x86/hw-breakpoints: Actually flush thread breakpoints in flush_thread().
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34
35 PERF_TYPE_MAX, /* non-ABI */
36 };
37
38 /*
39 * Generalized performance event event_id types, used by the
40 * attr.event_id parameter of the sys_perf_event_open()
41 * syscall:
42 */
43 enum perf_hw_id {
44 /*
45 * Common hardware events, generalized by the kernel:
46 */
47 PERF_COUNT_HW_CPU_CYCLES = 0,
48 PERF_COUNT_HW_INSTRUCTIONS = 1,
49 PERF_COUNT_HW_CACHE_REFERENCES = 2,
50 PERF_COUNT_HW_CACHE_MISSES = 3,
51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
52 PERF_COUNT_HW_BRANCH_MISSES = 5,
53 PERF_COUNT_HW_BUS_CYCLES = 6,
54
55 PERF_COUNT_HW_MAX, /* non-ABI */
56 };
57
58 /*
59 * Generalized hardware cache events:
60 *
61 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62 * { read, write, prefetch } x
63 * { accesses, misses }
64 */
65 enum perf_hw_cache_id {
66 PERF_COUNT_HW_CACHE_L1D = 0,
67 PERF_COUNT_HW_CACHE_L1I = 1,
68 PERF_COUNT_HW_CACHE_LL = 2,
69 PERF_COUNT_HW_CACHE_DTLB = 3,
70 PERF_COUNT_HW_CACHE_ITLB = 4,
71 PERF_COUNT_HW_CACHE_BPU = 5,
72
73 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
74 };
75
76 enum perf_hw_cache_op_id {
77 PERF_COUNT_HW_CACHE_OP_READ = 0,
78 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
79 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
80
81 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
82 };
83
84 enum perf_hw_cache_op_result_id {
85 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
86 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
87
88 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
89 };
90
91 /*
92 * Special "software" events provided by the kernel, even if the hardware
93 * does not support performance events. These events measure various
94 * physical and sw events of the kernel (and allow the profiling of them as
95 * well):
96 */
97 enum perf_sw_ids {
98 PERF_COUNT_SW_CPU_CLOCK = 0,
99 PERF_COUNT_SW_TASK_CLOCK = 1,
100 PERF_COUNT_SW_PAGE_FAULTS = 2,
101 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
102 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
103 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
104 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
105
106 PERF_COUNT_SW_MAX, /* non-ABI */
107 };
108
109 /*
110 * Bits that can be set in attr.sample_type to request information
111 * in the overflow packets.
112 */
113 enum perf_event_sample_format {
114 PERF_SAMPLE_IP = 1U << 0,
115 PERF_SAMPLE_TID = 1U << 1,
116 PERF_SAMPLE_TIME = 1U << 2,
117 PERF_SAMPLE_ADDR = 1U << 3,
118 PERF_SAMPLE_READ = 1U << 4,
119 PERF_SAMPLE_CALLCHAIN = 1U << 5,
120 PERF_SAMPLE_ID = 1U << 6,
121 PERF_SAMPLE_CPU = 1U << 7,
122 PERF_SAMPLE_PERIOD = 1U << 8,
123 PERF_SAMPLE_STREAM_ID = 1U << 9,
124 PERF_SAMPLE_RAW = 1U << 10,
125
126 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
127 };
128
129 /*
130 * The format of the data returned by read() on a perf event fd,
131 * as specified by attr.read_format:
132 *
133 * struct read_format {
134 * { u64 value;
135 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
136 * { u64 time_running; } && PERF_FORMAT_RUNNING
137 * { u64 id; } && PERF_FORMAT_ID
138 * } && !PERF_FORMAT_GROUP
139 *
140 * { u64 nr;
141 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
142 * { u64 time_running; } && PERF_FORMAT_RUNNING
143 * { u64 value;
144 * { u64 id; } && PERF_FORMAT_ID
145 * } cntr[nr];
146 * } && PERF_FORMAT_GROUP
147 * };
148 */
149 enum perf_event_read_format {
150 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
151 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
152 PERF_FORMAT_ID = 1U << 2,
153 PERF_FORMAT_GROUP = 1U << 3,
154
155 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
156 };
157
158 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
159
160 /*
161 * Hardware event_id to monitor via a performance monitoring event:
162 */
163 struct perf_event_attr {
164
165 /*
166 * Major type: hardware/software/tracepoint/etc.
