Merge tag 'pm-4.7-rc1-more' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 /**
96 * struct hw_perf_event - performance event hardware details:
97 */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 union {
101 struct { /* hardware */
102 u64 config;
103 u64 last_tag;
104 unsigned long config_base;
105 unsigned long event_base;
106 int event_base_rdpmc;
107 int idx;
108 int last_cpu;
109 int flags;
110
111 struct hw_perf_event_extra extra_reg;
112 struct hw_perf_event_extra branch_reg;
113 };
114 struct { /* software */
115 struct hrtimer hrtimer;
116 };
117 struct { /* tracepoint */
118 /* for tp_event->class */
119 struct list_head tp_list;
120 };
121 struct { /* intel_cqm */
122 int cqm_state;
123 u32 cqm_rmid;
124 int is_group_event;
125 struct list_head cqm_events_entry;
126 struct list_head cqm_groups_entry;
127 struct list_head cqm_group_entry;
128 };
129 struct { /* itrace */
130 int itrace_started;
131 };
132 struct { /* amd_power */
133 u64 pwr_acc;
134 u64 ptsc;
135 };
136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
137 struct { /* breakpoint */
138 /*
139 * Crufty hack to avoid the chicken and egg
140 * problem hw_breakpoint has with context
141 * creation and event initalization.
142 */
143 struct arch_hw_breakpoint info;
144 struct list_head bp_list;
145 };
146 #endif
147 };
148 /*
149 * If the event is a per task event, this will point to the task in
150 * question. See the comment in perf_event_alloc().
151 */
152 struct task_struct *target;
153
154 /*
155 * PMU would store hardware filter configuration
156 * here.
157 */
158 void *addr_filters;
159
160 /* Last sync'ed generation of filters */
161 unsigned long addr_filters_gen;
162
163 /*
164 * hw_perf_event::state flags; used to track the PERF_EF_* state.
165 */
166 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
167 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
168 #define PERF_HES_ARCH 0x04
169
170 int state;
171
172 /*
173 * The last observed hardware counter value, updated with a
174 * local64_cmpxchg() such that pmu::read() can be called nested.
175 */
176 local64_t prev_count;
177
178 /*
179 * The period to start the next sample with.
180 */
181 u64 sample_period;
182
183 /*
184 * The period we started this sample with.
185 */
186 u64 last_period;
187
188 /*
189 * However much is left of the current period; note that this is
190 * a full 64bit value and allows for generation of periods longer
191 * than hardware might allow.
192 */
193 local64_t period_left;
194
195 /*
196 * State for throttling the event, see __perf_event_overflow() and
197 * perf_adjust_freq_unthr_context().
198 */
199 u64 interrupts_seq;
200 u64 interrupts;
201
202 /*
203 * State for freq target events, see __perf_event_overflow() and
204 * perf_adjust_freq_unthr_context().
205 */
206 u64 freq_time_stamp;
207 u64 freq_count_stamp;
208 #endif
209 };
210
211 struct perf_event;
212
213 /*
214 * Common implementation detail of pmu::{start,commit,cancel}_txn
215 */
216 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
217 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
218
219 /**
220 * pmu::capabilities flags
221 */
222 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
223 #define PERF_PMU_CAP_NO_NMI 0x02
224 #define PERF_PMU_CAP_AUX_NO_SG 0x04
225 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
226 #define PERF_PMU_CAP_EXCLUSIVE 0x10
227 #define PERF_PMU_CAP_ITRACE 0x20
228 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
229
230 /**
231 * struct pmu - generic performance monitoring unit
232 */
233 struct pmu {
234 struct list_head entry;
235
236 struct module *module;
237 struct device *dev;
238 const struct attribute_group **attr_groups;
239 const char *name;
240 int type;
241
242 /*
243 * various common per-pmu feature flags
244 */
245 int capabilities;
246
247 int * __percpu pmu_disable_count;
248 struct perf_cpu_context * __percpu pmu_cpu_context;
249 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
250 int task_ctx_nr;
251 int hrtimer_interval_ms;
252
253 /* number of address filters this PMU can do */
254 unsigned int nr_addr_filters;
255
256 /*
257 * Fully disable/enable this PMU, can be used to protect from the PMI
258 * as well as for lazy/batch writing of the MSRs.
259 */
260 void (*pmu_enable) (struct pmu *pmu); /* optional */
261 void (*pmu_disable) (struct pmu *pmu); /* optional */
262
263 /*
264 * Try and initialize the event for this PMU.
265 *
266 * Returns:
267 * -ENOENT -- @event is not for this PMU
268 *
269 * -ENODEV -- @event is for this PMU but PMU not present
270 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
271 * -EINVAL -- @event is for this PMU but @event is not valid
272 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
273 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
274 *
275 * 0 -- @event is for this PMU and valid
276 *
277 * Other error return values are allowed.
