Merge branch 'drm-core-next' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/compiler.h>
46
47 #ifdef CONFIG_RCU_TORTURE_TEST
48 extern int rcutorture_runnable; /* for sysctl */
49 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
50
51 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
52 extern void rcutorture_record_test_transition(void);
53 extern void rcutorture_record_progress(unsigned long vernum);
54 extern void do_trace_rcu_torture_read(char *rcutorturename,
55 struct rcu_head *rhp);
56 #else
57 static inline void rcutorture_record_test_transition(void)
58 {
59 }
60 static inline void rcutorture_record_progress(unsigned long vernum)
61 {
62 }
63 #ifdef CONFIG_RCU_TRACE
64 extern void do_trace_rcu_torture_read(char *rcutorturename,
65 struct rcu_head *rhp);
66 #else
67 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
68 #endif
69 #endif
70
71 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
72 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
73 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
74 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
75
76 /* Exported common interfaces */
77
78 #ifdef CONFIG_PREEMPT_RCU
79
80 /**
81 * call_rcu() - Queue an RCU callback for invocation after a grace period.
82 * @head: structure to be used for queueing the RCU updates.
83 * @func: actual callback function to be invoked after the grace period
84 *
85 * The callback function will be invoked some time after a full grace
86 * period elapses, in other words after all pre-existing RCU read-side
87 * critical sections have completed. However, the callback function
88 * might well execute concurrently with RCU read-side critical sections
89 * that started after call_rcu() was invoked. RCU read-side critical
90 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
91 * and may be nested.
92 */
93 extern void call_rcu(struct rcu_head *head,
94 void (*func)(struct rcu_head *head));
95
96 #else /* #ifdef CONFIG_PREEMPT_RCU */
97
98 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
99 #define call_rcu call_rcu_sched
100
101 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
102
103 /**
104 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
105 * @head: structure to be used for queueing the RCU updates.
106 * @func: actual callback function to be invoked after the grace period
107 *
108 * The callback function will be invoked some time after a full grace
109 * period elapses, in other words after all currently executing RCU
110 * read-side critical sections have completed. call_rcu_bh() assumes
111 * that the read-side critical sections end on completion of a softirq
112 * handler. This means that read-side critical sections in process
113 * context must not be interrupted by softirqs. This interface is to be
114 * used when most of the read-side critical sections are in softirq context.
115 * RCU read-side critical sections are delimited by :
116 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
117 * OR
118 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
119 * These may be nested.
120 */
121 extern void call_rcu_bh(struct rcu_head *head,
122 void (*func)(struct rcu_head *head));
123
124 /**
125 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
126 * @head: structure to be used for queueing the RCU updates.
127 * @func: actual callback function to be invoked after the grace period
128 *
129 * The callback function will be invoked some time after a full grace
130 * period elapses, in other words after all currently executing RCU
131 * read-side critical sections have completed. call_rcu_sched() assumes
132 * that the read-side critical sections end on enabling of preemption
133 * or on voluntary preemption.
134 * RCU read-side critical sections are delimited by :
135 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
136 * OR
137 * anything that disables preemption.
138 * These may be nested.
