Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / include / linux / rculist.h
1 #ifndef _LINUX_RCULIST_H
2 #define _LINUX_RCULIST_H
3
4 #ifdef __KERNEL__
5
6 /*
7 * RCU-protected list version
8 */
9 #include <linux/list.h>
10 #include <linux/rcupdate.h>
11
12 /*
13 * Why is there no list_empty_rcu()? Because list_empty() serves this
14 * purpose. The list_empty() function fetches the RCU-protected pointer
15 * and compares it to the address of the list head, but neither dereferences
16 * this pointer itself nor provides this pointer to the caller. Therefore,
17 * it is not necessary to use rcu_dereference(), so that list_empty() can
18 * be used anywhere you would want to use a list_empty_rcu().
19 */
20
21 /*
22 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
23 * @list: list to be initialized
24 *
25 * You should instead use INIT_LIST_HEAD() for normal initialization and
26 * cleanup tasks, when readers have no access to the list being initialized.
27 * However, if the list being initialized is visible to readers, you
28 * need to keep the compiler from being too mischievous.
29 */
30 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
31 {
32 WRITE_ONCE(list->next, list);
33 WRITE_ONCE(list->prev, list);
34 }
35
36 /*
37 * return the ->next pointer of a list_head in an rcu safe
38 * way, we must not access it directly
39 */
40 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
41
42 /*
43 * Insert a new entry between two known consecutive entries.
44 *
45 * This is only for internal list manipulation where we know
46 * the prev/next entries already!
47 */
48 #ifndef CONFIG_DEBUG_LIST
49 static inline void __list_add_rcu(struct list_head *new,
50 struct list_head *prev, struct list_head *next)
51 {
52 new->next = next;
53 new->prev = prev;
54 rcu_assign_pointer(list_next_rcu(prev), new);
55 next->prev = new;
56 }
57 #else
58 void __list_add_rcu(struct list_head *new,
59 struct list_head *prev, struct list_head *next);
60 #endif
61
62 /**
63 * list_add_rcu - add a new entry to rcu-protected list
64 * @new: new entry to be added
65 * @head: list head to add it after
66 *
67 * Insert a new entry after the specified head.
68 * This is good for implementing stacks.
69 *
70 * The caller must take whatever precautions are necessary
71 * (such as holding appropriate locks) to avoid racing
72 * with another list-mutation primitive, such as list_add_rcu()
73 * or list_del_rcu(), running on this same list.
74 * However, it is perfectly legal to run concurrently with
75 * the _rcu list-traversal primitives, such as
76 * list_for_each_entry_rcu().
77 */
78 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
79 {
80 __list_add_rcu(new, head, head->next);
81 }
82
83 /**
84 * list_add_tail_rcu - add a new entry to rcu-protected list
85 * @new: new entry to be added
86 * @head: list head to add it before
87 *
88 * Insert a new entry before the specified head.
89 * This is useful for implementing queues.
90 *
91 * The caller must take whatever precautions are necessary
92 * (such as holding appropriate locks) to avoid racing
93 * with another list-mutation primitive, such as list_add_tail_rcu()
94 * or list_del_rcu(), running on this same list.
95 * However, it is perfectly legal to run concurrently with
96 * the _rcu list-traversal primitives, such as
97 * list_for_each_entry_rcu().
98 */
99 static inline void list_add_tail_rcu(struct list_head *new,
100 struct list_head *head)
101 {
102 __list_add_rcu(new, head->prev, head);
103 }
104
105 /**
106 * list_del_rcu - deletes entry from list without re-initialization
107 * @entry: the element to delete from the list.
108 *
109 * Note: list_empty() on entry does not return true after this,
110 * the entry is in an undefined state. It is useful for RCU based
111 * lockfree traversal.
112 *
113 * In particular, it means that we can not poison the forward
114 * pointers that may still be used for walking the list.
115 *
116 * The caller must take whatever precautions are necessary
117 * (such as holding appropriate locks) to avoid racing
118 * with another list-mutation primitive, such as list_del_rcu()
119 * or list_add_rcu(), running on this same list.
120 * However, it is perfectly legal to run concurrently with
121 * the _rcu list-traversal primitives, such as
122 * list_for_each_entry_rcu().
