Merge tag 'gpio-v4.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/ktime.h>
48
49 #include <asm/barrier.h>
50
51 #ifndef CONFIG_TINY_RCU
52 extern int rcu_expedited; /* for sysctl */
53 extern int rcu_normal; /* also for sysctl */
54 #endif /* #ifndef CONFIG_TINY_RCU */
55
56 #ifdef CONFIG_TINY_RCU
57 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
58 static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */
59 {
60 return true;
61 }
62 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
63 {
64 return false;
65 }
66
67 static inline void rcu_expedite_gp(void)
68 {
69 }
70
71 static inline void rcu_unexpedite_gp(void)
72 {
73 }
74 #else /* #ifdef CONFIG_TINY_RCU */
75 bool rcu_gp_is_normal(void); /* Internal RCU use. */
76 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
77 void rcu_expedite_gp(void);
78 void rcu_unexpedite_gp(void);
79 #endif /* #else #ifdef CONFIG_TINY_RCU */
80
81 enum rcutorture_type {
82 RCU_FLAVOR,
83 RCU_BH_FLAVOR,
84 RCU_SCHED_FLAVOR,
85 RCU_TASKS_FLAVOR,
86 SRCU_FLAVOR,
87 INVALID_RCU_FLAVOR
88 };
89
90 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
91 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
92 unsigned long *gpnum, unsigned long *completed);
93 void rcutorture_record_test_transition(void);
94 void rcutorture_record_progress(unsigned long vernum);
95 void do_trace_rcu_torture_read(const char *rcutorturename,
96 struct rcu_head *rhp,
97 unsigned long secs,
98 unsigned long c_old,
99 unsigned long c);
100 #else
101 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
102 int *flags,
103 unsigned long *gpnum,
104 unsigned long *completed)
105 {
106 *flags = 0;
107 *gpnum = 0;
108 *completed = 0;
109 }
110 static inline void rcutorture_record_test_transition(void)
111 {
112 }
113 static inline void rcutorture_record_progress(unsigned long vernum)
114 {
115 }
116 #ifdef CONFIG_RCU_TRACE
117 void do_trace_rcu_torture_read(const char *rcutorturename,
118 struct rcu_head *rhp,
119 unsigned long secs,
120 unsigned long c_old,
121 unsigned long c);
122 #else
123 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
124 do { } while (0)
125 #endif
126 #endif
127
128 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
129 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
130 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
131 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
132 #define ulong2long(a) (*(long *)(&(a)))
133
134 /* Exported common interfaces */
135
136 #ifdef CONFIG_PREEMPT_RCU
137
138 /**
139 * call_rcu() - Queue an RCU callback for invocation after a grace period.
140 * @head: structure to be used for queueing the RCU updates.
141 * @func: actual callback function to be invoked after the grace period
142 *
143 * The callback function will be invoked some time after a full grace
144 * period elapses, in other words after all pre-existing RCU read-side
145 * critical sections have completed. However, the callback function
146 * might well execute concurrently with RCU read-side critical sections
147 * that started after call_rcu() was invoked. RCU read-side critical
148 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
149 * and may be nested.
150 *
151 * Note that all CPUs must agree that the grace period extended beyond
152 * all pre-existing RCU read-side critical section. On systems with more
153 * than one CPU, this means that when "func()" is invoked, each CPU is
154 * guaranteed to have executed a full memory barrier since the end of its
155 * last RCU read-side critical section whose beginning preceded the call
156 * to call_rcu(). It also means that each CPU executing an RCU read-side
157 * critical section that continues beyond the start of "func()" must have
158 * executed a memory barrier after the call_rcu() but before the beginning
159 * of that RCU read-side critical section. Note that these guarantees
160 * include CPUs that are offline, idle, or executing in user mode, as
161 * well as CPUs that are executing in the kernel.
162 *
163 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
164 * resulting RCU callback function "func()", then both CPU A and CPU B are
165 * guaranteed to execute a full memory barrier during the time interval
166 * between the call to call_rcu() and the invocation of "func()" -- even
167 * if CPU A and CPU B are the same CPU (but again only if the system has
168 * more than one CPU).
169 */
170 void call_rcu(struct rcu_head *head,
171 rcu_callback_t func);
172
173 #else /* #ifdef CONFIG_PREEMPT_RCU */
174
175 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
176 #define call_rcu call_rcu_sched
177
178 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
179
180 /**
181 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
182 * @head: structure to be used for queueing the RCU updates.
