clk: samsung: Fix double add of syscore ops after driver rebind
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <asm/barrier.h>
48
49 extern int rcu_expedited; /* for sysctl */
50
51 enum rcutorture_type {
52 RCU_FLAVOR,
53 RCU_BH_FLAVOR,
54 RCU_SCHED_FLAVOR,
55 RCU_TASKS_FLAVOR,
56 SRCU_FLAVOR,
57 INVALID_RCU_FLAVOR
58 };
59
60 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
61 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
62 unsigned long *gpnum, unsigned long *completed);
63 void rcutorture_record_test_transition(void);
64 void rcutorture_record_progress(unsigned long vernum);
65 void do_trace_rcu_torture_read(const char *rcutorturename,
66 struct rcu_head *rhp,
67 unsigned long secs,
68 unsigned long c_old,
69 unsigned long c);
70 #else
71 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
72 int *flags,
73 unsigned long *gpnum,
74 unsigned long *completed)
75 {
76 *flags = 0;
77 *gpnum = 0;
78 *completed = 0;
79 }
80 static inline void rcutorture_record_test_transition(void)
81 {
82 }
83 static inline void rcutorture_record_progress(unsigned long vernum)
84 {
85 }
86 #ifdef CONFIG_RCU_TRACE
87 void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
92 #else
93 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
94 do { } while (0)
95 #endif
96 #endif
97
98 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
99 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
100 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
101 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
102 #define ulong2long(a) (*(long *)(&(a)))
103
104 /* Exported common interfaces */
105
106 #ifdef CONFIG_PREEMPT_RCU
107
108 /**
109 * call_rcu() - Queue an RCU callback for invocation after a grace period.
110 * @head: structure to be used for queueing the RCU updates.
111 * @func: actual callback function to be invoked after the grace period
112 *
113 * The callback function will be invoked some time after a full grace
114 * period elapses, in other words after all pre-existing RCU read-side
115 * critical sections have completed. However, the callback function
116 * might well execute concurrently with RCU read-side critical sections
117 * that started after call_rcu() was invoked. RCU read-side critical
118 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
119 * and may be nested.
120 *
121 * Note that all CPUs must agree that the grace period extended beyond
122 * all pre-existing RCU read-side critical section. On systems with more
123 * than one CPU, this means that when "func()" is invoked, each CPU is
124 * guaranteed to have executed a full memory barrier since the end of its
125 * last RCU read-side critical section whose beginning preceded the call
126 * to call_rcu(). It also means that each CPU executing an RCU read-side
127 * critical section that continues beyond the start of "func()" must have
128 * executed a memory barrier after the call_rcu() but before the beginning
129 * of that RCU read-side critical section. Note that these guarantees
130 * include CPUs that are offline, idle, or executing in user mode, as
131 * well as CPUs that are executing in the kernel.
132 *
133 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
134 * resulting RCU callback function "func()", then both CPU A and CPU B are
135 * guaranteed to execute a full memory barrier during the time interval
136 * between the call to call_rcu() and the invocation of "func()" -- even
137 * if CPU A and CPU B are the same CPU (but again only if the system has
138 * more than one CPU).
139 */
140 void call_rcu(struct rcu_head *head,
141 void (*func)(struct rcu_head *head));
142
143 #else /* #ifdef CONFIG_PREEMPT_RCU */
144
145 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
146 #define call_rcu call_rcu_sched
147
148 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
149
150 /**
151 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
152 * @head: structure to be used for queueing the RCU updates.
153 * @func: actual callback function to be invoked after the grace period
154 *
155 * The callback function will be invoked some time after a full grace
156 * period elapses, in other words after all currently executing RCU
157 * read-side critical sections have completed. call_rcu_bh() assumes
158 * that the read-side critical sections end on completion of a softirq
159 * handler. This means that read-side critical sections in process
160 * context must not be interrupted by softirqs. This interface is to be
161 * used when most of the read-side critical sections are in softirq context.
162 * RCU read-side critical sections are delimited by :
163 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
164 * OR
165 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
166 * These may be nested.
167 *
168 * See the description of call_rcu() for more detailed information on
169 * memory ordering guarantees.
170 */
171 void call_rcu_bh(struct rcu_head *head,
172 void (*func)(struct rcu_head *head));
173
174 /**
175 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
176 * @head: structure to be used for queueing the RCU updates.
177 * @func: actual callback function to be invoked after the grace period
178 *
179 * The callback function will be invoked some time after a full grace
180 * period elapses, in other words after all currently executing RCU
181 * read-side critical sections have completed. call_rcu_sched() assumes
182 * that the read-side critical sections end on enabling of preemption
183 * or on voluntary preemption.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
186 * OR
187 * anything that disables preemption.