167 */
168 __u32 type;
169
170 /*
171 * Size of the attr structure, for fwd/bwd compat.
172 */
173 __u32 size;
174
175 /*
176 * Type specific configuration information.
177 */
178 __u64 config;
179
180 union {
181 __u64 sample_period;
182 __u64 sample_freq;
183 };
184
185 __u64 sample_type;
186 __u64 read_format;
187
188 __u64 disabled : 1, /* off by default */
189 inherit : 1, /* children inherit it */
190 pinned : 1, /* must always be on PMU */
191 exclusive : 1, /* only group on PMU */
192 exclude_user : 1, /* don't count user */
193 exclude_kernel : 1, /* ditto kernel */
194 exclude_hv : 1, /* ditto hypervisor */
195 exclude_idle : 1, /* don't count when idle */
196 mmap : 1, /* include mmap data */
197 comm : 1, /* include comm data */
198 freq : 1, /* use freq, not period */
199 inherit_stat : 1, /* per task counts */
200 enable_on_exec : 1, /* next exec enables */
201 task : 1, /* trace fork/exit */
202 watermark : 1, /* wakeup_watermark */
203
204 __reserved_1 : 49;
205
206 union {
207 __u32 wakeup_events; /* wakeup every n events */
208 __u32 wakeup_watermark; /* bytes before wakeup */
209 };
210 __u32 __reserved_2;
211
212 __u64 __reserved_3;
213 };
214
215 /*
216 * Ioctls that can be done on a perf event fd:
217 */
218 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
219 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
220 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
221 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
222 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, u64)
223 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
224 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
225
226 enum perf_event_ioc_flags {
227 PERF_IOC_FLAG_GROUP = 1U << 0,
228 };
229
230 /*
231 * Structure of the page that can be mapped via mmap
232 */
233 struct perf_event_mmap_page {
234 __u32 version; /* version number of this structure */
235 __u32 compat_version; /* lowest version this is compat with */
236
237 /*
238 * Bits needed to read the hw events in user-space.
239 *
240 * u32 seq;
241 * s64 count;
242 *
243 * do {
244 * seq = pc->lock;
245 *
246 * barrier()
247 * if (pc->index) {
248 * count = pmc_read(pc->index - 1);
249 * count += pc->offset;
250 * } else
251 * goto regular_read;
252 *
253 * barrier();
254 * } while (pc->lock != seq);
255 *
256 * NOTE: for obvious reason this only works on self-monitoring
257 * processes.
258 */
259 __u32 lock; /* seqlock for synchronization */
260 __u32 index; /* hardware event identifier */
261 __s64 offset; /* add to hardware event value */
262 __u64 time_enabled; /* time event active */
263 __u64 time_running; /* time event on cpu */
264
265 /*
266 * Hole for extension of the self monitor capabilities
267 */
268
269 __u64 __reserved[123]; /* align to 1k */
270
271 /*
272 * Control data for the mmap() data buffer.
273 *
274 * User-space reading the @data_head value should issue an rmb(), on
275 * SMP capable platforms, after reading this value -- see
276 * perf_event_wakeup().
277 *
278 * When the mapping is PROT_WRITE the @data_tail value should be
279 * written by userspace to reflect the last read data. In this case
280 * the kernel will not over-write unread data.