183 * @func: actual callback function to be invoked after the grace period
184 *
185 * The callback function will be invoked some time after a full grace
186 * period elapses, in other words after all currently executing RCU
187 * read-side critical sections have completed. call_rcu_bh() assumes
188 * that the read-side critical sections end on completion of a softirq
189 * handler. This means that read-side critical sections in process
190 * context must not be interrupted by softirqs. This interface is to be
191 * used when most of the read-side critical sections are in softirq context.
192 * RCU read-side critical sections are delimited by :
193 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
194 * OR
195 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
196 * These may be nested.
197 *
198 * See the description of call_rcu() for more detailed information on
199 * memory ordering guarantees.
200 */
201 void call_rcu_bh(struct rcu_head *head,
202 rcu_callback_t func);
203
204 /**
205 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
206 * @head: structure to be used for queueing the RCU updates.
207 * @func: actual callback function to be invoked after the grace period
208 *
209 * The callback function will be invoked some time after a full grace
210 * period elapses, in other words after all currently executing RCU
211 * read-side critical sections have completed. call_rcu_sched() assumes
212 * that the read-side critical sections end on enabling of preemption
213 * or on voluntary preemption.
214 * RCU read-side critical sections are delimited by :
215 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
216 * OR
217 * anything that disables preemption.
218 * These may be nested.
219 *
220 * See the description of call_rcu() for more detailed information on
221 * memory ordering guarantees.
222 */
223 void call_rcu_sched(struct rcu_head *head,
224 rcu_callback_t func);
225
226 void synchronize_sched(void);
227
228 /*
229 * Structure allowing asynchronous waiting on RCU.
230 */
231 struct rcu_synchronize {
232 struct rcu_head head;
233 struct completion completion;
234 };
235 void wakeme_after_rcu(struct rcu_head *head);
236
237 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
238 struct rcu_synchronize *rs_array);
239
240 #define _wait_rcu_gp(checktiny, ...) \
241 do { \
242 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
243 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \
244 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \
245 __crcu_array, __rs_array); \
246 } while (0)
247
248 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
249
250 /**
251 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
252 * @...: List of call_rcu() functions for the flavors to wait on.
253 *
254 * This macro waits concurrently for multiple flavors of RCU grace periods.
255 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
256 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
257 * domain requires you to write a wrapper function for that SRCU domain's
258 * call_srcu() function, supplying the corresponding srcu_struct.
259 *
260 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
261 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
262 * is automatically a grace period.
263 */
264 #define synchronize_rcu_mult(...) \
265 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
266
267 /**
268 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
269 * @head: structure to be used for queueing the RCU updates.
270 * @func: actual callback function to be invoked after the grace period
271 *
272 * The callback function will be invoked some time after a full grace
273 * period elapses, in other words after all currently executing RCU
274 * read-side critical sections have completed. call_rcu_tasks() assumes
275 * that the read-side critical sections end at a voluntary context
276 * switch (not a preemption!), entry into idle, or transition to usermode
277 * execution. As such, there are no read-side primitives analogous to
278 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
279 * to determine that all tasks have passed through a safe state, not so
280 * much for data-strcuture synchronization.
281 *
282 * See the description of call_rcu() for more detailed information on
283 * memory ordering guarantees.
284 */
285 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
286 void synchronize_rcu_tasks(void);
287 void rcu_barrier_tasks(void);
288
289 #ifdef CONFIG_PREEMPT_RCU
290
291 void __rcu_read_lock(void);
292 void __rcu_read_unlock(void);
293 void rcu_read_unlock_special(struct task_struct *t);
294 void synchronize_rcu(void);
295
296 /*
297 * Defined as a macro as it is a very low level header included from
298 * areas that don't even know about current. This gives the rcu_read_lock()
299 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
300 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
301 */
302 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
303
304 #else /* #ifdef CONFIG_PREEMPT_RCU */
305
306 static inline void __rcu_read_lock(void)
307 {
308 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
309 preempt_disable();
310 }
311
312 static inline void __rcu_read_unlock(void)
313 {
314 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
315 preempt_enable();
316 }
317
318 static inline void synchronize_rcu(void)
319 {
320 synchronize_sched();
321 }
322
323 static inline int rcu_preempt_depth(void)
324 {
325 return 0;
326 }
327
328 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
329
330 /* Internal to kernel */
331 void rcu_init(void);
332 void rcu_sched_qs(void);
333 void rcu_bh_qs(void);
334 void rcu_check_callbacks(int user);
335 void rcu_report_dead(unsigned int cpu);
336
337 #ifndef CONFIG_TINY_RCU
338 void rcu_end_inkernel_boot(void);
339 #else /* #ifndef CONFIG_TINY_RCU */
340 static inline void rcu_end_inkernel_boot(void) { }
341 #endif /* #ifndef CONFIG_TINY_RCU */
342
343 #ifdef CONFIG_RCU_STALL_COMMON
344 void rcu_sysrq_start(void);
345 void rcu_sysrq_end(void);
346 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
347 static inline void rcu_sysrq_start(void)
348 {
349 }
350 static inline void rcu_sysrq_end(void)
351 {
352 }
353 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
354
355 #ifdef CONFIG_NO_HZ_FULL
356 void rcu_user_enter(void);
357 void rcu_user_exit(void);
358 #else
359 static inline void rcu_user_enter(void) { }
360 static inline void rcu_user_exit(void) { }
361 #endif /* CONFIG_NO_HZ_FULL */
362
363 #ifdef CONFIG_RCU_NOCB_CPU
364 void rcu_init_nohz(void);
365 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
366 static inline void rcu_init_nohz(void)
367 {
368 }
369 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
370
371 /**
372 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
373 * @a: Code that RCU needs to pay attention to.
