Merge remote-tracking branches 'asoc/topic/wm8523' and 'asoc/topic/wm8741' into asoc...
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 /**
96 * struct hw_perf_event - performance event hardware details:
97 */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 union {
101 struct { /* hardware */
102 u64 config;
103 u64 last_tag;
104 unsigned long config_base;
105 unsigned long event_base;
106 int event_base_rdpmc;
107 int idx;
108 int last_cpu;
109 int flags;
110
111 struct hw_perf_event_extra extra_reg;
112 struct hw_perf_event_extra branch_reg;
113 };
114 struct { /* software */
115 struct hrtimer hrtimer;
116 };
117 struct { /* tracepoint */
118 /* for tp_event->class */
119 struct list_head tp_list;
120 };
121 struct { /* intel_cqm */
122 int cqm_state;
123 int cqm_rmid;
124 struct list_head cqm_events_entry;
125 struct list_head cqm_groups_entry;
126 struct list_head cqm_group_entry;
127 };
128 struct { /* itrace */
129 int itrace_started;
130 };
131 #ifdef CONFIG_HAVE_HW_BREAKPOINT
132 struct { /* breakpoint */
133 /*
134 * Crufty hack to avoid the chicken and egg
135 * problem hw_breakpoint has with context
136 * creation and event initalization.
137 */
138 struct arch_hw_breakpoint info;
139 struct list_head bp_list;
140 };
141 #endif
142 };
143 struct task_struct *target;
144 int state;
145 local64_t prev_count;
146 u64 sample_period;
147 u64 last_period;
148 local64_t period_left;
149 u64 interrupts_seq;
150 u64 interrupts;
151
152 u64 freq_time_stamp;
153 u64 freq_count_stamp;
154 #endif
155 };
156
157 /*
158 * hw_perf_event::state flags
159 */
160 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
161 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
162 #define PERF_HES_ARCH 0x04
163
164 struct perf_event;
165
166 /*
167 * Common implementation detail of pmu::{start,commit,cancel}_txn
168 */
169 #define PERF_EVENT_TXN 0x1
170
171 /**
172 * pmu::capabilities flags
173 */
174 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
175 #define PERF_PMU_CAP_NO_NMI 0x02
176 #define PERF_PMU_CAP_AUX_NO_SG 0x04
177 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
178 #define PERF_PMU_CAP_EXCLUSIVE 0x10
179 #define PERF_PMU_CAP_ITRACE 0x20
180
181 /**
182 * struct pmu - generic performance monitoring unit
183 */
184 struct pmu {
185 struct list_head entry;
186
187 struct module *module;
188 struct device *dev;
189 const struct attribute_group **attr_groups;
190 const char *name;
191 int type;
192
193 /*
194 * various common per-pmu feature flags
195 */
196 int capabilities;
197
198 int * __percpu pmu_disable_count;
199 struct perf_cpu_context * __percpu pmu_cpu_context;
200 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
201 int task_ctx_nr;
202 int hrtimer_interval_ms;
203
204 /*
205 * Fully disable/enable this PMU, can be used to protect from the PMI
206 * as well as for lazy/batch writing of the MSRs.
207 */
208 void (*pmu_enable) (struct pmu *pmu); /* optional */
209 void (*pmu_disable) (struct pmu *pmu); /* optional */
210
211 /*
212 * Try and initialize the event for this PMU.
213 * Should return -ENOENT when the @event doesn't match this PMU.
214 */
215 int (*event_init) (struct perf_event *event);
216
217 /*
218 * Notification that the event was mapped or unmapped. Called
219 * in the context of the mapping task.
220 */
221 void (*event_mapped) (struct perf_event *event); /*optional*/
222 void (*event_unmapped) (struct perf_event *event); /*optional*/
223
224 #define PERF_EF_START 0x01 /* start the counter when adding */
225 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
226 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
227
228 /*
229 * Adds/Removes a counter to/from the PMU, can be done inside
230 * a transaction, see the ->*_txn() methods.
231 */
232 int (*add) (struct perf_event *event, int flags);
233 void (*del) (struct perf_event *event, int flags);
234
235 /*
236 * Starts/Stops a counter present on the PMU. The PMI handler
237 * should stop the counter when perf_event_overflow() returns
238 * !0. ->start() will be used to continue.