139 */
140 extern void call_rcu_sched(struct rcu_head *head,
141 void (*func)(struct rcu_head *rcu));
142
143 extern void synchronize_sched(void);
144
145 #ifdef CONFIG_PREEMPT_RCU
146
147 extern void __rcu_read_lock(void);
148 extern void __rcu_read_unlock(void);
149 void synchronize_rcu(void);
150
151 /*
152 * Defined as a macro as it is a very low level header included from
153 * areas that don't even know about current. This gives the rcu_read_lock()
154 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
155 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
156 */
157 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
158
159 #else /* #ifdef CONFIG_PREEMPT_RCU */
160
161 static inline void __rcu_read_lock(void)
162 {
163 preempt_disable();
164 }
165
166 static inline void __rcu_read_unlock(void)
167 {
168 preempt_enable();
169 }
170
171 static inline void synchronize_rcu(void)
172 {
173 synchronize_sched();
174 }
175
176 static inline int rcu_preempt_depth(void)
177 {
178 return 0;
179 }
180
181 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
182
183 /* Internal to kernel */
184 extern void rcu_sched_qs(int cpu);
185 extern void rcu_bh_qs(int cpu);
186 extern void rcu_check_callbacks(int cpu, int user);
187 struct notifier_block;
188 extern void rcu_idle_enter(void);
189 extern void rcu_idle_exit(void);
190 extern void rcu_irq_enter(void);
191 extern void rcu_irq_exit(void);
192
193 /*
194 * Infrastructure to implement the synchronize_() primitives in
195 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
196 */
197
198 typedef void call_rcu_func_t(struct rcu_head *head,
199 void (*func)(struct rcu_head *head));
200 void wait_rcu_gp(call_rcu_func_t crf);
201
202 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
203 #include <linux/rcutree.h>
204 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
205 #include <linux/rcutiny.h>
206 #else
207 #error "Unknown RCU implementation specified to kernel configuration"
208 #endif
209
210 /*
211 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
212 * initialization and destruction of rcu_head on the stack. rcu_head structures
213 * allocated dynamically in the heap or defined statically don't need any
214 * initialization.
215 */
216 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
217 extern void init_rcu_head_on_stack(struct rcu_head *head);
218 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
219 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
220 static inline void init_rcu_head_on_stack(struct rcu_head *head)
221 {
222 }
223
224 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
225 {
226 }
227 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
228
229 #ifdef CONFIG_DEBUG_LOCK_ALLOC
230
231 #ifdef CONFIG_PROVE_RCU
232 extern int rcu_is_cpu_idle(void);
233 #else /* !CONFIG_PROVE_RCU */
234 static inline int rcu_is_cpu_idle(void)
235 {
236 return 0;
237 }
238 #endif /* else !CONFIG_PROVE_RCU */
239
240 static inline void rcu_lock_acquire(struct lockdep_map *map)
241 {
242 WARN_ON_ONCE(rcu_is_cpu_idle());
243 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
244 }
245
246 static inline void rcu_lock_release(struct lockdep_map *map)
247 {
248 WARN_ON_ONCE(rcu_is_cpu_idle());
249 lock_release(map, 1, _THIS_IP_);
250 }
251
252 extern struct lockdep_map rcu_lock_map;
253 extern struct lockdep_map rcu_bh_lock_map;
254 extern struct lockdep_map rcu_sched_lock_map;
255 extern int debug_lockdep_rcu_enabled(void);
256
257 /**
258 * rcu_read_lock_held() - might we be in RCU read-side critical section?
259 *
260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
261 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
262 * this assumes we are in an RCU read-side critical section unless it can
263 * prove otherwise. This is useful for debug checks in functions that
264 * require that they be called within an RCU read-side critical section.
265 *
266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
267 * and while lockdep is disabled.
268 *
269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
270 * occur in the same context, for example, it is illegal to invoke
271 * rcu_read_unlock() in process context if the matching rcu_read_lock()
272 * was invoked from within an irq handler.
273 */
274 static inline int rcu_read_lock_held(void)
275 {
276 if (!debug_lockdep_rcu_enabled())
277 return 1;
278 if (rcu_is_cpu_idle())
279 return 0;
280 return lock_is_held(&rcu_lock_map);
281 }
282
283 /*
284 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
285 * hell.
286 */
287 extern int rcu_read_lock_bh_held(void);
288
289 /**
290 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
291 *
292 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
293 * RCU-sched read-side critical section. In absence of
294 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
295 * critical section unless it can prove otherwise. Note that disabling
296 * of preemption (including disabling irqs) counts as an RCU-sched
297 * read-side critical section. This is useful for debug checks in functions
298 * that required that they be called within an RCU-sched read-side
299 * critical section.
