2036e9f260202bbe9129788a7f30a14d424e133c
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 * a load-average precision of 10 bits integer + 11 bits fractional
111 * - if you want to count load-averages more often, you need more
112 * precision, or rounding will get you. With 2-second counting freq,
113 * the EXP_n values would be 1981, 2034 and 2043 if still using only
114 * 11 bit fractions.
115 */
116 extern unsigned long avenrun[]; /* Load averages */
117
118 #define FSHIFT 11 /* nr of bits of precision */
119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5 2014 /* 1/exp(5sec/5min) */
123 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126 load *= exp; \
127 load += n*(FIXED_1-exp); \
128 load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250 extern void task_rq_unlock_wait(struct task_struct *p);
251
252 extern cpumask_t nohz_cpu_mask;
253 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
254 extern int select_nohz_load_balancer(int cpu);
255 #else
256 static inline int select_nohz_load_balancer(int cpu)
257 {
258 return 0;
259 }
260 #endif
261
262 extern unsigned long rt_needs_cpu(int cpu);
263
264 /*
265 * Only dump TASK_* tasks. (0 for all tasks)
266 */
267 extern void show_state_filter(unsigned long state_filter);
268
269 static inline void show_state(void)
270 {
271 show_state_filter(0);
272 }
273
274 extern void show_regs(struct pt_regs *);
275
276 /*
277 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
278 * task), SP is the stack pointer of the first frame that should be shown in the back
279 * trace (or NULL if the entire call-chain of the task should be shown).
280 */
281 extern void show_stack(struct task_struct *task, unsigned long *sp);
282
283 void io_schedule(void);
284 long io_schedule_timeout(long timeout);
285
286 extern void cpu_init (void);
287 extern void trap_init(void);
288 extern void account_process_tick(struct task_struct *task, int user);
289 extern void update_process_times(int user);
290 extern void scheduler_tick(void);
291
292 extern void sched_show_task(struct task_struct *p);
293
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern unsigned int softlockup_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int softlockup_thresh;
303 #else
304 static inline void softlockup_tick(void)
305 {
306 }
307 static inline void spawn_softlockup_task(void)
308 {
309 }
310 static inline void touch_softlockup_watchdog(void)
311 {
312 }
313 static inline void touch_all_softlockup_watchdogs(void)
314 {
315 }
316 #endif
317
318
319 /* Attach to any functions which should be ignored in wchan output. */
320 #define __sched __attribute__((__section__(".sched.text")))
321
322 /* Linker adds these: start and end of __sched functions */
323 extern char __sched_text_start[], __sched_text_end[];
324
325 /* Is this address in the __sched functions? */
326 extern int in_sched_functions(unsigned long addr);
327
328 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
329 extern signed long schedule_timeout(signed long timeout);
330 extern signed long schedule_timeout_interruptible(signed long timeout);
331 extern signed long schedule_timeout_killable(signed long timeout);
332 extern signed long schedule_timeout_uninterruptible(signed long timeout);
333 asmlinkage void schedule(void);
334
335 struct nsproxy;
336 struct user_namespace;
337
338 /* Maximum number of active map areas.. This is a random (large) number */
339 #define DEFAULT_MAX_MAP_COUNT 65536
340
341 extern int sysctl_max_map_count;
342
343 #include <linux/aio.h>
344
345 extern unsigned long
346 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347 unsigned long, unsigned long);
348 extern unsigned long
349 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350 unsigned long len, unsigned long pgoff,
351 unsigned long flags);
352 extern void arch_unmap_area(struct mm_struct *, unsigned long);
353 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355 #if USE_SPLIT_PTLOCKS
356 /*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366 #else /* !USE_SPLIT_PTLOCKS */
367 /*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372 #define get_mm_counter(mm, member) ((mm)->_##member)
373 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374 #define inc_mm_counter(mm, member) (mm)->_##member++
375 #define dec_mm_counter(mm, member) (mm)->_##member--
376
377 #endif /* !USE_SPLIT_PTLOCKS */
378
379 #define get_mm_rss(mm) \
380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381 #define update_hiwater_rss(mm) do { \
382 unsigned long _rss = get_mm_rss(mm); \
383 if ((mm)->hiwater_rss < _rss) \
384 (mm)->hiwater_rss = _rss; \
385 } while (0)
386 #define update_hiwater_vm(mm) do { \
387 if ((mm)->hiwater_vm < (mm)->total_vm) \
388 (mm)->hiwater_vm = (mm)->total_vm; \
389 } while (0)
390
391 extern void set_dumpable(struct mm_struct *mm, int value);
392 extern int get_dumpable(struct mm_struct *mm);
393
394 /* mm flags */
395 /* dumpable bits */
396 #define MMF_DUMPABLE 0 /* core dump is permitted */
397 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
398 #define MMF_DUMPABLE_BITS 2
399
400 /* coredump filter bits */
401 #define MMF_DUMP_ANON_PRIVATE 2
402 #define MMF_DUMP_ANON_SHARED 3
403 #define MMF_DUMP_MAPPED_PRIVATE 4
404 #define MMF_DUMP_MAPPED_SHARED 5
405 #define MMF_DUMP_ELF_HEADERS 6
406 #define MMF_DUMP_HUGETLB_PRIVATE 7
407 #define MMF_DUMP_HUGETLB_SHARED 8
408 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
409 #define MMF_DUMP_FILTER_BITS 7
410 #define MMF_DUMP_FILTER_MASK \
411 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
412 #define MMF_DUMP_FILTER_DEFAULT \
413 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
414 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
415
416 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
417 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
418 #else
419 # define MMF_DUMP_MASK_DEFAULT_ELF 0
420 #endif
421
422 struct sighand_struct {
423 atomic_t count;
424 struct k_sigaction action[_NSIG];
425 spinlock_t siglock;
426 wait_queue_head_t signalfd_wqh;
427 };
428
429 struct pacct_struct {
430 int ac_flag;
431 long ac_exitcode;
432 unsigned long ac_mem;
433 cputime_t ac_utime, ac_stime;
434 unsigned long ac_minflt, ac_majflt;
435 };
436
437 /**
438 * struct task_cputime - collected CPU time counts
439 * @utime: time spent in user mode, in &cputime_t units
440 * @stime: time spent in kernel mode, in &cputime_t units
441 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
442 *
443 * This structure groups together three kinds of CPU time that are
444 * tracked for threads and thread groups. Most things considering
445 * CPU time want to group these counts together and treat all three
446 * of them in parallel.
447 */
448 struct task_cputime {
449 cputime_t utime;
450 cputime_t stime;
451 unsigned long long sum_exec_runtime;
452 };
453 /* Alternate field names when used to cache expirations. */
454 #define prof_exp stime
455 #define virt_exp utime
456 #define sched_exp sum_exec_runtime
457
458 /**
459 * struct thread_group_cputime - thread group interval timer counts
460 * @totals: thread group interval timers; substructure for
461 * uniprocessor kernel, per-cpu for SMP kernel.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU clock calculations.
465 */
466 struct thread_group_cputime {
467 struct task_cputime *totals;
468 };
469
470 /*
471 * NOTE! "signal_struct" does not have it's own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477 struct signal_struct {
478 atomic_t count;
479 atomic_t live;
480
481 wait_queue_head_t wait_chldexit; /* for wait4() */
482
483 /* current thread group signal load-balancing target: */
484 struct task_struct *curr_target;
485
486 /* shared signal handling: */
487 struct sigpending shared_pending;
488
489 /* thread group exit support */
490 int group_exit_code;
491 /* overloaded:
492 * - notify group_exit_task when ->count is equal to notify_count
493 * - everyone except group_exit_task is stopped during signal delivery
494 * of fatal signals, group_exit_task processes the signal.