239 */
240 void (*start) (struct perf_event *event, int flags);
241 void (*stop) (struct perf_event *event, int flags);
242
243 /*
244 * Updates the counter value of the event.
245 */
246 void (*read) (struct perf_event *event);
247
248 /*
249 * Group events scheduling is treated as a transaction, add
250 * group events as a whole and perform one schedulability test.
251 * If the test fails, roll back the whole group
252 *
253 * Start the transaction, after this ->add() doesn't need to
254 * do schedulability tests.
255 */
256 void (*start_txn) (struct pmu *pmu); /* optional */
257 /*
258 * If ->start_txn() disabled the ->add() schedulability test
259 * then ->commit_txn() is required to perform one. On success
260 * the transaction is closed. On error the transaction is kept
261 * open until ->cancel_txn() is called.
262 */
263 int (*commit_txn) (struct pmu *pmu); /* optional */
264 /*
265 * Will cancel the transaction, assumes ->del() is called
266 * for each successful ->add() during the transaction.
267 */
268 void (*cancel_txn) (struct pmu *pmu); /* optional */
269
270 /*
271 * Will return the value for perf_event_mmap_page::index for this event,
272 * if no implementation is provided it will default to: event->hw.idx + 1.
273 */
274 int (*event_idx) (struct perf_event *event); /*optional */
275
276 /*
277 * context-switches callback
278 */
279 void (*sched_task) (struct perf_event_context *ctx,
280 bool sched_in);
281 /*
282 * PMU specific data size
283 */
284 size_t task_ctx_size;
285
286
287 /*
288 * Return the count value for a counter.
289 */
290 u64 (*count) (struct perf_event *event); /*optional*/
291
292 /*
293 * Set up pmu-private data structures for an AUX area
294 */
295 void *(*setup_aux) (int cpu, void **pages,
296 int nr_pages, bool overwrite);
297 /* optional */
298
299 /*
300 * Free pmu-private AUX data structures
301 */
302 void (*free_aux) (void *aux); /* optional */
303 };
304
305 /**
306 * enum perf_event_active_state - the states of a event
307 */
308 enum perf_event_active_state {
309 PERF_EVENT_STATE_EXIT = -3,
310 PERF_EVENT_STATE_ERROR = -2,
311 PERF_EVENT_STATE_OFF = -1,
312 PERF_EVENT_STATE_INACTIVE = 0,
313 PERF_EVENT_STATE_ACTIVE = 1,
314 };
315
316 struct file;
317 struct perf_sample_data;
318
319 typedef void (*perf_overflow_handler_t)(struct perf_event *,
320 struct perf_sample_data *,
321 struct pt_regs *regs);
322
323 enum perf_group_flag {
324 PERF_GROUP_SOFTWARE = 0x1,
325 };
326
327 #define SWEVENT_HLIST_BITS 8
328 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
329
330 struct swevent_hlist {
331 struct hlist_head heads[SWEVENT_HLIST_SIZE];
332 struct rcu_head rcu_head;
333 };
334
335 #define PERF_ATTACH_CONTEXT 0x01
336 #define PERF_ATTACH_GROUP 0x02
337 #define PERF_ATTACH_TASK 0x04
338 #define PERF_ATTACH_TASK_DATA 0x08
339
340 struct perf_cgroup;
341 struct ring_buffer;
342
343 /**
344 * struct perf_event - performance event kernel representation:
345 */
346 struct perf_event {
347 #ifdef CONFIG_PERF_EVENTS
348 /*
349 * entry onto perf_event_context::event_list;
350 * modifications require ctx->lock
351 * RCU safe iterations.
352 */
353 struct list_head event_entry;
354
355 /*
356 * XXX: group_entry and sibling_list should be mutually exclusive;
357 * either you're a sibling on a group, or you're the group leader.
358 * Rework the code to always use the same list element.
359 *
360 * Locked for modification by both ctx->mutex and ctx->lock; holding
361 * either sufficies for read.
362 */
363 struct list_head group_entry;
364 struct list_head sibling_list;
365
366 /*
367 * We need storage to track the entries in perf_pmu_migrate_context; we
368 * cannot use the event_entry because of RCU and we want to keep the
369 * group in tact which avoids us using the other two entries.