188 * These may be nested.
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
192 */
193 void call_rcu_sched(struct rcu_head *head,
194 void (*func)(struct rcu_head *rcu));
195
196 void synchronize_sched(void);
197
198 /**
199 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
200 * @head: structure to be used for queueing the RCU updates.
201 * @func: actual callback function to be invoked after the grace period
202 *
203 * The callback function will be invoked some time after a full grace
204 * period elapses, in other words after all currently executing RCU
205 * read-side critical sections have completed. call_rcu_tasks() assumes
206 * that the read-side critical sections end at a voluntary context
207 * switch (not a preemption!), entry into idle, or transition to usermode
208 * execution. As such, there are no read-side primitives analogous to
209 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
210 * to determine that all tasks have passed through a safe state, not so
211 * much for data-strcuture synchronization.
212 *
213 * See the description of call_rcu() for more detailed information on
214 * memory ordering guarantees.
215 */
216 void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
217 void synchronize_rcu_tasks(void);
218 void rcu_barrier_tasks(void);
219
220 #ifdef CONFIG_PREEMPT_RCU
221
222 void __rcu_read_lock(void);
223 void __rcu_read_unlock(void);
224 void rcu_read_unlock_special(struct task_struct *t);
225 void synchronize_rcu(void);
226
227 /*
228 * Defined as a macro as it is a very low level header included from
229 * areas that don't even know about current. This gives the rcu_read_lock()
230 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
231 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
232 */
233 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
234
235 #else /* #ifdef CONFIG_PREEMPT_RCU */
236
237 static inline void __rcu_read_lock(void)
238 {
239 preempt_disable();
240 }
241
242 static inline void __rcu_read_unlock(void)
243 {
244 preempt_enable();
245 }
246
247 static inline void synchronize_rcu(void)
248 {
249 synchronize_sched();
250 }
251
252 static inline int rcu_preempt_depth(void)
253 {
254 return 0;
255 }
256
257 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
258
259 /* Internal to kernel */
260 void rcu_init(void);
261 void rcu_sched_qs(void);
262 void rcu_bh_qs(void);
263 void rcu_check_callbacks(int cpu, int user);
264 struct notifier_block;
265 void rcu_idle_enter(void);
266 void rcu_idle_exit(void);
267 void rcu_irq_enter(void);
268 void rcu_irq_exit(void);
269
270 #ifdef CONFIG_RCU_STALL_COMMON
271 void rcu_sysrq_start(void);
272 void rcu_sysrq_end(void);
273 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
274 static inline void rcu_sysrq_start(void)
275 {
276 }
277 static inline void rcu_sysrq_end(void)
278 {
279 }
280 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
281
282 #ifdef CONFIG_RCU_USER_QS
283 void rcu_user_enter(void);
284 void rcu_user_exit(void);
285 #else
286 static inline void rcu_user_enter(void) { }
287 static inline void rcu_user_exit(void) { }
288 static inline void rcu_user_hooks_switch(struct task_struct *prev,
289 struct task_struct *next) { }
290 #endif /* CONFIG_RCU_USER_QS */
291
292 #ifdef CONFIG_RCU_NOCB_CPU
293 void rcu_init_nohz(void);
294 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
295 static inline void rcu_init_nohz(void)
296 {
297 }
298 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
299
300 /**
301 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
302 * @a: Code that RCU needs to pay attention to.
303 *
304 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
305 * in the inner idle loop, that is, between the rcu_idle_enter() and
306 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
307 * critical sections. However, things like powertop need tracepoints
308 * in the inner idle loop.
309 *
310 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
311 * will tell RCU that it needs to pay attending, invoke its argument
312 * (in this example, a call to the do_something_with_RCU() function),
313 * and then tell RCU to go back to ignoring this CPU. It is permissible
314 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
315 * quite limited. If deeper nesting is required, it will be necessary
316 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
317 */
318 #define RCU_NONIDLE(a) \
319 do { \
320 rcu_irq_enter(); \
321 do { a; } while (0); \
322 rcu_irq_exit(); \
323 } while (0)
324
325 /*
326 * Note a voluntary context switch for RCU-tasks benefit. This is a
327 * macro rather than an inline function to avoid #include hell.