300 *
301 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
302 * and while lockdep is disabled.
303 *
304 * Note that if the CPU is in the idle loop from an RCU point of
305 * view (ie: that we are in the section between rcu_idle_enter() and
306 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
307 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
308 * that are in such a section, considering these as in extended quiescent
309 * state, so such a CPU is effectively never in an RCU read-side critical
310 * section regardless of what RCU primitives it invokes. This state of
311 * affairs is required --- we need to keep an RCU-free window in idle
312 * where the CPU may possibly enter into low power mode. This way we can
313 * notice an extended quiescent state to other CPUs that started a grace
314 * period. Otherwise we would delay any grace period as long as we run in
315 * the idle task.
316 */
317 #ifdef CONFIG_PREEMPT_COUNT
318 static inline int rcu_read_lock_sched_held(void)
319 {
320 int lockdep_opinion = 0;
321
322 if (!debug_lockdep_rcu_enabled())
323 return 1;
324 if (rcu_is_cpu_idle())
325 return 0;
326 if (debug_locks)
327 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
328 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
329 }
330 #else /* #ifdef CONFIG_PREEMPT_COUNT */
331 static inline int rcu_read_lock_sched_held(void)
332 {
333 return 1;
334 }
335 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
336
337 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
338
339 # define rcu_lock_acquire(a) do { } while (0)
340 # define rcu_lock_release(a) do { } while (0)
341
342 static inline int rcu_read_lock_held(void)
343 {
344 return 1;
345 }
346
347 static inline int rcu_read_lock_bh_held(void)
348 {
349 return 1;
350 }
351
352 #ifdef CONFIG_PREEMPT_COUNT
353 static inline int rcu_read_lock_sched_held(void)
354 {
355 return preempt_count() != 0 || irqs_disabled();
356 }
357 #else /* #ifdef CONFIG_PREEMPT_COUNT */
358 static inline int rcu_read_lock_sched_held(void)
359 {
360 return 1;
361 }
362 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
363
364 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
365
366 #ifdef CONFIG_PROVE_RCU
367
368 extern int rcu_my_thread_group_empty(void);
369
370 /**
371 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
372 * @c: condition to check
373 * @s: informative message
374 */
375 #define rcu_lockdep_assert(c, s) \
376 do { \
377 static bool __warned; \
378 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
379 __warned = true; \
380 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
381 } \
382 } while (0)
383
384 #define rcu_sleep_check() \
385 do { \
386 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
387 "Illegal context switch in RCU-bh" \
388 " read-side critical section"); \
389 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
390 "Illegal context switch in RCU-sched"\
391 " read-side critical section"); \
392 } while (0)
393
394 #else /* #ifdef CONFIG_PROVE_RCU */
395
396 #define rcu_lockdep_assert(c, s) do { } while (0)
397 #define rcu_sleep_check() do { } while (0)
398
399 #endif /* #else #ifdef CONFIG_PROVE_RCU */
400
401 /*
402 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
403 * and rcu_assign_pointer(). Some of these could be folded into their
404 * callers, but they are left separate in order to ease introduction of
405 * multiple flavors of pointers to match the multiple flavors of RCU
406 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
407 * the future.