278 */
279 int (*event_init) (struct perf_event *event);
280
281 /*
282 * Notification that the event was mapped or unmapped. Called
283 * in the context of the mapping task.
284 */
285 void (*event_mapped) (struct perf_event *event); /*optional*/
286 void (*event_unmapped) (struct perf_event *event); /*optional*/
287
288 /*
289 * Flags for ->add()/->del()/ ->start()/->stop(). There are
290 * matching hw_perf_event::state flags.
291 */
292 #define PERF_EF_START 0x01 /* start the counter when adding */
293 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
294 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
295
296 /*
297 * Adds/Removes a counter to/from the PMU, can be done inside a
298 * transaction, see the ->*_txn() methods.
299 *
300 * The add/del callbacks will reserve all hardware resources required
301 * to service the event, this includes any counter constraint
302 * scheduling etc.
303 *
304 * Called with IRQs disabled and the PMU disabled on the CPU the event
305 * is on.
306 *
307 * ->add() called without PERF_EF_START should result in the same state
308 * as ->add() followed by ->stop().
309 *
310 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
311 * ->stop() that must deal with already being stopped without
312 * PERF_EF_UPDATE.
313 */
314 int (*add) (struct perf_event *event, int flags);
315 void (*del) (struct perf_event *event, int flags);
316
317 /*
318 * Starts/Stops a counter present on the PMU.
319 *
320 * The PMI handler should stop the counter when perf_event_overflow()
321 * returns !0. ->start() will be used to continue.
322 *
323 * Also used to change the sample period.
324 *
325 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 * is on -- will be called from NMI context with the PMU generates
327 * NMIs.
328 *
329 * ->stop() with PERF_EF_UPDATE will read the counter and update
330 * period/count values like ->read() would.
331 *
332 * ->start() with PERF_EF_RELOAD will reprogram the the counter
333 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
334 */
335 void (*start) (struct perf_event *event, int flags);
336 void (*stop) (struct perf_event *event, int flags);
337
338 /*
339 * Updates the counter value of the event.
340 *
341 * For sampling capable PMUs this will also update the software period
342 * hw_perf_event::period_left field.
343 */
344 void (*read) (struct perf_event *event);
345
346 /*
347 * Group events scheduling is treated as a transaction, add
348 * group events as a whole and perform one schedulability test.
349 * If the test fails, roll back the whole group
350 *
351 * Start the transaction, after this ->add() doesn't need to
352 * do schedulability tests.
353 *
354 * Optional.
355 */
356 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
357 /*
358 * If ->start_txn() disabled the ->add() schedulability test
359 * then ->commit_txn() is required to perform one. On success
360 * the transaction is closed. On error the transaction is kept
361 * open until ->cancel_txn() is called.
362 *
363 * Optional.
364 */
365 int (*commit_txn) (struct pmu *pmu);
366 /*
367 * Will cancel the transaction, assumes ->del() is called
368 * for each successful ->add() during the transaction.
369 *
370 * Optional.
371 */
372 void (*cancel_txn) (struct pmu *pmu);
373
374 /*
375 * Will return the value for perf_event_mmap_page::index for this event,
376 * if no implementation is provided it will default to: event->hw.idx + 1.
377 */
378 int (*event_idx) (struct perf_event *event); /*optional */
379
380 /*
381 * context-switches callback
382 */
383 void (*sched_task) (struct perf_event_context *ctx,
384 bool sched_in);
385 /*
386 * PMU specific data size
387 */
388 size_t task_ctx_size;
389
390
391 /*
392 * Return the count value for a counter.
393 */
394 u64 (*count) (struct perf_event *event); /*optional*/
395
396 /*
397 * Set up pmu-private data structures for an AUX area
398 */
399 void *(*setup_aux) (int cpu, void **pages,
400 int nr_pages, bool overwrite);
401 /* optional */
402
403 /*
404 * Free pmu-private AUX data structures
405 */
406 void (*free_aux) (void *aux); /* optional */
407
408 /*
409 * Validate address range filters: make sure the HW supports the
410 * requested configuration and number of filters; return 0 if the
411 * supplied filters are valid, -errno otherwise.
412 *
413 * Runs in the context of the ioctl()ing process and is not serialized
414 * with the rest of the PMU callbacks.
415 */
416 int (*addr_filters_validate) (struct list_head *filters);
417 /* optional */
418
419 /*
420 * Synchronize address range filter configuration:
421 * translate hw-agnostic filters into hardware configuration in
422 * event::hw::addr_filters.
423 *
424 * Runs as a part of filter sync sequence that is done in ->start()
425 * callback by calling perf_event_addr_filters_sync().