370 */
371 struct list_head migrate_entry;
372
373 struct hlist_node hlist_entry;
374 struct list_head active_entry;
375 int nr_siblings;
376 int group_flags;
377 struct perf_event *group_leader;
378 struct pmu *pmu;
379
380 enum perf_event_active_state state;
381 unsigned int attach_state;
382 local64_t count;
383 atomic64_t child_count;
384
385 /*
386 * These are the total time in nanoseconds that the event
387 * has been enabled (i.e. eligible to run, and the task has
388 * been scheduled in, if this is a per-task event)
389 * and running (scheduled onto the CPU), respectively.
390 *
391 * They are computed from tstamp_enabled, tstamp_running and
392 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
393 */
394 u64 total_time_enabled;
395 u64 total_time_running;
396
397 /*
398 * These are timestamps used for computing total_time_enabled
399 * and total_time_running when the event is in INACTIVE or
400 * ACTIVE state, measured in nanoseconds from an arbitrary point
401 * in time.
402 * tstamp_enabled: the notional time when the event was enabled
403 * tstamp_running: the notional time when the event was scheduled on
404 * tstamp_stopped: in INACTIVE state, the notional time when the
405 * event was scheduled off.
406 */
407 u64 tstamp_enabled;
408 u64 tstamp_running;
409 u64 tstamp_stopped;
410
411 /*
412 * timestamp shadows the actual context timing but it can
413 * be safely used in NMI interrupt context. It reflects the
414 * context time as it was when the event was last scheduled in.
415 *
416 * ctx_time already accounts for ctx->timestamp. Therefore to
417 * compute ctx_time for a sample, simply add perf_clock().
418 */
419 u64 shadow_ctx_time;
420
421 struct perf_event_attr attr;
422 u16 header_size;
423 u16 id_header_size;
424 u16 read_size;
425 struct hw_perf_event hw;
426
427 struct perf_event_context *ctx;
428 atomic_long_t refcount;
429
430 /*
431 * These accumulate total time (in nanoseconds) that children
432 * events have been enabled and running, respectively.
433 */
434 atomic64_t child_total_time_enabled;
435 atomic64_t child_total_time_running;
436
437 /*
438 * Protect attach/detach and child_list:
439 */
440 struct mutex child_mutex;
441 struct list_head child_list;
442 struct perf_event *parent;
443
444 int oncpu;
445 int cpu;
446
447 struct list_head owner_entry;
448 struct task_struct *owner;
449
450 /* mmap bits */
451 struct mutex mmap_mutex;
452 atomic_t mmap_count;
453
454 struct ring_buffer *rb;
455 struct list_head rb_entry;
456 unsigned long rcu_batches;
457 int rcu_pending;
458
459 /* poll related */
460 wait_queue_head_t waitq;
461 struct fasync_struct *fasync;
462
463 /* delayed work for NMIs and such */
464 int pending_wakeup;
465 int pending_kill;
466 int pending_disable;
467 struct irq_work pending;
468
469 atomic_t event_limit;
470
471 void (*destroy)(struct perf_event *);
472 struct rcu_head rcu_head;
473
474 struct pid_namespace *ns;
475 u64 id;
476
477 u64 (*clock)(void);
478 perf_overflow_handler_t overflow_handler;
479 void *overflow_handler_context;
480
481 #ifdef CONFIG_EVENT_TRACING
482 struct ftrace_event_call *tp_event;
483 struct event_filter *filter;
484 #ifdef CONFIG_FUNCTION_TRACER
485 struct ftrace_ops ftrace_ops;
486 #endif
487 #endif
488
489 #ifdef CONFIG_CGROUP_PERF
490 struct perf_cgroup *cgrp; /* cgroup event is attach to */
491 int cgrp_defer_enabled;
492 #endif
493
494 #endif /* CONFIG_PERF_EVENTS */
495 };
496
497 /**
498 * struct perf_event_context - event context structure
499 *
500 * Used as a container for task events and CPU events as well:
501 */
502 struct perf_event_context {
503 struct pmu *pmu;
504 /*
505 * Protect the states of the events in the list,
506 * nr_active, and the list:
507 */
508 raw_spinlock_t lock;
509 /*
510 * Protect the list of events. Locking either mutex or lock
511 * is sufficient to ensure the list doesn't change; to change
512 * the list you need to lock both the mutex and the spinlock.
