bad63105e37ef13db37157453a75821ee6bfa1ca
[deliverable/linux.git] / include / linux / radix-tree.h
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2006 Nick Piggin
5 * Copyright (C) 2012 Konstantin Khlebnikov
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23
24 #include <linux/bitops.h>
25 #include <linux/preempt.h>
26 #include <linux/types.h>
27 #include <linux/bug.h>
28 #include <linux/kernel.h>
29 #include <linux/rcupdate.h>
30
31 /*
32 * Entries in the radix tree have the low bit set if they refer to a
33 * radix_tree_node. If the low bit is clear then the entry is user data.
34 *
35 * We also use the low bit to indicate that the slot will be freed in the
36 * next RCU idle period, and users need to re-walk the tree to find the
37 * new slot for the index that they were looking for. See the comment in
38 * radix_tree_shrink() for details.
39 */
40 #define RADIX_TREE_INTERNAL_NODE 1
41
42 /*
43 * A common use of the radix tree is to store pointers to struct pages;
44 * but shmem/tmpfs needs also to store swap entries in the same tree:
45 * those are marked as exceptional entries to distinguish them.
46 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
47 */
48 #define RADIX_TREE_EXCEPTIONAL_ENTRY 2
49 #define RADIX_TREE_EXCEPTIONAL_SHIFT 2
50
51 #define RADIX_DAX_MASK 0xf
52 #define RADIX_DAX_SHIFT 4
53 #define RADIX_DAX_PTE (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY)
54 #define RADIX_DAX_PMD (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY)
55 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK)
56 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
57 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
58 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE)))
59
60 static inline int radix_tree_is_internal_node(void *ptr)
61 {
62 return (int)((unsigned long)ptr & RADIX_TREE_INTERNAL_NODE);
63 }
64
65 /*** radix-tree API starts here ***/
66
67 #define RADIX_TREE_MAX_TAGS 3
68
69 #ifndef RADIX_TREE_MAP_SHIFT
70 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
71 #endif
72
73 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
74 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
75
76 #define RADIX_TREE_TAG_LONGS \
77 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
78
79 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
80 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
81 RADIX_TREE_MAP_SHIFT))
82
83 /* Internally used bits of node->count */
84 #define RADIX_TREE_COUNT_SHIFT (RADIX_TREE_MAP_SHIFT + 1)
85 #define RADIX_TREE_COUNT_MASK ((1UL << RADIX_TREE_COUNT_SHIFT) - 1)
86
87 struct radix_tree_node {
88 unsigned char shift; /* Bits remaining in each slot */
89 unsigned char offset; /* Slot offset in parent */
90 unsigned int count;
91 union {
92 struct {
93 /* Used when ascending tree */
94 struct radix_tree_node *parent;
95 /* For tree user */
96 void *private_data;
97 };
98 /* Used when freeing node */
99 struct rcu_head rcu_head;
100 };
101 /* For tree user */
102 struct list_head private_list;
103 void __rcu *slots[RADIX_TREE_MAP_SIZE];
104 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
105 };
106
107 /* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
108 struct radix_tree_root {
109 gfp_t gfp_mask;
110 struct radix_tree_node __rcu *rnode;
111 };
112
113 #define RADIX_TREE_INIT(mask) { \
114 .gfp_mask = (mask), \
115 .rnode = NULL, \
116 }
117
118 #define RADIX_TREE(name, mask) \
119 struct radix_tree_root name = RADIX_TREE_INIT(mask)
120
121 #define INIT_RADIX_TREE(root, mask) \
122 do { \
123 (root)->gfp_mask = (mask); \
124 (root)->rnode = NULL; \
125 } while (0)
126
127 static inline bool radix_tree_empty(struct radix_tree_root *root)
128 {
129 return root->rnode == NULL;
130 }
131
132 /**
133 * Radix-tree synchronization
134 *
135 * The radix-tree API requires that users provide all synchronisation (with
136 * specific exceptions, noted below).
137 *
138 * Synchronization of access to the data items being stored in the tree, and
139 * management of their lifetimes must be completely managed by API users.
140 *
141 * For API usage, in general,
142 * - any function _modifying_ the tree or tags (inserting or deleting
143 * items, setting or clearing tags) must exclude other modifications, and
144 * exclude any functions reading the tree.
145 * - any function _reading_ the tree or tags (looking up items or tags,
146 * gang lookups) must exclude modifications to the tree, but may occur
147 * concurrently with other readers.
