ftrace: graph of a single function
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 struct seq_file;
141 struct cfs_rq;
142 struct task_group;
143 #ifdef CONFIG_SCHED_DEBUG
144 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
145 extern void proc_sched_set_task(struct task_struct *p);
146 extern void
147 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
148 #else
149 static inline void
150 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
151 {
152 }
153 static inline void proc_sched_set_task(struct task_struct *p)
154 {
155 }
156 static inline void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
158 {
159 }
160 #endif
161
162 extern unsigned long long time_sync_thresh;
163
164 /*
165 * Task state bitmask. NOTE! These bits are also
166 * encoded in fs/proc/array.c: get_task_state().
167 *
168 * We have two separate sets of flags: task->state
169 * is about runnability, while task->exit_state are
170 * about the task exiting. Confusing, but this way
171 * modifying one set can't modify the other one by
172 * mistake.
173 */
174 #define TASK_RUNNING 0
175 #define TASK_INTERRUPTIBLE 1
176 #define TASK_UNINTERRUPTIBLE 2
177 #define __TASK_STOPPED 4
178 #define __TASK_TRACED 8
179 /* in tsk->exit_state */
180 #define EXIT_ZOMBIE 16
181 #define EXIT_DEAD 32
182 /* in tsk->state again */
183 #define TASK_DEAD 64
184 #define TASK_WAKEKILL 128
185
186 /* Convenience macros for the sake of set_task_state */
187 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
188 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
189 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
190
191 /* Convenience macros for the sake of wake_up */
192 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
193 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194
195 /* get_task_state() */
196 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
197 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
198 __TASK_TRACED)
199
200 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
201 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
202 #define task_is_stopped_or_traced(task) \
203 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
204 #define task_contributes_to_load(task) \
205 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206
207 #define __set_task_state(tsk, state_value) \
208 do { (tsk)->state = (state_value); } while (0)
209 #define set_task_state(tsk, state_value) \
210 set_mb((tsk)->state, (state_value))
211
212 /*
213 * set_current_state() includes a barrier so that the write of current->state
214 * is correctly serialised wrt the caller's subsequent test of whether to
215 * actually sleep:
216 *
217 * set_current_state(TASK_UNINTERRUPTIBLE);
218 * if (do_i_need_to_sleep())
219 * schedule();
220 *
221 * If the caller does not need such serialisation then use __set_current_state()
222 */
223 #define __set_current_state(state_value) \
224 do { current->state = (state_value); } while (0)
225 #define set_current_state(state_value) \
226 set_mb(current->state, (state_value))
227
228 /* Task command name length */
229 #define TASK_COMM_LEN 16
230
231 #include <linux/spinlock.h>
232
233 /*
234 * This serializes "schedule()" and also protects
235 * the run-queue from deletions/modifications (but
236 * _adding_ to the beginning of the run-queue has
237 * a separate lock).
238 */
239 extern rwlock_t tasklist_lock;
240 extern spinlock_t mmlist_lock;
241
242 struct task_struct;
243
244 extern void sched_init(void);
245 extern void sched_init_smp(void);
246 extern asmlinkage void schedule_tail(struct task_struct *prev);
247 extern void init_idle(struct task_struct *idle, int cpu);
248 extern void init_idle_bootup_task(struct task_struct *idle);
249
250 extern int runqueue_is_locked(void);
251 extern void task_rq_unlock_wait(struct task_struct *p);
252
253 extern cpumask_t nohz_cpu_mask;
254 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
255 extern int select_nohz_load_balancer(int cpu);
256 #else
257 static inline int select_nohz_load_balancer(int cpu)
258 {
259 return 0;
260 }
261 #endif
262
263 extern unsigned long rt_needs_cpu(int cpu);
264
265 /*
266 * Only dump TASK_* tasks. (0 for all tasks)
267 */
268 extern void show_state_filter(unsigned long state_filter);
269
270 static inline void show_state(void)
271 {
272 show_state_filter(0);
273 }
274
275 extern void show_regs(struct pt_regs *);
276
277 /*
278 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
279 * task), SP is the stack pointer of the first frame that should be shown in the back
280 * trace (or NULL if the entire call-chain of the task should be shown).