408 */
409
410 #ifdef __CHECKER__
411 #define rcu_dereference_sparse(p, space) \
412 ((void)(((typeof(*p) space *)p) == p))
413 #else /* #ifdef __CHECKER__ */
414 #define rcu_dereference_sparse(p, space)
415 #endif /* #else #ifdef __CHECKER__ */
416
417 #define __rcu_access_pointer(p, space) \
418 ({ \
419 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
420 rcu_dereference_sparse(p, space); \
421 ((typeof(*p) __force __kernel *)(_________p1)); \
422 })
423 #define __rcu_dereference_check(p, c, space) \
424 ({ \
425 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
426 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
427 " usage"); \
428 rcu_dereference_sparse(p, space); \
429 smp_read_barrier_depends(); \
430 ((typeof(*p) __force __kernel *)(_________p1)); \
431 })
432 #define __rcu_dereference_protected(p, c, space) \
433 ({ \
434 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
435 " usage"); \
436 rcu_dereference_sparse(p, space); \
437 ((typeof(*p) __force __kernel *)(p)); \
438 })
439
440 #define __rcu_access_index(p, space) \
441 ({ \
442 typeof(p) _________p1 = ACCESS_ONCE(p); \
443 rcu_dereference_sparse(p, space); \
444 (_________p1); \
445 })
446 #define __rcu_dereference_index_check(p, c) \
447 ({ \
448 typeof(p) _________p1 = ACCESS_ONCE(p); \
449 rcu_lockdep_assert(c, \
450 "suspicious rcu_dereference_index_check()" \
451 " usage"); \
452 smp_read_barrier_depends(); \
453 (_________p1); \
454 })
455 #define __rcu_assign_pointer(p, v, space) \
456 ({ \
457 smp_wmb(); \
458 (p) = (typeof(*v) __force space *)(v); \
459 })
460
461
462 /**
463 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
464 * @p: The pointer to read
465 *
466 * Return the value of the specified RCU-protected pointer, but omit the
467 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
468 * when the value of this pointer is accessed, but the pointer is not
469 * dereferenced, for example, when testing an RCU-protected pointer against
470 * NULL. Although rcu_access_pointer() may also be used in cases where
471 * update-side locks prevent the value of the pointer from changing, you
472 * should instead use rcu_dereference_protected() for this use case.
473 */
474 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
475
476 /**
477 * rcu_dereference_check() - rcu_dereference with debug checking
478 * @p: The pointer to read, prior to dereferencing
479 * @c: The conditions under which the dereference will take place
480 *
481 * Do an rcu_dereference(), but check that the conditions under which the
482 * dereference will take place are correct. Typically the conditions
483 * indicate the various locking conditions that should be held at that
484 * point. The check should return true if the conditions are satisfied.
485 * An implicit check for being in an RCU read-side critical section
486 * (rcu_read_lock()) is included.
487 *
488 * For example:
489 *
490 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
491 *
492 * could be used to indicate to lockdep that foo->bar may only be dereferenced
493 * if either rcu_read_lock() is held, or that the lock required to replace
494 * the bar struct at foo->bar is held.
495 *
496 * Note that the list of conditions may also include indications of when a lock
497 * need not be held, for example during initialisation or destruction of the
498 * target struct:
499 *
500 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
501 * atomic_read(&foo->usage) == 0);
502 *
503 * Inserts memory barriers on architectures that require them
504 * (currently only the Alpha), prevents the compiler from refetching
505 * (and from merging fetches), and, more importantly, documents exactly
506 * which pointers are protected by RCU and checks that the pointer is
507 * annotated as __rcu.
508 */
509 #define rcu_dereference_check(p, c) \
510 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
511
512 /**
513 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
514 * @p: The pointer to read, prior to dereferencing
515 * @c: The conditions under which the dereference will take place
516 *
517 * This is the RCU-bh counterpart to rcu_dereference_check().
518 */
519 #define rcu_dereference_bh_check(p, c) \
520 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
521
522 /**
523 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
524 * @p: The pointer to read, prior to dereferencing
525 * @c: The conditions under which the dereference will take place
526 *
527 * This is the RCU-sched counterpart to rcu_dereference_check().
528 */
529 #define rcu_dereference_sched_check(p, c) \
530 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
531 __rcu)
532
533 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
534
535 /**
536 * rcu_access_index() - fetch RCU index with no dereferencing
537 * @p: The index to read
538 *
539 * Return the value of the specified RCU-protected index, but omit the
540 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
541 * when the value of this index is accessed, but the index is not
542 * dereferenced, for example, when testing an RCU-protected index against
543 * -1. Although rcu_access_index() may also be used in cases where
544 * update-side locks prevent the value of the index from changing, you
545 * should instead use rcu_dereference_index_protected() for this use case.