495 */
496 int notify_count;
497 struct task_struct *group_exit_task;
498
499 /* thread group stop support, overloads group_exit_code too */
500 int group_stop_count;
501 unsigned int flags; /* see SIGNAL_* flags below */
502
503 /* POSIX.1b Interval Timers */
504 struct list_head posix_timers;
505
506 /* ITIMER_REAL timer for the process */
507 struct hrtimer real_timer;
508 struct pid *leader_pid;
509 ktime_t it_real_incr;
510
511 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
512 cputime_t it_prof_expires, it_virt_expires;
513 cputime_t it_prof_incr, it_virt_incr;
514
515 /*
516 * Thread group totals for process CPU clocks.
517 * See thread_group_cputime(), et al, for details.
518 */
519 struct thread_group_cputime cputime;
520
521 /* Earliest-expiration cache. */
522 struct task_cputime cputime_expires;
523
524 struct list_head cpu_timers[3];
525
526 /* job control IDs */
527
528 /*
529 * pgrp and session fields are deprecated.
530 * use the task_session_Xnr and task_pgrp_Xnr routines below
531 */
532
533 union {
534 pid_t pgrp __deprecated;
535 pid_t __pgrp;
536 };
537
538 struct pid *tty_old_pgrp;
539
540 union {
541 pid_t session __deprecated;
542 pid_t __session;
543 };
544
545 /* boolean value for session group leader */
546 int leader;
547
548 struct tty_struct *tty; /* NULL if no tty */
549
550 /*
551 * Cumulative resource counters for dead threads in the group,
552 * and for reaped dead child processes forked by this group.
553 * Live threads maintain their own counters and add to these
554 * in __exit_signal, except for the group leader.
555 */
556 cputime_t cutime, cstime;
557 cputime_t gtime;
558 cputime_t cgtime;
559 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
560 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
561 unsigned long inblock, oublock, cinblock, coublock;
562 struct task_io_accounting ioac;
563
564 /*
565 * We don't bother to synchronize most readers of this at all,
566 * because there is no reader checking a limit that actually needs
567 * to get both rlim_cur and rlim_max atomically, and either one
568 * alone is a single word that can safely be read normally.
569 * getrlimit/setrlimit use task_lock(current->group_leader) to
570 * protect this instead of the siglock, because they really
571 * have no need to disable irqs.
572 */
573 struct rlimit rlim[RLIM_NLIMITS];
574
575 #ifdef CONFIG_BSD_PROCESS_ACCT
576 struct pacct_struct pacct; /* per-process accounting information */
577 #endif
578 #ifdef CONFIG_TASKSTATS
579 struct taskstats *stats;
580 #endif
581 #ifdef CONFIG_AUDIT
582 unsigned audit_tty;
583 struct tty_audit_buf *tty_audit_buf;
584 #endif
585 };
586
587 /* Context switch must be unlocked if interrupts are to be enabled */
588 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
589 # define __ARCH_WANT_UNLOCKED_CTXSW
590 #endif
591
592 /*
593 * Bits in flags field of signal_struct.
594 */
595 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
596 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
597 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
598 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
599 /*
600 * Pending notifications to parent.
601 */
602 #define SIGNAL_CLD_STOPPED 0x00000010
603 #define SIGNAL_CLD_CONTINUED 0x00000020
604 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
605
606 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
607
608 /* If true, all threads except ->group_exit_task have pending SIGKILL */
609 static inline int signal_group_exit(const struct signal_struct *sig)
610 {
611 return (sig->flags & SIGNAL_GROUP_EXIT) ||
612 (sig->group_exit_task != NULL);
613 }
614
615 /*
616 * Some day this will be a full-fledged user tracking system..
617 */
618 struct user_struct {
619 atomic_t __count; /* reference count */
620 atomic_t processes; /* How many processes does this user have? */
621 atomic_t files; /* How many open files does this user have? */
622 atomic_t sigpending; /* How many pending signals does this user have? */
623 #ifdef CONFIG_INOTIFY_USER
624 atomic_t inotify_watches; /* How many inotify watches does this user have? */
625 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
626 #endif
627 #ifdef CONFIG_POSIX_MQUEUE
628 /* protected by mq_lock */
629 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
630 #endif
631 unsigned long locked_shm; /* How many pages of mlocked shm ? */
632
633 #ifdef CONFIG_KEYS
634 struct key *uid_keyring; /* UID specific keyring */
635 struct key *session_keyring; /* UID's default session keyring */
636 #endif
637
638 /* Hash table maintenance information */
639 struct hlist_node uidhash_node;
640 uid_t uid;
641
642 #ifdef CONFIG_USER_SCHED
643 struct task_group *tg;
644 #ifdef CONFIG_SYSFS
645 struct kobject kobj;
646 struct work_struct work;
647 #endif
648 #endif
649 };
650
651 extern int uids_sysfs_init(void);
652
653 extern struct user_struct *find_user(uid_t);
654
655 extern struct user_struct root_user;
656 #define INIT_USER (&root_user)
657
658
659 struct backing_dev_info;
660 struct reclaim_state;
661
662 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
663 struct sched_info {
664 /* cumulative counters */
665 unsigned long pcount; /* # of times run on this cpu */
666 unsigned long long cpu_time, /* time spent on the cpu */
667 run_delay; /* time spent waiting on a runqueue */
668
669 /* timestamps */
670 unsigned long long last_arrival,/* when we last ran on a cpu */
671 last_queued; /* when we were last queued to run */
672 #ifdef CONFIG_SCHEDSTATS
673 /* BKL stats */
674 unsigned int bkl_count;
675 #endif
676 };
677 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
678
679 #ifdef CONFIG_TASK_DELAY_ACCT
680 struct task_delay_info {
681 spinlock_t lock;
682 unsigned int flags; /* Private per-task flags */
683
684 /* For each stat XXX, add following, aligned appropriately
685 *
686 * struct timespec XXX_start, XXX_end;
687 * u64 XXX_delay;
688 * u32 XXX_count;
689 *
690 * Atomicity of updates to XXX_delay, XXX_count protected by
691 * single lock above (split into XXX_lock if contention is an issue).
692 */
693
694 /*
695 * XXX_count is incremented on every XXX operation, the delay
696 * associated with the operation is added to XXX_delay.
697 * XXX_delay contains the accumulated delay time in nanoseconds.
698 */
699 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
700 u64 blkio_delay; /* wait for sync block io completion */
701 u64 swapin_delay; /* wait for swapin block io completion */
702 u32 blkio_count; /* total count of the number of sync block */
703 /* io operations performed */
704 u32 swapin_count; /* total count of the number of swapin block */
705 /* io operations performed */
706
707 struct timespec freepages_start, freepages_end;
708 u64 freepages_delay; /* wait for memory reclaim */
709 u32 freepages_count; /* total count of memory reclaim */
710 };
711 #endif /* CONFIG_TASK_DELAY_ACCT */
712
713 static inline int sched_info_on(void)
714 {
715 #ifdef CONFIG_SCHEDSTATS
716 return 1;
717 #elif defined(CONFIG_TASK_DELAY_ACCT)
718 extern int delayacct_on;
719 return delayacct_on;
720 #else
721 return 0;
722 #endif
723 }
724
725 enum cpu_idle_type {
726 CPU_IDLE,
727 CPU_NOT_IDLE,
728 CPU_NEWLY_IDLE,
729 CPU_MAX_IDLE_TYPES
730 };
731
732 /*
733 * sched-domains (multiprocessor balancing) declarations:
734 */
735
736 /*
737 * Increase resolution of nice-level calculations:
738 */
739 #define SCHED_LOAD_SHIFT 10
740 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
741
742 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
743
744 #ifdef CONFIG_SMP
745 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
746 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
747 #define SD_BALANCE_EXEC 4 /* Balance on exec */
748 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
749 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
750 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
751 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
752 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
753 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
754 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
755 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
756 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
757
758 #define BALANCE_FOR_MC_POWER \
759 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
760
761 #define BALANCE_FOR_PKG_POWER \
762 ((sched_mc_power_savings || sched_smt_power_savings) ? \
763 SD_POWERSAVINGS_BALANCE : 0)
764
765 #define test_sd_parent(sd, flag) ((sd->parent && \
766 (sd->parent->flags & flag)) ? 1 : 0)
767
768
769 struct sched_group {
770 struct sched_group *next; /* Must be a circular list */
771 cpumask_t cpumask;
772
773 /*
774 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
775 * single CPU. This is read only (except for setup, hotplug CPU).