123 *
124 * Note that the caller is not permitted to immediately free
125 * the newly deleted entry. Instead, either synchronize_rcu()
126 * or call_rcu() must be used to defer freeing until an RCU
127 * grace period has elapsed.
128 */
129 static inline void list_del_rcu(struct list_head *entry)
130 {
131 __list_del_entry(entry);
132 entry->prev = LIST_POISON2;
133 }
134
135 /**
136 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
137 * @n: the element to delete from the hash list.
138 *
139 * Note: list_unhashed() on the node return true after this. It is
140 * useful for RCU based read lockfree traversal if the writer side
141 * must know if the list entry is still hashed or already unhashed.
142 *
143 * In particular, it means that we can not poison the forward pointers
144 * that may still be used for walking the hash list and we can only
145 * zero the pprev pointer so list_unhashed() will return true after
146 * this.
147 *
148 * The caller must take whatever precautions are necessary (such as
149 * holding appropriate locks) to avoid racing with another
150 * list-mutation primitive, such as hlist_add_head_rcu() or
151 * hlist_del_rcu(), running on this same list. However, it is
152 * perfectly legal to run concurrently with the _rcu list-traversal
153 * primitives, such as hlist_for_each_entry_rcu().
154 */
155 static inline void hlist_del_init_rcu(struct hlist_node *n)
156 {
157 if (!hlist_unhashed(n)) {
158 __hlist_del(n);
159 n->pprev = NULL;
160 }
161 }
162
163 /**
164 * list_replace_rcu - replace old entry by new one
165 * @old : the element to be replaced
166 * @new : the new element to insert
167 *
168 * The @old entry will be replaced with the @new entry atomically.
169 * Note: @old should not be empty.
170 */
171 static inline void list_replace_rcu(struct list_head *old,
172 struct list_head *new)
173 {
174 new->next = old->next;
175 new->prev = old->prev;
176 rcu_assign_pointer(list_next_rcu(new->prev), new);
177 new->next->prev = new;
178 old->prev = LIST_POISON2;
179 }
180
181 /**
182 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
183 * @list: the RCU-protected list to splice
184 * @prev: points to the last element of the existing list
185 * @next: points to the first element of the existing list
186 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
187 *
188 * The list pointed to by @prev and @next can be RCU-read traversed
189 * concurrently with this function.
190 *
191 * Note that this function blocks.
192 *
193 * Important note: the caller must take whatever action is necessary to prevent
194 * any other updates to the existing list. In principle, it is possible to
195 * modify the list as soon as sync() begins execution. If this sort of thing
196 * becomes necessary, an alternative version based on call_rcu() could be
197 * created. But only if -really- needed -- there is no shortage of RCU API
198 * members.
199 */
200 static inline void __list_splice_init_rcu(struct list_head *list,
201 struct list_head *prev,
202 struct list_head *next,
203 void (*sync)(void))
204 {
205 struct list_head *first = list->next;
206 struct list_head *last = list->prev;
207
208 /*
209 * "first" and "last" tracking list, so initialize it. RCU readers
210 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
211 * instead of INIT_LIST_HEAD().
212 */
213
214 INIT_LIST_HEAD_RCU(list);
215
216 /*
217 * At this point, the list body still points to the source list.
218 * Wait for any readers to finish using the list before splicing
219 * the list body into the new list. Any new readers will see
220 * an empty list.
221 */
222
223 sync();
224
225 /*
226 * Readers are finished with the source list, so perform splice.
227 * The order is important if the new list is global and accessible
228 * to concurrent RCU readers. Note that RCU readers are not
229 * permitted to traverse the prev pointers without excluding
230 * this function.
231 */
232
233 last->next = next;
234 rcu_assign_pointer(list_next_rcu(prev), first);
235 first->prev = prev;
236 next->prev = last;
237 }
238
239 /**
240 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
241 * designed for stacks.
242 * @list: the RCU-protected list to splice
243 * @head: the place in the existing list to splice the first list into
244 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
245 */
246 static inline void list_splice_init_rcu(struct list_head *list,
247 struct list_head *head,
248 void (*sync)(void))
249 {
250 if (!list_empty(list))
251 __list_splice_init_rcu(list, head, head->next, sync);
252 }
253
254 /**
255 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
256 * list, designed for queues.
