping_clear_unevictable(struct address_space *mapping)
47 {
48 clear_bit(AS_UNEVICTABLE, &mapping->flags);
49 }
50
51 static inline int mapping_unevictable(struct address_space *mapping)
52 {
53 if (mapping)
54 return test_bit(AS_UNEVICTABLE, &mapping->flags);
55 return !!mapping;
56 }
57
58 static inline void mapping_set_balloon(struct address_space *mapping)
59 {
60 set_bit(AS_BALLOON_MAP, &mapping->flags);
61 }
62
63 static inline void mapping_clear_balloon(struct address_space *mapping)
64 {
65 clear_bit(AS_BALLOON_MAP, &mapping->flags);
66 }
67
68 static inline int mapping_balloon(struct address_space *mapping)
69 {
70 return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
71 }
72
73 static inline void mapping_set_exiting(struct address_space *mapping)
74 {
75 set_bit(AS_EXITING, &mapping->flags);
76 }
77
78 static inline int mapping_exiting(struct address_space *mapping)
79 {
80 return test_bit(AS_EXITING, &mapping->flags);
81 }
82
83 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
84 {
85 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
86 }
87
88 /*
89 * This is non-atomic. Only to be used before the mapping is activated.
90 * Probably needs a barrier...
91 */
92 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
93 {
94 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
95 (__force unsigned long)mask;
96 }
97
98 /*
99 * The page cache can done in larger chunks than
100 * one page, because it allows for more efficient
101 * throughput (it can then be mapped into user
102 * space in smaller chunks for same flexibility).
103 *
104 * Or rather, it _will_ be done in larger chunks.
105 */
106 #define PAGE_CACHE_SHIFT PAGE_SHIFT
107 #define PAGE_CACHE_SIZE PAGE_SIZE
108 #define PAGE_CACHE_MASK PAGE_MASK
109 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
110
111 #define page_cache_get(page) get_page(page)
112 #define page_cache_release(page) put_page(page)
113 void release_pages(struct page **pages, int nr, int cold);
114
115 /*
116 * speculatively take a reference to a page.
117 * If the page is free (_count == 0), then _count is untouched, and 0
118 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
119 *
120 * This function must be called inside the same rcu_read_lock() section as has
121 * been used to lookup the page in the pagecache radix-tree (or page table):
122 * this allows allocators to use a synchronize_rcu() to stabilize _count.
123 *
124 * Unless an RCU grace period has passed, the count of all pages coming out
125 * of the allocator must be considered unstable. page_count may return higher
126 * than expected, and put_page must be able to do the right thing when the
127 * page has been finished with, no matter what it is subsequently allocated
128 * for (because put_page is what is used here to drop an invalid speculative
129 * reference).
130 *
131 * This is the interesting part of the lockless pagecache (and lockless
132 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
133 * has the following pattern:
134 * 1. find page in radix tree
135 * 2. conditionally increment refcount
136 * 3. check the page is still in pagecache (if no, goto 1)
137 *
138 * Remove-side that cares about stability of _count (eg. reclaim) has the
139 * following (with tree_lock held for write):
140 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
141 * B. remove page from pagecache
142 * C. free the page
143 *
144 * There are 2 critical interleavings that matter:
145 * - 2 runs before A: in this case, A sees elevated refcount and bails out
146 * - A runs before 2: in this case, 2 sees zero refcount and retries;
147 * subsequently, B will complete and 1 will find no page, causing the
148 * lookup to return NULL.
149 *
150 * It is possible that between 1 and 2, the page is removed then the exact same
151 * page is inserted into the same position in pagecache. That's OK: the
152 * old find_get_page using tree_lock could equally have run before or after
153 * such a re-insertion, depending on order that locks are granted.
154 *
155 * Lookups racing against pagecache insertion isn't a big problem: either 1
156 * will find the page or it will not. Likewise, the old find_get_page could run
157 * either before the insertion or afterwards, depending on timing.
158 */
159 static inline int page_cache_get_speculative(struct page *page)
160 {
161 VM_BUG_ON(in_interrupt());
162
163 #ifdef CONFIG_TINY_RCU
164 # ifdef CONFIG_PREEMPT_COUNT
165 VM_BUG_ON(!in_atomic());
166 # endif
167 /*
168 * Preempt must be disabled here - we rely on rcu_read_lock doing
169 * this for us.
170 *
171 * Pagecache won't be truncated from interrupt context, so if we have
172 * found a page in the radix tree here, we have pinned its refcount by
173 * disabling preempt, and hence no need for the "speculative get" that
174 * SMP requires.
175 */
176 VM_BUG_ON_PAGE(page_count(page) == 0, page);
177 atomic_inc(&page->_count);
178
179 #else
180 if (unlikely(!get_page_unless_zero(page))) {
181 /*
182 * Either the page has been freed, or will be freed.
183 * In either case, retry here and the caller should
184 * do the right thing (see comments above).