776 * Note : Never change cpu_power without recompute its reciprocal
777 */
778 unsigned int __cpu_power;
779 /*
780 * reciprocal value of cpu_power to avoid expensive divides
781 * (see include/linux/reciprocal_div.h)
782 */
783 u32 reciprocal_cpu_power;
784 };
785
786 enum sched_domain_level {
787 SD_LV_NONE = 0,
788 SD_LV_SIBLING,
789 SD_LV_MC,
790 SD_LV_CPU,
791 SD_LV_NODE,
792 SD_LV_ALLNODES,
793 SD_LV_MAX
794 };
795
796 struct sched_domain_attr {
797 int relax_domain_level;
798 };
799
800 #define SD_ATTR_INIT (struct sched_domain_attr) { \
801 .relax_domain_level = -1, \
802 }
803
804 struct sched_domain {
805 /* These fields must be setup */
806 struct sched_domain *parent; /* top domain must be null terminated */
807 struct sched_domain *child; /* bottom domain must be null terminated */
808 struct sched_group *groups; /* the balancing groups of the domain */
809 cpumask_t span; /* span of all CPUs in this domain */
810 unsigned long min_interval; /* Minimum balance interval ms */
811 unsigned long max_interval; /* Maximum balance interval ms */
812 unsigned int busy_factor; /* less balancing by factor if busy */
813 unsigned int imbalance_pct; /* No balance until over watermark */
814 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
815 unsigned int busy_idx;
816 unsigned int idle_idx;
817 unsigned int newidle_idx;
818 unsigned int wake_idx;
819 unsigned int forkexec_idx;
820 int flags; /* See SD_* */
821 enum sched_domain_level level;
822
823 /* Runtime fields. */
824 unsigned long last_balance; /* init to jiffies. units in jiffies */
825 unsigned int balance_interval; /* initialise to 1. units in ms. */
826 unsigned int nr_balance_failed; /* initialise to 0 */
827
828 u64 last_update;
829
830 #ifdef CONFIG_SCHEDSTATS
831 /* load_balance() stats */
832 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
835 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
836 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
837 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
838 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
839 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
840
841 /* Active load balancing */
842 unsigned int alb_count;
843 unsigned int alb_failed;
844 unsigned int alb_pushed;
845
846 /* SD_BALANCE_EXEC stats */
847 unsigned int sbe_count;
848 unsigned int sbe_balanced;
849 unsigned int sbe_pushed;
850
851 /* SD_BALANCE_FORK stats */
852 unsigned int sbf_count;
853 unsigned int sbf_balanced;
854 unsigned int sbf_pushed;
855
856 /* try_to_wake_up() stats */
857 unsigned int ttwu_wake_remote;
858 unsigned int ttwu_move_affine;
859 unsigned int ttwu_move_balance;
860 #endif
861 #ifdef CONFIG_SCHED_DEBUG
862 char *name;
863 #endif
864 };
865
866 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
867 struct sched_domain_attr *dattr_new);
868 extern int arch_reinit_sched_domains(void);
869
870 #else /* CONFIG_SMP */
871
872 struct sched_domain_attr;
873
874 static inline void
875 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
876 struct sched_domain_attr *dattr_new)
877 {
878 }
879 #endif /* !CONFIG_SMP */
880
881 struct io_context; /* See blkdev.h */
882
883
884 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
885 extern void prefetch_stack(struct task_struct *t);
886 #else
887 static inline void prefetch_stack(struct task_struct *t) { }
888 #endif
889
890 struct audit_context; /* See audit.c */
891 struct mempolicy;
892 struct pipe_inode_info;
893 struct uts_namespace;
894
895 struct rq;
896 struct sched_domain;
897
898 struct sched_class {
899 const struct sched_class *next;
900
901 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
902 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
903 void (*yield_task) (struct rq *rq);
904
905 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
906
907 struct task_struct * (*pick_next_task) (struct rq *rq);
908 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
909
910 #ifdef CONFIG_SMP
911 int (*select_task_rq)(struct task_struct *p, int sync);
912
913 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
914 struct rq *busiest, unsigned long max_load_move,
915 struct sched_domain *sd, enum cpu_idle_type idle,
916 int *all_pinned, int *this_best_prio);
917
918 int (*move_one_task) (struct rq *this_rq, int this_cpu,
919 struct rq *busiest, struct sched_domain *sd,
920 enum cpu_idle_type idle);
921 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
922 void (*post_schedule) (struct rq *this_rq);
923 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
924
925 void (*set_cpus_allowed)(struct task_struct *p,
926 const cpumask_t *newmask);
927
928 void (*rq_online)(struct rq *rq);
929 void (*rq_offline)(struct rq *rq);
930 #endif
931
932 void (*set_curr_task) (struct rq *rq);
933 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
934 void (*task_new) (struct rq *rq, struct task_struct *p);
935
936 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
937 int running);
938 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
939 int running);
940 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
941 int oldprio, int running);
942
943 #ifdef CONFIG_FAIR_GROUP_SCHED
944 void (*moved_group) (struct task_struct *p);
945 #endif
946 };
947
948 struct load_weight {
949 unsigned long weight, inv_weight;
950 };
951
952 /*
953 * CFS stats for a schedulable entity (task, task-group etc)
954 *
955 * Current field usage histogram:
956 *
957 * 4 se->block_start
958 * 4 se->run_node
959 * 4 se->sleep_start
960 * 6 se->load.weight
961 */
962 struct sched_entity {
963 struct load_weight load; /* for load-balancing */
964 struct rb_node run_node;
965 struct list_head group_node;
966 unsigned int on_rq;
967
968 u64 exec_start;
969 u64 sum_exec_runtime;
970 u64 vruntime;
971 u64 prev_sum_exec_runtime;
972
973 u64 last_wakeup;
974 u64 avg_overlap;
975
976 #ifdef CONFIG_SCHEDSTATS
977 u64 wait_start;
978 u64 wait_max;
979 u64 wait_count;
980 u64 wait_sum;
981
982 u64 sleep_start;
983 u64 sleep_max;
984 s64 sum_sleep_runtime;
985
986 u64 block_start;
987 u64 block_max;
988 u64 exec_max;
989 u64 slice_max;
990
991 u64 nr_migrations;
992 u64 nr_migrations_cold;
993 u64 nr_failed_migrations_affine;
994 u64 nr_failed_migrations_running;
995 u64 nr_failed_migrations_hot;
996 u64 nr_forced_migrations;
997 u64 nr_forced2_migrations;
998
999 u64 nr_wakeups;
1000 u64 nr_wakeups_sync;
1001 u64 nr_wakeups_migrate;
1002 u64 nr_wakeups_local;
1003 u64 nr_wakeups_remote;
1004 u64 nr_wakeups_affine;
1005 u64 nr_wakeups_affine_attempts;
1006 u64 nr_wakeups_passive;
1007 u64 nr_wakeups_idle;
1008 #endif
1009
1010 #ifdef CONFIG_FAIR_GROUP_SCHED
1011 struct sched_entity *parent;
1012 /* rq on which this entity is (to be) queued: */
1013 struct cfs_rq *cfs_rq;
1014 /* rq "owned" by this entity/group: */