328 */
329 #ifdef CONFIG_TASKS_RCU
330 #define TASKS_RCU(x) x
331 extern struct srcu_struct tasks_rcu_exit_srcu;
332 #define rcu_note_voluntary_context_switch(t) \
333 do { \
334 if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
335 ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
336 } while (0)
337 #else /* #ifdef CONFIG_TASKS_RCU */
338 #define TASKS_RCU(x) do { } while (0)
339 #define rcu_note_voluntary_context_switch(t) do { } while (0)
340 #endif /* #else #ifdef CONFIG_TASKS_RCU */
341
342 /**
343 * cond_resched_rcu_qs - Report potential quiescent states to RCU
344 *
345 * This macro resembles cond_resched(), except that it is defined to
346 * report potential quiescent states to RCU-tasks even if the cond_resched()
347 * machinery were to be shut off, as some advocate for PREEMPT kernels.
348 */
349 #define cond_resched_rcu_qs() \
350 do { \
351 rcu_note_voluntary_context_switch(current); \
352 cond_resched(); \
353 } while (0)
354
355 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
356 bool __rcu_is_watching(void);
357 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
358
359 /*
360 * Infrastructure to implement the synchronize_() primitives in
361 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
362 */
363
364 typedef void call_rcu_func_t(struct rcu_head *head,
365 void (*func)(struct rcu_head *head));
366 void wait_rcu_gp(call_rcu_func_t crf);
367
368 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
369 #include <linux/rcutree.h>
370 #elif defined(CONFIG_TINY_RCU)
371 #include <linux/rcutiny.h>
372 #else
373 #error "Unknown RCU implementation specified to kernel configuration"
374 #endif
375
376 /*
377 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
378 * initialization and destruction of rcu_head on the stack. rcu_head structures
379 * allocated dynamically in the heap or defined statically don't need any
380 * initialization.
381 */
382 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
383 void init_rcu_head(struct rcu_head *head);
384 void destroy_rcu_head(struct rcu_head *head);
385 void init_rcu_head_on_stack(struct rcu_head *head);
386 void destroy_rcu_head_on_stack(struct rcu_head *head);
387 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
388 static inline void init_rcu_head(struct rcu_head *head)
389 {
390 }
391
392 static inline void destroy_rcu_head(struct rcu_head *head)
393 {
394 }
395
396 static inline void init_rcu_head_on_stack(struct rcu_head *head)
397 {
398 }
399
400 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
401 {
402 }
403 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
404
405 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
406 bool rcu_lockdep_current_cpu_online(void);
407 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
408 static inline bool rcu_lockdep_current_cpu_online(void)
409 {
410 return true;
411 }
412 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
413
414 #ifdef CONFIG_DEBUG_LOCK_ALLOC
415
416 static inline void rcu_lock_acquire(struct lockdep_map *map)
417 {
418 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
419 }
420
421 static inline void rcu_lock_release(struct lockdep_map *map)
422 {
423 lock_release(map, 1, _THIS_IP_);
424 }
425
426 extern struct lockdep_map rcu_lock_map;
427 extern struct lockdep_map rcu_bh_lock_map;
428 extern struct lockdep_map rcu_sched_lock_map;
429 extern struct lockdep_map rcu_callback_map;
430 int debug_lockdep_rcu_enabled(void);
431
432 int rcu_read_lock_held(void);
433 int rcu_read_lock_bh_held(void);
434
435 /**
436 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
437 *
438 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
439 * RCU-sched read-side critical section. In absence of
440 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
441 * critical section unless it can prove otherwise. Note that disabling
442 * of preemption (including disabling irqs) counts as an RCU-sched
443 * read-side critical section. This is useful for debug checks in functions
444 * that required that they be called within an RCU-sched read-side
445 * critical section.
446 *
447 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
448 * and while lockdep is disabled.
449 *
450 * Note that if the CPU is in the idle loop from an RCU point of
451 * view (ie: that we are in the section between rcu_idle_enter() and
452 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
453 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
454 * that are in such a section, considering these as in extended quiescent
455 * state, so such a CPU is effectively never in an RCU read-side critical
456 * section regardless of what RCU primitives it invokes. This state of
457 * affairs is required --- we need to keep an RCU-free window in idle
458 * where the CPU may possibly enter into low power mode. This way we can
459 * notice an extended quiescent state to other CPUs that started a grace
460 * period. Otherwise we would delay any grace period as long as we run in
461 * the idle task.
462 *
463 * Similarly, we avoid claiming an SRCU read lock held if the current
464 * CPU is offline.