185 */
186 return 0;
187 }
188 #endif
189 VM_BUG_ON_PAGE(PageTail(page), page);
190
191 return 1;
192 }
193
194 /*
195 * Same as above, but add instead of inc (could just be merged)
196 */
197 static inline int page_cache_add_speculative(struct page *page, int count)
198 {
199 VM_BUG_ON(in_interrupt());
200
201 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
202 # ifdef CONFIG_PREEMPT_COUNT
203 VM_BUG_ON(!in_atomic());
204 # endif
205 VM_BUG_ON_PAGE(page_count(page) == 0, page);
206 atomic_add(count, &page->_count);
207
208 #else
209 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
210 return 0;
211 #endif
212 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
213
214 return 1;
215 }
216
217 static inline int page_freeze_refs(struct page *page, int count)
218 {
219 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
220 }
221
222 static inline void page_unfreeze_refs(struct page *page, int count)
223 {
224 VM_BUG_ON_PAGE(page_count(page) != 0, page);
225 VM_BUG_ON(count == 0);
226
227 atomic_set(&page->_count, count);
228 }
229
230 #ifdef CONFIG_NUMA
231 extern struct page *__page_cache_alloc(gfp_t gfp);
232 #else
233 static inline struct page *__page_cache_alloc(gfp_t gfp)
234 {
235 return alloc_pages(gfp, 0);
236 }
237 #endif
238
239 static inline struct page *page_cache_alloc(struct address_space *x)
240 {
241 return __page_cache_alloc(mapping_gfp_mask(x));
242 }
243
244 static inline struct page *page_cache_alloc_cold(struct address_space *x)
245 {
246 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
247 }
248
249 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
250 {
251 return __page_cache_alloc(mapping_gfp_mask(x) |
252 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
253 }
254
255 typedef int filler_t(void *, struct page *);
256
257 pgoff_t page_cache_next_hole(struct address_space *mapping,
258 pgoff_t index, unsigned long max_scan);
259 pgoff_t page_cache_prev_hole(struct address_space *mapping,
260 pgoff_t index, unsigned long max_scan);
261
262 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
263 struct page *find_get_page(struct address_space *mapping, pgoff_t offset);
264 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
265 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset);
266 struct page *find_or_create_page(struct address_space *mapping, pgoff_t index,
267 gfp_t gfp_mask);
268 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
269 unsigned int nr_entries, struct page **entries,
270 pgoff_t *indices);
271 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
272 unsigned int nr_pages, struct page **pages);
273 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
274 unsigned int nr_pages, struct page **pages);
275 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
276 int tag, unsigned int nr_pages, struct page **pages);
277
278 struct page *grab_cache_page_write_begin(struct address_space *mapping,
279 pgoff_t index, unsigned flags);
280
281 /*
282 * Returns locked page at given index in given cache, creating it if needed.
283 */
284 static inline struct page *grab_cache_page(struct address_space *mapping,
285 pgoff_t index)
286 {
287 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
288 }
289
290 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
291 pgoff_t index);
292 extern struct page * read_cache_page(struct address_space *mapping,
293 pgoff_t index, filler_t *filler, void *data);
294 extern struct page * read_cache_page_gfp(struct address_space *mapping,
295 pgoff_t index, gfp_t gfp_mask);
296 extern int read_cache_pages(struct address_space *mapping,
297 struct list_head *pages, filler_t *filler, void *data);
298
299 static inline struct page *read_mapping_page(struct address_space *mapping,
300 pgoff_t index, void *data)
301 {
302 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
303 return read_cache_page(mapping, index, filler, data);
304 }
305
306 /*
307 * Return byte-offset into filesystem object for page.
308 */
309 static inline loff_t page_offset(struct page *page)
310 {
311 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
312 }
313
314 static inline loff_t page_file_offset(struct page *page)
315 {
316 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
317 }
318
319 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
320 unsigned long address);
321
322 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
323 unsigned long address)
324 {
325 pgoff_t pgoff;
326 if (unlikely(is_vm_hugetlb_page(vma)))
327 return linear_hugepage_index(vma, address);
328 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
329 pgoff += vma->vm_pgoff;
330 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
331 }
332
333 extern void __lock_page(struct page *page);
334 extern int __lock_page_killable(struct page *page);
335 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
336 unsigned int flags);
337 extern void unlock_page(struct page *page);
338
339 static inline void __set_page_locked(struct page *page)
340 {
341 __set_bit(PG_locked, &page->flags);
342 }
343
344 static inline void __clear_page_locked(struct page *page)
345 {
346 __clear_bit(PG_locked, &page->flags);
347 }
348
349 static inline int trylock_page(struct page *page)
350 {
351 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
352 }
353
354 /*
355 * lock_page may only be called if we have the page's inode pinned.
356 */
357 static inline void lock_page(struct page *page)
358 {
359 might_sleep();
360 if (!trylock_page(page))
361 __lock_page(page);
362 }
363
364 /*
365 * lock_page_killable is like lock_page but can be interrupted by fatal
366 * signals. It returns 0 if it locked the page and -EINTR if it was
367 * killed while waiting.
368 */
369 static inline int lock_page_killable(struct page *page)
370 {
371 might_sleep();
372 if (!trylock_page(page))
373 return __lock_page_killable(page);
374 return 0;
375 }
376
377 /*
378 * lock_page_or_retry - Lock the page, unless this would block and the
379 * caller indicated that it can handle a retry.
