thp: remove assumptions on pgtable_t type
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp);
57 #else
58 static inline void rcutorture_record_test_transition(void)
59 {
60 }
61 static inline void rcutorture_record_progress(unsigned long vernum)
62 {
63 }
64 #ifdef CONFIG_RCU_TRACE
65 extern void do_trace_rcu_torture_read(char *rcutorturename,
66 struct rcu_head *rhp);
67 #else
68 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
69 #endif
70 #endif
71
72 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
73 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
74 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
75 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
76
77 /* Exported common interfaces */
78
79 #ifdef CONFIG_PREEMPT_RCU
80
81 /**
82 * call_rcu() - Queue an RCU callback for invocation after a grace period.
83 * @head: structure to be used for queueing the RCU updates.
84 * @func: actual callback function to be invoked after the grace period
85 *
86 * The callback function will be invoked some time after a full grace
87 * period elapses, in other words after all pre-existing RCU read-side
88 * critical sections have completed. However, the callback function
89 * might well execute concurrently with RCU read-side critical sections
90 * that started after call_rcu() was invoked. RCU read-side critical
91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
92 * and may be nested.
93 */
94 extern void call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *head));
96
97 #else /* #ifdef CONFIG_PREEMPT_RCU */
98
99 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
100 #define call_rcu call_rcu_sched
101
102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
103
104 /**
105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
106 * @head: structure to be used for queueing the RCU updates.
107 * @func: actual callback function to be invoked after the grace period
108 *
109 * The callback function will be invoked some time after a full grace
110 * period elapses, in other words after all currently executing RCU
111 * read-side critical sections have completed. call_rcu_bh() assumes
112 * that the read-side critical sections end on completion of a softirq
113 * handler. This means that read-side critical sections in process
114 * context must not be interrupted by softirqs. This interface is to be
115 * used when most of the read-side critical sections are in softirq context.
116 * RCU read-side critical sections are delimited by :
117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
118 * OR
119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
120 * These may be nested.
121 */
122 extern void call_rcu_bh(struct rcu_head *head,
123 void (*func)(struct rcu_head *head));
124
125 /**
126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
127 * @head: structure to be used for queueing the RCU updates.
128 * @func: actual callback function to be invoked after the grace period
129 *
130 * The callback function will be invoked some time after a full grace
131 * period elapses, in other words after all currently executing RCU
132 * read-side critical sections have completed. call_rcu_sched() assumes
133 * that the read-side critical sections end on enabling of preemption
134 * or on voluntary preemption.
135 * RCU read-side critical sections are delimited by :
136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
137 * OR
138 * anything that disables preemption.
139 * These may be nested.
140 */
141 extern void call_rcu_sched(struct rcu_head *head,
142 void (*func)(struct rcu_head *rcu));
143
144 extern void synchronize_sched(void);
145
146 #ifdef CONFIG_PREEMPT_RCU
147
148 extern void __rcu_read_lock(void);
149 extern void __rcu_read_unlock(void);
150 extern void rcu_read_unlock_special(struct task_struct *t);
151 void synchronize_rcu(void);
152
153 /*
154 * Defined as a macro as it is a very low level header included from
155 * areas that don't even know about current. This gives the rcu_read_lock()
156 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
157 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
158 */
159 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
160
161 #else /* #ifdef CONFIG_PREEMPT_RCU */
162
163 static inline void __rcu_read_lock(void)
164 {
165 preempt_disable();
166 }
167
168 static inline void __rcu_read_unlock(void)
169 {
170 preempt_enable();
171 }
172
173 static inline void synchronize_rcu(void)
174 {
175 synchronize_sched();
176 }
177
178 static inline int rcu_preempt_depth(void)
179 {
180 return 0;
181 }
182
183 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
184
185 /* Internal to kernel */
186 extern void rcu_sched_qs(int cpu);
187 extern void rcu_bh_qs(int cpu);
188 extern void rcu_check_callbacks(int cpu, int user);
189 struct notifier_block;
190 extern void rcu_idle_enter(void);
191 extern void rcu_idle_exit(void);
192 extern void rcu_irq_enter(void);
193 extern void rcu_irq_exit(void);
194
195 #ifdef CONFIG_RCU_USER_QS
196 extern void rcu_user_enter(void);
197 extern void rcu_user_exit(void);
198 extern void rcu_user_enter_after_irq(void);
199 extern void rcu_user_exit_after_irq(void);
200 extern void rcu_user_hooks_switch(struct task_struct *prev,
201 struct task_struct *next);
202 #else
203 static inline void rcu_user_enter(void) { }
204 static inline void rcu_user_exit(void) { }
205 static inline void rcu_user_enter_after_irq(void) { }
206 static inline void rcu_user_exit_after_irq(void) { }
207 #endif /* CONFIG_RCU_USER_QS */
208
209 extern void exit_rcu(void);
210
211 /**
212 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
213 * @a: Code that RCU needs to pay attention to.