546 */
547 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
548
549 /**
550 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
551 * @p: The pointer to read, prior to dereferencing
552 * @c: The conditions under which the dereference will take place
553 *
554 * Similar to rcu_dereference_check(), but omits the sparse checking.
555 * This allows rcu_dereference_index_check() to be used on integers,
556 * which can then be used as array indices. Attempting to use
557 * rcu_dereference_check() on an integer will give compiler warnings
558 * because the sparse address-space mechanism relies on dereferencing
559 * the RCU-protected pointer. Dereferencing integers is not something
560 * that even gcc will put up with.
561 *
562 * Note that this function does not implicitly check for RCU read-side
563 * critical sections. If this function gains lots of uses, it might
564 * make sense to provide versions for each flavor of RCU, but it does
565 * not make sense as of early 2010.
566 */
567 #define rcu_dereference_index_check(p, c) \
568 __rcu_dereference_index_check((p), (c))
569
570 /**
571 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
572 * @p: The pointer to read, prior to dereferencing
573 * @c: The conditions under which the dereference will take place
574 *
575 * Return the value of the specified RCU-protected pointer, but omit
576 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
577 * is useful in cases where update-side locks prevent the value of the
578 * pointer from changing. Please note that this primitive does -not-
579 * prevent the compiler from repeating this reference or combining it
580 * with other references, so it should not be used without protection
581 * of appropriate locks.
582 *
583 * This function is only for update-side use. Using this function
584 * when protected only by rcu_read_lock() will result in infrequent
585 * but very ugly failures.
586 */
587 #define rcu_dereference_protected(p, c) \
588 __rcu_dereference_protected((p), (c), __rcu)
589
590
591 /**
592 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
593 * @p: The pointer to read, prior to dereferencing
594 *
595 * This is a simple wrapper around rcu_dereference_check().
596 */
597 #define rcu_dereference(p) rcu_dereference_check(p, 0)
598
599 /**
600 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
601 * @p: The pointer to read, prior to dereferencing
602 *
603 * Makes rcu_dereference_check() do the dirty work.
604 */
605 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
606
607 /**
608 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
609 * @p: The pointer to read, prior to dereferencing
610 *
611 * Makes rcu_dereference_check() do the dirty work.
612 */
613 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
614
615 /**
616 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
617 *
618 * When synchronize_rcu() is invoked on one CPU while other CPUs
619 * are within RCU read-side critical sections, then the
620 * synchronize_rcu() is guaranteed to block until after all the other
621 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
622 * on one CPU while other CPUs are within RCU read-side critical
623 * sections, invocation of the corresponding RCU callback is deferred
624 * until after the all the other CPUs exit their critical sections.
625 *
626 * Note, however, that RCU callbacks are permitted to run concurrently
627 * with new RCU read-side critical sections. One way that this can happen
628 * is via the following sequence of events: (1) CPU 0 enters an RCU
629 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
630 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
631 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
632 * callback is invoked. This is legal, because the RCU read-side critical
633 * section that was running concurrently with the call_rcu() (and which
634 * therefore might be referencing something that the corresponding RCU
635 * callback would free up) has completed before the corresponding
636 * RCU callback is invoked.
637 *
638 * RCU read-side critical sections may be nested. Any deferred actions
639 * will be deferred until the outermost RCU read-side critical section
640 * completes.
641 *
642 * You can avoid reading and understanding the next paragraph by
643 * following this rule: don't put anything in an rcu_read_lock() RCU
644 * read-side critical section that would block in a !PREEMPT kernel.
645 * But if you want the full story, read on!
646 *
647 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
648 * is illegal to block while in an RCU read-side critical section. In
649 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
650 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
651 * be preempted, but explicit blocking is illegal. Finally, in preemptible
652 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
653 * RCU read-side critical sections may be preempted and they may also
654 * block, but only when acquiring spinlocks that are subject to priority
655 * inheritance.