374 *
375 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
376 * in the inner idle loop, that is, between the rcu_idle_enter() and
377 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
378 * critical sections. However, things like powertop need tracepoints
379 * in the inner idle loop.
380 *
381 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
382 * will tell RCU that it needs to pay attending, invoke its argument
383 * (in this example, a call to the do_something_with_RCU() function),
384 * and then tell RCU to go back to ignoring this CPU. It is permissible
385 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
386 * quite limited. If deeper nesting is required, it will be necessary
387 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
388 */
389 #define RCU_NONIDLE(a) \
390 do { \
391 rcu_irq_enter_irqson(); \
392 do { a; } while (0); \
393 rcu_irq_exit_irqson(); \
394 } while (0)
395
396 /*
397 * Note a voluntary context switch for RCU-tasks benefit. This is a
398 * macro rather than an inline function to avoid #include hell.
399 */
400 #ifdef CONFIG_TASKS_RCU
401 #define TASKS_RCU(x) x
402 extern struct srcu_struct tasks_rcu_exit_srcu;
403 #define rcu_note_voluntary_context_switch(t) \
404 do { \
405 rcu_all_qs(); \
406 if (READ_ONCE((t)->rcu_tasks_holdout)) \
407 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
408 } while (0)
409 #else /* #ifdef CONFIG_TASKS_RCU */
410 #define TASKS_RCU(x) do { } while (0)
411 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
412 #endif /* #else #ifdef CONFIG_TASKS_RCU */
413
414 /**
415 * cond_resched_rcu_qs - Report potential quiescent states to RCU
416 *
417 * This macro resembles cond_resched(), except that it is defined to
418 * report potential quiescent states to RCU-tasks even if the cond_resched()
419 * machinery were to be shut off, as some advocate for PREEMPT kernels.
420 */
421 #define cond_resched_rcu_qs() \
422 do { \
423 if (!cond_resched()) \
424 rcu_note_voluntary_context_switch(current); \
425 } while (0)
426
427 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
428 bool __rcu_is_watching(void);
429 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
430
431 /*
432 * Infrastructure to implement the synchronize_() primitives in
433 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
434 */
435
436 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
437 #include <linux/rcutree.h>
438 #elif defined(CONFIG_TINY_RCU)
439 #include <linux/rcutiny.h>
440 #else
441 #error "Unknown RCU implementation specified to kernel configuration"
442 #endif
443
444 /*
445 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
446 * initialization and destruction of rcu_head on the stack. rcu_head structures
447 * allocated dynamically in the heap or defined statically don't need any
448 * initialization.
449 */
450 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
451 void init_rcu_head(struct rcu_head *head);
452 void destroy_rcu_head(struct rcu_head *head);
453 void init_rcu_head_on_stack(struct rcu_head *head);
454 void destroy_rcu_head_on_stack(struct rcu_head *head);
455 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
456 static inline void init_rcu_head(struct rcu_head *head)
457 {
458 }
459
460 static inline void destroy_rcu_head(struct rcu_head *head)
461 {
462 }
463
464 static inline void init_rcu_head_on_stack(struct rcu_head *head)
465 {
466 }
467
468 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
469 {
470 }
471 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
472
473 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
474 bool rcu_lockdep_current_cpu_online(void);
475 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
476 static inline bool rcu_lockdep_current_cpu_online(void)
477 {
478 return true;
479 }
480 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
481
482 #ifdef CONFIG_DEBUG_LOCK_ALLOC
483
484 static inline void rcu_lock_acquire(struct lockdep_map *map)
485 {
486 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
487 }
488
489 static inline void rcu_lock_release(struct lockdep_map *map)
490 {
491 lock_release(map, 1, _THIS_IP_);
492 }
493
494 extern struct lockdep_map rcu_lock_map;
495 extern struct lockdep_map rcu_bh_lock_map;
496 extern struct lockdep_map rcu_sched_lock_map;
497 extern struct lockdep_map rcu_callback_map;
498 int debug_lockdep_rcu_enabled(void);
499
500 int rcu_read_lock_held(void);
501 int rcu_read_lock_bh_held(void);
502
503 /**
504 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
505 *
506 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
507 * RCU-sched read-side critical section. In absence of
508 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
509 * critical section unless it can prove otherwise.