214 *
215 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
216 * in the inner idle loop, that is, between the rcu_idle_enter() and
217 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
218 * critical sections. However, things like powertop need tracepoints
219 * in the inner idle loop.
220 *
221 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
222 * will tell RCU that it needs to pay attending, invoke its argument
223 * (in this example, a call to the do_something_with_RCU() function),
224 * and then tell RCU to go back to ignoring this CPU. It is permissible
225 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
226 * quite limited. If deeper nesting is required, it will be necessary
227 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
228 */
229 #define RCU_NONIDLE(a) \
230 do { \
231 rcu_irq_enter(); \
232 do { a; } while (0); \
233 rcu_irq_exit(); \
234 } while (0)
235
236 /*
237 * Infrastructure to implement the synchronize_() primitives in
238 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
239 */
240
241 typedef void call_rcu_func_t(struct rcu_head *head,
242 void (*func)(struct rcu_head *head));
243 void wait_rcu_gp(call_rcu_func_t crf);
244
245 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
246 #include <linux/rcutree.h>
247 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
248 #include <linux/rcutiny.h>
249 #else
250 #error "Unknown RCU implementation specified to kernel configuration"
251 #endif
252
253 /*
254 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
255 * initialization and destruction of rcu_head on the stack. rcu_head structures
256 * allocated dynamically in the heap or defined statically don't need any
257 * initialization.
258 */
259 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
260 extern void init_rcu_head_on_stack(struct rcu_head *head);
261 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
262 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
263 static inline void init_rcu_head_on_stack(struct rcu_head *head)
264 {
265 }
266
267 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
268 {
269 }
270 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
271
272 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP)
273 extern int rcu_is_cpu_idle(void);
274 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */
275
276 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
277 bool rcu_lockdep_current_cpu_online(void);
278 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
279 static inline bool rcu_lockdep_current_cpu_online(void)
280 {
281 return 1;
282 }
283 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
284
285 #ifdef CONFIG_DEBUG_LOCK_ALLOC
286
287 static inline void rcu_lock_acquire(struct lockdep_map *map)
288 {
289 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
290 }
291
292 static inline void rcu_lock_release(struct lockdep_map *map)
293 {
294 lock_release(map, 1, _THIS_IP_);
295 }
296
297 extern struct lockdep_map rcu_lock_map;
298 extern struct lockdep_map rcu_bh_lock_map;
299 extern struct lockdep_map rcu_sched_lock_map;
300 extern int debug_lockdep_rcu_enabled(void);
301
302 /**
303 * rcu_read_lock_held() - might we be in RCU read-side critical section?
304 *
305 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
306 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
307 * this assumes we are in an RCU read-side critical section unless it can
308 * prove otherwise. This is useful for debug checks in functions that
309 * require that they be called within an RCU read-side critical section.
310 *
311 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
312 * and while lockdep is disabled.
313 *
314 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
315 * occur in the same context, for example, it is illegal to invoke
316 * rcu_read_unlock() in process context if the matching rcu_read_lock()
317 * was invoked from within an irq handler.
318 *
319 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
320 * offline from an RCU perspective, so check for those as well.
321 */
322 static inline int rcu_read_lock_held(void)
323 {
324 if (!debug_lockdep_rcu_enabled())
325 return 1;
326 if (rcu_is_cpu_idle())
327 return 0;
328 if (!rcu_lockdep_current_cpu_online())
329 return 0;
330 return lock_is_held(&rcu_lock_map);
331 }
332
333 /*
334 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
335 * hell.
336 */
337 extern int rcu_read_lock_bh_held(void);
338
339 /**
340 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
341 *
342 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
343 * RCU-sched read-side critical section. In absence of
344 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
345 * critical section unless it can prove otherwise. Note that disabling
346 * of preemption (including disabling irqs) counts as an RCU-sched
347 * read-side critical section. This is useful for debug checks in functions
348 * that required that they be called within an RCU-sched read-side
349 * critical section.