281 */
282 __u64 data_head; /* head in the data section */
283 __u64 data_tail; /* user-space written tail */
284 };
285
286 #define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0)
287 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
288 #define PERF_RECORD_MISC_KERNEL (1 << 0)
289 #define PERF_RECORD_MISC_USER (2 << 0)
290 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
291
292 struct perf_event_header {
293 __u32 type;
294 __u16 misc;
295 __u16 size;
296 };
297
298 enum perf_event_type {
299
300 /*
301 * The MMAP events record the PROT_EXEC mappings so that we can
302 * correlate userspace IPs to code. They have the following structure:
303 *
304 * struct {
305 * struct perf_event_header header;
306 *
307 * u32 pid, tid;
308 * u64 addr;
309 * u64 len;
310 * u64 pgoff;
311 * char filename[];
312 * };
313 */
314 PERF_RECORD_MMAP = 1,
315
316 /*
317 * struct {
318 * struct perf_event_header header;
319 * u64 id;
320 * u64 lost;
321 * };
322 */
323 PERF_RECORD_LOST = 2,
324
325 /*
326 * struct {
327 * struct perf_event_header header;
328 *
329 * u32 pid, tid;
330 * char comm[];
331 * };
332 */
333 PERF_RECORD_COMM = 3,
334
335 /*
336 * struct {
337 * struct perf_event_header header;
338 * u32 pid, ppid;
339 * u32 tid, ptid;
340 * u64 time;
341 * };
342 */
343 PERF_RECORD_EXIT = 4,
344
345 /*
346 * struct {
347 * struct perf_event_header header;
348 * u64 time;
349 * u64 id;
350 * u64 stream_id;
351 * };
352 */
353 PERF_RECORD_THROTTLE = 5,
354 PERF_RECORD_UNTHROTTLE = 6,
355
356 /*
357 * struct {
358 * struct perf_event_header header;
359 * u32 pid, ppid;
360 * u32 tid, ptid;
361 * u64 time;
362 * };
363 */
364 PERF_RECORD_FORK = 7,
365
366 /*
367 * struct {
368 * struct perf_event_header header;
369 * u32 pid, tid;
370 *
371 * struct read_format values;
372 * };
373 */
374 PERF_RECORD_READ = 8,
375
376 /*
377 * struct {
378 * struct perf_event_header header;
379 *
380 * { u64 ip; } && PERF_SAMPLE_IP
381 * { u32 pid, tid; } && PERF_SAMPLE_TID
382 * { u64 time; } && PERF_SAMPLE_TIME
383 * { u64 addr; } && PERF_SAMPLE_ADDR
384 * { u64 id; } && PERF_SAMPLE_ID
385 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
386 * { u32 cpu, res; } && PERF_SAMPLE_CPU
387 * { u64 period; } && PERF_SAMPLE_PERIOD
388 *
389 * { struct read_format values; } && PERF_SAMPLE_READ
390 *
391 * { u64 nr,
392 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
393 *
394 * #
395 * # The RAW record below is opaque data wrt the ABI
396 * #
397 * # That is, the ABI doesn't make any promises wrt to
398 * # the stability of its content, it may vary depending
399 * # on event, hardware, kernel version and phase of
400 * # the moon.
401 * #
402 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
403 * #
404 *
405 * { u32 size;
406 * char data[size];}&& PERF_SAMPLE_RAW
407 * };
408 */
409 PERF_RECORD_SAMPLE = 9,
410
411 PERF_RECORD_MAX, /* non-ABI */
412 };
413
414 enum perf_callchain_context {
415 PERF_CONTEXT_HV = (__u64)-32,
416 PERF_CONTEXT_KERNEL = (__u64)-128,
417 PERF_CONTEXT_USER = (__u64)-512,
418
419 PERF_CONTEXT_GUEST = (__u64)-2048,
420 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
421 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
422
423 PERF_CONTEXT_MAX = (__u64)-4095,
424 };
425
426 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
427 #define PERF_FLAG_FD_OUTPUT (1U << 1)
428
429 #ifdef __KERNEL__
430 /*
431 * Kernel-internal data types and definitions:
432 */
433
434 #ifdef CONFIG_PERF_EVENTS
435 # include <asm/perf_event.h>
436 #endif
437
438 #include <linux/list.h>
439 #include <linux/mutex.h>
440 #include <linux/rculist.h>
441 #include <linux/rcupdate.h>
442 #include <linux/spinlock.h>
443 #include <linux/hrtimer.h>
444 #include <linux/fs.h>
445 #include <linux/pid_namespace.h>
446 #include <linux/workqueue.h>
447 #include <asm/atomic.h>
448
449 #define PERF_MAX_STACK_DEPTH 255