510 */
511 int rcu_read_lock_sched_held(void);
512
513 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
514
515 # define rcu_lock_acquire(a) do { } while (0)
516 # define rcu_lock_release(a) do { } while (0)
517
518 static inline int rcu_read_lock_held(void)
519 {
520 return 1;
521 }
522
523 static inline int rcu_read_lock_bh_held(void)
524 {
525 return 1;
526 }
527
528 static inline int rcu_read_lock_sched_held(void)
529 {
530 return !preemptible();
531 }
532 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
533
534 #ifdef CONFIG_PROVE_RCU
535
536 /**
537 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
538 * @c: condition to check
539 * @s: informative message
540 */
541 #define RCU_LOCKDEP_WARN(c, s) \
542 do { \
543 static bool __section(.data.unlikely) __warned; \
544 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
545 __warned = true; \
546 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
547 } \
548 } while (0)
549
550 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
551 static inline void rcu_preempt_sleep_check(void)
552 {
553 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
554 "Illegal context switch in RCU read-side critical section");
555 }
556 #else /* #ifdef CONFIG_PROVE_RCU */
557 static inline void rcu_preempt_sleep_check(void)
558 {
559 }
560 #endif /* #else #ifdef CONFIG_PROVE_RCU */
561
562 #define rcu_sleep_check() \
563 do { \
564 rcu_preempt_sleep_check(); \
565 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
566 "Illegal context switch in RCU-bh read-side critical section"); \
567 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
568 "Illegal context switch in RCU-sched read-side critical section"); \
569 } while (0)
570
571 #else /* #ifdef CONFIG_PROVE_RCU */
572
573 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
574 #define rcu_sleep_check() do { } while (0)
575
576 #endif /* #else #ifdef CONFIG_PROVE_RCU */
577
578 /*
579 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
580 * and rcu_assign_pointer(). Some of these could be folded into their
581 * callers, but they are left separate in order to ease introduction of
582 * multiple flavors of pointers to match the multiple flavors of RCU
583 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
584 * the future.
585 */
586
587 #ifdef __CHECKER__
588 #define rcu_dereference_sparse(p, space) \
589 ((void)(((typeof(*p) space *)p) == p))
590 #else /* #ifdef __CHECKER__ */
591 #define rcu_dereference_sparse(p, space)
592 #endif /* #else #ifdef __CHECKER__ */
593
594 #define __rcu_access_pointer(p, space) \
595 ({ \
596 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
597 rcu_dereference_sparse(p, space); \
598 ((typeof(*p) __force __kernel *)(_________p1)); \
599 })
600 #define __rcu_dereference_check(p, c, space) \
601 ({ \
602 /* Dependency order vs. p above. */ \
603 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
604 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
605 rcu_dereference_sparse(p, space); \
606 ((typeof(*p) __force __kernel *)(________p1)); \
607 })
608 #define __rcu_dereference_protected(p, c, space) \
609 ({ \
610 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
611 rcu_dereference_sparse(p, space); \
612 ((typeof(*p) __force __kernel *)(p)); \
613 })
614
615 /**
616 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
617 * @v: The value to statically initialize with.
618 */
619 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
620
621 /**
622 * rcu_assign_pointer() - assign to RCU-protected pointer
623 * @p: pointer to assign to
624 * @v: value to assign (publish)
625 *
626 * Assigns the specified value to the specified RCU-protected
627 * pointer, ensuring that any concurrent RCU readers will see
628 * any prior initialization.
629 *
630 * Inserts memory barriers on architectures that require them
631 * (which is most of them), and also prevents the compiler from
632 * reordering the code that initializes the structure after the pointer
633 * assignment. More importantly, this call documents which pointers
634 * will be dereferenced by RCU read-side code.
635 *
636 * In some special cases, you may use RCU_INIT_POINTER() instead
637 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
638 * to the fact that it does not constrain either the CPU or the compiler.