148 *
149 * The notable exceptions to this rule are the following functions:
150 * __radix_tree_lookup
151 * radix_tree_lookup
152 * radix_tree_lookup_slot
153 * radix_tree_tag_get
154 * radix_tree_gang_lookup
155 * radix_tree_gang_lookup_slot
156 * radix_tree_gang_lookup_tag
157 * radix_tree_gang_lookup_tag_slot
158 * radix_tree_tagged
159 *
160 * The first 8 functions are able to be called locklessly, using RCU. The
161 * caller must ensure calls to these functions are made within rcu_read_lock()
162 * regions. Other readers (lock-free or otherwise) and modifications may be
163 * running concurrently.
164 *
165 * It is still required that the caller manage the synchronization and lifetimes
166 * of the items. So if RCU lock-free lookups are used, typically this would mean
167 * that the items have their own locks, or are amenable to lock-free access; and
168 * that the items are freed by RCU (or only freed after having been deleted from
169 * the radix tree *and* a synchronize_rcu() grace period).
170 *
171 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
172 * access to data items when inserting into or looking up from the radix tree)
173 *
174 * Note that the value returned by radix_tree_tag_get() may not be relied upon
175 * if only the RCU read lock is held. Functions to set/clear tags and to
176 * delete nodes running concurrently with it may affect its result such that
177 * two consecutive reads in the same locked section may return different
178 * values. If reliability is required, modification functions must also be
179 * excluded from concurrency.
180 *
181 * radix_tree_tagged is able to be called without locking or RCU.
182 */
183
184 /**
185 * radix_tree_deref_slot - dereference a slot
186 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
187 * Returns: item that was stored in that slot with any direct pointer flag
188 * removed.
189 *
190 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read
191 * locked across slot lookup and dereference. Not required if write lock is
192 * held (ie. items cannot be concurrently inserted).
193 *
194 * radix_tree_deref_retry must be used to confirm validity of the pointer if
195 * only the read lock is held.
196 */
197 static inline void *radix_tree_deref_slot(void **pslot)
198 {
199 return rcu_dereference(*pslot);
200 }
201
202 /**
203 * radix_tree_deref_slot_protected - dereference a slot without RCU lock but with tree lock held
204 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
205 * Returns: item that was stored in that slot with any direct pointer flag
206 * removed.
207 *
208 * Similar to radix_tree_deref_slot but only used during migration when a pages
209 * mapping is being moved. The caller does not hold the RCU read lock but it
210 * must hold the tree lock to prevent parallel updates.
211 */
212 static inline void *radix_tree_deref_slot_protected(void **pslot,
213 spinlock_t *treelock)
214 {
215 return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
216 }
217
218 /**
219 * radix_tree_deref_retry - check radix_tree_deref_slot
220 * @arg: pointer returned by radix_tree_deref_slot
221 * Returns: 0 if retry is not required, otherwise retry is required
222 *
223 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
224 */
225 static inline int radix_tree_deref_retry(void *arg)
226 {
227 return unlikely(radix_tree_is_internal_node(arg));
228 }
229
230 /**
231 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
232 * @arg: value returned by radix_tree_deref_slot
233 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry.
234 */
235 static inline int radix_tree_exceptional_entry(void *arg)
236 {
237 /* Not unlikely because radix_tree_exception often tested first */
238 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
239 }
240
241 /**
242 * radix_tree_exception - radix_tree_deref_slot returned either exception?
243 * @arg: value returned by radix_tree_deref_slot
244 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
245 */
246 static inline int radix_tree_exception(void *arg)
247 {
248 return unlikely((unsigned long)arg &
249 (RADIX_TREE_INTERNAL_NODE | RADIX_TREE_EXCEPTIONAL_ENTRY));
250 }
251
252 /**
253 * radix_tree_replace_slot - replace item in a slot
254 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
255 * @item: new item to store in the slot.
256 *
257 * For use with radix_tree_lookup_slot(). Caller must hold tree write locked
258 * across slot lookup and replacement.