513 */
514 struct mutex mutex;
515
516 struct list_head active_ctx_list;
517 struct list_head pinned_groups;
518 struct list_head flexible_groups;
519 struct list_head event_list;
520 int nr_events;
521 int nr_active;
522 int is_active;
523 int nr_stat;
524 int nr_freq;
525 int rotate_disable;
526 atomic_t refcount;
527 struct task_struct *task;
528
529 /*
530 * Context clock, runs when context enabled.
531 */
532 u64 time;
533 u64 timestamp;
534
535 /*
536 * These fields let us detect when two contexts have both
537 * been cloned (inherited) from a common ancestor.
538 */
539 struct perf_event_context *parent_ctx;
540 u64 parent_gen;
541 u64 generation;
542 int pin_count;
543 int nr_cgroups; /* cgroup evts */
544 void *task_ctx_data; /* pmu specific data */
545 struct rcu_head rcu_head;
546
547 struct delayed_work orphans_remove;
548 bool orphans_remove_sched;
549 };
550
551 /*
552 * Number of contexts where an event can trigger:
553 * task, softirq, hardirq, nmi.
554 */
555 #define PERF_NR_CONTEXTS 4
556
557 /**
558 * struct perf_event_cpu_context - per cpu event context structure
559 */
560 struct perf_cpu_context {
561 struct perf_event_context ctx;
562 struct perf_event_context *task_ctx;
563 int active_oncpu;
564 int exclusive;
565 struct hrtimer hrtimer;
566 ktime_t hrtimer_interval;
567 struct pmu *unique_pmu;
568 struct perf_cgroup *cgrp;
569 };
570
571 struct perf_output_handle {
572 struct perf_event *event;
573 struct ring_buffer *rb;
574 unsigned long wakeup;
575 unsigned long size;
576 union {
577 void *addr;
578 unsigned long head;
579 };
580 int page;
581 };
582
583 #ifdef CONFIG_CGROUP_PERF
584
585 /*
586 * perf_cgroup_info keeps track of time_enabled for a cgroup.
587 * This is a per-cpu dynamically allocated data structure.
588 */
589 struct perf_cgroup_info {
590 u64 time;
591 u64 timestamp;
592 };
593
594 struct perf_cgroup {
595 struct cgroup_subsys_state css;
596 struct perf_cgroup_info __percpu *info;
597 };
598
599 /*
600 * Must ensure cgroup is pinned (css_get) before calling
601 * this function. In other words, we cannot call this function
602 * if there is no cgroup event for the current CPU context.
603 */
604 static inline struct perf_cgroup *
605 perf_cgroup_from_task(struct task_struct *task)
606 {
607 return container_of(task_css(task, perf_event_cgrp_id),
608 struct perf_cgroup, css);
609 }
610 #endif /* CONFIG_CGROUP_PERF */
611
612 #ifdef CONFIG_PERF_EVENTS
613
614 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
615 struct perf_event *event);
616 extern void perf_aux_output_end(struct perf_output_handle *handle,
617 unsigned long size, bool truncated);
618 extern int perf_aux_output_skip(struct perf_output_handle *handle,
619 unsigned long size);
620 extern void *perf_get_aux(struct perf_output_handle *handle);
621
622 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
623 extern void perf_pmu_unregister(struct pmu *pmu);
624
625 extern int perf_num_counters(void);
626 extern const char *perf_pmu_name(void);
627 extern void __perf_event_task_sched_in(struct task_struct *prev,
628 struct task_struct *task);
629 extern void __perf_event_task_sched_out(struct task_struct *prev,
630 struct task_struct *next);
631 extern int perf_event_init_task(struct task_struct *child);
632 extern void perf_event_exit_task(struct task_struct *child);
633 extern void perf_event_free_task(struct task_struct *task);
634 extern void perf_event_delayed_put(struct task_struct *task);
635 extern void perf_event_print_debug(void);
636 extern void perf_pmu_disable(struct pmu *pmu);
637 extern void perf_pmu_enable(struct pmu *pmu);
638 extern void perf_sched_cb_dec(struct pmu *pmu);
639 extern void perf_sched_cb_inc(struct pmu *pmu);
640 extern int perf_event_task_disable(void);
641 extern int perf_event_task_enable(void);
642 extern int perf_event_refresh(struct perf_event *event, int refresh);
643 extern void perf_event_update_userpage(struct perf_event *event);
644 extern int perf_event_release_kernel(struct perf_event *event);
645 extern struct perf_event *
646 perf_event_create_kernel_counter(struct perf_event_attr *attr,
647 int cpu,
648 struct task_struct *task,
649 perf_overflow_handler_t callback,
650 void *context);
651 extern void perf_pmu_migrate_context(struct pmu *pmu,
652 int src_cpu, int dst_cpu);
653 extern u64 perf_event_read_value(struct perf_event *event,
654 u64 *enabled, u64 *running);
655
656
657 struct perf_sample_data {
658 /*
659 * Fields set by perf_sample_data_init(), group so as to
660 * minimize the cachelines touched.