639 * That said, using RCU_INIT_POINTER() when you should have used
640 * rcu_assign_pointer() is a very bad thing that results in
641 * impossible-to-diagnose memory corruption. So please be careful.
642 * See the RCU_INIT_POINTER() comment header for details.
643 *
644 * Note that rcu_assign_pointer() evaluates each of its arguments only
645 * once, appearances notwithstanding. One of the "extra" evaluations
646 * is in typeof() and the other visible only to sparse (__CHECKER__),
647 * neither of which actually execute the argument. As with most cpp
648 * macros, this execute-arguments-only-once property is important, so
649 * please be careful when making changes to rcu_assign_pointer() and the
650 * other macros that it invokes.
651 */
652 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
653
654 /**
655 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
656 * @p: The pointer to read
657 *
658 * Return the value of the specified RCU-protected pointer, but omit the
659 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
660 * when the value of this pointer is accessed, but the pointer is not
661 * dereferenced, for example, when testing an RCU-protected pointer against
662 * NULL. Although rcu_access_pointer() may also be used in cases where
663 * update-side locks prevent the value of the pointer from changing, you
664 * should instead use rcu_dereference_protected() for this use case.
665 *
666 * It is also permissible to use rcu_access_pointer() when read-side
667 * access to the pointer was removed at least one grace period ago, as
668 * is the case in the context of the RCU callback that is freeing up
669 * the data, or after a synchronize_rcu() returns. This can be useful
670 * when tearing down multi-linked structures after a grace period
671 * has elapsed.
672 */
673 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
674
675 /**
676 * rcu_dereference_check() - rcu_dereference with debug checking
677 * @p: The pointer to read, prior to dereferencing
678 * @c: The conditions under which the dereference will take place
679 *
680 * Do an rcu_dereference(), but check that the conditions under which the
681 * dereference will take place are correct. Typically the conditions
682 * indicate the various locking conditions that should be held at that
683 * point. The check should return true if the conditions are satisfied.
684 * An implicit check for being in an RCU read-side critical section
685 * (rcu_read_lock()) is included.
686 *
687 * For example:
688 *
689 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
690 *
691 * could be used to indicate to lockdep that foo->bar may only be dereferenced
692 * if either rcu_read_lock() is held, or that the lock required to replace
693 * the bar struct at foo->bar is held.
694 *
695 * Note that the list of conditions may also include indications of when a lock
696 * need not be held, for example during initialisation or destruction of the
697 * target struct:
698 *
699 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
700 * atomic_read(&foo->usage) == 0);
701 *
702 * Inserts memory barriers on architectures that require them
703 * (currently only the Alpha), prevents the compiler from refetching
704 * (and from merging fetches), and, more importantly, documents exactly
705 * which pointers are protected by RCU and checks that the pointer is
706 * annotated as __rcu.
707 */
708 #define rcu_dereference_check(p, c) \
709 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
710
711 /**
712 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
713 * @p: The pointer to read, prior to dereferencing
714 * @c: The conditions under which the dereference will take place
715 *
716 * This is the RCU-bh counterpart to rcu_dereference_check().
717 */
718 #define rcu_dereference_bh_check(p, c) \
719 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
720
721 /**
722 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
723 * @p: The pointer to read, prior to dereferencing
724 * @c: The conditions under which the dereference will take place
725 *
726 * This is the RCU-sched counterpart to rcu_dereference_check().
727 */
728 #define rcu_dereference_sched_check(p, c) \
729 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
730 __rcu)
731
732 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
733
734 /*
735 * The tracing infrastructure traces RCU (we want that), but unfortunately
736 * some of the RCU checks causes tracing to lock up the system.
737 *
738 * The no-tracing version of rcu_dereference_raw() must not call
739 * rcu_read_lock_held().
740 */
741 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
742
743 /**
744 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
745 * @p: The pointer to read, prior to dereferencing
746 * @c: The conditions under which the dereference will take place
747 *
748 * Return the value of the specified RCU-protected pointer, but omit
749 * both the smp_read_barrier_depends() and the READ_ONCE(). This
750 * is useful in cases where update-side locks prevent the value of the
751 * pointer from changing. Please note that this primitive does -not-
752 * prevent the compiler from repeating this reference or combining it
753 * with other references, so it should not be used without protection
754 * of appropriate locks.
755 *
756 * This function is only for update-side use. Using this function
757 * when protected only by rcu_read_lock() will result in infrequent
758 * but very ugly failures.