1015 struct cfs_rq *my_q;
1016 #endif
1017 };
1018
1019 struct sched_rt_entity {
1020 struct list_head run_list;
1021 unsigned long timeout;
1022 unsigned int time_slice;
1023 int nr_cpus_allowed;
1024
1025 struct sched_rt_entity *back;
1026 #ifdef CONFIG_RT_GROUP_SCHED
1027 struct sched_rt_entity *parent;
1028 /* rq on which this entity is (to be) queued: */
1029 struct rt_rq *rt_rq;
1030 /* rq "owned" by this entity/group: */
1031 struct rt_rq *my_q;
1032 #endif
1033 };
1034
1035 struct task_struct {
1036 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1037 void *stack;
1038 atomic_t usage;
1039 unsigned int flags; /* per process flags, defined below */
1040 unsigned int ptrace;
1041
1042 int lock_depth; /* BKL lock depth */
1043
1044 #ifdef CONFIG_SMP
1045 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1046 int oncpu;
1047 #endif
1048 #endif
1049
1050 int prio, static_prio, normal_prio;
1051 unsigned int rt_priority;
1052 const struct sched_class *sched_class;
1053 struct sched_entity se;
1054 struct sched_rt_entity rt;
1055
1056 #ifdef CONFIG_PREEMPT_NOTIFIERS
1057 /* list of struct preempt_notifier: */
1058 struct hlist_head preempt_notifiers;
1059 #endif
1060
1061 /*
1062 * fpu_counter contains the number of consecutive context switches
1063 * that the FPU is used. If this is over a threshold, the lazy fpu
1064 * saving becomes unlazy to save the trap. This is an unsigned char
1065 * so that after 256 times the counter wraps and the behavior turns
1066 * lazy again; this to deal with bursty apps that only use FPU for
1067 * a short time
1068 */
1069 unsigned char fpu_counter;
1070 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1071 #ifdef CONFIG_BLK_DEV_IO_TRACE
1072 unsigned int btrace_seq;
1073 #endif
1074
1075 unsigned int policy;
1076 cpumask_t cpus_allowed;
1077
1078 #ifdef CONFIG_PREEMPT_RCU
1079 int rcu_read_lock_nesting;
1080 int rcu_flipctr_idx;
1081 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1082
1083 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1084 struct sched_info sched_info;
1085 #endif
1086
1087 struct list_head tasks;
1088
1089 struct mm_struct *mm, *active_mm;
1090
1091 /* task state */
1092 struct linux_binfmt *binfmt;
1093 int exit_state;
1094 int exit_code, exit_signal;
1095 int pdeath_signal; /* The signal sent when the parent dies */
1096 /* ??? */
1097 unsigned int personality;
1098 unsigned did_exec:1;
1099 pid_t pid;
1100 pid_t tgid;
1101
1102 #ifdef CONFIG_CC_STACKPROTECTOR
1103 /* Canary value for the -fstack-protector gcc feature */
1104 unsigned long stack_canary;
1105 #endif
1106 /*
1107 * pointers to (original) parent process, youngest child, younger sibling,
1108 * older sibling, respectively. (p->father can be replaced with
1109 * p->real_parent->pid)
1110 */
1111 struct task_struct *real_parent; /* real parent process */
1112 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1113 /*
1114 * children/sibling forms the list of my natural children
1115 */
1116 struct list_head children; /* list of my children */
1117 struct list_head sibling; /* linkage in my parent's children list */
1118 struct task_struct *group_leader; /* threadgroup leader */
1119
1120 /*
1121 * ptraced is the list of tasks this task is using ptrace on.
1122 * This includes both natural children and PTRACE_ATTACH targets.
1123 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1124 */
1125 struct list_head ptraced;
1126 struct list_head ptrace_entry;
1127
1128 /* PID/PID hash table linkage. */
1129 struct pid_link pids[PIDTYPE_MAX];
1130 struct list_head thread_group;
1131
1132 struct completion *vfork_done; /* for vfork() */
1133 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1134 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1135
1136 cputime_t utime, stime, utimescaled, stimescaled;
1137 cputime_t gtime;
1138 cputime_t prev_utime, prev_stime;
1139 unsigned long nvcsw, nivcsw; /* context switch counts */
1140 struct timespec start_time; /* monotonic time */
1141 struct timespec real_start_time; /* boot based time */
1142 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1143 unsigned long min_flt, maj_flt;
1144
1145 struct task_cputime cputime_expires;
1146 struct list_head cpu_timers[3];
1147
1148 /* process credentials */
1149 const struct cred *real_cred; /* objective and real subjective task
1150 * credentials (COW) */
1151 const struct cred *cred; /* effective (overridable) subjective task
1152 * credentials (COW) */
1153 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1154
1155 char comm[TASK_COMM_LEN]; /* executable name excluding path
1156 - access with [gs]et_task_comm (which lock
1157 it with task_lock())
1158 - initialized normally by flush_old_exec */
1159 /* file system info */
1160 int link_count, total_link_count;
1161 #ifdef CONFIG_SYSVIPC
1162 /* ipc stuff */
1163 struct sysv_sem sysvsem;
1164 #endif
1165 #ifdef CONFIG_DETECT_SOFTLOCKUP
1166 /* hung task detection */
1167 unsigned long last_switch_timestamp;
1168 unsigned long last_switch_count;
1169 #endif
1170 /* CPU-specific state of this task */
1171 struct thread_struct thread;
1172 /* filesystem information */
1173 struct fs_struct *fs;
1174 /* open file information */
1175 struct files_struct *files;
1176 /* namespaces */
1177 struct nsproxy *nsproxy;
1178 /* signal handlers */
1179 struct signal_struct *signal;
1180 struct sighand_struct *sighand;
1181
1182 sigset_t blocked, real_blocked;
1183 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1184 struct sigpending pending;
1185
1186 unsigned long sas_ss_sp;
1187 size_t sas_ss_size;
1188 int (*notifier)(void *priv);
1189 void *notifier_data;
1190 sigset_t *notifier_mask;
1191 struct audit_context *audit_context;
1192 #ifdef CONFIG_AUDITSYSCALL
1193 uid_t loginuid;
1194 unsigned int sessionid;
1195 #endif
1196 seccomp_t seccomp;
1197
1198 /* Thread group tracking */
1199 u32 parent_exec_id;
1200 u32 self_exec_id;
1201 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1202 spinlock_t alloc_lock;
1203
1204 /* Protection of the PI data structures: */
1205 spinlock_t pi_lock;
1206
1207 #ifdef CONFIG_RT_MUTEXES
1208 /* PI waiters blocked on a rt_mutex held by this task */
1209 struct plist_head pi_waiters;
1210 /* Deadlock detection and priority inheritance handling */
1211 struct rt_mutex_waiter *pi_blocked_on;
1212 #endif
1213
1214 #ifdef CONFIG_DEBUG_MUTEXES
1215 /* mutex deadlock detection */
1216 struct mutex_waiter *blocked_on;
1217 #endif
1218 #ifdef CONFIG_TRACE_IRQFLAGS
1219 unsigned int irq_events;
1220 int hardirqs_enabled;
1221 unsigned long hardirq_enable_ip;
1222 unsigned int hardirq_enable_event;
1223 unsigned long hardirq_disable_ip;
1224 unsigned int hardirq_disable_event;
1225 int softirqs_enabled;
1226 unsigned long softirq_disable_ip;
1227 unsigned int softirq_disable_event;