281 */
282 extern void show_stack(struct task_struct *task, unsigned long *sp);
283
284 void io_schedule(void);
285 long io_schedule_timeout(long timeout);
286
287 extern void cpu_init (void);
288 extern void trap_init(void);
289 extern void account_process_tick(struct task_struct *task, int user);
290 extern void update_process_times(int user);
291 extern void scheduler_tick(void);
292
293 extern void sched_show_task(struct task_struct *p);
294
295 #ifdef CONFIG_DETECT_SOFTLOCKUP
296 extern void softlockup_tick(void);
297 extern void touch_softlockup_watchdog(void);
298 extern void touch_all_softlockup_watchdogs(void);
299 extern unsigned int softlockup_panic;
300 extern unsigned long sysctl_hung_task_check_count;
301 extern unsigned long sysctl_hung_task_timeout_secs;
302 extern unsigned long sysctl_hung_task_warnings;
303 extern int softlockup_thresh;
304 #else
305 static inline void softlockup_tick(void)
306 {
307 }
308 static inline void spawn_softlockup_task(void)
309 {
310 }
311 static inline void touch_softlockup_watchdog(void)
312 {
313 }
314 static inline void touch_all_softlockup_watchdogs(void)
315 {
316 }
317 #endif
318
319
320 /* Attach to any functions which should be ignored in wchan output. */
321 #define __sched __attribute__((__section__(".sched.text")))
322
323 /* Linker adds these: start and end of __sched functions */
324 extern char __sched_text_start[], __sched_text_end[];
325
326 /* Is this address in the __sched functions? */
327 extern int in_sched_functions(unsigned long addr);
328
329 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
330 extern signed long schedule_timeout(signed long timeout);
331 extern signed long schedule_timeout_interruptible(signed long timeout);
332 extern signed long schedule_timeout_killable(signed long timeout);
333 extern signed long schedule_timeout_uninterruptible(signed long timeout);
334 asmlinkage void schedule(void);
335
336 struct nsproxy;
337 struct user_namespace;
338
339 /* Maximum number of active map areas.. This is a random (large) number */
340 #define DEFAULT_MAX_MAP_COUNT 65536
341
342 extern int sysctl_max_map_count;
343
344 #include <linux/aio.h>
345
346 extern unsigned long
347 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
348 unsigned long, unsigned long);
349 extern unsigned long
350 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
351 unsigned long len, unsigned long pgoff,
352 unsigned long flags);
353 extern void arch_unmap_area(struct mm_struct *, unsigned long);
354 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
355
356 #if USE_SPLIT_PTLOCKS
357 /*
358 * The mm counters are not protected by its page_table_lock,
359 * so must be incremented atomically.
360 */
361 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
362 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
363 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
364 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
365 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
366
367 #else /* !USE_SPLIT_PTLOCKS */
368 /*
369 * The mm counters are protected by its page_table_lock,
370 * so can be incremented directly.
371 */
372 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
373 #define get_mm_counter(mm, member) ((mm)->_##member)
374 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
375 #define inc_mm_counter(mm, member) (mm)->_##member++
376 #define dec_mm_counter(mm, member) (mm)->_##member--
377
378 #endif /* !USE_SPLIT_PTLOCKS */
379
380 #define get_mm_rss(mm) \
381 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
382 #define update_hiwater_rss(mm) do { \
383 unsigned long _rss = get_mm_rss(mm); \
384 if ((mm)->hiwater_rss < _rss) \
385 (mm)->hiwater_rss = _rss; \
386 } while (0)
387 #define update_hiwater_vm(mm) do { \
388 if ((mm)->hiwater_vm < (mm)->total_vm) \
389 (mm)->hiwater_vm = (mm)->total_vm; \
390 } while (0)
391
392 extern void set_dumpable(struct mm_struct *mm, int value);
393 extern int get_dumpable(struct mm_struct *mm);
394
395 /* mm flags */
396 /* dumpable bits */
397 #define MMF_DUMPABLE 0 /* core dump is permitted */
398 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
399 #define MMF_DUMPABLE_BITS 2
400