426 *
427 * May (and should) traverse event::addr_filters::list, for which its
428 * caller provides necessary serialization.
429 */
430 void (*addr_filters_sync) (struct perf_event *event);
431 /* optional */
432
433 /*
434 * Filter events for PMU-specific reasons.
435 */
436 int (*filter_match) (struct perf_event *event); /* optional */
437 };
438
439 /**
440 * struct perf_addr_filter - address range filter definition
441 * @entry: event's filter list linkage
442 * @inode: object file's inode for file-based filters
443 * @offset: filter range offset
444 * @size: filter range size
445 * @range: 1: range, 0: address
446 * @filter: 1: filter/start, 0: stop
447 *
448 * This is a hardware-agnostic filter configuration as specified by the user.
449 */
450 struct perf_addr_filter {
451 struct list_head entry;
452 struct inode *inode;
453 unsigned long offset;
454 unsigned long size;
455 unsigned int range : 1,
456 filter : 1;
457 };
458
459 /**
460 * struct perf_addr_filters_head - container for address range filters
461 * @list: list of filters for this event
462 * @lock: spinlock that serializes accesses to the @list and event's
463 * (and its children's) filter generations.
464 *
465 * A child event will use parent's @list (and therefore @lock), so they are
466 * bundled together; see perf_event_addr_filters().
467 */
468 struct perf_addr_filters_head {
469 struct list_head list;
470 raw_spinlock_t lock;
471 };
472
473 /**
474 * enum perf_event_active_state - the states of a event
475 */
476 enum perf_event_active_state {
477 PERF_EVENT_STATE_DEAD = -4,
478 PERF_EVENT_STATE_EXIT = -3,
479 PERF_EVENT_STATE_ERROR = -2,
480 PERF_EVENT_STATE_OFF = -1,
481 PERF_EVENT_STATE_INACTIVE = 0,
482 PERF_EVENT_STATE_ACTIVE = 1,
483 };
484
485 struct file;
486 struct perf_sample_data;
487
488 typedef void (*perf_overflow_handler_t)(struct perf_event *,
489 struct perf_sample_data *,
490 struct pt_regs *regs);
491
492 enum perf_group_flag {
493 PERF_GROUP_SOFTWARE = 0x1,
494 };
495
496 #define SWEVENT_HLIST_BITS 8
497 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
498
499 struct swevent_hlist {
500 struct hlist_head heads[SWEVENT_HLIST_SIZE];
501 struct rcu_head rcu_head;
502 };
503
504 #define PERF_ATTACH_CONTEXT 0x01
505 #define PERF_ATTACH_GROUP 0x02
506 #define PERF_ATTACH_TASK 0x04
507 #define PERF_ATTACH_TASK_DATA 0x08
508
509 struct perf_cgroup;
510 struct ring_buffer;
511
512 /**
513 * struct perf_event - performance event kernel representation:
514 */
515 struct perf_event {
516 #ifdef CONFIG_PERF_EVENTS
517 /*
518 * entry onto perf_event_context::event_list;
519 * modifications require ctx->lock
520 * RCU safe iterations.
521 */
522 struct list_head event_entry;
523
524 /*
525 * XXX: group_entry and sibling_list should be mutually exclusive;
526 * either you're a sibling on a group, or you're the group leader.
527 * Rework the code to always use the same list element.
528 *
529 * Locked for modification by both ctx->mutex and ctx->lock; holding
530 * either sufficies for read.
531 */
532 struct list_head group_entry;
533 struct list_head sibling_list;
534
535 /*
536 * We need storage to track the entries in perf_pmu_migrate_context; we
537 * cannot use the event_entry because of RCU and we want to keep the
538 * group in tact which avoids us using the other two entries.
539 */
540 struct list_head migrate_entry;
541
542 struct hlist_node hlist_entry;
543 struct list_head active_entry;
544 int nr_siblings;
545 int group_flags;
546 struct perf_event *group_leader;
547 struct pmu *pmu;
548 void *pmu_private;
549
550 enum perf_event_active_state state;
551 unsigned int attach_state;
552 local64_t count;
553 atomic64_t child_count;
554
555 /*
556 * These are the total time in nanoseconds that the event
557 * has been enabled (i.e. eligible to run, and the task has
558 * been scheduled in, if this is a per-task event)
559 * and running (scheduled onto the CPU), respectively.
560 *
561 * They are computed from tstamp_enabled, tstamp_running and
562 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
563 */
564 u64 total_time_enabled;
565 u64 total_time_running;
566
567 /*
568 * These are timestamps used for computing total_time_enabled
569 * and total_time_running when the event is in INACTIVE or
570 * ACTIVE state, measured in nanoseconds from an arbitrary point
571 * in time.