656 */
657 static inline void rcu_read_lock(void)
658 {
659 __rcu_read_lock();
660 __acquire(RCU);
661 rcu_lock_acquire(&rcu_lock_map);
662 }
663
664 /*
665 * So where is rcu_write_lock()? It does not exist, as there is no
666 * way for writers to lock out RCU readers. This is a feature, not
667 * a bug -- this property is what provides RCU's performance benefits.
668 * Of course, writers must coordinate with each other. The normal
669 * spinlock primitives work well for this, but any other technique may be
670 * used as well. RCU does not care how the writers keep out of each
671 * others' way, as long as they do so.
672 */
673
674 /**
675 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
676 *
677 * See rcu_read_lock() for more information.
678 */
679 static inline void rcu_read_unlock(void)
680 {
681 rcu_lock_release(&rcu_lock_map);
682 __release(RCU);
683 __rcu_read_unlock();
684 }
685
686 /**
687 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
688 *
689 * This is equivalent of rcu_read_lock(), but to be used when updates
690 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
691 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
692 * softirq handler to be a quiescent state, a process in RCU read-side
693 * critical section must be protected by disabling softirqs. Read-side
694 * critical sections in interrupt context can use just rcu_read_lock(),
695 * though this should at least be commented to avoid confusing people
696 * reading the code.
697 *
698 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
699 * must occur in the same context, for example, it is illegal to invoke
700 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
701 * was invoked from some other task.
702 */
703 static inline void rcu_read_lock_bh(void)
704 {
705 local_bh_disable();
706 __acquire(RCU_BH);
707 rcu_lock_acquire(&rcu_bh_lock_map);
708 }
709
710 /*
711 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
712 *
713 * See rcu_read_lock_bh() for more information.
714 */
715 static inline void rcu_read_unlock_bh(void)
716 {
717 rcu_lock_release(&rcu_bh_lock_map);
718 __release(RCU_BH);
719 local_bh_enable();
720 }
721
722 /**
723 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
724 *
725 * This is equivalent of rcu_read_lock(), but to be used when updates
726 * are being done using call_rcu_sched() or synchronize_rcu_sched().
727 * Read-side critical sections can also be introduced by anything that
728 * disables preemption, including local_irq_disable() and friends.
729 *
730 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
731 * must occur in the same context, for example, it is illegal to invoke
732 * rcu_read_unlock_sched() from process context if the matching
733 * rcu_read_lock_sched() was invoked from an NMI handler.
734 */
735 static inline void rcu_read_lock_sched(void)
736 {
737 preempt_disable();
738 __acquire(RCU_SCHED);
739 rcu_lock_acquire(&rcu_sched_lock_map);
740 }
741
742 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
743 static inline notrace void rcu_read_lock_sched_notrace(void)
744 {
745 preempt_disable_notrace();
746 __acquire(RCU_SCHED);
747 }
748
749 /*
750 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
751 *
752 * See rcu_read_lock_sched for more information.
753 */
754 static inline void rcu_read_unlock_sched(void)
755 {
756 rcu_lock_release(&rcu_sched_lock_map);
757 __release(RCU_SCHED);
758 preempt_enable();
759 }
760
761 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
762 static inline notrace void rcu_read_unlock_sched_notrace(void)
763 {
764 __release(RCU_SCHED);
765 preempt_enable_notrace();
766 }
767
768 /**
769 * rcu_assign_pointer() - assign to RCU-protected pointer
770 * @p: pointer to assign to
771 * @v: value to assign (publish)
772 *
773 * Assigns the specified value to the specified RCU-protected
774 * pointer, ensuring that any concurrent RCU readers will see
775 * any prior initialization. Returns the value assigned.
776 *
777 * Inserts memory barriers on architectures that require them
778 * (which is most of them), and also prevents the compiler from
779 * reordering the code that initializes the structure after the pointer
780 * assignment. More importantly, this call documents which pointers
781 * will be dereferenced by RCU read-side code.