350 *
351 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
352 * and while lockdep is disabled.
353 *
354 * Note that if the CPU is in the idle loop from an RCU point of
355 * view (ie: that we are in the section between rcu_idle_enter() and
356 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
357 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
358 * that are in such a section, considering these as in extended quiescent
359 * state, so such a CPU is effectively never in an RCU read-side critical
360 * section regardless of what RCU primitives it invokes. This state of
361 * affairs is required --- we need to keep an RCU-free window in idle
362 * where the CPU may possibly enter into low power mode. This way we can
363 * notice an extended quiescent state to other CPUs that started a grace
364 * period. Otherwise we would delay any grace period as long as we run in
365 * the idle task.
366 *
367 * Similarly, we avoid claiming an SRCU read lock held if the current
368 * CPU is offline.
369 */
370 #ifdef CONFIG_PREEMPT_COUNT
371 static inline int rcu_read_lock_sched_held(void)
372 {
373 int lockdep_opinion = 0;
374
375 if (!debug_lockdep_rcu_enabled())
376 return 1;
377 if (rcu_is_cpu_idle())
378 return 0;
379 if (!rcu_lockdep_current_cpu_online())
380 return 0;
381 if (debug_locks)
382 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
383 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
384 }
385 #else /* #ifdef CONFIG_PREEMPT_COUNT */
386 static inline int rcu_read_lock_sched_held(void)
387 {
388 return 1;
389 }
390 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
391
392 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
393
394 # define rcu_lock_acquire(a) do { } while (0)
395 # define rcu_lock_release(a) do { } while (0)
396
397 static inline int rcu_read_lock_held(void)
398 {
399 return 1;
400 }
401
402 static inline int rcu_read_lock_bh_held(void)
403 {
404 return 1;
405 }
406
407 #ifdef CONFIG_PREEMPT_COUNT
408 static inline int rcu_read_lock_sched_held(void)
409 {
410 return preempt_count() != 0 || irqs_disabled();
411 }
412 #else /* #ifdef CONFIG_PREEMPT_COUNT */
413 static inline int rcu_read_lock_sched_held(void)
414 {
415 return 1;
416 }
417 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
418
419 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
420
421 #ifdef CONFIG_PROVE_RCU
422
423 extern int rcu_my_thread_group_empty(void);
424
425 /**
426 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
427 * @c: condition to check
428 * @s: informative message
429 */
430 #define rcu_lockdep_assert(c, s) \
431 do { \
432 static bool __section(.data.unlikely) __warned; \
433 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
434 __warned = true; \
435 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
436 } \
437 } while (0)
438
439 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
440 static inline void rcu_preempt_sleep_check(void)
441 {
442 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
443 "Illegal context switch in RCU read-side critical section");
444 }
445 #else /* #ifdef CONFIG_PROVE_RCU */
446 static inline void rcu_preempt_sleep_check(void)
447 {
448 }
449 #endif /* #else #ifdef CONFIG_PROVE_RCU */
450
451 #define rcu_sleep_check() \
452 do { \
453 rcu_preempt_sleep_check(); \
454 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
455 "Illegal context switch in RCU-bh" \
456 " read-side critical section"); \
457 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
458 "Illegal context switch in RCU-sched"\
459 " read-side critical section"); \
460 } while (0)
461
462 #else /* #ifdef CONFIG_PROVE_RCU */
463
464 #define rcu_lockdep_assert(c, s) do { } while (0)
465 #define rcu_sleep_check() do { } while (0)
466
467 #endif /* #else #ifdef CONFIG_PROVE_RCU */
468
469 /*
470 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
471 * and rcu_assign_pointer(). Some of these could be folded into their
472 * callers, but they are left separate in order to ease introduction of
473 * multiple flavors of pointers to match the multiple flavors of RCU
474 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
475 * the future.