465 */
466 #ifdef CONFIG_PREEMPT_COUNT
467 static inline int rcu_read_lock_sched_held(void)
468 {
469 int lockdep_opinion = 0;
470
471 if (!debug_lockdep_rcu_enabled())
472 return 1;
473 if (!rcu_is_watching())
474 return 0;
475 if (!rcu_lockdep_current_cpu_online())
476 return 0;
477 if (debug_locks)
478 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
479 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
480 }
481 #else /* #ifdef CONFIG_PREEMPT_COUNT */
482 static inline int rcu_read_lock_sched_held(void)
483 {
484 return 1;
485 }
486 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
487
488 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
489
490 # define rcu_lock_acquire(a) do { } while (0)
491 # define rcu_lock_release(a) do { } while (0)
492
493 static inline int rcu_read_lock_held(void)
494 {
495 return 1;
496 }
497
498 static inline int rcu_read_lock_bh_held(void)
499 {
500 return 1;
501 }
502
503 #ifdef CONFIG_PREEMPT_COUNT
504 static inline int rcu_read_lock_sched_held(void)
505 {
506 return preempt_count() != 0 || irqs_disabled();
507 }
508 #else /* #ifdef CONFIG_PREEMPT_COUNT */
509 static inline int rcu_read_lock_sched_held(void)
510 {
511 return 1;
512 }
513 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
514
515 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
516
517 #ifdef CONFIG_PROVE_RCU
518
519 /**
520 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
521 * @c: condition to check
522 * @s: informative message
523 */
524 #define rcu_lockdep_assert(c, s) \
525 do { \
526 static bool __section(.data.unlikely) __warned; \
527 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
528 __warned = true; \
529 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
530 } \
531 } while (0)
532
533 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
534 static inline void rcu_preempt_sleep_check(void)
535 {
536 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
537 "Illegal context switch in RCU read-side critical section");
538 }
539 #else /* #ifdef CONFIG_PROVE_RCU */
540 static inline void rcu_preempt_sleep_check(void)
541 {
542 }
543 #endif /* #else #ifdef CONFIG_PROVE_RCU */
544
545 #define rcu_sleep_check() \
546 do { \
547 rcu_preempt_sleep_check(); \
548 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
549 "Illegal context switch in RCU-bh read-side critical section"); \
550 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
551 "Illegal context switch in RCU-sched read-side critical section"); \
552 } while (0)
553
554 #else /* #ifdef CONFIG_PROVE_RCU */
555
556 #define rcu_lockdep_assert(c, s) do { } while (0)
557 #define rcu_sleep_check() do { } while (0)
558
559 #endif /* #else #ifdef CONFIG_PROVE_RCU */
560
561 /*
562 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
563 * and rcu_assign_pointer(). Some of these could be folded into their
564 * callers, but they are left separate in order to ease introduction of
565 * multiple flavors of pointers to match the multiple flavors of RCU
566 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
567 * the future.
568 */
569
570 #ifdef __CHECKER__
571 #define rcu_dereference_sparse(p, space) \
572 ((void)(((typeof(*p) space *)p) == p))
573 #else /* #ifdef __CHECKER__ */
574 #define rcu_dereference_sparse(p, space)
575 #endif /* #else #ifdef __CHECKER__ */
576
577 #define __rcu_access_pointer(p, space) \
578 ({ \
579 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
580 rcu_dereference_sparse(p, space); \
581 ((typeof(*p) __force __kernel *)(_________p1)); \
582 })
583 #define __rcu_dereference_check(p, c, space) \
584 ({ \
585 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
586 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
587 rcu_dereference_sparse(p, space); \
588 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
589 ((typeof(*p) __force __kernel *)(_________p1)); \
590 })
591 #define __rcu_dereference_protected(p, c, space) \
592 ({ \
593 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
594 rcu_dereference_sparse(p, space); \
595 ((typeof(*p) __force __kernel *)(p)); \
596 })
597
598 #define __rcu_access_index(p, space) \
599 ({ \
600 typeof(p) _________p1 = ACCESS_ONCE(p); \
601 rcu_dereference_sparse(p, space); \
602 (_________p1); \
603 })
604 #define __rcu_dereference_index_check(p, c) \
605 ({ \
606 typeof(p) _________p1 = ACCESS_ONCE(p); \
607 rcu_lockdep_assert(c, \
608 "suspicious rcu_dereference_index_check() usage"); \
609 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
610 (_________p1); \
611 })
612
613 /**
614 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
615 * @v: The value to statically initialize with.
616 */
617 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
618
619 /**
620 * rcu_assign_pointer() - assign to RCU-protected pointer
621 * @p: pointer to assign to
622 * @v: value to assign (publish)
623 *
624 * Assigns the specified value to the specified RCU-protected
625 * pointer, ensuring that any concurrent RCU readers will see
626 * any prior initialization.
627 *
628 * Inserts memory barriers on architectures that require them
629 * (which is most of them), and also prevents the compiler from
630 * reordering the code that initializes the structure after the pointer
631 * assignment. More importantly, this call documents which pointers
632 * will be dereferenced by RCU read-side code.