1228 unsigned long softirq_enable_ip;
1229 unsigned int softirq_enable_event;
1230 int hardirq_context;
1231 int softirq_context;
1232 #endif
1233 #ifdef CONFIG_LOCKDEP
1234 # define MAX_LOCK_DEPTH 48UL
1235 u64 curr_chain_key;
1236 int lockdep_depth;
1237 unsigned int lockdep_recursion;
1238 struct held_lock held_locks[MAX_LOCK_DEPTH];
1239 #endif
1240
1241 /* journalling filesystem info */
1242 void *journal_info;
1243
1244 /* stacked block device info */
1245 struct bio *bio_list, **bio_tail;
1246
1247 /* VM state */
1248 struct reclaim_state *reclaim_state;
1249
1250 struct backing_dev_info *backing_dev_info;
1251
1252 struct io_context *io_context;
1253
1254 unsigned long ptrace_message;
1255 siginfo_t *last_siginfo; /* For ptrace use. */
1256 struct task_io_accounting ioac;
1257 #if defined(CONFIG_TASK_XACCT)
1258 u64 acct_rss_mem1; /* accumulated rss usage */
1259 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1260 cputime_t acct_timexpd; /* stime + utime since last update */
1261 #endif
1262 #ifdef CONFIG_CPUSETS
1263 nodemask_t mems_allowed;
1264 int cpuset_mems_generation;
1265 int cpuset_mem_spread_rotor;
1266 #endif
1267 #ifdef CONFIG_CGROUPS
1268 /* Control Group info protected by css_set_lock */
1269 struct css_set *cgroups;
1270 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1271 struct list_head cg_list;
1272 #endif
1273 #ifdef CONFIG_FUTEX
1274 struct robust_list_head __user *robust_list;
1275 #ifdef CONFIG_COMPAT
1276 struct compat_robust_list_head __user *compat_robust_list;
1277 #endif
1278 struct list_head pi_state_list;
1279 struct futex_pi_state *pi_state_cache;
1280 #endif
1281 #ifdef CONFIG_NUMA
1282 struct mempolicy *mempolicy;
1283 short il_next;
1284 #endif
1285 atomic_t fs_excl; /* holding fs exclusive resources */
1286 struct rcu_head rcu;
1287
1288 /*
1289 * cache last used pipe for splice
1290 */
1291 struct pipe_inode_info *splice_pipe;
1292 #ifdef CONFIG_TASK_DELAY_ACCT
1293 struct task_delay_info *delays;
1294 #endif
1295 #ifdef CONFIG_FAULT_INJECTION
1296 int make_it_fail;
1297 #endif
1298 struct prop_local_single dirties;
1299 #ifdef CONFIG_LATENCYTOP
1300 int latency_record_count;
1301 struct latency_record latency_record[LT_SAVECOUNT];
1302 #endif
1303 /*
1304 * time slack values; these are used to round up poll() and
1305 * select() etc timeout values. These are in nanoseconds.
1306 */
1307 unsigned long timer_slack_ns;
1308 unsigned long default_timer_slack_ns;
1309
1310 struct list_head *scm_work_list;
1311 };
1312
1313 /*
1314 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1315 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1316 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1317 * values are inverted: lower p->prio value means higher priority.
1318 *
1319 * The MAX_USER_RT_PRIO value allows the actual maximum
1320 * RT priority to be separate from the value exported to
1321 * user-space. This allows kernel threads to set their
1322 * priority to a value higher than any user task. Note:
1323 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1324 */
1325
1326 #define MAX_USER_RT_PRIO 100
1327 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1328
1329 #define MAX_PRIO (MAX_RT_PRIO + 40)
1330 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1331
1332 static inline int rt_prio(int prio)
1333 {
1334 if (unlikely(prio < MAX_RT_PRIO))
1335 return 1;
1336 return 0;
1337 }
1338
1339 static inline int rt_task(struct task_struct *p)
1340 {
1341 return rt_prio(p->prio);
1342 }
1343
1344 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1345 {
1346 tsk->signal->__session = session;
1347 }
1348
1349 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1350 {
1351 tsk->signal->__pgrp = pgrp;
1352 }
1353
1354 static inline struct pid *task_pid(struct task_struct *task)
1355 {
1356 return task->pids[PIDTYPE_PID].pid;
1357 }
1358
1359 static inline struct pid *task_tgid(struct task_struct *task)
1360 {
1361 return task->group_leader->pids[PIDTYPE_PID].pid;
1362 }
1363
1364 static inline struct pid *task_pgrp(struct task_struct *task)
1365 {
1366 return task->group_leader->pids[PIDTYPE_PGID].pid;
1367 }
1368
1369 static inline struct pid *task_session(struct task_struct *task)
1370 {
1371 return task->group_leader->pids[PIDTYPE_SID].pid;
1372 }
1373
1374 struct pid_namespace;
1375
1376 /*
1377 * the helpers to get the task's different pids as they are seen
1378 * from various namespaces
1379 *
1380 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1381 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1382 * current.
1383 * task_xid_nr_ns() : id seen from the ns specified;
1384 *
1385 * set_task_vxid() : assigns a virtual id to a task;
1386 *
1387 * see also pid_nr() etc in include/linux/pid.h
1388 */
1389
1390 static inline pid_t task_pid_nr(struct task_struct *tsk)
1391 {
1392 return tsk->pid;
1393 }
1394
1395 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1396
1397 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1398 {
1399 return pid_vnr(task_pid(tsk));
1400 }
1401
1402
1403 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1404 {
1405 return tsk->tgid;
1406 }
1407
1408 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1409
1410 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1411 {
1412 return pid_vnr(task_tgid(tsk));
1413 }
1414
1415
1416 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1417 {
1418 return tsk->signal->__pgrp;
1419 }
1420
1421 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1422
1423 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1424 {
1425 return pid_vnr(task_pgrp(tsk));
1426 }
1427
1428
1429 static inline pid_t task_session_nr(struct task_struct *tsk)
1430 {
1431 return tsk->signal->__session;
1432 }
1433
1434 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1435
1436 static inline pid_t task_session_vnr(struct task_struct *tsk)
1437 {
1438 return pid_vnr(task_session(tsk));
1439 }
1440
1441
1442 /**
1443 * pid_alive - check that a task structure is not stale
1444 * @p: Task structure to be checked.
1445 *
1446 * Test if a process is not yet dead (at most zombie state)
1447 * If pid_alive fails, then pointers within the task structure
1448 * can be stale and must not be dereferenced.
1449 */
1450 static inline int pid_alive(struct task_struct *p)
1451 {
1452 return p->pids[PIDTYPE_PID].pid != NULL;
1453 }
1454
1455 /**
1456 * is_global_init - check if a task structure is init
1457 * @tsk: Task structure to be checked.
1458 *
1459 * Check if a task structure is the first user space task the kernel created.
1460 */
1461 static inline int is_global_init(struct task_struct *tsk)
1462 {
1463 return tsk->pid == 1;
1464 }
1465
1466 /*
1467 * is_container_init:
1468 * check whether in the task is init in its own pid namespace.