476 */
477
478 #ifdef __CHECKER__
479 #define rcu_dereference_sparse(p, space) \
480 ((void)(((typeof(*p) space *)p) == p))
481 #else /* #ifdef __CHECKER__ */
482 #define rcu_dereference_sparse(p, space)
483 #endif /* #else #ifdef __CHECKER__ */
484
485 #define __rcu_access_pointer(p, space) \
486 ({ \
487 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
488 rcu_dereference_sparse(p, space); \
489 ((typeof(*p) __force __kernel *)(_________p1)); \
490 })
491 #define __rcu_dereference_check(p, c, space) \
492 ({ \
493 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
494 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
495 " usage"); \
496 rcu_dereference_sparse(p, space); \
497 smp_read_barrier_depends(); \
498 ((typeof(*p) __force __kernel *)(_________p1)); \
499 })
500 #define __rcu_dereference_protected(p, c, space) \
501 ({ \
502 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
503 " usage"); \
504 rcu_dereference_sparse(p, space); \
505 ((typeof(*p) __force __kernel *)(p)); \
506 })
507
508 #define __rcu_access_index(p, space) \
509 ({ \
510 typeof(p) _________p1 = ACCESS_ONCE(p); \
511 rcu_dereference_sparse(p, space); \
512 (_________p1); \
513 })
514 #define __rcu_dereference_index_check(p, c) \
515 ({ \
516 typeof(p) _________p1 = ACCESS_ONCE(p); \
517 rcu_lockdep_assert(c, \
518 "suspicious rcu_dereference_index_check()" \
519 " usage"); \
520 smp_read_barrier_depends(); \
521 (_________p1); \
522 })
523 #define __rcu_assign_pointer(p, v, space) \
524 do { \
525 smp_wmb(); \
526 (p) = (typeof(*v) __force space *)(v); \
527 } while (0)
528
529
530 /**
531 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
532 * @p: The pointer to read
533 *
534 * Return the value of the specified RCU-protected pointer, but omit the
535 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
536 * when the value of this pointer is accessed, but the pointer is not
537 * dereferenced, for example, when testing an RCU-protected pointer against
538 * NULL. Although rcu_access_pointer() may also be used in cases where
539 * update-side locks prevent the value of the pointer from changing, you
540 * should instead use rcu_dereference_protected() for this use case.
541 *
542 * It is also permissible to use rcu_access_pointer() when read-side
543 * access to the pointer was removed at least one grace period ago, as
544 * is the case in the context of the RCU callback that is freeing up
545 * the data, or after a synchronize_rcu() returns. This can be useful
546 * when tearing down multi-linked structures after a grace period
547 * has elapsed.
548 */
549 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
550
551 /**
552 * rcu_dereference_check() - rcu_dereference with debug checking
553 * @p: The pointer to read, prior to dereferencing
554 * @c: The conditions under which the dereference will take place
555 *
556 * Do an rcu_dereference(), but check that the conditions under which the
557 * dereference will take place are correct. Typically the conditions
558 * indicate the various locking conditions that should be held at that
559 * point. The check should return true if the conditions are satisfied.
560 * An implicit check for being in an RCU read-side critical section
561 * (rcu_read_lock()) is included.
562 *
563 * For example:
564 *
565 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
566 *
567 * could be used to indicate to lockdep that foo->bar may only be dereferenced
568 * if either rcu_read_lock() is held, or that the lock required to replace
569 * the bar struct at foo->bar is held.
570 *
571 * Note that the list of conditions may also include indications of when a lock
572 * need not be held, for example during initialisation or destruction of the
573 * target struct:
574 *
575 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
576 * atomic_read(&foo->usage) == 0);
577 *
578 * Inserts memory barriers on architectures that require them
579 * (currently only the Alpha), prevents the compiler from refetching
580 * (and from merging fetches), and, more importantly, documents exactly
581 * which pointers are protected by RCU and checks that the pointer is
582 * annotated as __rcu.
583 */
584 #define rcu_dereference_check(p, c) \
585 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
586
587 /**
588 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
589 * @p: The pointer to read, prior to dereferencing
590 * @c: The conditions under which the dereference will take place
591 *
592 * This is the RCU-bh counterpart to rcu_dereference_check().
593 */
594 #define rcu_dereference_bh_check(p, c) \
595 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
596
597 /**
598 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
599 * @p: The pointer to read, prior to dereferencing
600 * @c: The conditions under which the dereference will take place
601 *
602 * This is the RCU-sched counterpart to rcu_dereference_check().