661 */
662 u64 addr;
663 struct perf_raw_record *raw;
664 struct perf_branch_stack *br_stack;
665 u64 period;
666 u64 weight;
667 u64 txn;
668 union perf_mem_data_src data_src;
669
670 /*
671 * The other fields, optionally {set,used} by
672 * perf_{prepare,output}_sample().
673 */
674 u64 type;
675 u64 ip;
676 struct {
677 u32 pid;
678 u32 tid;
679 } tid_entry;
680 u64 time;
681 u64 id;
682 u64 stream_id;
683 struct {
684 u32 cpu;
685 u32 reserved;
686 } cpu_entry;
687 struct perf_callchain_entry *callchain;
688
689 /*
690 * regs_user may point to task_pt_regs or to regs_user_copy, depending
691 * on arch details.
692 */
693 struct perf_regs regs_user;
694 struct pt_regs regs_user_copy;
695
696 struct perf_regs regs_intr;
697 u64 stack_user_size;
698 } ____cacheline_aligned;
699
700 /* default value for data source */
701 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
702 PERF_MEM_S(LVL, NA) |\
703 PERF_MEM_S(SNOOP, NA) |\
704 PERF_MEM_S(LOCK, NA) |\
705 PERF_MEM_S(TLB, NA))
706
707 static inline void perf_sample_data_init(struct perf_sample_data *data,
708 u64 addr, u64 period)
709 {
710 /* remaining struct members initialized in perf_prepare_sample() */
711 data->addr = addr;
712 data->raw = NULL;
713 data->br_stack = NULL;
714 data->period = period;
715 data->weight = 0;
716 data->data_src.val = PERF_MEM_NA;
717 data->txn = 0;
718 }
719
720 extern void perf_output_sample(struct perf_output_handle *handle,
721 struct perf_event_header *header,
722 struct perf_sample_data *data,
723 struct perf_event *event);
724 extern void perf_prepare_sample(struct perf_event_header *header,
725 struct perf_sample_data *data,
726 struct perf_event *event,
727 struct pt_regs *regs);
728
729 extern int perf_event_overflow(struct perf_event *event,
730 struct perf_sample_data *data,
731 struct pt_regs *regs);
732
733 static inline bool is_sampling_event(struct perf_event *event)
734 {
735 return event->attr.sample_period != 0;
736 }
737
738 /*
739 * Return 1 for a software event, 0 for a hardware event
740 */
741 static inline int is_software_event(struct perf_event *event)
742 {
743 return event->pmu->task_ctx_nr == perf_sw_context;
744 }
745
746 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
747
748 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
749 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
750
751 #ifndef perf_arch_fetch_caller_regs
752 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
753 #endif
754
755 /*
756 * Take a snapshot of the regs. Skip ip and frame pointer to
757 * the nth caller. We only need a few of the regs:
758 * - ip for PERF_SAMPLE_IP
759 * - cs for user_mode() tests
760 * - bp for callchains
761 * - eflags, for future purposes, just in case
762 */
763 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
764 {
765 memset(regs, 0, sizeof(*regs));
766
767 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
768 }
769
770 static __always_inline void
771 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
772 {
773 if (static_key_false(&perf_swevent_enabled[event_id]))
774 __perf_sw_event(event_id, nr, regs, addr);
775 }
776
777 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
778
779 /*
780 * 'Special' version for the scheduler, it hard assumes no recursion,
781 * which is guaranteed by us not actually scheduling inside other swevents
782 * because those disable preemption.
