Merge branch 'pm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3 /* ptrace.h */
4 /* structs and defines to help the user use the ptrace system call. */
5
6 /* has the defines to get at the registers. */
7
8 #define PTRACE_TRACEME 0
9 #define PTRACE_PEEKTEXT 1
10 #define PTRACE_PEEKDATA 2
11 #define PTRACE_PEEKUSR 3
12 #define PTRACE_POKETEXT 4
13 #define PTRACE_POKEDATA 5
14 #define PTRACE_POKEUSR 6
15 #define PTRACE_CONT 7
16 #define PTRACE_KILL 8
17 #define PTRACE_SINGLESTEP 9
18
19 #define PTRACE_ATTACH 16
20 #define PTRACE_DETACH 17
21
22 #define PTRACE_SYSCALL 24
23
24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */
25 #define PTRACE_SETOPTIONS 0x4200
26 #define PTRACE_GETEVENTMSG 0x4201
27 #define PTRACE_GETSIGINFO 0x4202
28 #define PTRACE_SETSIGINFO 0x4203
29
30 /*
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
38 *
39 * This interface usage is as follows:
40 * struct iovec iov = { buf, len};
41 *
42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
43 *
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
46 */
47 #define PTRACE_GETREGSET 0x4204
48 #define PTRACE_SETREGSET 0x4205
49
50 #define PTRACE_SEIZE 0x4206
51 #define PTRACE_INTERRUPT 0x4207
52 #define PTRACE_LISTEN 0x4208
53
54 /* flags in @data for PTRACE_SEIZE */
55 #define PTRACE_SEIZE_DEVEL 0x80000000 /* temp flag for development */
56
57 /* options set using PTRACE_SETOPTIONS */
58 #define PTRACE_O_TRACESYSGOOD 0x00000001
59 #define PTRACE_O_TRACEFORK 0x00000002
60 #define PTRACE_O_TRACEVFORK 0x00000004
61 #define PTRACE_O_TRACECLONE 0x00000008
62 #define PTRACE_O_TRACEEXEC 0x00000010
63 #define PTRACE_O_TRACEVFORKDONE 0x00000020
64 #define PTRACE_O_TRACEEXIT 0x00000040
65
66 #define PTRACE_O_MASK 0x0000007f
67
68 /* Wait extended result codes for the above trace options. */
69 #define PTRACE_EVENT_FORK 1
70 #define PTRACE_EVENT_VFORK 2
71 #define PTRACE_EVENT_CLONE 3
72 #define PTRACE_EVENT_EXEC 4
73 #define PTRACE_EVENT_VFORK_DONE 5
74 #define PTRACE_EVENT_EXIT 6
75 #define PTRACE_EVENT_STOP 7
76
77 #include <asm/ptrace.h>
78
79 #ifdef __KERNEL__
80 /*
81 * Ptrace flags
82 *
83 * The owner ship rules for task->ptrace which holds the ptrace
84 * flags is simple. When a task is running it owns it's task->ptrace
85 * flags. When the a task is stopped the ptracer owns task->ptrace.
86 */
87
88 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
89 #define PT_PTRACED 0x00000001
90 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
91 #define PT_TRACESYSGOOD 0x00000004
92 #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */
93
94 /* PT_TRACE_* event enable flags */
95 #define PT_EVENT_FLAG_SHIFT 4
96 #define PT_EVENT_FLAG(event) (1 << (PT_EVENT_FLAG_SHIFT + (event) - 1))
97
98 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
99 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
100 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
101 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
102 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
103 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
104
105 #define PT_TRACE_MASK 0x000003f4
106
107 /* single stepping state bits (used on ARM and PA-RISC) */
108 #define PT_SINGLESTEP_BIT 31
109 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
110 #define PT_BLOCKSTEP_BIT 30
111 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
112
113 #include <linux/compiler.h> /* For unlikely. */
114 #include <linux/sched.h> /* For struct task_struct. */
115
116
117 extern long arch_ptrace(struct task_struct *child, long request,
118 unsigned long addr, unsigned long data);
119 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
120 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
121 extern void ptrace_disable(struct task_struct *);
122 extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
123 extern int ptrace_request(struct task_struct *child, long request,
124 unsigned long addr, unsigned long data);
125 extern void ptrace_notify(int exit_code);
126 extern void __ptrace_link(struct task_struct *child,
127 struct task_struct *new_parent);
128 extern void __ptrace_unlink(struct task_struct *child);
129 extern void exit_ptrace(struct task_struct *tracer);
130 #define PTRACE_MODE_READ 0x01
131 #define PTRACE_MODE_ATTACH 0x02
132 #define PTRACE_MODE_NOAUDIT 0x04
133 /* Returns 0 on success, -errno on denial. */
134 extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
135 /* Returns true on success, false on denial. */
136 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
137
138 static inline int ptrace_reparented(struct task_struct *child)
139 {
140 return !same_thread_group(child->real_parent, child->parent);
141 }
142
143 static inline void ptrace_unlink(struct task_struct *child)
144 {
145 if (unlikely(child->ptrace))
146 __ptrace_unlink(child);
147 }
148
149 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
150 unsigned long data);
151 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
152 unsigned long data);
153
154 /**
155 * ptrace_parent - return the task that is tracing the given task
156 * @task: task to consider
157 *
158 * Returns %NULL if no one is tracing @task, or the &struct task_struct
159 * pointer to its tracer.