603 */
604 #define rcu_dereference_sched_check(p, c) \
605 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
606 __rcu)
607
608 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
609
610 /**
611 * rcu_access_index() - fetch RCU index with no dereferencing
612 * @p: The index to read
613 *
614 * Return the value of the specified RCU-protected index, but omit the
615 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
616 * when the value of this index is accessed, but the index is not
617 * dereferenced, for example, when testing an RCU-protected index against
618 * -1. Although rcu_access_index() may also be used in cases where
619 * update-side locks prevent the value of the index from changing, you
620 * should instead use rcu_dereference_index_protected() for this use case.
621 */
622 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
623
624 /**
625 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
626 * @p: The pointer to read, prior to dereferencing
627 * @c: The conditions under which the dereference will take place
628 *
629 * Similar to rcu_dereference_check(), but omits the sparse checking.
630 * This allows rcu_dereference_index_check() to be used on integers,
631 * which can then be used as array indices. Attempting to use
632 * rcu_dereference_check() on an integer will give compiler warnings
633 * because the sparse address-space mechanism relies on dereferencing
634 * the RCU-protected pointer. Dereferencing integers is not something
635 * that even gcc will put up with.
636 *
637 * Note that this function does not implicitly check for RCU read-side
638 * critical sections. If this function gains lots of uses, it might
639 * make sense to provide versions for each flavor of RCU, but it does
640 * not make sense as of early 2010.
641 */
642 #define rcu_dereference_index_check(p, c) \
643 __rcu_dereference_index_check((p), (c))
644
645 /**
646 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
647 * @p: The pointer to read, prior to dereferencing
648 * @c: The conditions under which the dereference will take place
649 *
650 * Return the value of the specified RCU-protected pointer, but omit
651 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
652 * is useful in cases where update-side locks prevent the value of the
653 * pointer from changing. Please note that this primitive does -not-
654 * prevent the compiler from repeating this reference or combining it
655 * with other references, so it should not be used without protection
656 * of appropriate locks.
657 *
658 * This function is only for update-side use. Using this function
659 * when protected only by rcu_read_lock() will result in infrequent
660 * but very ugly failures.
661 */
662 #define rcu_dereference_protected(p, c) \
663 __rcu_dereference_protected((p), (c), __rcu)
664
665
666 /**
667 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
668 * @p: The pointer to read, prior to dereferencing
669 *
670 * This is a simple wrapper around rcu_dereference_check().
671 */
672 #define rcu_dereference(p) rcu_dereference_check(p, 0)
673
674 /**
675 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
676 * @p: The pointer to read, prior to dereferencing
677 *
678 * Makes rcu_dereference_check() do the dirty work.
679 */
680 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
681
682 /**
683 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
684 * @p: The pointer to read, prior to dereferencing
685 *
686 * Makes rcu_dereference_check() do the dirty work.
687 */
688 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
689
690 /**
691 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
692 *
693 * When synchronize_rcu() is invoked on one CPU while other CPUs
694 * are within RCU read-side critical sections, then the
695 * synchronize_rcu() is guaranteed to block until after all the other
696 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
697 * on one CPU while other CPUs are within RCU read-side critical
698 * sections, invocation of the corresponding RCU callback is deferred
699 * until after the all the other CPUs exit their critical sections.
700 *
701 * Note, however, that RCU callbacks are permitted to run concurrently
702 * with new RCU read-side critical sections. One way that this can happen
703 * is via the following sequence of events: (1) CPU 0 enters an RCU
704 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
705 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
706 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
707 * callback is invoked. This is legal, because the RCU read-side critical
708 * section that was running concurrently with the call_rcu() (and which
709 * therefore might be referencing something that the corresponding RCU
710 * callback would free up) has completed before the corresponding
711 * RCU callback is invoked.
712 *
713 * RCU read-side critical sections may be nested. Any deferred actions
714 * will be deferred until the outermost RCU read-side critical section
715 * completes.
716 *
717 * You can avoid reading and understanding the next paragraph by
718 * following this rule: don't put anything in an rcu_read_lock() RCU
719 * read-side critical section that would block in a !PREEMPT kernel.
720 * But if you want the full story, read on!
721 *
722 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
723 * is illegal to block while in an RCU read-side critical section. In
724 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
725 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
726 * be preempted, but explicit blocking is illegal. Finally, in preemptible
727 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
728 * RCU read-side critical sections may be preempted and they may also
729 * block, but only when acquiring spinlocks that are subject to priority
730 * inheritance.