450
451 struct perf_callchain_entry {
452 __u64 nr;
453 __u64 ip[PERF_MAX_STACK_DEPTH];
454 };
455
456 struct perf_raw_record {
457 u32 size;
458 void *data;
459 };
460
461 struct task_struct;
462
463 /**
464 * struct hw_perf_event - performance event hardware details:
465 */
466 struct hw_perf_event {
467 #ifdef CONFIG_PERF_EVENTS
468 union {
469 struct { /* hardware */
470 u64 config;
471 unsigned long config_base;
472 unsigned long event_base;
473 int idx;
474 };
475 union { /* software */
476 atomic64_t count;
477 struct hrtimer hrtimer;
478 };
479 };
480 atomic64_t prev_count;
481 u64 sample_period;
482 u64 last_period;
483 atomic64_t period_left;
484 u64 interrupts;
485
486 u64 freq_count;
487 u64 freq_interrupts;
488 u64 freq_stamp;
489 #endif
490 };
491
492 struct perf_event;
493
494 /**
495 * struct pmu - generic performance monitoring unit
496 */
497 struct pmu {
498 int (*enable) (struct perf_event *event);
499 void (*disable) (struct perf_event *event);
500 void (*read) (struct perf_event *event);
501 void (*unthrottle) (struct perf_event *event);
502 };
503
504 /**
505 * enum perf_event_active_state - the states of a event
506 */
507 enum perf_event_active_state {
508 PERF_EVENT_STATE_ERROR = -2,
509 PERF_EVENT_STATE_OFF = -1,
510 PERF_EVENT_STATE_INACTIVE = 0,
511 PERF_EVENT_STATE_ACTIVE = 1,
512 };
513
514 struct file;
515
516 struct perf_mmap_data {
517 struct rcu_head rcu_head;
518 #ifdef CONFIG_PERF_USE_VMALLOC
519 struct work_struct work;
520 #endif
521 int data_order;
522 int nr_pages; /* nr of data pages */
523 int writable; /* are we writable */
524 int nr_locked; /* nr pages mlocked */
525
526 atomic_t poll; /* POLL_ for wakeups */
527 atomic_t events; /* event_id limit */
528
529 atomic_long_t head; /* write position */
530 atomic_long_t done_head; /* completed head */
531
532 atomic_t lock; /* concurrent writes */
533 atomic_t wakeup; /* needs a wakeup */
534 atomic_t lost; /* nr records lost */
535
536 long watermark; /* wakeup watermark */
537
538 struct perf_event_mmap_page *user_page;
539 void *data_pages[0];
540 };
541
542 struct perf_pending_entry {
543 struct perf_pending_entry *next;
544 void (*func)(struct perf_pending_entry *);
545 };
546
547 /**
548 * struct perf_event - performance event kernel representation:
549 */
550 struct perf_event {
551 #ifdef CONFIG_PERF_EVENTS
552 struct list_head group_entry;
553 struct list_head event_entry;
554 struct list_head sibling_list;
555 int nr_siblings;
556 struct perf_event *group_leader;
557 struct perf_event *output;
558 const struct pmu *pmu;
559
560 enum perf_event_active_state state;
561 atomic64_t count;
562
563 /*
564 * These are the total time in nanoseconds that the event
565 * has been enabled (i.e. eligible to run, and the task has
566 * been scheduled in, if this is a per-task event)
567 * and running (scheduled onto the CPU), respectively.
568 *
569 * They are computed from tstamp_enabled, tstamp_running and
570 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
571 */
572 u64 total_time_enabled;
573 u64 total_time_running;
574
575 /*
576 * These are timestamps used for computing total_time_enabled
577 * and total_time_running when the event is in INACTIVE or
578 * ACTIVE state, measured in nanoseconds from an arbitrary point
579 * in time.
580 * tstamp_enabled: the notional time when the event was enabled
581 * tstamp_running: the notional time when the event was scheduled on
582 * tstamp_stopped: in INACTIVE state, the notional time when the
583 * event was scheduled off.
584 */
585 u64 tstamp_enabled;
586 u64 tstamp_running;
587 u64 tstamp_stopped;
588
589 struct perf_event_attr attr;
590 struct hw_perf_event hw;
591
592 struct perf_event_context *ctx;
593 struct file *filp;
594
595 /*
596 * These accumulate total time (in nanoseconds) that children
597 * events have been enabled and running, respectively.