759 */
760 #define rcu_dereference_protected(p, c) \
761 __rcu_dereference_protected((p), (c), __rcu)
762
763
764 /**
765 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
766 * @p: The pointer to read, prior to dereferencing
767 *
768 * This is a simple wrapper around rcu_dereference_check().
769 */
770 #define rcu_dereference(p) rcu_dereference_check(p, 0)
771
772 /**
773 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
774 * @p: The pointer to read, prior to dereferencing
775 *
776 * Makes rcu_dereference_check() do the dirty work.
777 */
778 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
779
780 /**
781 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
782 * @p: The pointer to read, prior to dereferencing
783 *
784 * Makes rcu_dereference_check() do the dirty work.
785 */
786 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
787
788 /**
789 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
790 * @p: The pointer to hand off
791 *
792 * This is simply an identity function, but it documents where a pointer
793 * is handed off from RCU to some other synchronization mechanism, for
794 * example, reference counting or locking. In C11, it would map to
795 * kill_dependency(). It could be used as follows:
796 *
797 * rcu_read_lock();
798 * p = rcu_dereference(gp);
799 * long_lived = is_long_lived(p);
800 * if (long_lived) {
801 * if (!atomic_inc_not_zero(p->refcnt))
802 * long_lived = false;
803 * else
804 * p = rcu_pointer_handoff(p);
805 * }
806 * rcu_read_unlock();
807 */
808 #define rcu_pointer_handoff(p) (p)
809
810 /**
811 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
812 *
813 * When synchronize_rcu() is invoked on one CPU while other CPUs
814 * are within RCU read-side critical sections, then the
815 * synchronize_rcu() is guaranteed to block until after all the other
816 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
817 * on one CPU while other CPUs are within RCU read-side critical
818 * sections, invocation of the corresponding RCU callback is deferred
819 * until after the all the other CPUs exit their critical sections.
820 *
821 * Note, however, that RCU callbacks are permitted to run concurrently
822 * with new RCU read-side critical sections. One way that this can happen
823 * is via the following sequence of events: (1) CPU 0 enters an RCU
824 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
825 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
826 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
827 * callback is invoked. This is legal, because the RCU read-side critical
828 * section that was running concurrently with the call_rcu() (and which
829 * therefore might be referencing something that the corresponding RCU
830 * callback would free up) has completed before the corresponding
831 * RCU callback is invoked.
832 *
833 * RCU read-side critical sections may be nested. Any deferred actions
834 * will be deferred until the outermost RCU read-side critical section
835 * completes.
836 *
837 * You can avoid reading and understanding the next paragraph by
838 * following this rule: don't put anything in an rcu_read_lock() RCU
839 * read-side critical section that would block in a !PREEMPT kernel.
840 * But if you want the full story, read on!
841 *
842 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
843 * it is illegal to block while in an RCU read-side critical section.
844 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
845 * kernel builds, RCU read-side critical sections may be preempted,
846 * but explicit blocking is illegal. Finally, in preemptible RCU
847 * implementations in real-time (with -rt patchset) kernel builds, RCU
848 * read-side critical sections may be preempted and they may also block, but
849 * only when acquiring spinlocks that are subject to priority inheritance.
850 */
851 static inline void rcu_read_lock(void)
852 {
853 __rcu_read_lock();
854 __acquire(RCU);
855 rcu_lock_acquire(&rcu_lock_map);
856 RCU_LOCKDEP_WARN(!rcu_is_watching(),
857 "rcu_read_lock() used illegally while idle");
858 }
859
860 /*
861 * So where is rcu_write_lock()? It does not exist, as there is no
862 * way for writers to lock out RCU readers. This is a feature, not
863 * a bug -- this property is what provides RCU's performance benefits.
864 * Of course, writers must coordinate with each other. The normal
865 * spinlock primitives work well for this, but any other technique may be
866 * used as well. RCU does not care how the writers keep out of each
867 * others' way, as long as they do so.
868 */
869
870 /**
871 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
872 *
873 * In most situations, rcu_read_unlock() is immune from deadlock.
874 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
875 * is responsible for deboosting, which it does via rt_mutex_unlock().
876 * Unfortunately, this function acquires the scheduler's runqueue and
877 * priority-inheritance spinlocks. This means that deadlock could result
878 * if the caller of rcu_read_unlock() already holds one of these locks or
879 * any lock that is ever acquired while holding them; or any lock which
880 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
881 * does not disable irqs while taking ->wait_lock.