572 * tstamp_enabled: the notional time when the event was enabled
573 * tstamp_running: the notional time when the event was scheduled on
574 * tstamp_stopped: in INACTIVE state, the notional time when the
575 * event was scheduled off.
576 */
577 u64 tstamp_enabled;
578 u64 tstamp_running;
579 u64 tstamp_stopped;
580
581 /*
582 * timestamp shadows the actual context timing but it can
583 * be safely used in NMI interrupt context. It reflects the
584 * context time as it was when the event was last scheduled in.
585 *
586 * ctx_time already accounts for ctx->timestamp. Therefore to
587 * compute ctx_time for a sample, simply add perf_clock().
588 */
589 u64 shadow_ctx_time;
590
591 struct perf_event_attr attr;
592 u16 header_size;
593 u16 id_header_size;
594 u16 read_size;
595 struct hw_perf_event hw;
596
597 struct perf_event_context *ctx;
598 atomic_long_t refcount;
599
600 /*
601 * These accumulate total time (in nanoseconds) that children
602 * events have been enabled and running, respectively.
603 */
604 atomic64_t child_total_time_enabled;
605 atomic64_t child_total_time_running;
606
607 /*
608 * Protect attach/detach and child_list:
609 */
610 struct mutex child_mutex;
611 struct list_head child_list;
612 struct perf_event *parent;
613
614 int oncpu;
615 int cpu;
616
617 struct list_head owner_entry;
618 struct task_struct *owner;
619
620 /* mmap bits */
621 struct mutex mmap_mutex;
622 atomic_t mmap_count;
623
624 struct ring_buffer *rb;
625 struct list_head rb_entry;
626 unsigned long rcu_batches;
627 int rcu_pending;
628
629 /* poll related */
630 wait_queue_head_t waitq;
631 struct fasync_struct *fasync;
632
633 /* delayed work for NMIs and such */
634 int pending_wakeup;
635 int pending_kill;
636 int pending_disable;
637 struct irq_work pending;
638
639 atomic_t event_limit;
640
641 /* address range filters */
642 struct perf_addr_filters_head addr_filters;
643 /* vma address array for file-based filders */
644 unsigned long *addr_filters_offs;
645 unsigned long addr_filters_gen;
646
647 void (*destroy)(struct perf_event *);
648 struct rcu_head rcu_head;
649
650 struct pid_namespace *ns;
651 u64 id;
652
653 u64 (*clock)(void);
654 perf_overflow_handler_t overflow_handler;
655 void *overflow_handler_context;
656
657 #ifdef CONFIG_EVENT_TRACING
658 struct trace_event_call *tp_event;
659 struct event_filter *filter;
660 #ifdef CONFIG_FUNCTION_TRACER
661 struct ftrace_ops ftrace_ops;
662 #endif
663 #endif
664
665 #ifdef CONFIG_CGROUP_PERF
666 struct perf_cgroup *cgrp; /* cgroup event is attach to */
667 int cgrp_defer_enabled;
668 #endif
669
670 #endif /* CONFIG_PERF_EVENTS */
671 };
672
673 /**
674 * struct perf_event_context - event context structure
675 *
676 * Used as a container for task events and CPU events as well:
677 */
678 struct perf_event_context {
679 struct pmu *pmu;
680 /*
681 * Protect the states of the events in the list,
682 * nr_active, and the list:
683 */
684 raw_spinlock_t lock;
685 /*
686 * Protect the list of events. Locking either mutex or lock
687 * is sufficient to ensure the list doesn't change; to change
688 * the list you need to lock both the mutex and the spinlock.
689 */
690 struct mutex mutex;
691
692 struct list_head active_ctx_list;
693 struct list_head pinned_groups;
694 struct list_head flexible_groups;
695 struct list_head event_list;
696 int nr_events;
697 int nr_active;
698 int is_active;
699 int nr_stat;
700 int nr_freq;
701 int rotate_disable;
702 atomic_t refcount;
703 struct task_struct *task;
704
705 /*
706 * Context clock, runs when context enabled.
707 */
708 u64 time;
709 u64 timestamp;
710
711 /*
712 * These fields let us detect when two contexts have both
713 * been cloned (inherited) from a common ancestor.
714 */
715 struct perf_event_context *parent_ctx;
716 u64 parent_gen;
717 u64 generation;
718 int pin_count;
719 int nr_cgroups; /* cgroup evts */
720 void *task_ctx_data; /* pmu specific data */
721 struct rcu_head rcu_head;
722 };
723
724 /*
725 * Number of contexts where an event can trigger:
726 * task, softirq, hardirq, nmi.