259 */
260 static inline void radix_tree_replace_slot(void **pslot, void *item)
261 {
262 BUG_ON(radix_tree_is_internal_node(item));
263 rcu_assign_pointer(*pslot, item);
264 }
265
266 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
267 unsigned order, struct radix_tree_node **nodep,
268 void ***slotp);
269 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
270 unsigned order, void *);
271 static inline int radix_tree_insert(struct radix_tree_root *root,
272 unsigned long index, void *entry)
273 {
274 return __radix_tree_insert(root, index, 0, entry);
275 }
276 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
277 struct radix_tree_node **nodep, void ***slotp);
278 void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
279 void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
280 bool __radix_tree_delete_node(struct radix_tree_root *root,
281 struct radix_tree_node *node);
282 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
283 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
284 unsigned int
285 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
286 unsigned long first_index, unsigned int max_items);
287 unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
288 void ***results, unsigned long *indices,
289 unsigned long first_index, unsigned int max_items);
290 int radix_tree_preload(gfp_t gfp_mask);
291 int radix_tree_maybe_preload(gfp_t gfp_mask);
292 void radix_tree_init(void);
293 void *radix_tree_tag_set(struct radix_tree_root *root,
294 unsigned long index, unsigned int tag);
295 void *radix_tree_tag_clear(struct radix_tree_root *root,
296 unsigned long index, unsigned int tag);
297 int radix_tree_tag_get(struct radix_tree_root *root,
298 unsigned long index, unsigned int tag);
299 unsigned int
300 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
301 unsigned long first_index, unsigned int max_items,
302 unsigned int tag);
303 unsigned int
304 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
305 unsigned long first_index, unsigned int max_items,
306 unsigned int tag);
307 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
308 unsigned long *first_indexp, unsigned long last_index,
309 unsigned long nr_to_tag,
310 unsigned int fromtag, unsigned int totag);
311 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
312 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
313
314 static inline void radix_tree_preload_end(void)
315 {
316 preempt_enable();
317 }
318
319 /**
320 * struct radix_tree_iter - radix tree iterator state
321 *
322 * @index: index of current slot
323 * @next_index: one beyond the last index for this chunk
324 * @tags: bit-mask for tag-iterating
325 * @shift: shift for the node that holds our slots
326 *
327 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a
328 * subinterval of slots contained within one radix tree leaf node. It is
329 * described by a pointer to its first slot and a struct radix_tree_iter
330 * which holds the chunk's position in the tree and its size. For tagged
331 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
332 * radix tree tag.
333 */
334 struct radix_tree_iter {
335 unsigned long index;
336 unsigned long next_index;
337 unsigned long tags;
338 #ifdef CONFIG_RADIX_TREE_MULTIORDER
339 unsigned int shift;
340 #endif
341 };
342
343 static inline unsigned int iter_shift(struct radix_tree_iter *iter)
344 {
345 #ifdef CONFIG_RADIX_TREE_MULTIORDER
346 return iter->shift;
347 #else
348 return 0;
349 #endif
350 }
351
352 #define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */
353 #define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */
354 #define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */
355
356 /**
357 * radix_tree_iter_init - initialize radix tree iterator
358 *
359 * @iter: pointer to iterator state
360 * @start: iteration starting index
361 * Returns: NULL
362 */
363 static __always_inline void **
364 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
365 {
366 /*
367 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
368 * in the case of a successful tagged chunk lookup. If the lookup was
369 * unsuccessful or non-tagged then nobody cares about ->tags.
370 *
371 * Set index to zero to bypass next_index overflow protection.
372 * See the comment in radix_tree_next_chunk() for details.
373 */
374 iter->index = 0;
375 iter->next_index = start;
376 return NULL;
377 }
378
379 /**
380 * radix_tree_next_chunk - find next chunk of slots for iteration
381 *
382 * @root: radix tree root
383 * @iter: iterator state
384 * @flags: RADIX_TREE_ITER_* flags and tag index
385 * Returns: pointer to chunk first slot, or NULL if there no more left
386 *
387 * This function looks up the next chunk in the radix tree starting from
388 * @iter->next_index. It returns a pointer to the chunk's first slot.
389 * Also it fills @iter with data about chunk: position in the tree (index),
390 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
391 */
392 void **radix_tree_next_chunk(struct radix_tree_root *root,
393 struct radix_tree_iter *iter, unsigned flags);
394
395 /**
396 * radix_tree_iter_retry - retry this chunk of the iteration
397 * @iter: iterator state
398 *
399 * If we iterate over a tree protected only by the RCU lock, a race
400 * against deletion or creation may result in seeing a slot for which
401 * radix_tree_deref_retry() returns true. If so, call this function
402 * and continue the iteration.
403 */
404 static inline __must_check
405 void **radix_tree_iter_retry(struct radix_tree_iter *iter)
406 {
407 iter->next_index = iter->index;
408 return NULL;
409 }
410
411 static inline unsigned long
412 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
413 {
414 return iter->index + (slots << iter_shift(iter));
415 }
416
417 /**
418 * radix_tree_iter_next - resume iterating when the chunk may be invalid
419 * @iter: iterator state
420 *
421 * If the iterator needs to release then reacquire a lock, the chunk may
422 * have been invalidated by an insertion or deletion. Call this function
423 * to continue the iteration from the next index.