1469 */
1470 extern int is_container_init(struct task_struct *tsk);
1471
1472 extern struct pid *cad_pid;
1473
1474 extern void free_task(struct task_struct *tsk);
1475 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1476
1477 extern void __put_task_struct(struct task_struct *t);
1478
1479 static inline void put_task_struct(struct task_struct *t)
1480 {
1481 if (atomic_dec_and_test(&t->usage))
1482 __put_task_struct(t);
1483 }
1484
1485 extern cputime_t task_utime(struct task_struct *p);
1486 extern cputime_t task_stime(struct task_struct *p);
1487 extern cputime_t task_gtime(struct task_struct *p);
1488
1489 /*
1490 * Per process flags
1491 */
1492 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1493 /* Not implemented yet, only for 486*/
1494 #define PF_STARTING 0x00000002 /* being created */
1495 #define PF_EXITING 0x00000004 /* getting shut down */
1496 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1497 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1498 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1499 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1500 #define PF_DUMPCORE 0x00000200 /* dumped core */
1501 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1502 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1503 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1504 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1505 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1506 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1507 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1508 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1509 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1510 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1511 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1512 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1513 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1514 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1515 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1516 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1517 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1518 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1519 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1520 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1521
1522 /*
1523 * Only the _current_ task can read/write to tsk->flags, but other
1524 * tasks can access tsk->flags in readonly mode for example
1525 * with tsk_used_math (like during threaded core dumping).
1526 * There is however an exception to this rule during ptrace
1527 * or during fork: the ptracer task is allowed to write to the
1528 * child->flags of its traced child (same goes for fork, the parent
1529 * can write to the child->flags), because we're guaranteed the
1530 * child is not running and in turn not changing child->flags
1531 * at the same time the parent does it.
1532 */
1533 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1534 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1535 #define clear_used_math() clear_stopped_child_used_math(current)
1536 #define set_used_math() set_stopped_child_used_math(current)
1537 #define conditional_stopped_child_used_math(condition, child) \
1538 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1539 #define conditional_used_math(condition) \
1540 conditional_stopped_child_used_math(condition, current)
1541 #define copy_to_stopped_child_used_math(child) \
1542 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1543 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1544 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1545 #define used_math() tsk_used_math(current)
1546
1547 #ifdef CONFIG_SMP
1548 extern int set_cpus_allowed_ptr(struct task_struct *p,
1549 const cpumask_t *new_mask);
1550 #else
1551 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1552 const cpumask_t *new_mask)
1553 {
1554 if (!cpu_isset(0, *new_mask))
1555 return -EINVAL;
1556 return 0;
1557 }
1558 #endif
1559 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1560 {
1561 return set_cpus_allowed_ptr(p, &new_mask);
1562 }
1563
1564 extern unsigned long long sched_clock(void);
1565
1566 extern void sched_clock_init(void);
1567 extern u64 sched_clock_cpu(int cpu);
1568
1569 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1570 static inline void sched_clock_tick(void)
1571 {
1572 }
1573
1574 static inline void sched_clock_idle_sleep_event(void)
1575 {
1576 }
1577
1578 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1579 {
1580 }
1581 #else
1582 extern void sched_clock_tick(void);
1583 extern void sched_clock_idle_sleep_event(void);
1584 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1585 #endif
1586
1587 /*
1588 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1589 * clock constructed from sched_clock():
1590 */
1591 extern unsigned long long cpu_clock(int cpu);
1592
1593 extern unsigned long long
1594 task_sched_runtime(struct task_struct *task);
1595 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1596
1597 /* sched_exec is called by processes performing an exec */
1598 #ifdef CONFIG_SMP
1599 extern void sched_exec(void);
1600 #else
1601 #define sched_exec() {}
1602 #endif
1603
1604 extern void sched_clock_idle_sleep_event(void);
1605 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1606
1607 #ifdef CONFIG_HOTPLUG_CPU
1608 extern void idle_task_exit(void);
1609 #else
1610 static inline void idle_task_exit(void) {}
1611 #endif
1612
1613 extern void sched_idle_next(void);
1614
1615 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1616 extern void wake_up_idle_cpu(int cpu);
1617 #else
1618 static inline void wake_up_idle_cpu(int cpu) { }
1619 #endif
1620
1621 #ifdef CONFIG_SCHED_DEBUG
1622 extern unsigned int sysctl_sched_latency;
1623 extern unsigned int sysctl_sched_min_granularity;
1624 extern unsigned int sysctl_sched_wakeup_granularity;
1625 extern unsigned int sysctl_sched_child_runs_first;
1626 extern unsigned int sysctl_sched_features;
1627 extern unsigned int sysctl_sched_migration_cost;
1628 extern unsigned int sysctl_sched_nr_migrate;
1629 extern unsigned int sysctl_sched_shares_ratelimit;
1630 extern unsigned int sysctl_sched_shares_thresh;
1631
1632 int sched_nr_latency_handler(struct ctl_table *table, int write,
1633 struct file *file, void __user *buffer, size_t *length,
1634 loff_t *ppos);
1635 #endif
1636 extern unsigned int sysctl_sched_rt_period;
1637 extern int sysctl_sched_rt_runtime;
1638
1639 int sched_rt_handler(struct ctl_table *table, int write,
1640 struct file *filp, void __user *buffer, size_t *lenp,
1641 loff_t *ppos);
1642
1643 extern unsigned int sysctl_sched_compat_yield;
1644
1645 #ifdef CONFIG_RT_MUTEXES
1646 extern int rt_mutex_getprio(struct task_struct *p);
1647 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1648 extern void rt_mutex_adjust_pi(struct task_struct *p);
1649 #else
1650 static inline int rt_mutex_getprio(struct task_struct *p)
1651 {
1652 return p->normal_prio;
1653 }
1654 # define rt_mutex_adjust_pi(p) do { } while (0)
1655 #endif
1656
1657 extern void set_user_nice(struct task_struct *p, long nice);
1658 extern int task_prio(const struct task_struct *p);
1659 extern int task_nice(const struct task_struct *p);
1660 extern int can_nice(const struct task_struct *p, const int nice);
1661 extern int task_curr(const struct task_struct *p);
1662 extern int idle_cpu(int cpu);
1663 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1664 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1665 struct sched_param *);
1666 extern struct task_struct *idle_task(int cpu);
1667 extern struct task_struct *curr_task(int cpu);
1668 extern void set_curr_task(int cpu, struct task_struct *p);
1669
1670 void yield(void);
1671
1672 /*
1673 * The default (Linux) execution domain.