598 */
599 atomic64_t child_total_time_enabled;
600 atomic64_t child_total_time_running;
601
602 /*
603 * Protect attach/detach and child_list:
604 */
605 struct mutex child_mutex;
606 struct list_head child_list;
607 struct perf_event *parent;
608
609 int oncpu;
610 int cpu;
611
612 struct list_head owner_entry;
613 struct task_struct *owner;
614
615 /* mmap bits */
616 struct mutex mmap_mutex;
617 atomic_t mmap_count;
618 struct perf_mmap_data *data;
619
620 /* poll related */
621 wait_queue_head_t waitq;
622 struct fasync_struct *fasync;
623
624 /* delayed work for NMIs and such */
625 int pending_wakeup;
626 int pending_kill;
627 int pending_disable;
628 struct perf_pending_entry pending;
629
630 atomic_t event_limit;
631
632 void (*destroy)(struct perf_event *);
633 struct rcu_head rcu_head;
634
635 struct pid_namespace *ns;
636 u64 id;
637
638 #ifdef CONFIG_EVENT_PROFILE
639 struct event_filter *filter;
640 #endif
641
642 #endif /* CONFIG_PERF_EVENTS */
643 };
644
645 /**
646 * struct perf_event_context - event context structure
647 *
648 * Used as a container for task events and CPU events as well:
649 */
650 struct perf_event_context {
651 /*
652 * Protect the states of the events in the list,
653 * nr_active, and the list:
654 */
655 spinlock_t lock;
656 /*
657 * Protect the list of events. Locking either mutex or lock
658 * is sufficient to ensure the list doesn't change; to change
659 * the list you need to lock both the mutex and the spinlock.
660 */
661 struct mutex mutex;
662
663 struct list_head group_list;
664 struct list_head event_list;
665 int nr_events;
666 int nr_active;
667 int is_active;
668 int nr_stat;
669 atomic_t refcount;
670 struct task_struct *task;
671
672 /*
673 * Context clock, runs when context enabled.
674 */
675 u64 time;
676 u64 timestamp;
677
678 /*
679 * These fields let us detect when two contexts have both
680 * been cloned (inherited) from a common ancestor.
681 */
682 struct perf_event_context *parent_ctx;
683 u64 parent_gen;
684 u64 generation;
685 int pin_count;
686 struct rcu_head rcu_head;
687 };
688
689 /**
690 * struct perf_event_cpu_context - per cpu event context structure
691 */
692 struct perf_cpu_context {
693 struct perf_event_context ctx;
694 struct perf_event_context *task_ctx;
695 int active_oncpu;
696 int max_pertask;
697 int exclusive;
698
699 /*
700 * Recursion avoidance:
701 *
702 * task, softirq, irq, nmi context
703 */
704 int recursion[4];
705 };
706
707 struct perf_output_handle {
708 struct perf_event *event;
709 struct perf_mmap_data *data;
710 unsigned long head;
711 unsigned long offset;
712 int nmi;
713 int sample;
714 int locked;
715 unsigned long flags;
716 };
717
718 #ifdef CONFIG_PERF_EVENTS
719
720 /*
721 * Set by architecture code:
722 */
723 extern int perf_max_events;
724
725 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
726
727 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
728 extern void perf_event_task_sched_out(struct task_struct *task,
729 struct task_struct *next, int cpu);
730 extern void perf_event_task_tick(struct task_struct *task, int cpu);
731 extern int perf_event_init_task(struct task_struct *child);
732 extern void perf_event_exit_task(struct task_struct *child);
733 extern void perf_event_free_task(struct task_struct *task);
734 extern void set_perf_event_pending(void);
735 extern void perf_event_do_pending(void);
736 extern void perf_event_print_debug(void);
737 extern void __perf_disable(void);
738 extern bool __perf_enable(void);
739 extern void perf_disable(void);
740 extern void perf_enable(void);
741 extern int perf_event_task_disable(void);
742 extern int perf_event_task_enable(void);
743 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
744 struct perf_cpu_context *cpuctx,
745 struct perf_event_context *ctx, int cpu);
746 extern void perf_event_update_userpage(struct perf_event *event);
747 extern int perf_event_release_kernel(struct perf_event *event);
748 extern struct perf_event *
749 perf_event_create_kernel_counter(struct perf_event_attr *attr,
750 int cpu,
751 pid_t pid);
752 extern u64 perf_event_read_value(struct perf_event *event);