727 */
728 #define PERF_NR_CONTEXTS 4
729
730 /**
731 * struct perf_event_cpu_context - per cpu event context structure
732 */
733 struct perf_cpu_context {
734 struct perf_event_context ctx;
735 struct perf_event_context *task_ctx;
736 int active_oncpu;
737 int exclusive;
738
739 raw_spinlock_t hrtimer_lock;
740 struct hrtimer hrtimer;
741 ktime_t hrtimer_interval;
742 unsigned int hrtimer_active;
743
744 struct pmu *unique_pmu;
745 struct perf_cgroup *cgrp;
746 };
747
748 struct perf_output_handle {
749 struct perf_event *event;
750 struct ring_buffer *rb;
751 unsigned long wakeup;
752 unsigned long size;
753 union {
754 void *addr;
755 unsigned long head;
756 };
757 int page;
758 };
759
760 #ifdef CONFIG_CGROUP_PERF
761
762 /*
763 * perf_cgroup_info keeps track of time_enabled for a cgroup.
764 * This is a per-cpu dynamically allocated data structure.
765 */
766 struct perf_cgroup_info {
767 u64 time;
768 u64 timestamp;
769 };
770
771 struct perf_cgroup {
772 struct cgroup_subsys_state css;
773 struct perf_cgroup_info __percpu *info;
774 };
775
776 /*
777 * Must ensure cgroup is pinned (css_get) before calling
778 * this function. In other words, we cannot call this function
779 * if there is no cgroup event for the current CPU context.
780 */
781 static inline struct perf_cgroup *
782 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
783 {
784 return container_of(task_css_check(task, perf_event_cgrp_id,
785 ctx ? lockdep_is_held(&ctx->lock)
786 : true),
787 struct perf_cgroup, css);
788 }
789 #endif /* CONFIG_CGROUP_PERF */
790
791 #ifdef CONFIG_PERF_EVENTS
792
793 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
794 struct perf_event *event);
795 extern void perf_aux_output_end(struct perf_output_handle *handle,
796 unsigned long size, bool truncated);
797 extern int perf_aux_output_skip(struct perf_output_handle *handle,
798 unsigned long size);
799 extern void *perf_get_aux(struct perf_output_handle *handle);
800
801 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
802 extern void perf_pmu_unregister(struct pmu *pmu);
803
804 extern int perf_num_counters(void);
805 extern const char *perf_pmu_name(void);
806 extern void __perf_event_task_sched_in(struct task_struct *prev,
807 struct task_struct *task);
808 extern void __perf_event_task_sched_out(struct task_struct *prev,
809 struct task_struct *next);
810 extern int perf_event_init_task(struct task_struct *child);
811 extern void perf_event_exit_task(struct task_struct *child);
812 extern void perf_event_free_task(struct task_struct *task);
813 extern void perf_event_delayed_put(struct task_struct *task);
814 extern struct file *perf_event_get(unsigned int fd);
815 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
816 extern void perf_event_print_debug(void);
817 extern void perf_pmu_disable(struct pmu *pmu);
818 extern void perf_pmu_enable(struct pmu *pmu);
819 extern void perf_sched_cb_dec(struct pmu *pmu);
820 extern void perf_sched_cb_inc(struct pmu *pmu);
821 extern int perf_event_task_disable(void);
822 extern int perf_event_task_enable(void);
823 extern int perf_event_refresh(struct perf_event *event, int refresh);
824 extern void perf_event_update_userpage(struct perf_event *event);
825 extern int perf_event_release_kernel(struct perf_event *event);
826 extern struct perf_event *
827 perf_event_create_kernel_counter(struct perf_event_attr *attr,
828 int cpu,
829 struct task_struct *task,
830 perf_overflow_handler_t callback,
831 void *context);
832 extern void perf_pmu_migrate_context(struct pmu *pmu,
833 int src_cpu, int dst_cpu);
834 extern u64 perf_event_read_local(struct perf_event *event);
835 extern u64 perf_event_read_value(struct perf_event *event,
836 u64 *enabled, u64 *running);
837
838
839 struct perf_sample_data {
840 /*
841 * Fields set by perf_sample_data_init(), group so as to
842 * minimize the cachelines touched.
843 */
844 u64 addr;
845 struct perf_raw_record *raw;
846 struct perf_branch_stack *br_stack;
847 u64 period;
848 u64 weight;
849 u64 txn;
850 union perf_mem_data_src data_src;
851
852 /*
853 * The other fields, optionally {set,used} by
854 * perf_{prepare,output}_sample().
855 */
856 u64 type;
857 u64 ip;
858 struct {
859 u32 pid;
860 u32 tid;
861 } tid_entry;
862 u64 time;
863 u64 id;
864 u64 stream_id;
865 struct {
866 u32 cpu;
867 u32 reserved;
868 } cpu_entry;
869 struct perf_callchain_entry *callchain;
870
871 /*
872 * regs_user may point to task_pt_regs or to regs_user_copy, depending
873 * on arch details.