257 * @list: the RCU-protected list to splice
258 * @head: the place in the existing list to splice the first list into
259 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
260 */
261 static inline void list_splice_tail_init_rcu(struct list_head *list,
262 struct list_head *head,
263 void (*sync)(void))
264 {
265 if (!list_empty(list))
266 __list_splice_init_rcu(list, head->prev, head, sync);
267 }
268
269 /**
270 * list_entry_rcu - get the struct for this entry
271 * @ptr: the &struct list_head pointer.
272 * @type: the type of the struct this is embedded in.
273 * @member: the name of the list_head within the struct.
274 *
275 * This primitive may safely run concurrently with the _rcu list-mutation
276 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
277 */
278 #define list_entry_rcu(ptr, type, member) \
279 container_of(lockless_dereference(ptr), type, member)
280
281 /**
282 * Where are list_empty_rcu() and list_first_entry_rcu()?
283 *
284 * Implementing those functions following their counterparts list_empty() and
285 * list_first_entry() is not advisable because they lead to subtle race
286 * conditions as the following snippet shows:
287 *
288 * if (!list_empty_rcu(mylist)) {
289 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
290 * do_something(bar);
291 * }
292 *
293 * The list may not be empty when list_empty_rcu checks it, but it may be when
294 * list_first_entry_rcu rereads the ->next pointer.
295 *
296 * Rereading the ->next pointer is not a problem for list_empty() and
297 * list_first_entry() because they would be protected by a lock that blocks
298 * writers.
299 *
300 * See list_first_or_null_rcu for an alternative.
301 */
302
303 /**
304 * list_first_or_null_rcu - get the first element from a list
305 * @ptr: the list head to take the element from.
306 * @type: the type of the struct this is embedded in.
307 * @member: the name of the list_head within the struct.
308 *
309 * Note that if the list is empty, it returns NULL.
310 *
311 * This primitive may safely run concurrently with the _rcu list-mutation
312 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
313 */
314 #define list_first_or_null_rcu(ptr, type, member) \
315 ({ \
316 struct list_head *__ptr = (ptr); \
317 struct list_head *__next = READ_ONCE(__ptr->next); \
318 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
319 })
320
321 /**
322 * list_for_each_entry_rcu - iterate over rcu list of given type
323 * @pos: the type * to use as a loop cursor.
324 * @head: the head for your list.
325 * @member: the name of the list_head within the struct.
326 *
327 * This list-traversal primitive may safely run concurrently with
328 * the _rcu list-mutation primitives such as list_add_rcu()
329 * as long as the traversal is guarded by rcu_read_lock().
330 */
331 #define list_for_each_entry_rcu(pos, head, member) \
332 for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
333 &pos->member != (head); \
334 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
335
336 /**
337 * list_entry_lockless - get the struct for this entry
338 * @ptr: the &struct list_head pointer.
339 * @type: the type of the struct this is embedded in.
340 * @member: the name of the list_head within the struct.
341 *
342 * This primitive may safely run concurrently with the _rcu list-mutation
343 * primitives such as list_add_rcu(), but requires some implicit RCU
344 * read-side guarding. One example is running within a special
345 * exception-time environment where preemption is disabled and where
346 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
347 * as in synchronize_sched(), call_rcu_sched(), and friends). Another
348 * example is when items are added to the list, but never deleted.
349 */
350 #define list_entry_lockless(ptr, type, member) \
351 container_of((typeof(ptr))lockless_dereference(ptr), type, member)
352
353 /**
354 * list_for_each_entry_lockless - iterate over rcu list of given type
355 * @pos: the type * to use as a loop cursor.
356 * @head: the head for your list.
357 * @member: the name of the list_struct within the struct.
358 *
359 * This primitive may safely run concurrently with the _rcu list-mutation
360 * primitives such as list_add_rcu(), but requires some implicit RCU
361 * read-side guarding. One example is running within a special
362 * exception-time environment where preemption is disabled and where
363 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
364 * as in synchronize_sched(), call_rcu_sched(), and friends). Another
365 * example is when items are added to the list, but never deleted.