1674 */
1675 extern struct exec_domain default_exec_domain;
1676
1677 union thread_union {
1678 struct thread_info thread_info;
1679 unsigned long stack[THREAD_SIZE/sizeof(long)];
1680 };
1681
1682 #ifndef __HAVE_ARCH_KSTACK_END
1683 static inline int kstack_end(void *addr)
1684 {
1685 /* Reliable end of stack detection:
1686 * Some APM bios versions misalign the stack
1687 */
1688 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1689 }
1690 #endif
1691
1692 extern union thread_union init_thread_union;
1693 extern struct task_struct init_task;
1694
1695 extern struct mm_struct init_mm;
1696
1697 extern struct pid_namespace init_pid_ns;
1698
1699 /*
1700 * find a task by one of its numerical ids
1701 *
1702 * find_task_by_pid_type_ns():
1703 * it is the most generic call - it finds a task by all id,
1704 * type and namespace specified
1705 * find_task_by_pid_ns():
1706 * finds a task by its pid in the specified namespace
1707 * find_task_by_vpid():
1708 * finds a task by its virtual pid
1709 *
1710 * see also find_vpid() etc in include/linux/pid.h
1711 */
1712
1713 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1714 struct pid_namespace *ns);
1715
1716 extern struct task_struct *find_task_by_vpid(pid_t nr);
1717 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1718 struct pid_namespace *ns);
1719
1720 extern void __set_special_pids(struct pid *pid);
1721
1722 /* per-UID process charging. */
1723 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1724 static inline struct user_struct *get_uid(struct user_struct *u)
1725 {
1726 atomic_inc(&u->__count);
1727 return u;
1728 }
1729 extern void free_uid(struct user_struct *);
1730 extern void release_uids(struct user_namespace *ns);
1731
1732 #include <asm/current.h>
1733
1734 extern void do_timer(unsigned long ticks);
1735
1736 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1737 extern int wake_up_process(struct task_struct *tsk);
1738 extern void wake_up_new_task(struct task_struct *tsk,
1739 unsigned long clone_flags);
1740 #ifdef CONFIG_SMP
1741 extern void kick_process(struct task_struct *tsk);
1742 #else
1743 static inline void kick_process(struct task_struct *tsk) { }
1744 #endif
1745 extern void sched_fork(struct task_struct *p, int clone_flags);
1746 extern void sched_dead(struct task_struct *p);
1747
1748 extern void proc_caches_init(void);
1749 extern void flush_signals(struct task_struct *);
1750 extern void ignore_signals(struct task_struct *);
1751 extern void flush_signal_handlers(struct task_struct *, int force_default);
1752 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1753
1754 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1755 {
1756 unsigned long flags;
1757 int ret;
1758
1759 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1760 ret = dequeue_signal(tsk, mask, info);
1761 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1762
1763 return ret;
1764 }
1765
1766 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1767 sigset_t *mask);
1768 extern void unblock_all_signals(void);
1769 extern void release_task(struct task_struct * p);
1770 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1771 extern int force_sigsegv(int, struct task_struct *);
1772 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1773 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1774 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1775 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1776 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1777 extern int kill_pid(struct pid *pid, int sig, int priv);
1778 extern int kill_proc_info(int, struct siginfo *, pid_t);
1779 extern int do_notify_parent(struct task_struct *, int);
1780 extern void force_sig(int, struct task_struct *);
1781 extern void force_sig_specific(int, struct task_struct *);
1782 extern int send_sig(int, struct task_struct *, int);
1783 extern void zap_other_threads(struct task_struct *p);
1784 extern struct sigqueue *sigqueue_alloc(void);
1785 extern void sigqueue_free(struct sigqueue *);
1786 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1787 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1788 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1789
1790 static inline int kill_cad_pid(int sig, int priv)
1791 {
1792 return kill_pid(cad_pid, sig, priv);
1793 }
1794
1795 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1796 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1797 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1798 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1799
1800 static inline int is_si_special(const struct siginfo *info)
1801 {
1802 return info <= SEND_SIG_FORCED;
1803 }
1804
1805 /* True if we are on the alternate signal stack. */
1806
1807 static inline int on_sig_stack(unsigned long sp)
1808 {
1809 return (sp - current->sas_ss_sp < current->sas_ss_size);
1810 }
1811
1812 static inline int sas_ss_flags(unsigned long sp)
1813 {
1814 return (current->sas_ss_size == 0 ? SS_DISABLE
1815 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1816 }
1817
1818 /*
1819 * Routines for handling mm_structs
1820 */
1821 extern struct mm_struct * mm_alloc(void);
1822
1823 /* mmdrop drops the mm and the page tables */
1824 extern void __mmdrop(struct mm_struct *);
1825 static inline void mmdrop(struct mm_struct * mm)
1826 {
1827 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1828 __mmdrop(mm);
1829 }
1830
1831 /* mmput gets rid of the mappings and all user-space */
1832 extern void mmput(struct mm_struct *);
1833 /* Grab a reference to a task's mm, if it is not already going away */
1834 extern struct mm_struct *get_task_mm(struct task_struct *task);
1835 /* Remove the current tasks stale references to the old mm_struct */
1836 extern void mm_release(struct task_struct *, struct mm_struct *);
1837 /* Allocate a new mm structure and copy contents from tsk->mm */
1838 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1839
1840 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1841 extern void flush_thread(void);
1842 extern void exit_thread(void);
1843
1844 extern void exit_files(struct task_struct *);
1845 extern void __cleanup_signal(struct signal_struct *);
1846 extern void __cleanup_sighand(struct sighand_struct *);
1847
1848 extern void exit_itimers(struct signal_struct *);
1849 extern void flush_itimer_signals(void);
1850
1851 extern NORET_TYPE void do_group_exit(int);
1852
1853 extern void daemonize(const char *, ...);
1854 extern int allow_signal(int);
1855 extern int disallow_signal(int);
1856
1857 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1858 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1859 struct task_struct *fork_idle(int);
1860
1861 extern void set_task_comm(struct task_struct *tsk, char *from);
1862 extern char *get_task_comm(char *to, struct task_struct *tsk);
1863
1864 #ifdef CONFIG_SMP
1865 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1866 #else
1867 static inline unsigned long wait_task_inactive(struct task_struct *p,
1868 long match_state)
1869 {
1870 return 1;
1871 }
1872 #endif
1873
1874 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1875
1876 #define for_each_process(p) \
1877 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1878
1879 extern bool is_single_threaded(struct task_struct *);
1880
1881 /*
1882 * Careful: do_each_thread/while_each_thread is a double loop so
1883 * 'break' will not work as expected - use goto instead.
1884 */
1885 #define do_each_thread(g, t) \
1886 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1887
1888 #define while_each_thread(g, t) \
1889 while ((t = next_thread(t)) != g)
1890
1891 /* de_thread depends on thread_group_leader not being a pid based check */
1892 #define thread_group_leader(p) (p == p->group_leader)
1893
1894 /* Do to the insanities of de_thread it is possible for a process
1895 * to have the pid of the thread group leader without actually being
1896 * the thread group leader. For iteration through the pids in proc
1897 * all we care about is that we have a task with the appropriate
1898 * pid, we don't actually care if we have the right task.
1899 */
1900 static inline int has_group_leader_pid(struct task_struct *p)
1901 {
1902 return p->pid == p->tgid;
1903 }
1904
1905 static inline
1906 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1907 {
1908 return p1->tgid == p2->tgid;
1909 }
1910
1911 static inline struct task_struct *next_thread(const struct task_struct *p)
1912 {
1913 return list_entry(rcu_dereference(p->thread_group.next),
1914 struct task_struct, thread_group);
1915 }
1916
1917 static inline int thread_group_empty(struct task_struct *p)
1918 {
1919 return list_empty(&p->thread_group);
1920 }
1921
1922 #define delay_group_leader(p) \
1923 (thread_group_leader(p) && !thread_group_empty(p))
1924
1925 /*
1926 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1927 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1928 * pins the final release of task.io_context. Also protects ->cpuset and
1929 * ->cgroup.subsys[].
1930 *
1931 * Nests both inside and outside of read_lock(&tasklist_lock).
1932 * It must not be nested with write_lock_irq(&tasklist_lock),
1933 * neither inside nor outside.