160 *
161 * Must called under rcu_read_lock(). The pointer returned might be kept
162 * live only by RCU. During exec, this may be called with task_lock() held
163 * on @task, still held from when check_unsafe_exec() was called.
164 */
165 static inline struct task_struct *ptrace_parent(struct task_struct *task)
166 {
167 if (unlikely(task->ptrace))
168 return rcu_dereference(task->parent);
169 return NULL;
170 }
171
172 /**
173 * ptrace_event_enabled - test whether a ptrace event is enabled
174 * @task: ptracee of interest
175 * @event: %PTRACE_EVENT_* to test
176 *
177 * Test whether @event is enabled for ptracee @task.
178 *
179 * Returns %true if @event is enabled, %false otherwise.
180 */
181 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
182 {
183 return task->ptrace & PT_EVENT_FLAG(event);
184 }
185
186 /**
187 * ptrace_event - possibly stop for a ptrace event notification
188 * @event: %PTRACE_EVENT_* value to report
189 * @message: value for %PTRACE_GETEVENTMSG to return
190 *
191 * Check whether @event is enabled and, if so, report @event and @message
192 * to the ptrace parent.
193 *
194 * Called without locks.
195 */
196 static inline void ptrace_event(int event, unsigned long message)
197 {
198 if (unlikely(ptrace_event_enabled(current, event))) {
199 current->ptrace_message = message;
200 ptrace_notify((event << 8) | SIGTRAP);
201 } else if (event == PTRACE_EVENT_EXEC && unlikely(current->ptrace)) {
202 /* legacy EXEC report via SIGTRAP */
203 send_sig(SIGTRAP, current, 0);
204 }
205 }
206
207 /**
208 * ptrace_init_task - initialize ptrace state for a new child
209 * @child: new child task
210 * @ptrace: true if child should be ptrace'd by parent's tracer
211 *
212 * This is called immediately after adding @child to its parent's children
213 * list. @ptrace is false in the normal case, and true to ptrace @child.
214 *
215 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
216 */
217 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
218 {
219 INIT_LIST_HEAD(&child->ptrace_entry);
220 INIT_LIST_HEAD(&child->ptraced);
221 #ifdef CONFIG_HAVE_HW_BREAKPOINT
222 atomic_set(&child->ptrace_bp_refcnt, 1);
223 #endif
224 child->jobctl = 0;
225 child->ptrace = 0;
226 child->parent = child->real_parent;
227
228 if (unlikely(ptrace) && current->ptrace) {
229 child->ptrace = current->ptrace;
230 __ptrace_link(child, current->parent);
231
232 if (child->ptrace & PT_SEIZED)
233 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
234 else
235 sigaddset(&child->pending.signal, SIGSTOP);
236
237 set_tsk_thread_flag(child, TIF_SIGPENDING);
238 }
239 }
240
241 /**
242 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
243 * @task: task in %EXIT_DEAD state
244 *
245 * Called with write_lock(&tasklist_lock) held.
246 */
247 static inline void ptrace_release_task(struct task_struct *task)
248 {
249 BUG_ON(!list_empty(&task->ptraced));
250 ptrace_unlink(task);
251 BUG_ON(!list_empty(&task->ptrace_entry));
252 }
253
254 #ifndef force_successful_syscall_return
255 /*
256 * System call handlers that, upon successful completion, need to return a
257 * negative value should call force_successful_syscall_return() right before
258 * returning. On architectures where the syscall convention provides for a
259 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
260 * others), this macro can be used to ensure that the error flag will not get
261 * set. On architectures which do not support a separate error flag, the macro
262 * is a no-op and the spurious error condition needs to be filtered out by some
263 * other means (e.g., in user-level, by passing an extra argument to the
264 * syscall handler, or something along those lines).
265 */
266 #define force_successful_syscall_return() do { } while (0)
267 #endif
268
269 /*
270 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
271 *
272 * These do-nothing inlines are used when the arch does not
273 * implement single-step. The kerneldoc comments are here
274 * to document the interface for all arch definitions.
275 */
276
277 #ifndef arch_has_single_step
278 /**
279 * arch_has_single_step - does this CPU support user-mode single-step?
280 *
281 * If this is defined, then there must be function declarations or
282 * inlines for user_enable_single_step() and user_disable_single_step().