633 *
634 * In some special cases, you may use RCU_INIT_POINTER() instead
635 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
636 * to the fact that it does not constrain either the CPU or the compiler.
637 * That said, using RCU_INIT_POINTER() when you should have used
638 * rcu_assign_pointer() is a very bad thing that results in
639 * impossible-to-diagnose memory corruption. So please be careful.
640 * See the RCU_INIT_POINTER() comment header for details.
641 *
642 * Note that rcu_assign_pointer() evaluates each of its arguments only
643 * once, appearances notwithstanding. One of the "extra" evaluations
644 * is in typeof() and the other visible only to sparse (__CHECKER__),
645 * neither of which actually execute the argument. As with most cpp
646 * macros, this execute-arguments-only-once property is important, so
647 * please be careful when making changes to rcu_assign_pointer() and the
648 * other macros that it invokes.
649 */
650 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
651
652 /**
653 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
654 * @p: The pointer to read
655 *
656 * Return the value of the specified RCU-protected pointer, but omit the
657 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
658 * when the value of this pointer is accessed, but the pointer is not
659 * dereferenced, for example, when testing an RCU-protected pointer against
660 * NULL. Although rcu_access_pointer() may also be used in cases where
661 * update-side locks prevent the value of the pointer from changing, you
662 * should instead use rcu_dereference_protected() for this use case.
663 *
664 * It is also permissible to use rcu_access_pointer() when read-side
665 * access to the pointer was removed at least one grace period ago, as
666 * is the case in the context of the RCU callback that is freeing up
667 * the data, or after a synchronize_rcu() returns. This can be useful
668 * when tearing down multi-linked structures after a grace period
669 * has elapsed.
670 */
671 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
672
673 /**
674 * rcu_dereference_check() - rcu_dereference with debug checking
675 * @p: The pointer to read, prior to dereferencing
676 * @c: The conditions under which the dereference will take place
677 *
678 * Do an rcu_dereference(), but check that the conditions under which the
679 * dereference will take place are correct. Typically the conditions
680 * indicate the various locking conditions that should be held at that
681 * point. The check should return true if the conditions are satisfied.
682 * An implicit check for being in an RCU read-side critical section
683 * (rcu_read_lock()) is included.
684 *
685 * For example:
686 *
687 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
688 *
689 * could be used to indicate to lockdep that foo->bar may only be dereferenced
690 * if either rcu_read_lock() is held, or that the lock required to replace
691 * the bar struct at foo->bar is held.
692 *
693 * Note that the list of conditions may also include indications of when a lock
694 * need not be held, for example during initialisation or destruction of the
695 * target struct:
696 *
697 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
698 * atomic_read(&foo->usage) == 0);
699 *
700 * Inserts memory barriers on architectures that require them
701 * (currently only the Alpha), prevents the compiler from refetching
702 * (and from merging fetches), and, more importantly, documents exactly
703 * which pointers are protected by RCU and checks that the pointer is
704 * annotated as __rcu.
705 */
706 #define rcu_dereference_check(p, c) \
707 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
708
709 /**
710 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
711 * @p: The pointer to read, prior to dereferencing
712 * @c: The conditions under which the dereference will take place
713 *
714 * This is the RCU-bh counterpart to rcu_dereference_check().
715 */
716 #define rcu_dereference_bh_check(p, c) \
717 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
718
719 /**
720 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
721 * @p: The pointer to read, prior to dereferencing
722 * @c: The conditions under which the dereference will take place
723 *
724 * This is the RCU-sched counterpart to rcu_dereference_check().
725 */
726 #define rcu_dereference_sched_check(p, c) \
727 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
728 __rcu)
729
730 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
731
732 /*
733 * The tracing infrastructure traces RCU (we want that), but unfortunately
734 * some of the RCU checks causes tracing to lock up the system.
735 *
736 * The tracing version of rcu_dereference_raw() must not call
737 * rcu_read_lock_held().
738 */
739 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
740
741 /**
742 * rcu_access_index() - fetch RCU index with no dereferencing
743 * @p: The index to read
744 *
745 * Return the value of the specified RCU-protected index, but omit the
746 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
747 * when the value of this index is accessed, but the index is not
748 * dereferenced, for example, when testing an RCU-protected index against
749 * -1. Although rcu_access_index() may also be used in cases where
750 * update-side locks prevent the value of the index from changing, you
751 * should instead use rcu_dereference_index_protected() for this use case.
752 */
753 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
754
755 /**
756 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
757 * @p: The pointer to read, prior to dereferencing
758 * @c: The conditions under which the dereference will take place
759 *
760 * Similar to rcu_dereference_check(), but omits the sparse checking.