1934 */
1935 static inline void task_lock(struct task_struct *p)
1936 {
1937 spin_lock(&p->alloc_lock);
1938 }
1939
1940 static inline void task_unlock(struct task_struct *p)
1941 {
1942 spin_unlock(&p->alloc_lock);
1943 }
1944
1945 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1946 unsigned long *flags);
1947
1948 static inline void unlock_task_sighand(struct task_struct *tsk,
1949 unsigned long *flags)
1950 {
1951 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1952 }
1953
1954 #ifndef __HAVE_THREAD_FUNCTIONS
1955
1956 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1957 #define task_stack_page(task) ((task)->stack)
1958
1959 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1960 {
1961 *task_thread_info(p) = *task_thread_info(org);
1962 task_thread_info(p)->task = p;
1963 }
1964
1965 static inline unsigned long *end_of_stack(struct task_struct *p)
1966 {
1967 return (unsigned long *)(task_thread_info(p) + 1);
1968 }
1969
1970 #endif
1971
1972 static inline int object_is_on_stack(void *obj)
1973 {
1974 void *stack = task_stack_page(current);
1975
1976 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
1977 }
1978
1979 extern void thread_info_cache_init(void);
1980
1981 /* set thread flags in other task's structures
1982 * - see asm/thread_info.h for TIF_xxxx flags available
1983 */
1984 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1985 {
1986 set_ti_thread_flag(task_thread_info(tsk), flag);
1987 }
1988
1989 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1990 {
1991 clear_ti_thread_flag(task_thread_info(tsk), flag);
1992 }
1993
1994 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1995 {
1996 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1997 }
1998
1999 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2000 {
2001 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2002 }
2003
2004 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2005 {
2006 return test_ti_thread_flag(task_thread_info(tsk), flag);
2007 }
2008
2009 static inline void set_tsk_need_resched(struct task_struct *tsk)
2010 {
2011 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2012 }
2013
2014 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2015 {
2016 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2017 }
2018
2019 static inline int test_tsk_need_resched(struct task_struct *tsk)
2020 {
2021 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2022 }
2023
2024 static inline int signal_pending(struct task_struct *p)
2025 {
2026 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2027 }
2028
2029 extern int __fatal_signal_pending(struct task_struct *p);
2030
2031 static inline int fatal_signal_pending(struct task_struct *p)
2032 {
2033 return signal_pending(p) && __fatal_signal_pending(p);
2034 }
2035
2036 static inline int signal_pending_state(long state, struct task_struct *p)
2037 {
2038 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2039 return 0;
2040 if (!signal_pending(p))
2041 return 0;
2042
2043 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2044 }
2045
2046 static inline int need_resched(void)
2047 {
2048 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2049 }
2050
2051 /*
2052 * cond_resched() and cond_resched_lock(): latency reduction via
2053 * explicit rescheduling in places that are safe. The return
2054 * value indicates whether a reschedule was done in fact.
2055 * cond_resched_lock() will drop the spinlock before scheduling,
2056 * cond_resched_softirq() will enable bhs before scheduling.
2057 */
2058 extern int _cond_resched(void);
2059 #ifdef CONFIG_PREEMPT_BKL
2060 static inline int cond_resched(void)
2061 {
2062 return 0;
2063 }
2064 #else
2065 static inline int cond_resched(void)
2066 {
2067 return _cond_resched();
2068 }
2069 #endif
2070 extern int cond_resched_lock(spinlock_t * lock);
2071 extern int cond_resched_softirq(void);
2072 static inline int cond_resched_bkl(void)
2073 {
2074 return _cond_resched();
2075 }
2076
2077 /*
2078 * Does a critical section need to be broken due to another
2079 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2080 * but a general need for low latency)
2081 */
2082 static inline int spin_needbreak(spinlock_t *lock)
2083 {
2084 #ifdef CONFIG_PREEMPT
2085 return spin_is_contended(lock);
2086 #else
2087 return 0;
2088 #endif
2089 }
2090
2091 /*
2092 * Thread group CPU time accounting.
2093 */
2094
2095 extern int thread_group_cputime_alloc(struct task_struct *);
2096 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2097
2098 static inline void thread_group_cputime_init(struct signal_struct *sig)
2099 {
2100 sig->cputime.totals = NULL;
2101 }
2102
2103 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2104 {
2105 if (curr->signal->cputime.totals)
2106 return 0;
2107 return thread_group_cputime_alloc(curr);
2108 }
2109
2110 static inline void thread_group_cputime_free(struct signal_struct *sig)
2111 {
2112 free_percpu(sig->cputime.totals);
2113 }
2114
2115 /*
2116 * Reevaluate whether the task has signals pending delivery.
2117 * Wake the task if so.
2118 * This is required every time the blocked sigset_t changes.
2119 * callers must hold sighand->siglock.
2120 */
2121 extern void recalc_sigpending_and_wake(struct task_struct *t);
2122 extern void recalc_sigpending(void);
2123
2124 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2125
2126 /*
2127 * Wrappers for p->thread_info->cpu access. No-op on UP.
2128 */
2129 #ifdef CONFIG_SMP
2130
2131 static inline unsigned int task_cpu(const struct task_struct *p)
2132 {
2133 return task_thread_info(p)->cpu;
2134 }
2135
2136 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2137
2138 #else
2139
2140 static inline unsigned int task_cpu(const struct task_struct *p)
2141 {
2142 return 0;
2143 }
2144
2145 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2146 {
2147 }
2148
2149 #endif /* CONFIG_SMP */
2150
2151 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2152
2153 #ifdef CONFIG_TRACING
2154 extern void
2155 __trace_special(void *__tr, void *__data,
2156 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2157 #else
2158 static inline void
2159 __trace_special(void *__tr, void *__data,
2160 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2161 {
2162 }
2163 #endif
2164
2165 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2166 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2167
2168 extern int sched_mc_power_savings, sched_smt_power_savings;
2169
2170 extern void normalize_rt_tasks(void);
2171
2172 #ifdef CONFIG_GROUP_SCHED
2173
2174 extern struct task_group init_task_group;
2175 #ifdef CONFIG_USER_SCHED
2176 extern struct task_group root_task_group;
2177 #endif
2178
2179 extern struct task_group *sched_create_group(struct task_group *parent);
2180 extern void sched_destroy_group(struct task_group *tg);
2181 extern void sched_move_task(struct task_struct *tsk);
2182 #ifdef CONFIG_FAIR_GROUP_SCHED
2183 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2184 extern unsigned long sched_group_shares(struct task_group *tg);
2185 #endif
2186 #ifdef CONFIG_RT_GROUP_SCHED
2187 extern int sched_group_set_rt_runtime(struct task_group *tg,
2188 long rt_runtime_us);
2189 extern long sched_group_rt_runtime(struct task_group *tg);
2190 extern int sched_group_set_rt_period(struct task_group *tg,
2191 long rt_period_us);
2192 extern long sched_group_rt_period(struct task_group *tg);
2193 #endif
2194 #endif
2195
2196 #ifdef CONFIG_TASK_XACCT
2197 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2198 {
2199 tsk->ioac.rchar += amt;
2200 }
2201
2202 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2203 {
2204 tsk->ioac.wchar += amt;
2205 }
2206
2207 static inline void inc_syscr(struct task_struct *tsk)
2208 {
2209 tsk->ioac.syscr++;
2210 }
2211
2212 static inline void inc_syscw(struct task_struct *tsk)
2213 {
2214 tsk->ioac.syscw++;
2215 }
2216 #else
2217 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2218 {
2219 }
2220
2221 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2222 {
2223 }
2224
2225 static inline void inc_syscr(struct task_struct *tsk)
2226 {
2227 }
2228
2229 static inline void inc_syscw(struct task_struct *tsk)
2230 {
2231 }
2232 #endif
2233
2234 #ifndef TASK_SIZE_OF
2235 #define TASK_SIZE_OF(tsk) TASK_SIZE
2236 #endif
2237
2238 #ifdef CONFIG_MM_OWNER
2239 extern void mm_update_next_owner(struct mm_struct *mm);
2240 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2241 #else
2242 static inline void mm_update_next_owner(struct mm_struct *mm)
2243 {
2244 }
2245
2246 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2247 {
2248 }
2249 #endif /* CONFIG_MM_OWNER */
2250
2251 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2252
2253 #endif /* __KERNEL__ */
2254
2255 #endif
This page took 0.113688 seconds and 4 git commands to generate.