366 */
367 #define list_for_each_entry_lockless(pos, head, member) \
368 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
369 &pos->member != (head); \
370 pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
371
372 /**
373 * list_for_each_entry_continue_rcu - continue iteration over list of given type
374 * @pos: the type * to use as a loop cursor.
375 * @head: the head for your list.
376 * @member: the name of the list_head within the struct.
377 *
378 * Continue to iterate over list of given type, continuing after
379 * the current position.
380 */
381 #define list_for_each_entry_continue_rcu(pos, head, member) \
382 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
383 &pos->member != (head); \
384 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
385
386 /**
387 * hlist_del_rcu - deletes entry from hash list without re-initialization
388 * @n: the element to delete from the hash list.
389 *
390 * Note: list_unhashed() on entry does not return true after this,
391 * the entry is in an undefined state. It is useful for RCU based
392 * lockfree traversal.
393 *
394 * In particular, it means that we can not poison the forward
395 * pointers that may still be used for walking the hash list.
396 *
397 * The caller must take whatever precautions are necessary
398 * (such as holding appropriate locks) to avoid racing
399 * with another list-mutation primitive, such as hlist_add_head_rcu()
400 * or hlist_del_rcu(), running on this same list.
401 * However, it is perfectly legal to run concurrently with
402 * the _rcu list-traversal primitives, such as
403 * hlist_for_each_entry().
404 */
405 static inline void hlist_del_rcu(struct hlist_node *n)
406 {
407 __hlist_del(n);
408 n->pprev = LIST_POISON2;
409 }
410
411 /**
412 * hlist_replace_rcu - replace old entry by new one
413 * @old : the element to be replaced
414 * @new : the new element to insert
415 *
416 * The @old entry will be replaced with the @new entry atomically.
417 */
418 static inline void hlist_replace_rcu(struct hlist_node *old,
419 struct hlist_node *new)
420 {
421 struct hlist_node *next = old->next;
422
423 new->next = next;
424 new->pprev = old->pprev;
425 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
426 if (next)
427 new->next->pprev = &new->next;
428 old->pprev = LIST_POISON2;
429 }
430
431 /*
432 * return the first or the next element in an RCU protected hlist
433 */
434 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
435 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
436 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
437
438 /**
439 * hlist_add_head_rcu
440 * @n: the element to add to the hash list.
441 * @h: the list to add to.
442 *
443 * Description:
444 * Adds the specified element to the specified hlist,
445 * while permitting racing traversals.
446 *
447 * The caller must take whatever precautions are necessary
448 * (such as holding appropriate locks) to avoid racing
449 * with another list-mutation primitive, such as hlist_add_head_rcu()
450 * or hlist_del_rcu(), running on this same list.
451 * However, it is perfectly legal to run concurrently with
452 * the _rcu list-traversal primitives, such as
453 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
454 * problems on Alpha CPUs. Regardless of the type of CPU, the
455 * list-traversal primitive must be guarded by rcu_read_lock().
456 */
457 static inline void hlist_add_head_rcu(struct hlist_node *n,
458 struct hlist_head *h)
459 {
460 struct hlist_node *first = h->first;
461
462 n->next = first;
463 n->pprev = &h->first;
464 rcu_assign_pointer(hlist_first_rcu(h), n);
465 if (first)
466 first->pprev = &n->next;
467 }
468
469 /**
470 * hlist_add_before_rcu
471 * @n: the new element to add to the hash list.
472 * @next: the existing element to add the new element before.
473 *
474 * Description:
475 * Adds the specified element to the specified hlist
476 * before the specified node while permitting racing traversals.
477 *
478 * The caller must take whatever precautions are necessary
479 * (such as holding appropriate locks) to avoid racing
480 * with another list-mutation primitive, such as hlist_add_head_rcu()
481 * or hlist_del_rcu(), running on this same list.
482 * However, it is perfectly legal to run concurrently with
483 * the _rcu list-traversal primitives, such as
484 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
485 * problems on Alpha CPUs.
486 */
487 static inline void hlist_add_before_rcu(struct hlist_node *n,
488 struct hlist_node *next)
489 {
490 n->pprev = next->pprev;
491 n->next = next;
492 rcu_assign_pointer(hlist_pprev_rcu(n), n);
493 next->pprev = &n->next;
494 }
495
496 /**
497 * hlist_add_behind_rcu
498 * @n: the new element to add to the hash list.