424 */
425 static inline __must_check
426 void **radix_tree_iter_next(struct radix_tree_iter *iter)
427 {
428 iter->next_index = __radix_tree_iter_add(iter, 1);
429 iter->tags = 0;
430 return NULL;
431 }
432
433 /**
434 * radix_tree_chunk_size - get current chunk size
435 *
436 * @iter: pointer to radix tree iterator
437 * Returns: current chunk size
438 */
439 static __always_inline long
440 radix_tree_chunk_size(struct radix_tree_iter *iter)
441 {
442 return (iter->next_index - iter->index) >> iter_shift(iter);
443 }
444
445 static inline struct radix_tree_node *entry_to_node(void *ptr)
446 {
447 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
448 }
449
450 /**
451 * radix_tree_next_slot - find next slot in chunk
452 *
453 * @slot: pointer to current slot
454 * @iter: pointer to interator state
455 * @flags: RADIX_TREE_ITER_*, should be constant
456 * Returns: pointer to next slot, or NULL if there no more left
457 *
458 * This function updates @iter->index in the case of a successful lookup.
459 * For tagged lookup it also eats @iter->tags.
460 */
461 static __always_inline void **
462 radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
463 {
464 if (flags & RADIX_TREE_ITER_TAGGED) {
465 void *canon = slot;
466
467 iter->tags >>= 1;
468 if (unlikely(!iter->tags))
469 return NULL;
470 while (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) &&
471 radix_tree_is_internal_node(slot[1])) {
472 if (entry_to_node(slot[1]) == canon) {
473 iter->tags >>= 1;
474 iter->index = __radix_tree_iter_add(iter, 1);
475 slot++;
476 continue;
477 }
478 iter->next_index = __radix_tree_iter_add(iter, 1);
479 return NULL;
480 }
481 if (likely(iter->tags & 1ul)) {
482 iter->index = __radix_tree_iter_add(iter, 1);
483 return slot + 1;
484 }
485 if (!(flags & RADIX_TREE_ITER_CONTIG)) {
486 unsigned offset = __ffs(iter->tags);
487
488 iter->tags >>= offset;
489 iter->index = __radix_tree_iter_add(iter, offset + 1);
490 return slot + offset + 1;
491 }
492 } else {
493 long count = radix_tree_chunk_size(iter);
494 void *canon = slot;
495
496 while (--count > 0) {
497 slot++;
498 iter->index = __radix_tree_iter_add(iter, 1);
499
500 if (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) &&
501 radix_tree_is_internal_node(*slot)) {
502 if (entry_to_node(*slot) == canon)
503 continue;
504 iter->next_index = iter->index;
505 break;
506 }
507
508 if (likely(*slot))
509 return slot;
510 if (flags & RADIX_TREE_ITER_CONTIG) {
511 /* forbid switching to the next chunk */
512 iter->next_index = 0;
513 break;
514 }
515 }
516 }
517 return NULL;
518 }
519
520 /**
521 * radix_tree_for_each_slot - iterate over non-empty slots
522 *
523 * @slot: the void** variable for pointer to slot
524 * @root: the struct radix_tree_root pointer
525 * @iter: the struct radix_tree_iter pointer
526 * @start: iteration starting index
527 *
528 * @slot points to radix tree slot, @iter->index contains its index.
529 */
530 #define radix_tree_for_each_slot(slot, root, iter, start) \
531 for (slot = radix_tree_iter_init(iter, start) ; \
532 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
533 slot = radix_tree_next_slot(slot, iter, 0))
534
535 /**
536 * radix_tree_for_each_contig - iterate over contiguous slots
537 *
538 * @slot: the void** variable for pointer to slot
539 * @root: the struct radix_tree_root pointer
540 * @iter: the struct radix_tree_iter pointer
541 * @start: iteration starting index
542 *
543 * @slot points to radix tree slot, @iter->index contains its index.
544 */
545 #define radix_tree_for_each_contig(slot, root, iter, start) \
546 for (slot = radix_tree_iter_init(iter, start) ; \
547 slot || (slot = radix_tree_next_chunk(root, iter, \
548 RADIX_TREE_ITER_CONTIG)) ; \
549 slot = radix_tree_next_slot(slot, iter, \
550 RADIX_TREE_ITER_CONTIG))
551
552 /**
553 * radix_tree_for_each_tagged - iterate over tagged slots
554 *
555 * @slot: the void** variable for pointer to slot
556 * @root: the struct radix_tree_root pointer
557 * @iter: the struct radix_tree_iter pointer
558 * @start: iteration starting index
559 * @tag: tag index
560 *
561 * @slot points to radix tree slot, @iter->index contains its index.
562 */
563 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
564 for (slot = radix_tree_iter_init(iter, start) ; \
565 slot || (slot = radix_tree_next_chunk(root, iter, \
566 RADIX_TREE_ITER_TAGGED | tag)) ; \
567 slot = radix_tree_next_slot(slot, iter, \
568 RADIX_TREE_ITER_TAGGED))
569
570 #endif /* _LINUX_RADIX_TREE_H */
This page took 0.040805 seconds and 4 git commands to generate.