761 * This allows rcu_dereference_index_check() to be used on integers,
762 * which can then be used as array indices. Attempting to use
763 * rcu_dereference_check() on an integer will give compiler warnings
764 * because the sparse address-space mechanism relies on dereferencing
765 * the RCU-protected pointer. Dereferencing integers is not something
766 * that even gcc will put up with.
767 *
768 * Note that this function does not implicitly check for RCU read-side
769 * critical sections. If this function gains lots of uses, it might
770 * make sense to provide versions for each flavor of RCU, but it does
771 * not make sense as of early 2010.
772 */
773 #define rcu_dereference_index_check(p, c) \
774 __rcu_dereference_index_check((p), (c))
775
776 /**
777 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
778 * @p: The pointer to read, prior to dereferencing
779 * @c: The conditions under which the dereference will take place
780 *
781 * Return the value of the specified RCU-protected pointer, but omit
782 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
783 * is useful in cases where update-side locks prevent the value of the
784 * pointer from changing. Please note that this primitive does -not-
785 * prevent the compiler from repeating this reference or combining it
786 * with other references, so it should not be used without protection
787 * of appropriate locks.
788 *
789 * This function is only for update-side use. Using this function
790 * when protected only by rcu_read_lock() will result in infrequent
791 * but very ugly failures.
792 */
793 #define rcu_dereference_protected(p, c) \
794 __rcu_dereference_protected((p), (c), __rcu)
795
796
797 /**
798 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
799 * @p: The pointer to read, prior to dereferencing
800 *
801 * This is a simple wrapper around rcu_dereference_check().
802 */
803 #define rcu_dereference(p) rcu_dereference_check(p, 0)
804
805 /**
806 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
807 * @p: The pointer to read, prior to dereferencing
808 *
809 * Makes rcu_dereference_check() do the dirty work.
810 */
811 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
812
813 /**
814 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
815 * @p: The pointer to read, prior to dereferencing
816 *
817 * Makes rcu_dereference_check() do the dirty work.
818 */
819 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
820
821 /**
822 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
823 *
824 * When synchronize_rcu() is invoked on one CPU while other CPUs
825 * are within RCU read-side critical sections, then the
826 * synchronize_rcu() is guaranteed to block until after all the other
827 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
828 * on one CPU while other CPUs are within RCU read-side critical
829 * sections, invocation of the corresponding RCU callback is deferred
830 * until after the all the other CPUs exit their critical sections.
831 *
832 * Note, however, that RCU callbacks are permitted to run concurrently
833 * with new RCU read-side critical sections. One way that this can happen
834 * is via the following sequence of events: (1) CPU 0 enters an RCU
835 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
836 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
837 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
838 * callback is invoked. This is legal, because the RCU read-side critical
839 * section that was running concurrently with the call_rcu() (and which
840 * therefore might be referencing something that the corresponding RCU
841 * callback would free up) has completed before the corresponding
842 * RCU callback is invoked.
843 *
844 * RCU read-side critical sections may be nested. Any deferred actions
845 * will be deferred until the outermost RCU read-side critical section
846 * completes.
847 *
848 * You can avoid reading and understanding the next paragraph by
849 * following this rule: don't put anything in an rcu_read_lock() RCU
850 * read-side critical section that would block in a !PREEMPT kernel.
851 * But if you want the full story, read on!
852 *
853 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
854 * it is illegal to block while in an RCU read-side critical section.
855 * In preemptible RCU implementations (TREE_PREEMPT_RCU) in CONFIG_PREEMPT
856 * kernel builds, RCU read-side critical sections may be preempted,
857 * but explicit blocking is illegal. Finally, in preemptible RCU
858 * implementations in real-time (with -rt patchset) kernel builds, RCU
859 * read-side critical sections may be preempted and they may also block, but
860 * only when acquiring spinlocks that are subject to priority inheritance.
861 */
862 static inline void rcu_read_lock(void)
863 {
864 __rcu_read_lock();
865 __acquire(RCU);
866 rcu_lock_acquire(&rcu_lock_map);
867 rcu_lockdep_assert(rcu_is_watching(),
868 "rcu_read_lock() used illegally while idle");
869 }
870
871 /*
872 * So where is rcu_write_lock()? It does not exist, as there is no
873 * way for writers to lock out RCU readers. This is a feature, not
874 * a bug -- this property is what provides RCU's performance benefits.
875 * Of course, writers must coordinate with each other. The normal
876 * spinlock primitives work well for this, but any other technique may be
877 * used as well. RCU does not care how the writers keep out of each
878 * others' way, as long as they do so.