874 */
875 struct perf_regs regs_user;
876 struct pt_regs regs_user_copy;
877
878 struct perf_regs regs_intr;
879 u64 stack_user_size;
880 } ____cacheline_aligned;
881
882 /* default value for data source */
883 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
884 PERF_MEM_S(LVL, NA) |\
885 PERF_MEM_S(SNOOP, NA) |\
886 PERF_MEM_S(LOCK, NA) |\
887 PERF_MEM_S(TLB, NA))
888
889 static inline void perf_sample_data_init(struct perf_sample_data *data,
890 u64 addr, u64 period)
891 {
892 /* remaining struct members initialized in perf_prepare_sample() */
893 data->addr = addr;
894 data->raw = NULL;
895 data->br_stack = NULL;
896 data->period = period;
897 data->weight = 0;
898 data->data_src.val = PERF_MEM_NA;
899 data->txn = 0;
900 }
901
902 extern void perf_output_sample(struct perf_output_handle *handle,
903 struct perf_event_header *header,
904 struct perf_sample_data *data,
905 struct perf_event *event);
906 extern void perf_prepare_sample(struct perf_event_header *header,
907 struct perf_sample_data *data,
908 struct perf_event *event,
909 struct pt_regs *regs);
910
911 extern int perf_event_overflow(struct perf_event *event,
912 struct perf_sample_data *data,
913 struct pt_regs *regs);
914
915 extern void perf_event_output_forward(struct perf_event *event,
916 struct perf_sample_data *data,
917 struct pt_regs *regs);
918 extern void perf_event_output_backward(struct perf_event *event,
919 struct perf_sample_data *data,
920 struct pt_regs *regs);
921 extern void perf_event_output(struct perf_event *event,
922 struct perf_sample_data *data,
923 struct pt_regs *regs);
924
925 static inline bool
926 is_default_overflow_handler(struct perf_event *event)
927 {
928 if (likely(event->overflow_handler == perf_event_output_forward))
929 return true;
930 if (unlikely(event->overflow_handler == perf_event_output_backward))
931 return true;
932 return false;
933 }
934
935 extern void
936 perf_event_header__init_id(struct perf_event_header *header,
937 struct perf_sample_data *data,
938 struct perf_event *event);
939 extern void
940 perf_event__output_id_sample(struct perf_event *event,
941 struct perf_output_handle *handle,
942 struct perf_sample_data *sample);
943
944 extern void
945 perf_log_lost_samples(struct perf_event *event, u64 lost);
946
947 static inline bool is_sampling_event(struct perf_event *event)
948 {
949 return event->attr.sample_period != 0;
950 }
951
952 /*
953 * Return 1 for a software event, 0 for a hardware event
954 */
955 static inline int is_software_event(struct perf_event *event)
956 {
957 return event->pmu->task_ctx_nr == perf_sw_context;
958 }
959
960 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
961
962 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
963 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
964
965 #ifndef perf_arch_fetch_caller_regs
966 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
967 #endif
968
969 /*
970 * Take a snapshot of the regs. Skip ip and frame pointer to
971 * the nth caller. We only need a few of the regs:
972 * - ip for PERF_SAMPLE_IP
973 * - cs for user_mode() tests
974 * - bp for callchains
975 * - eflags, for future purposes, just in case
976 */
977 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
978 {
979 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
980 }
981
982 static __always_inline void
983 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
984 {
985 if (static_key_false(&perf_swevent_enabled[event_id]))
986 __perf_sw_event(event_id, nr, regs, addr);
987 }
988
989 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
990
991 /*
992 * 'Special' version for the scheduler, it hard assumes no recursion,
993 * which is guaranteed by us not actually scheduling inside other swevents
994 * because those disable preemption.