783 */
784 static __always_inline void
785 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
786 {
787 if (static_key_false(&perf_swevent_enabled[event_id])) {
788 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
789
790 perf_fetch_caller_regs(regs);
791 ___perf_sw_event(event_id, nr, regs, addr);
792 }
793 }
794
795 extern struct static_key_deferred perf_sched_events;
796
797 static inline void perf_event_task_sched_in(struct task_struct *prev,
798 struct task_struct *task)
799 {
800 if (static_key_false(&perf_sched_events.key))
801 __perf_event_task_sched_in(prev, task);
802 }
803
804 static inline void perf_event_task_sched_out(struct task_struct *prev,
805 struct task_struct *next)
806 {
807 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
808
809 if (static_key_false(&perf_sched_events.key))
810 __perf_event_task_sched_out(prev, next);
811 }
812
813 static inline u64 __perf_event_count(struct perf_event *event)
814 {
815 return local64_read(&event->count) + atomic64_read(&event->child_count);
816 }
817
818 extern void perf_event_mmap(struct vm_area_struct *vma);
819 extern struct perf_guest_info_callbacks *perf_guest_cbs;
820 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
821 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
822
823 extern void perf_event_exec(void);
824 extern void perf_event_comm(struct task_struct *tsk, bool exec);
825 extern void perf_event_fork(struct task_struct *tsk);
826
827 /* Callchains */
828 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
829
830 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
831 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
832
833 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
834 {
835 if (entry->nr < PERF_MAX_STACK_DEPTH)
836 entry->ip[entry->nr++] = ip;
837 }
838
839 extern int sysctl_perf_event_paranoid;
840 extern int sysctl_perf_event_mlock;
841 extern int sysctl_perf_event_sample_rate;
842 extern int sysctl_perf_cpu_time_max_percent;
843
844 extern void perf_sample_event_took(u64 sample_len_ns);
845
846 extern int perf_proc_update_handler(struct ctl_table *table, int write,
847 void __user *buffer, size_t *lenp,
848 loff_t *ppos);
849 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
850 void __user *buffer, size_t *lenp,
851 loff_t *ppos);
852
853
854 static inline bool perf_paranoid_tracepoint_raw(void)
855 {
856 return sysctl_perf_event_paranoid > -1;
857 }
858
859 static inline bool perf_paranoid_cpu(void)
860 {
861 return sysctl_perf_event_paranoid > 0;
862 }
863
864 static inline bool perf_paranoid_kernel(void)
865 {
866 return sysctl_perf_event_paranoid > 1;
867 }
868
869 extern void perf_event_init(void);
870 extern void perf_tp_event(u64 addr, u64 count, void *record,
871 int entry_size, struct pt_regs *regs,
872 struct hlist_head *head, int rctx,
873 struct task_struct *task);
874 extern void perf_bp_event(struct perf_event *event, void *data);
875
876 #ifndef perf_misc_flags
877 # define perf_misc_flags(regs) \
878 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
879 # define perf_instruction_pointer(regs) instruction_pointer(regs)
880 #endif
881
882 static inline bool has_branch_stack(struct perf_event *event)
883 {
884 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
885 }
886
887 static inline bool needs_branch_stack(struct perf_event *event)
888 {
889 return event->attr.branch_sample_type != 0;
890 }
891
892 static inline bool has_aux(struct perf_event *event)
893 {
894 return event->pmu->setup_aux;
895 }
896
897 extern int perf_output_begin(struct perf_output_handle *handle,
898 struct perf_event *event, unsigned int size);
899 extern void perf_output_end(struct perf_output_handle *handle);
900 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
901 const void *buf, unsigned int len);
902 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
903 unsigned int len);
904 extern int perf_swevent_get_recursion_context(void);
905 extern void perf_swevent_put_recursion_context(int rctx);
906 extern u64 perf_swevent_set_period(struct perf_event *event);
907 extern void perf_event_enable(struct perf_event *event);
908 extern void perf_event_disable(struct perf_event *event);
909 extern int __perf_event_disable(void *info);
910 extern void perf_event_task_tick(void);
911 #else /* !CONFIG_PERF_EVENTS: */
912 static inline void *
913 perf_aux_output_begin(struct perf_output_handle *handle,
914 struct perf_event *event) { return NULL; }
915 static inline void
916 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
917 bool truncated) { }
918 static inline int
919 perf_aux_output_skip(struct perf_output_handle *handle,
920 unsigned long size) { return -EINVAL; }
921 static inline void *
922 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