879 */
880
881 /**
882 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
883 *
884 * In most situations, rcu_read_unlock() is immune from deadlock.
885 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
886 * is responsible for deboosting, which it does via rt_mutex_unlock().
887 * Unfortunately, this function acquires the scheduler's runqueue and
888 * priority-inheritance spinlocks. This means that deadlock could result
889 * if the caller of rcu_read_unlock() already holds one of these locks or
890 * any lock that is ever acquired while holding them.
891 *
892 * That said, RCU readers are never priority boosted unless they were
893 * preempted. Therefore, one way to avoid deadlock is to make sure
894 * that preemption never happens within any RCU read-side critical
895 * section whose outermost rcu_read_unlock() is called with one of
896 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
897 * a number of ways, for example, by invoking preempt_disable() before
898 * critical section's outermost rcu_read_lock().
899 *
900 * Given that the set of locks acquired by rt_mutex_unlock() might change
901 * at any time, a somewhat more future-proofed approach is to make sure
902 * that that preemption never happens within any RCU read-side critical
903 * section whose outermost rcu_read_unlock() is called with irqs disabled.
904 * This approach relies on the fact that rt_mutex_unlock() currently only
905 * acquires irq-disabled locks.
906 *
907 * The second of these two approaches is best in most situations,
908 * however, the first approach can also be useful, at least to those
909 * developers willing to keep abreast of the set of locks acquired by
910 * rt_mutex_unlock().
911 *
912 * See rcu_read_lock() for more information.
913 */
914 static inline void rcu_read_unlock(void)
915 {
916 rcu_lockdep_assert(rcu_is_watching(),
917 "rcu_read_unlock() used illegally while idle");
918 rcu_lock_release(&rcu_lock_map);
919 __release(RCU);
920 __rcu_read_unlock();
921 }
922
923 /**
924 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
925 *
926 * This is equivalent of rcu_read_lock(), but to be used when updates
927 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
928 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
929 * softirq handler to be a quiescent state, a process in RCU read-side
930 * critical section must be protected by disabling softirqs. Read-side
931 * critical sections in interrupt context can use just rcu_read_lock(),
932 * though this should at least be commented to avoid confusing people
933 * reading the code.
934 *
935 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
936 * must occur in the same context, for example, it is illegal to invoke
937 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
938 * was invoked from some other task.
939 */
940 static inline void rcu_read_lock_bh(void)
941 {
942 local_bh_disable();
943 __acquire(RCU_BH);
944 rcu_lock_acquire(&rcu_bh_lock_map);
945 rcu_lockdep_assert(rcu_is_watching(),
946 "rcu_read_lock_bh() used illegally while idle");
947 }
948
949 /*
950 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
951 *
952 * See rcu_read_lock_bh() for more information.
953 */
954 static inline void rcu_read_unlock_bh(void)
955 {
956 rcu_lockdep_assert(rcu_is_watching(),
957 "rcu_read_unlock_bh() used illegally while idle");
958 rcu_lock_release(&rcu_bh_lock_map);
959 __release(RCU_BH);
960 local_bh_enable();
961 }
962
963 /**
964 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
965 *
966 * This is equivalent of rcu_read_lock(), but to be used when updates
967 * are being done using call_rcu_sched() or synchronize_rcu_sched().
968 * Read-side critical sections can also be introduced by anything that
969 * disables preemption, including local_irq_disable() and friends.
970 *
971 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
972 * must occur in the same context, for example, it is illegal to invoke
973 * rcu_read_unlock_sched() from process context if the matching
974 * rcu_read_lock_sched() was invoked from an NMI handler.
975 */
976 static inline void rcu_read_lock_sched(void)
977 {
978 preempt_disable();
979 __acquire(RCU_SCHED);
980 rcu_lock_acquire(&rcu_sched_lock_map);
981 rcu_lockdep_assert(rcu_is_watching(),
982 "rcu_read_lock_sched() used illegally while idle");
983 }
984
985 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
986 static inline notrace void rcu_read_lock_sched_notrace(void)
987 {
988 preempt_disable_notrace();
989 __acquire(RCU_SCHED);
990 }
991
992 /*
993 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
994 *
995 * See rcu_read_lock_sched for more information.