995 */
996 static __always_inline void
997 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
998 {
999 if (static_key_false(&perf_swevent_enabled[event_id])) {
1000 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1001
1002 perf_fetch_caller_regs(regs);
1003 ___perf_sw_event(event_id, nr, regs, addr);
1004 }
1005 }
1006
1007 extern struct static_key_false perf_sched_events;
1008
1009 static __always_inline bool
1010 perf_sw_migrate_enabled(void)
1011 {
1012 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1013 return true;
1014 return false;
1015 }
1016
1017 static inline void perf_event_task_migrate(struct task_struct *task)
1018 {
1019 if (perf_sw_migrate_enabled())
1020 task->sched_migrated = 1;
1021 }
1022
1023 static inline void perf_event_task_sched_in(struct task_struct *prev,
1024 struct task_struct *task)
1025 {
1026 if (static_branch_unlikely(&perf_sched_events))
1027 __perf_event_task_sched_in(prev, task);
1028
1029 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1030 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1031
1032 perf_fetch_caller_regs(regs);
1033 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1034 task->sched_migrated = 0;
1035 }
1036 }
1037
1038 static inline void perf_event_task_sched_out(struct task_struct *prev,
1039 struct task_struct *next)
1040 {
1041 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1042
1043 if (static_branch_unlikely(&perf_sched_events))
1044 __perf_event_task_sched_out(prev, next);
1045 }
1046
1047 static inline u64 __perf_event_count(struct perf_event *event)
1048 {
1049 return local64_read(&event->count) + atomic64_read(&event->child_count);
1050 }
1051
1052 extern void perf_event_mmap(struct vm_area_struct *vma);
1053 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1054 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1055 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1056
1057 extern void perf_event_exec(void);
1058 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1059 extern void perf_event_fork(struct task_struct *tsk);
1060
1061 /* Callchains */
1062 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1063
1064 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1065 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1066 extern struct perf_callchain_entry *
1067 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1068 bool crosstask, bool add_mark);
1069 extern int get_callchain_buffers(void);
1070 extern void put_callchain_buffers(void);
1071
1072 extern int sysctl_perf_event_max_stack;
1073
1074 static inline int perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1075 {
1076 if (entry->nr < sysctl_perf_event_max_stack) {
1077 entry->ip[entry->nr++] = ip;
1078 return 0;
1079 } else {
1080 return -1; /* no more room, stop walking the stack */
1081 }
1082 }
1083
1084 extern int sysctl_perf_event_paranoid;
1085 extern int sysctl_perf_event_mlock;
1086 extern int sysctl_perf_event_sample_rate;
1087 extern int sysctl_perf_cpu_time_max_percent;
1088
1089 extern void perf_sample_event_took(u64 sample_len_ns);
1090
1091 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1092 void __user *buffer, size_t *lenp,
1093 loff_t *ppos);
1094 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1095 void __user *buffer, size_t *lenp,
1096 loff_t *ppos);
1097
1098 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1099 void __user *buffer, size_t *lenp, loff_t *ppos);
1100
1101 static inline bool perf_paranoid_tracepoint_raw(void)
1102 {
1103 return sysctl_perf_event_paranoid > -1;
1104 }
1105
1106 static inline bool perf_paranoid_cpu(void)
1107 {
1108 return sysctl_perf_event_paranoid > 0;
1109 }
1110
1111 static inline bool perf_paranoid_kernel(void)
1112 {
1113 return sysctl_perf_event_paranoid > 1;
1114 }
1115
1116 extern void perf_event_init(void);
1117 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1118 int entry_size, struct pt_regs *regs,
1119 struct hlist_head *head, int rctx,
1120 struct task_struct *task);
1121 extern void perf_bp_event(struct perf_event *event, void *data);
1122
1123 #ifndef perf_misc_flags
1124 # define perf_misc_flags(regs) \
1125 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1126 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1127 #endif
1128
1129 static inline bool has_branch_stack(struct perf_event *event)
1130 {
1131 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1132 }
1133
1134 static inline bool needs_branch_stack(struct perf_event *event)
1135 {
1136 return event->attr.branch_sample_type != 0;
1137 }
1138
1139 static inline bool has_aux(struct perf_event *event)
1140 {
1141 return event->pmu->setup_aux;
1142 }
1143
1144 static inline bool is_write_backward(struct perf_event *event)
1145 {
1146 return !!event->attr.write_backward;
1147 }
1148
1149 static inline bool has_addr_filter(struct perf_event *event)
1150 {
1151 return event->pmu->nr_addr_filters;
1152 }
1153
1154 /*
1155 * An inherited event uses parent's filters
1156 */
1157 static inline struct perf_addr_filters_head *
1158 perf_event_addr_filters(struct perf_event *event)
1159 {
1160 struct perf_addr_filters_head *ifh = &event->addr_filters;
1161
1162 if (event->parent)
1163 ifh = &event->parent->addr_filters;
1164
1165 return ifh;
1166 }
1167
1168 extern void perf_event_addr_filters_sync(struct perf_event *event);
1169
1170 extern int perf_output_begin(struct perf_output_handle *handle,
1171 struct perf_event *event, unsigned int size);
1172 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1173 struct perf_event *event,
1174 unsigned int size);
1175 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1176 struct perf_event *event,
1177 unsigned int size);
1178
1179 extern void perf_output_end(struct perf_output_handle *handle);
1180 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1181 const void *buf, unsigned int len);