782 *
783 * In some special cases, you may use RCU_INIT_POINTER() instead
784 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
785 * to the fact that it does not constrain either the CPU or the compiler.
786 * That said, using RCU_INIT_POINTER() when you should have used
787 * rcu_assign_pointer() is a very bad thing that results in
788 * impossible-to-diagnose memory corruption. So please be careful.
789 * See the RCU_INIT_POINTER() comment header for details.
790 */
791 #define rcu_assign_pointer(p, v) \
792 __rcu_assign_pointer((p), (v), __rcu)
793
794 /**
795 * RCU_INIT_POINTER() - initialize an RCU protected pointer
796 *
797 * Initialize an RCU-protected pointer in special cases where readers
798 * do not need ordering constraints on the CPU or the compiler. These
799 * special cases are:
800 *
801 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
802 * 2. The caller has taken whatever steps are required to prevent
803 * RCU readers from concurrently accessing this pointer -or-
804 * 3. The referenced data structure has already been exposed to
805 * readers either at compile time or via rcu_assign_pointer() -and-
806 * a. You have not made -any- reader-visible changes to
807 * this structure since then -or-
808 * b. It is OK for readers accessing this structure from its
809 * new location to see the old state of the structure. (For
810 * example, the changes were to statistical counters or to
811 * other state where exact synchronization is not required.)
812 *
813 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
814 * result in impossible-to-diagnose memory corruption. As in the structures
815 * will look OK in crash dumps, but any concurrent RCU readers might
816 * see pre-initialized values of the referenced data structure. So
817 * please be very careful how you use RCU_INIT_POINTER()!!!
818 *
819 * If you are creating an RCU-protected linked structure that is accessed
820 * by a single external-to-structure RCU-protected pointer, then you may
821 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
822 * pointers, but you must use rcu_assign_pointer() to initialize the
823 * external-to-structure pointer -after- you have completely initialized
824 * the reader-accessible portions of the linked structure.
825 */
826 #define RCU_INIT_POINTER(p, v) \
827 p = (typeof(*v) __force __rcu *)(v)
828
829 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
830 {
831 return offset < 4096;
832 }
833
834 static __always_inline
835 void __kfree_rcu(struct rcu_head *head, unsigned long offset)
836 {
837 typedef void (*rcu_callback)(struct rcu_head *);
838
839 BUILD_BUG_ON(!__builtin_constant_p(offset));
840
841 /* See the kfree_rcu() header comment. */
842 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
843
844 call_rcu(head, (rcu_callback)offset);
845 }
846
847 /**
848 * kfree_rcu() - kfree an object after a grace period.
849 * @ptr: pointer to kfree
850 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
851 *
852 * Many rcu callbacks functions just call kfree() on the base structure.
853 * These functions are trivial, but their size adds up, and furthermore
854 * when they are used in a kernel module, that module must invoke the
855 * high-latency rcu_barrier() function at module-unload time.
856 *
857 * The kfree_rcu() function handles this issue. Rather than encoding a
858 * function address in the embedded rcu_head structure, kfree_rcu() instead
859 * encodes the offset of the rcu_head structure within the base structure.
860 * Because the functions are not allowed in the low-order 4096 bytes of
861 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
862 * If the offset is larger than 4095 bytes, a compile-time error will
863 * be generated in __kfree_rcu(). If this error is triggered, you can
864 * either fall back to use of call_rcu() or rearrange the structure to
865 * position the rcu_head structure into the first 4096 bytes.
866 *
867 * Note that the allowable offset might decrease in the future, for example,
868 * to allow something like kmem_cache_free_rcu().
869 */
870 #define kfree_rcu(ptr, rcu_head) \
871 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
872
873 #endif /* __LINUX_RCUPDATE_H */
This page took 0.062335 seconds and 6 git commands to generate.