380 */
381 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
382 unsigned int flags)
383 {
384 might_sleep();
385 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
386 }
387
388 /*
389 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
390 * Never use this directly!
391 */
392 extern void wait_on_page_bit(struct page *page, int bit_nr);
393
394 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
395
396 static inline int wait_on_page_locked_killable(struct page *page)
397 {
398 if (PageLocked(page))
399 return wait_on_page_bit_killable(page, PG_locked);
400 return 0;
401 }
402
403 /*
404 * Wait for a page to be unlocked.
405 *
406 * This must be called with the caller "holding" the page,
407 * ie with increased "page->count" so that the page won't
408 * go away during the wait..
409 */
410 static inline void wait_on_page_locked(struct page *page)
411 {
412 if (PageLocked(page))
413 wait_on_page_bit(page, PG_locked);
414 }
415
416 /*
417 * Wait for a page to complete writeback
418 */
419 static inline void wait_on_page_writeback(struct page *page)
420 {
421 if (PageWriteback(page))
422 wait_on_page_bit(page, PG_writeback);
423 }
424
425 extern void end_page_writeback(struct page *page);
426 void wait_for_stable_page(struct page *page);
427
428 /*
429 * Add an arbitrary waiter to a page's wait queue
430 */
431 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
432
433 /*
434 * Fault a userspace page into pagetables. Return non-zero on a fault.
435 *
436 * This assumes that two userspace pages are always sufficient. That's
437 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
438 */
439 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
440 {
441 int ret;
442
443 if (unlikely(size == 0))
444 return 0;
445
446 /*
447 * Writing zeroes into userspace here is OK, because we know that if
448 * the zero gets there, we'll be overwriting it.
449 */
450 ret = __put_user(0, uaddr);
451 if (ret == 0) {
452 char __user *end = uaddr + size - 1;
453
454 /*
455 * If the page was already mapped, this will get a cache miss
456 * for sure, so try to avoid doing it.
457 */
458 if (((unsigned long)uaddr & PAGE_MASK) !=
459 ((unsigned long)end & PAGE_MASK))
460 ret = __put_user(0, end);
461 }
462 return ret;
463 }
464
465 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
466 {
467 volatile char c;
468 int ret;
469
470 if (unlikely(size == 0))
471 return 0;
472
473 ret = __get_user(c, uaddr);
474 if (ret == 0) {
475 const char __user *end = uaddr + size - 1;
476
477 if (((unsigned long)uaddr & PAGE_MASK) !=
478 ((unsigned long)end & PAGE_MASK)) {
479 ret = __get_user(c, end);
480 (void)c;
481 }
482 }
483 return ret;
484 }
485
486 /*
487 * Multipage variants of the above prefault helpers, useful if more than
488 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
489 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
490 * filemap.c hotpaths.
491 */
492 static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
493 {
494 int ret = 0;
495 char __user *end = uaddr + size - 1;
496
497 if (unlikely(size == 0))
498 return ret;
499
500 /*
501 * Writing zeroes into userspace here is OK, because we know that if
502 * the zero gets there, we'll be overwriting it.
503 */
504 while (uaddr <= end) {
505 ret = __put_user(0, uaddr);
506 if (ret != 0)
507 return ret;
508 uaddr += PAGE_SIZE;
509 }
510
511 /* Check whether the range spilled into the next page. */
512 if (((unsigned long)uaddr & PAGE_MASK) ==
513 ((unsigned long)end & PAGE_MASK))
514 ret = __put_user(0, end);
515
516 return ret;
517 }
518
519 static inline int fault_in_multipages_readable(const char __user *uaddr,
520 int size)
521 {
522 volatile char c;
523 int ret = 0;
524 const char __user *end = uaddr + size - 1;
525
526 if (unlikely(size == 0))
527 return ret;
528
529 while (uaddr <= end) {
530 ret = __get_user(c, uaddr);
531 if (ret != 0)
532 return ret;
533 uaddr += PAGE_SIZE;
534 }
535
536 /* Check whether the range spilled into the next page. */
537 if (((unsigned long)uaddr & PAGE_MASK) ==
538 ((unsigned long)end & PAGE_MASK)) {
539 ret = __get_user(c, end);
540 (void)c;
541 }
542
543 return ret;
544 }
545
546 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
547 pgoff_t index, gfp_t gfp_mask);
548 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
549 pgoff_t index, gfp_t gfp_mask);
550 extern void delete_from_page_cache(struct page *page);
551 extern void __delete_from_page_cache(struct page *page, void *shadow);
552 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
553
554 /*
555 * Like add_to_page_cache_locked, but used to add newly allocated pages:
556 * the page is new, so we can just run __set_page_locked() against it.
557 */
558 static inline int add_to_page_cache(struct page *page,
559 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
560 {
561 int error;
562
563 __set_page_locked(page);
564 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
565 if (unlikely(error))
566 __clear_page_locked(page);
567 return error;
568 }
569
570 #endif /* _LINUX_PAGEMAP_H */
This page took 0.041567 seconds and 5 git commands to generate.