499 * @prev: the existing element to add the new element after.
500 *
501 * Description:
502 * Adds the specified element to the specified hlist
503 * after the specified node while permitting racing traversals.
504 *
505 * The caller must take whatever precautions are necessary
506 * (such as holding appropriate locks) to avoid racing
507 * with another list-mutation primitive, such as hlist_add_head_rcu()
508 * or hlist_del_rcu(), running on this same list.
509 * However, it is perfectly legal to run concurrently with
510 * the _rcu list-traversal primitives, such as
511 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
512 * problems on Alpha CPUs.
513 */
514 static inline void hlist_add_behind_rcu(struct hlist_node *n,
515 struct hlist_node *prev)
516 {
517 n->next = prev->next;
518 n->pprev = &prev->next;
519 rcu_assign_pointer(hlist_next_rcu(prev), n);
520 if (n->next)
521 n->next->pprev = &n->next;
522 }
523
524 #define __hlist_for_each_rcu(pos, head) \
525 for (pos = rcu_dereference(hlist_first_rcu(head)); \
526 pos; \
527 pos = rcu_dereference(hlist_next_rcu(pos)))
528
529 /**
530 * hlist_for_each_entry_rcu - iterate over rcu list of given type
531 * @pos: the type * to use as a loop cursor.
532 * @head: the head for your list.
533 * @member: the name of the hlist_node within the struct.
534 *
535 * This list-traversal primitive may safely run concurrently with
536 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
537 * as long as the traversal is guarded by rcu_read_lock().
538 */
539 #define hlist_for_each_entry_rcu(pos, head, member) \
540 for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
541 typeof(*(pos)), member); \
542 pos; \
543 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
544 &(pos)->member)), typeof(*(pos)), member))
545
546 /**
547 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
548 * @pos: the type * to use as a loop cursor.
549 * @head: the head for your list.
550 * @member: the name of the hlist_node within the struct.
551 *
552 * This list-traversal primitive may safely run concurrently with
553 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
554 * as long as the traversal is guarded by rcu_read_lock().
555 *
556 * This is the same as hlist_for_each_entry_rcu() except that it does
557 * not do any RCU debugging or tracing.
558 */
559 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \
560 for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
561 typeof(*(pos)), member); \
562 pos; \
563 pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
564 &(pos)->member)), typeof(*(pos)), member))
565
566 /**
567 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
568 * @pos: the type * to use as a loop cursor.
569 * @head: the head for your list.
570 * @member: the name of the hlist_node within the struct.
571 *
572 * This list-traversal primitive may safely run concurrently with
573 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
574 * as long as the traversal is guarded by rcu_read_lock().
575 */
576 #define hlist_for_each_entry_rcu_bh(pos, head, member) \
577 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
578 typeof(*(pos)), member); \
579 pos; \
580 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
581 &(pos)->member)), typeof(*(pos)), member))
582
583 /**
584 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
585 * @pos: the type * to use as a loop cursor.
586 * @member: the name of the hlist_node within the struct.
587 */
588 #define hlist_for_each_entry_continue_rcu(pos, member) \
589 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
590 &(pos)->member)), typeof(*(pos)), member); \
591 pos; \
592 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
593 &(pos)->member)), typeof(*(pos)), member))
594
595 /**
596 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
597 * @pos: the type * to use as a loop cursor.
598 * @member: the name of the hlist_node within the struct.
599 */
600 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \
601 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
602 &(pos)->member)), typeof(*(pos)), member); \
603 pos; \
604 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
605 &(pos)->member)), typeof(*(pos)), member))
606
607 /**
608 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
609 * @pos: the type * to use as a loop cursor.
610 * @member: the name of the hlist_node within the struct.
611 */
612 #define hlist_for_each_entry_from_rcu(pos, member) \
613 for (; pos; \
614 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
615 &(pos)->member)), typeof(*(pos)), member))
616
617 #endif /* __KERNEL__ */
618 #endif
This page took 0.045185 seconds and 6 git commands to generate.