731 */
732 static inline void rcu_read_lock(void)
733 {
734 __rcu_read_lock();
735 __acquire(RCU);
736 rcu_lock_acquire(&rcu_lock_map);
737 rcu_lockdep_assert(!rcu_is_cpu_idle(),
738 "rcu_read_lock() used illegally while idle");
739 }
740
741 /*
742 * So where is rcu_write_lock()? It does not exist, as there is no
743 * way for writers to lock out RCU readers. This is a feature, not
744 * a bug -- this property is what provides RCU's performance benefits.
745 * Of course, writers must coordinate with each other. The normal
746 * spinlock primitives work well for this, but any other technique may be
747 * used as well. RCU does not care how the writers keep out of each
748 * others' way, as long as they do so.
749 */
750
751 /**
752 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
753 *
754 * See rcu_read_lock() for more information.
755 */
756 static inline void rcu_read_unlock(void)
757 {
758 rcu_lockdep_assert(!rcu_is_cpu_idle(),
759 "rcu_read_unlock() used illegally while idle");
760 rcu_lock_release(&rcu_lock_map);
761 __release(RCU);
762 __rcu_read_unlock();
763 }
764
765 /**
766 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
767 *
768 * This is equivalent of rcu_read_lock(), but to be used when updates
769 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
770 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
771 * softirq handler to be a quiescent state, a process in RCU read-side
772 * critical section must be protected by disabling softirqs. Read-side
773 * critical sections in interrupt context can use just rcu_read_lock(),
774 * though this should at least be commented to avoid confusing people
775 * reading the code.
776 *
777 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
778 * must occur in the same context, for example, it is illegal to invoke
779 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
780 * was invoked from some other task.
781 */
782 static inline void rcu_read_lock_bh(void)
783 {
784 local_bh_disable();
785 __acquire(RCU_BH);
786 rcu_lock_acquire(&rcu_bh_lock_map);
787 rcu_lockdep_assert(!rcu_is_cpu_idle(),
788 "rcu_read_lock_bh() used illegally while idle");
789 }
790
791 /*
792 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
793 *
794 * See rcu_read_lock_bh() for more information.
795 */
796 static inline void rcu_read_unlock_bh(void)
797 {
798 rcu_lockdep_assert(!rcu_is_cpu_idle(),
799 "rcu_read_unlock_bh() used illegally while idle");
800 rcu_lock_release(&rcu_bh_lock_map);
801 __release(RCU_BH);
802 local_bh_enable();
803 }
804
805 /**
806 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
807 *
808 * This is equivalent of rcu_read_lock(), but to be used when updates
809 * are being done using call_rcu_sched() or synchronize_rcu_sched().
810 * Read-side critical sections can also be introduced by anything that
811 * disables preemption, including local_irq_disable() and friends.
812 *
813 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
814 * must occur in the same context, for example, it is illegal to invoke
815 * rcu_read_unlock_sched() from process context if the matching
816 * rcu_read_lock_sched() was invoked from an NMI handler.
817 */
818 static inline void rcu_read_lock_sched(void)
819 {
820 preempt_disable();
821 __acquire(RCU_SCHED);
822 rcu_lock_acquire(&rcu_sched_lock_map);
823 rcu_lockdep_assert(!rcu_is_cpu_idle(),
824 "rcu_read_lock_sched() used illegally while idle");
825 }
826
827 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
828 static inline notrace void rcu_read_lock_sched_notrace(void)
829 {
830 preempt_disable_notrace();
831 __acquire(RCU_SCHED);
832 }
833
834 /*
835 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
836 *
837 * See rcu_read_lock_sched for more information.
838 */
839 static inline void rcu_read_unlock_sched(void)
840 {
841 rcu_lockdep_assert(!rcu_is_cpu_idle(),
842 "rcu_read_unlock_sched() used illegally while idle");
843 rcu_lock_release(&rcu_sched_lock_map);
844 __release(RCU_SCHED);
845 preempt_enable();
846 }
847
848 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
849 static inline notrace void rcu_read_unlock_sched_notrace(void)
850 {
851 __release(RCU_SCHED);
852 preempt_enable_notrace();
853 }
854
855 /**
856 * rcu_assign_pointer() - assign to RCU-protected pointer
857 * @p: pointer to assign to
858 * @v: value to assign (publish)
859 *
860 * Assigns the specified value to the specified RCU-protected
861 * pointer, ensuring that any concurrent RCU readers will see
862 * any prior initialization.