882 *
883 * That said, RCU readers are never priority boosted unless they were
884 * preempted. Therefore, one way to avoid deadlock is to make sure
885 * that preemption never happens within any RCU read-side critical
886 * section whose outermost rcu_read_unlock() is called with one of
887 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
888 * a number of ways, for example, by invoking preempt_disable() before
889 * critical section's outermost rcu_read_lock().
890 *
891 * Given that the set of locks acquired by rt_mutex_unlock() might change
892 * at any time, a somewhat more future-proofed approach is to make sure
893 * that that preemption never happens within any RCU read-side critical
894 * section whose outermost rcu_read_unlock() is called with irqs disabled.
895 * This approach relies on the fact that rt_mutex_unlock() currently only
896 * acquires irq-disabled locks.
897 *
898 * The second of these two approaches is best in most situations,
899 * however, the first approach can also be useful, at least to those
900 * developers willing to keep abreast of the set of locks acquired by
901 * rt_mutex_unlock().
902 *
903 * See rcu_read_lock() for more information.
904 */
905 static inline void rcu_read_unlock(void)
906 {
907 RCU_LOCKDEP_WARN(!rcu_is_watching(),
908 "rcu_read_unlock() used illegally while idle");
909 __release(RCU);
910 __rcu_read_unlock();
911 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
912 }
913
914 /**
915 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
916 *
917 * This is equivalent of rcu_read_lock(), but to be used when updates
918 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
919 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
920 * softirq handler to be a quiescent state, a process in RCU read-side
921 * critical section must be protected by disabling softirqs. Read-side
922 * critical sections in interrupt context can use just rcu_read_lock(),
923 * though this should at least be commented to avoid confusing people
924 * reading the code.
925 *
926 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
927 * must occur in the same context, for example, it is illegal to invoke
928 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
929 * was invoked from some other task.
930 */
931 static inline void rcu_read_lock_bh(void)
932 {
933 local_bh_disable();
934 __acquire(RCU_BH);
935 rcu_lock_acquire(&rcu_bh_lock_map);
936 RCU_LOCKDEP_WARN(!rcu_is_watching(),
937 "rcu_read_lock_bh() used illegally while idle");
938 }
939
940 /*
941 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
942 *
943 * See rcu_read_lock_bh() for more information.
944 */
945 static inline void rcu_read_unlock_bh(void)
946 {
947 RCU_LOCKDEP_WARN(!rcu_is_watching(),
948 "rcu_read_unlock_bh() used illegally while idle");
949 rcu_lock_release(&rcu_bh_lock_map);
950 __release(RCU_BH);
951 local_bh_enable();
952 }
953
954 /**
955 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
956 *
957 * This is equivalent of rcu_read_lock(), but to be used when updates
958 * are being done using call_rcu_sched() or synchronize_rcu_sched().
959 * Read-side critical sections can also be introduced by anything that
960 * disables preemption, including local_irq_disable() and friends.
961 *
962 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
963 * must occur in the same context, for example, it is illegal to invoke
964 * rcu_read_unlock_sched() from process context if the matching
965 * rcu_read_lock_sched() was invoked from an NMI handler.
966 */
967 static inline void rcu_read_lock_sched(void)
968 {
969 preempt_disable();
970 __acquire(RCU_SCHED);
971 rcu_lock_acquire(&rcu_sched_lock_map);
972 RCU_LOCKDEP_WARN(!rcu_is_watching(),
973 "rcu_read_lock_sched() used illegally while idle");
974 }
975
976 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
977 static inline notrace void rcu_read_lock_sched_notrace(void)
978 {
979 preempt_disable_notrace();
980 __acquire(RCU_SCHED);
981 }
982
983 /*
984 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
985 *
986 * See rcu_read_lock_sched for more information.
987 */
988 static inline void rcu_read_unlock_sched(void)
989 {
990 RCU_LOCKDEP_WARN(!rcu_is_watching(),
991 "rcu_read_unlock_sched() used illegally while idle");
992 rcu_lock_release(&rcu_sched_lock_map);
993 __release(RCU_SCHED);
994 preempt_enable();
995 }
996
997 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
998 static inline notrace void rcu_read_unlock_sched_notrace(void)
999 {
1000 __release(RCU_SCHED);
1001 preempt_enable_notrace();
1002 }
1003
1004 /**
1005 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1006 *
1007 * Initialize an RCU-protected pointer in special cases where readers
1008 * do not need ordering constraints on the CPU or the compiler. These
1009 * special cases are:
1010 *
1011 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1012 * 2. The caller has taken whatever steps are required to prevent
1013 * RCU readers from concurrently accessing this pointer -or-
1014 * 3. The referenced data structure has already been exposed to
1015 * readers either at compile time or via rcu_assign_pointer() -and-
1016 * a. You have not made -any- reader-visible changes to
1017 * this structure since then -or-
1018 * b. It is OK for readers accessing this structure from its
1019 * new location to see the old state of the structure. (For
1020 * example, the changes were to statistical counters or to
1021 * other state where exact synchronization is not required.)