923 static inline void
924 perf_event_task_sched_in(struct task_struct *prev,
925 struct task_struct *task) { }
926 static inline void
927 perf_event_task_sched_out(struct task_struct *prev,
928 struct task_struct *next) { }
929 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
930 static inline void perf_event_exit_task(struct task_struct *child) { }
931 static inline void perf_event_free_task(struct task_struct *task) { }
932 static inline void perf_event_delayed_put(struct task_struct *task) { }
933 static inline void perf_event_print_debug(void) { }
934 static inline int perf_event_task_disable(void) { return -EINVAL; }
935 static inline int perf_event_task_enable(void) { return -EINVAL; }
936 static inline int perf_event_refresh(struct perf_event *event, int refresh)
937 {
938 return -EINVAL;
939 }
940
941 static inline void
942 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
943 static inline void
944 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
945 static inline void
946 perf_bp_event(struct perf_event *event, void *data) { }
947
948 static inline int perf_register_guest_info_callbacks
949 (struct perf_guest_info_callbacks *callbacks) { return 0; }
950 static inline int perf_unregister_guest_info_callbacks
951 (struct perf_guest_info_callbacks *callbacks) { return 0; }
952
953 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
954 static inline void perf_event_exec(void) { }
955 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
956 static inline void perf_event_fork(struct task_struct *tsk) { }
957 static inline void perf_event_init(void) { }
958 static inline int perf_swevent_get_recursion_context(void) { return -1; }
959 static inline void perf_swevent_put_recursion_context(int rctx) { }
960 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
961 static inline void perf_event_enable(struct perf_event *event) { }
962 static inline void perf_event_disable(struct perf_event *event) { }
963 static inline int __perf_event_disable(void *info) { return -1; }
964 static inline void perf_event_task_tick(void) { }
965 #endif
966
967 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
968 extern bool perf_event_can_stop_tick(void);
969 #else
970 static inline bool perf_event_can_stop_tick(void) { return true; }
971 #endif
972
973 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
974 extern void perf_restore_debug_store(void);
975 #else
976 static inline void perf_restore_debug_store(void) { }
977 #endif
978
979 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
980
981 /*
982 * This has to have a higher priority than migration_notifier in sched/core.c.
983 */
984 #define perf_cpu_notifier(fn) \
985 do { \
986 static struct notifier_block fn##_nb = \
987 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
988 unsigned long cpu = smp_processor_id(); \
989 unsigned long flags; \
990 \
991 cpu_notifier_register_begin(); \
992 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
993 (void *)(unsigned long)cpu); \
994 local_irq_save(flags); \
995 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
996 (void *)(unsigned long)cpu); \
997 local_irq_restore(flags); \
998 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
999 (void *)(unsigned long)cpu); \
1000 __register_cpu_notifier(&fn##_nb); \
1001 cpu_notifier_register_done(); \
1002 } while (0)
1003
1004 /*
1005 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1006 * callback for already online CPUs.
1007 */
1008 #define __perf_cpu_notifier(fn) \
1009 do { \
1010 static struct notifier_block fn##_nb = \
1011 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1012 \
1013 __register_cpu_notifier(&fn##_nb); \
1014 } while (0)
1015
1016 struct perf_pmu_events_attr {
1017 struct device_attribute attr;
1018 u64 id;
1019 const char *event_str;
1020 };
1021
1022 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1023 char *page);
1024
1025 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1026 static struct perf_pmu_events_attr _var = { \
1027 .attr = __ATTR(_name, 0444, _show, NULL), \
1028 .id = _id, \
1029 };
1030
1031 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1032 static struct perf_pmu_events_attr _var = { \
1033 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1034 .id = 0, \
1035 .event_str = _str, \
1036 };
1037
1038 #define PMU_FORMAT_ATTR(_name, _format) \
1039 static ssize_t \
1040 _name##_show(struct device *dev, \
1041 struct device_attribute *attr, \
1042 char *page) \
1043 { \
1044 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1045 return sprintf(page, _format "\n"); \
1046 } \
1047 \
1048 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1049
1050 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.052357 seconds and 6 git commands to generate.