996 */
997 static inline void rcu_read_unlock_sched(void)
998 {
999 rcu_lockdep_assert(rcu_is_watching(),
1000 "rcu_read_unlock_sched() used illegally while idle");
1001 rcu_lock_release(&rcu_sched_lock_map);
1002 __release(RCU_SCHED);
1003 preempt_enable();
1004 }
1005
1006 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1007 static inline notrace void rcu_read_unlock_sched_notrace(void)
1008 {
1009 __release(RCU_SCHED);
1010 preempt_enable_notrace();
1011 }
1012
1013 /**
1014 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1015 *
1016 * Initialize an RCU-protected pointer in special cases where readers
1017 * do not need ordering constraints on the CPU or the compiler. These
1018 * special cases are:
1019 *
1020 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1021 * 2. The caller has taken whatever steps are required to prevent
1022 * RCU readers from concurrently accessing this pointer -or-
1023 * 3. The referenced data structure has already been exposed to
1024 * readers either at compile time or via rcu_assign_pointer() -and-
1025 * a. You have not made -any- reader-visible changes to
1026 * this structure since then -or-
1027 * b. It is OK for readers accessing this structure from its
1028 * new location to see the old state of the structure. (For
1029 * example, the changes were to statistical counters or to
1030 * other state where exact synchronization is not required.)
1031 *
1032 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1033 * result in impossible-to-diagnose memory corruption. As in the structures
1034 * will look OK in crash dumps, but any concurrent RCU readers might
1035 * see pre-initialized values of the referenced data structure. So
1036 * please be very careful how you use RCU_INIT_POINTER()!!!
1037 *
1038 * If you are creating an RCU-protected linked structure that is accessed
1039 * by a single external-to-structure RCU-protected pointer, then you may
1040 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1041 * pointers, but you must use rcu_assign_pointer() to initialize the
1042 * external-to-structure pointer -after- you have completely initialized
1043 * the reader-accessible portions of the linked structure.
1044 *
1045 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1046 * ordering guarantees for either the CPU or the compiler.
1047 */
1048 #define RCU_INIT_POINTER(p, v) \
1049 do { \
1050 p = RCU_INITIALIZER(v); \
1051 } while (0)
1052
1053 /**
1054 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1055 *
1056 * GCC-style initialization for an RCU-protected pointer in a structure field.
1057 */
1058 #define RCU_POINTER_INITIALIZER(p, v) \
1059 .p = RCU_INITIALIZER(v)
1060
1061 /*
1062 * Does the specified offset indicate that the corresponding rcu_head
1063 * structure can be handled by kfree_rcu()?
1064 */
1065 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1066
1067 /*
1068 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1069 */
1070 #define __kfree_rcu(head, offset) \
1071 do { \
1072 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1073 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1074 } while (0)
1075
1076 /**
1077 * kfree_rcu() - kfree an object after a grace period.
1078 * @ptr: pointer to kfree
1079 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1080 *
1081 * Many rcu callbacks functions just call kfree() on the base structure.
1082 * These functions are trivial, but their size adds up, and furthermore
1083 * when they are used in a kernel module, that module must invoke the
1084 * high-latency rcu_barrier() function at module-unload time.
1085 *
1086 * The kfree_rcu() function handles this issue. Rather than encoding a
1087 * function address in the embedded rcu_head structure, kfree_rcu() instead
1088 * encodes the offset of the rcu_head structure within the base structure.
1089 * Because the functions are not allowed in the low-order 4096 bytes of
1090 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1091 * If the offset is larger than 4095 bytes, a compile-time error will
1092 * be generated in __kfree_rcu(). If this error is triggered, you can
1093 * either fall back to use of call_rcu() or rearrange the structure to
1094 * position the rcu_head structure into the first 4096 bytes.
1095 *
1096 * Note that the allowable offset might decrease in the future, for example,
1097 * to allow something like kmem_cache_free_rcu().
1098 *
1099 * The BUILD_BUG_ON check must not involve any function calls, hence the
1100 * checks are done in macros here.
1101 */
1102 #define kfree_rcu(ptr, rcu_head) \
1103 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1104
1105 #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1106 static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1107 {
1108 *delta_jiffies = ULONG_MAX;
1109 return 0;
1110 }
1111 #endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1112
1113 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1114 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1115 #elif defined(CONFIG_RCU_NOCB_CPU)
1116 bool rcu_is_nocb_cpu(int cpu);
1117 #else
1118 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1119 #endif
1120
1121
1122 /* Only for use by adaptive-ticks code. */
1123 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1124 bool rcu_sys_is_idle(void);
1125 void rcu_sysidle_force_exit(void);
1126 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1127
1128 static inline bool rcu_sys_is_idle(void)
1129 {
1130 return false;
1131 }
1132
1133 static inline void rcu_sysidle_force_exit(void)
1134 {
1135 }
1136
1137 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1138
1139
1140 #endif /* __LINUX_RCUPDATE_H */
This page took 0.135599 seconds and 5 git commands to generate.