753
754 struct perf_sample_data {
755 u64 type;
756
757 u64 ip;
758 struct {
759 u32 pid;
760 u32 tid;
761 } tid_entry;
762 u64 time;
763 u64 addr;
764 u64 id;
765 u64 stream_id;
766 struct {
767 u32 cpu;
768 u32 reserved;
769 } cpu_entry;
770 u64 period;
771 struct perf_callchain_entry *callchain;
772 struct perf_raw_record *raw;
773 };
774
775 extern void perf_output_sample(struct perf_output_handle *handle,
776 struct perf_event_header *header,
777 struct perf_sample_data *data,
778 struct perf_event *event);
779 extern void perf_prepare_sample(struct perf_event_header *header,
780 struct perf_sample_data *data,
781 struct perf_event *event,
782 struct pt_regs *regs);
783
784 extern int perf_event_overflow(struct perf_event *event, int nmi,
785 struct perf_sample_data *data,
786 struct pt_regs *regs);
787
788 /*
789 * Return 1 for a software event, 0 for a hardware event
790 */
791 static inline int is_software_event(struct perf_event *event)
792 {
793 return (event->attr.type != PERF_TYPE_RAW) &&
794 (event->attr.type != PERF_TYPE_HARDWARE) &&
795 (event->attr.type != PERF_TYPE_HW_CACHE);
796 }
797
798 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
799
800 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
801
802 static inline void
803 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
804 {
805 if (atomic_read(&perf_swevent_enabled[event_id]))
806 __perf_sw_event(event_id, nr, nmi, regs, addr);
807 }
808
809 extern void __perf_event_mmap(struct vm_area_struct *vma);
810
811 static inline void perf_event_mmap(struct vm_area_struct *vma)
812 {
813 if (vma->vm_flags & VM_EXEC)
814 __perf_event_mmap(vma);
815 }
816
817 extern void perf_event_comm(struct task_struct *tsk);
818 extern void perf_event_fork(struct task_struct *tsk);
819
820 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
821
822 extern int sysctl_perf_event_paranoid;
823 extern int sysctl_perf_event_mlock;
824 extern int sysctl_perf_event_sample_rate;
825
826 extern void perf_event_init(void);
827 extern void perf_tp_event(int event_id, u64 addr, u64 count,
828 void *record, int entry_size);
829
830 #ifndef perf_misc_flags
831 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
832 PERF_RECORD_MISC_KERNEL)
833 #define perf_instruction_pointer(regs) instruction_pointer(regs)
834 #endif
835
836 extern int perf_output_begin(struct perf_output_handle *handle,
837 struct perf_event *event, unsigned int size,
838 int nmi, int sample);
839 extern void perf_output_end(struct perf_output_handle *handle);
840 extern void perf_output_copy(struct perf_output_handle *handle,
841 const void *buf, unsigned int len);
842 #else
843 static inline void
844 perf_event_task_sched_in(struct task_struct *task, int cpu) { }
845 static inline void
846 perf_event_task_sched_out(struct task_struct *task,
847 struct task_struct *next, int cpu) { }
848 static inline void
849 perf_event_task_tick(struct task_struct *task, int cpu) { }
850 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
851 static inline void perf_event_exit_task(struct task_struct *child) { }
852 static inline void perf_event_free_task(struct task_struct *task) { }
853 static inline void perf_event_do_pending(void) { }
854 static inline void perf_event_print_debug(void) { }
855 static inline void perf_disable(void) { }
856 static inline void perf_enable(void) { }
857 static inline int perf_event_task_disable(void) { return -EINVAL; }
858 static inline int perf_event_task_enable(void) { return -EINVAL; }
859
860 static inline void
861 perf_sw_event(u32 event_id, u64 nr, int nmi,
862 struct pt_regs *regs, u64 addr) { }
863
864 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
865 static inline void perf_event_comm(struct task_struct *tsk) { }
866 static inline void perf_event_fork(struct task_struct *tsk) { }
867 static inline void perf_event_init(void) { }
868
869 #endif
870
871 #define perf_output_put(handle, x) \
872 perf_output_copy((handle), &(x), sizeof(x))
873
874 #endif /* __KERNEL__ */
875 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.04906 seconds and 6 git commands to generate.