863 *
864 * Inserts memory barriers on architectures that require them
865 * (which is most of them), and also prevents the compiler from
866 * reordering the code that initializes the structure after the pointer
867 * assignment. More importantly, this call documents which pointers
868 * will be dereferenced by RCU read-side code.
869 *
870 * In some special cases, you may use RCU_INIT_POINTER() instead
871 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
872 * to the fact that it does not constrain either the CPU or the compiler.
873 * That said, using RCU_INIT_POINTER() when you should have used
874 * rcu_assign_pointer() is a very bad thing that results in
875 * impossible-to-diagnose memory corruption. So please be careful.
876 * See the RCU_INIT_POINTER() comment header for details.
877 */
878 #define rcu_assign_pointer(p, v) \
879 __rcu_assign_pointer((p), (v), __rcu)
880
881 /**
882 * RCU_INIT_POINTER() - initialize an RCU protected pointer
883 *
884 * Initialize an RCU-protected pointer in special cases where readers
885 * do not need ordering constraints on the CPU or the compiler. These
886 * special cases are:
887 *
888 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
889 * 2. The caller has taken whatever steps are required to prevent
890 * RCU readers from concurrently accessing this pointer -or-
891 * 3. The referenced data structure has already been exposed to
892 * readers either at compile time or via rcu_assign_pointer() -and-
893 * a. You have not made -any- reader-visible changes to
894 * this structure since then -or-
895 * b. It is OK for readers accessing this structure from its
896 * new location to see the old state of the structure. (For
897 * example, the changes were to statistical counters or to
898 * other state where exact synchronization is not required.)
899 *
900 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
901 * result in impossible-to-diagnose memory corruption. As in the structures
902 * will look OK in crash dumps, but any concurrent RCU readers might
903 * see pre-initialized values of the referenced data structure. So
904 * please be very careful how you use RCU_INIT_POINTER()!!!
905 *
906 * If you are creating an RCU-protected linked structure that is accessed
907 * by a single external-to-structure RCU-protected pointer, then you may
908 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
909 * pointers, but you must use rcu_assign_pointer() to initialize the
910 * external-to-structure pointer -after- you have completely initialized
911 * the reader-accessible portions of the linked structure.
912 */
913 #define RCU_INIT_POINTER(p, v) \
914 do { \
915 p = (typeof(*v) __force __rcu *)(v); \
916 } while (0)
917
918 /**
919 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
920 *
921 * GCC-style initialization for an RCU-protected pointer in a structure field.
922 */
923 #define RCU_POINTER_INITIALIZER(p, v) \
924 .p = (typeof(*v) __force __rcu *)(v)
925
926 /*
927 * Does the specified offset indicate that the corresponding rcu_head
928 * structure can be handled by kfree_rcu()?
929 */
930 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
931
932 /*
933 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
934 */
935 #define __kfree_rcu(head, offset) \
936 do { \
937 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
938 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
939 } while (0)
940
941 /**
942 * kfree_rcu() - kfree an object after a grace period.
943 * @ptr: pointer to kfree
944 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
945 *
946 * Many rcu callbacks functions just call kfree() on the base structure.
947 * These functions are trivial, but their size adds up, and furthermore
948 * when they are used in a kernel module, that module must invoke the
949 * high-latency rcu_barrier() function at module-unload time.
950 *
951 * The kfree_rcu() function handles this issue. Rather than encoding a
952 * function address in the embedded rcu_head structure, kfree_rcu() instead
953 * encodes the offset of the rcu_head structure within the base structure.
954 * Because the functions are not allowed in the low-order 4096 bytes of
955 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
956 * If the offset is larger than 4095 bytes, a compile-time error will
957 * be generated in __kfree_rcu(). If this error is triggered, you can
958 * either fall back to use of call_rcu() or rearrange the structure to
959 * position the rcu_head structure into the first 4096 bytes.
960 *
961 * Note that the allowable offset might decrease in the future, for example,
962 * to allow something like kmem_cache_free_rcu().
963 *
964 * The BUILD_BUG_ON check must not involve any function calls, hence the
965 * checks are done in macros here.
966 */
967 #define kfree_rcu(ptr, rcu_head) \
968 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
969
970 #endif /* __LINUX_RCUPDATE_H */
This page took 0.051009 seconds and 5 git commands to generate.