283 * arch_has_single_step() should evaluate to nonzero iff the machine
284 * supports instruction single-step for user mode.
285 * It can be a constant or it can test a CPU feature bit.
286 */
287 #define arch_has_single_step() (0)
288
289 /**
290 * user_enable_single_step - single-step in user-mode task
291 * @task: either current or a task stopped in %TASK_TRACED
292 *
293 * This can only be called when arch_has_single_step() has returned nonzero.
294 * Set @task so that when it returns to user mode, it will trap after the
295 * next single instruction executes. If arch_has_block_step() is defined,
296 * this must clear the effects of user_enable_block_step() too.
297 */
298 static inline void user_enable_single_step(struct task_struct *task)
299 {
300 BUG(); /* This can never be called. */
301 }
302
303 /**
304 * user_disable_single_step - cancel user-mode single-step
305 * @task: either current or a task stopped in %TASK_TRACED
306 *
307 * Clear @task of the effects of user_enable_single_step() and
308 * user_enable_block_step(). This can be called whether or not either
309 * of those was ever called on @task, and even if arch_has_single_step()
310 * returned zero.
311 */
312 static inline void user_disable_single_step(struct task_struct *task)
313 {
314 }
315 #else
316 extern void user_enable_single_step(struct task_struct *);
317 extern void user_disable_single_step(struct task_struct *);
318 #endif /* arch_has_single_step */
319
320 #ifndef arch_has_block_step
321 /**
322 * arch_has_block_step - does this CPU support user-mode block-step?
323 *
324 * If this is defined, then there must be a function declaration or inline
325 * for user_enable_block_step(), and arch_has_single_step() must be defined
326 * too. arch_has_block_step() should evaluate to nonzero iff the machine
327 * supports step-until-branch for user mode. It can be a constant or it
328 * can test a CPU feature bit.
329 */
330 #define arch_has_block_step() (0)
331
332 /**
333 * user_enable_block_step - step until branch in user-mode task
334 * @task: either current or a task stopped in %TASK_TRACED
335 *
336 * This can only be called when arch_has_block_step() has returned nonzero,
337 * and will never be called when single-instruction stepping is being used.
338 * Set @task so that when it returns to user mode, it will trap after the
339 * next branch or trap taken.
340 */
341 static inline void user_enable_block_step(struct task_struct *task)
342 {
343 BUG(); /* This can never be called. */
344 }
345 #else
346 extern void user_enable_block_step(struct task_struct *);
347 #endif /* arch_has_block_step */
348
349 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
350 extern void user_single_step_siginfo(struct task_struct *tsk,
351 struct pt_regs *regs, siginfo_t *info);
352 #else
353 static inline void user_single_step_siginfo(struct task_struct *tsk,
354 struct pt_regs *regs, siginfo_t *info)
355 {
356 memset(info, 0, sizeof(*info));
357 info->si_signo = SIGTRAP;
358 }
359 #endif
360
361 #ifndef arch_ptrace_stop_needed
362 /**
363 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
364 * @code: current->exit_code value ptrace will stop with
365 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
366 *
367 * This is called with the siglock held, to decide whether or not it's
368 * necessary to release the siglock and call arch_ptrace_stop() with the
369 * same @code and @info arguments. It can be defined to a constant if
370 * arch_ptrace_stop() is never required, or always is. On machines where
371 * this makes sense, it should be defined to a quick test to optimize out
372 * calling arch_ptrace_stop() when it would be superfluous. For example,
373 * if the thread has not been back to user mode since the last stop, the
374 * thread state might indicate that nothing needs to be done.
375 */
376 #define arch_ptrace_stop_needed(code, info) (0)
377 #endif
378
379 #ifndef arch_ptrace_stop
380 /**
381 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
382 * @code: current->exit_code value ptrace will stop with
383 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
384 *
385 * This is called with no locks held when arch_ptrace_stop_needed() has
386 * just returned nonzero. It is allowed to block, e.g. for user memory
387 * access. The arch can have machine-specific work to be done before
388 * ptrace stops. On ia64, register backing store gets written back to user
389 * memory here. Since this can be costly (requires dropping the siglock),
390 * we only do it when the arch requires it for this particular stop, as
391 * indicated by arch_ptrace_stop_needed().
392 */
393 #define arch_ptrace_stop(code, info) do { } while (0)
394 #endif
395
396 extern int task_current_syscall(struct task_struct *target, long *callno,
397 unsigned long args[6], unsigned int maxargs,
398 unsigned long *sp, unsigned long *pc);
399
400 #ifdef CONFIG_HAVE_HW_BREAKPOINT
401 extern int ptrace_get_breakpoints(struct task_struct *tsk);
402 extern void ptrace_put_breakpoints(struct task_struct *tsk);
403 #else
404 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
405 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
406
407 #endif /* __KERNEL */
408
409 #endif
This page took 0.049298 seconds and 6 git commands to generate.