1022 *
1023 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1024 * result in impossible-to-diagnose memory corruption. As in the structures
1025 * will look OK in crash dumps, but any concurrent RCU readers might
1026 * see pre-initialized values of the referenced data structure. So
1027 * please be very careful how you use RCU_INIT_POINTER()!!!
1028 *
1029 * If you are creating an RCU-protected linked structure that is accessed
1030 * by a single external-to-structure RCU-protected pointer, then you may
1031 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1032 * pointers, but you must use rcu_assign_pointer() to initialize the
1033 * external-to-structure pointer -after- you have completely initialized
1034 * the reader-accessible portions of the linked structure.
1035 *
1036 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1037 * ordering guarantees for either the CPU or the compiler.
1038 */
1039 #define RCU_INIT_POINTER(p, v) \
1040 do { \
1041 rcu_dereference_sparse(p, __rcu); \
1042 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1043 } while (0)
1044
1045 /**
1046 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1047 *
1048 * GCC-style initialization for an RCU-protected pointer in a structure field.
1049 */
1050 #define RCU_POINTER_INITIALIZER(p, v) \
1051 .p = RCU_INITIALIZER(v)
1052
1053 /*
1054 * Does the specified offset indicate that the corresponding rcu_head
1055 * structure can be handled by kfree_rcu()?
1056 */
1057 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1058
1059 /*
1060 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1061 */
1062 #define __kfree_rcu(head, offset) \
1063 do { \
1064 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1065 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1066 } while (0)
1067
1068 /**
1069 * kfree_rcu() - kfree an object after a grace period.
1070 * @ptr: pointer to kfree
1071 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1072 *
1073 * Many rcu callbacks functions just call kfree() on the base structure.
1074 * These functions are trivial, but their size adds up, and furthermore
1075 * when they are used in a kernel module, that module must invoke the
1076 * high-latency rcu_barrier() function at module-unload time.
1077 *
1078 * The kfree_rcu() function handles this issue. Rather than encoding a
1079 * function address in the embedded rcu_head structure, kfree_rcu() instead
1080 * encodes the offset of the rcu_head structure within the base structure.
1081 * Because the functions are not allowed in the low-order 4096 bytes of
1082 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1083 * If the offset is larger than 4095 bytes, a compile-time error will
1084 * be generated in __kfree_rcu(). If this error is triggered, you can
1085 * either fall back to use of call_rcu() or rearrange the structure to
1086 * position the rcu_head structure into the first 4096 bytes.
1087 *
1088 * Note that the allowable offset might decrease in the future, for example,
1089 * to allow something like kmem_cache_free_rcu().
1090 *
1091 * The BUILD_BUG_ON check must not involve any function calls, hence the
1092 * checks are done in macros here.
1093 */
1094 #define kfree_rcu(ptr, rcu_head) \
1095 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1096
1097 #ifdef CONFIG_TINY_RCU
1098 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1099 {
1100 *nextevt = KTIME_MAX;
1101 return 0;
1102 }
1103 #endif /* #ifdef CONFIG_TINY_RCU */
1104
1105 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1106 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1107 #elif defined(CONFIG_RCU_NOCB_CPU)
1108 bool rcu_is_nocb_cpu(int cpu);
1109 #else
1110 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1111 #endif
1112
1113
1114 /* Only for use by adaptive-ticks code. */
1115 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1116 bool rcu_sys_is_idle(void);
1117 void rcu_sysidle_force_exit(void);
1118 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1119
1120 static inline bool rcu_sys_is_idle(void)
1121 {
1122 return false;
1123 }
1124
1125 static inline void rcu_sysidle_force_exit(void)
1126 {
1127 }
1128
1129 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1130
1131
1132 /*
1133 * Dump the ftrace buffer, but only one time per callsite per boot.
1134 */
1135 #define rcu_ftrace_dump(oops_dump_mode) \
1136 do { \
1137 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
1138 \
1139 if (!atomic_read(&___rfd_beenhere) && \
1140 !atomic_xchg(&___rfd_beenhere, 1)) \
1141 ftrace_dump(oops_dump_mode); \
1142 } while (0)
1143
1144
1145 #endif /* __LINUX_RCUPDATE_H */
This page took 0.057249 seconds and 6 git commands to generate.