1182 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1183 unsigned int len);
1184 extern int perf_swevent_get_recursion_context(void);
1185 extern void perf_swevent_put_recursion_context(int rctx);
1186 extern u64 perf_swevent_set_period(struct perf_event *event);
1187 extern void perf_event_enable(struct perf_event *event);
1188 extern void perf_event_disable(struct perf_event *event);
1189 extern void perf_event_disable_local(struct perf_event *event);
1190 extern void perf_event_task_tick(void);
1191 #else /* !CONFIG_PERF_EVENTS: */
1192 static inline void *
1193 perf_aux_output_begin(struct perf_output_handle *handle,
1194 struct perf_event *event) { return NULL; }
1195 static inline void
1196 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1197 bool truncated) { }
1198 static inline int
1199 perf_aux_output_skip(struct perf_output_handle *handle,
1200 unsigned long size) { return -EINVAL; }
1201 static inline void *
1202 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1203 static inline void
1204 perf_event_task_migrate(struct task_struct *task) { }
1205 static inline void
1206 perf_event_task_sched_in(struct task_struct *prev,
1207 struct task_struct *task) { }
1208 static inline void
1209 perf_event_task_sched_out(struct task_struct *prev,
1210 struct task_struct *next) { }
1211 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1212 static inline void perf_event_exit_task(struct task_struct *child) { }
1213 static inline void perf_event_free_task(struct task_struct *task) { }
1214 static inline void perf_event_delayed_put(struct task_struct *task) { }
1215 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1216 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1217 {
1218 return ERR_PTR(-EINVAL);
1219 }
1220 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; }
1221 static inline void perf_event_print_debug(void) { }
1222 static inline int perf_event_task_disable(void) { return -EINVAL; }
1223 static inline int perf_event_task_enable(void) { return -EINVAL; }
1224 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1225 {
1226 return -EINVAL;
1227 }
1228
1229 static inline void
1230 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1231 static inline void
1232 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1233 static inline void
1234 perf_bp_event(struct perf_event *event, void *data) { }
1235
1236 static inline int perf_register_guest_info_callbacks
1237 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1238 static inline int perf_unregister_guest_info_callbacks
1239 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1240
1241 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1242 static inline void perf_event_exec(void) { }
1243 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1244 static inline void perf_event_fork(struct task_struct *tsk) { }
1245 static inline void perf_event_init(void) { }
1246 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1247 static inline void perf_swevent_put_recursion_context(int rctx) { }
1248 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1249 static inline void perf_event_enable(struct perf_event *event) { }
1250 static inline void perf_event_disable(struct perf_event *event) { }
1251 static inline int __perf_event_disable(void *info) { return -1; }
1252 static inline void perf_event_task_tick(void) { }
1253 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1254 #endif
1255
1256 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1257 extern void perf_restore_debug_store(void);
1258 #else
1259 static inline void perf_restore_debug_store(void) { }
1260 #endif
1261
1262 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1263
1264 /*
1265 * This has to have a higher priority than migration_notifier in sched/core.c.
1266 */
1267 #define perf_cpu_notifier(fn) \
1268 do { \
1269 static struct notifier_block fn##_nb = \
1270 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1271 unsigned long cpu = smp_processor_id(); \
1272 unsigned long flags; \
1273 \
1274 cpu_notifier_register_begin(); \
1275 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1276 (void *)(unsigned long)cpu); \
1277 local_irq_save(flags); \
1278 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1279 (void *)(unsigned long)cpu); \
1280 local_irq_restore(flags); \
1281 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1282 (void *)(unsigned long)cpu); \
1283 __register_cpu_notifier(&fn##_nb); \
1284 cpu_notifier_register_done(); \
1285 } while (0)
1286
1287 /*
1288 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1289 * callback for already online CPUs.
1290 */
1291 #define __perf_cpu_notifier(fn) \
1292 do { \
1293 static struct notifier_block fn##_nb = \
1294 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1295 \
1296 __register_cpu_notifier(&fn##_nb); \
1297 } while (0)
1298
1299 struct perf_pmu_events_attr {
1300 struct device_attribute attr;
1301 u64 id;
1302 const char *event_str;
1303 };
1304
1305 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1306 char *page);
1307
1308 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1309 static struct perf_pmu_events_attr _var = { \
1310 .attr = __ATTR(_name, 0444, _show, NULL), \
1311 .id = _id, \
1312 };
1313
1314 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1315 static struct perf_pmu_events_attr _var = { \
1316 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1317 .id = 0, \
1318 .event_str = _str, \
1319 };
1320
1321 #define PMU_FORMAT_ATTR(_name, _format) \
1322 static ssize_t \
1323 _name##_show(struct device *dev, \
1324 struct device_attribute *attr, \
1325 char *page) \
1326 { \
1327 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1328 return sprintf(page, _format "\n"); \
1329 } \
1330 \
1331 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1332
1333 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.057124 seconds and 6 git commands to generate.