401 /* coredump filter bits */
402 #define MMF_DUMP_ANON_PRIVATE 2
403 #define MMF_DUMP_ANON_SHARED 3
404 #define MMF_DUMP_MAPPED_PRIVATE 4
405 #define MMF_DUMP_MAPPED_SHARED 5
406 #define MMF_DUMP_ELF_HEADERS 6
407 #define MMF_DUMP_HUGETLB_PRIVATE 7
408 #define MMF_DUMP_HUGETLB_SHARED 8
409 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
410 #define MMF_DUMP_FILTER_BITS 7
411 #define MMF_DUMP_FILTER_MASK \
412 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
413 #define MMF_DUMP_FILTER_DEFAULT \
414 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
415 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
416
417 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
418 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
419 #else
420 # define MMF_DUMP_MASK_DEFAULT_ELF 0
421 #endif
422
423 struct sighand_struct {
424 atomic_t count;
425 struct k_sigaction action[_NSIG];
426 spinlock_t siglock;
427 wait_queue_head_t signalfd_wqh;
428 };
429
430 struct pacct_struct {
431 int ac_flag;
432 long ac_exitcode;
433 unsigned long ac_mem;
434 cputime_t ac_utime, ac_stime;
435 unsigned long ac_minflt, ac_majflt;
436 };
437
438 /**
439 * struct task_cputime - collected CPU time counts
440 * @utime: time spent in user mode, in &cputime_t units
441 * @stime: time spent in kernel mode, in &cputime_t units
442 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
443 *
444 * This structure groups together three kinds of CPU time that are
445 * tracked for threads and thread groups. Most things considering
446 * CPU time want to group these counts together and treat all three
447 * of them in parallel.
448 */
449 struct task_cputime {
450 cputime_t utime;
451 cputime_t stime;
452 unsigned long long sum_exec_runtime;
453 };
454 /* Alternate field names when used to cache expirations. */
455 #define prof_exp stime
456 #define virt_exp utime
457 #define sched_exp sum_exec_runtime
458
459 /**
460 * struct thread_group_cputime - thread group interval timer counts
461 * @totals: thread group interval timers; substructure for
462 * uniprocessor kernel, per-cpu for SMP kernel.
463 *
464 * This structure contains the version of task_cputime, above, that is
465 * used for thread group CPU clock calculations.
466 */
467 struct thread_group_cputime {
468 struct task_cputime *totals;
469 };
470
471 /*
472 * NOTE! "signal_struct" does not have it's own
473 * locking, because a shared signal_struct always
474 * implies a shared sighand_struct, so locking
475 * sighand_struct is always a proper superset of
476 * the locking of signal_struct.
477 */
478 struct signal_struct {
479 atomic_t count;
480 atomic_t live;
481
482 wait_queue_head_t wait_chldexit; /* for wait4() */
483
484 /* current thread group signal load-balancing target: */
485 struct task_struct *curr_target;
486
487 /* shared signal handling: */
488 struct sigpending shared_pending;
489
490 /* thread group exit support */
491 int group_exit_code;
492 /* overloaded:
493 * - notify group_exit_task when ->count is equal to notify_count
494 * - everyone except group_exit_task is stopped during signal delivery
495 * of fatal signals, group_exit_task processes the signal.
496 */
497 int notify_count;
498 struct task_struct *group_exit_task;
499
500 /* thread group stop support, overloads group_exit_code too */
501 int group_stop_count;
502 unsigned int flags; /* see SIGNAL_* flags below */
503
504 /* POSIX.1b Interval Timers */
505 struct list_head posix_timers;
506
507 /* ITIMER_REAL timer for the process */
508 struct hrtimer real_timer;
509 struct pid *leader_pid;
510 ktime_t it_real_incr;
511
512 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
513 cputime_t it_prof_expires, it_virt_expires;
514 cputime_t it_prof_incr, it_virt_incr;
515
516 /*
517 * Thread group totals for process CPU clocks.
518 * See thread_group_cputime(), et al, for details.
519 */
520 struct thread_group_cputime cputime;
521
522 /* Earliest-expiration cache. */
523 struct task_cputime cputime_expires;
524
525 struct list_head cpu_timers[3];
526
527 /* job control IDs */
528
529 /*
530 * pgrp and session fields are deprecated.
531 * use the task_session_Xnr and task_pgrp_Xnr routines below
532 */
533
534 union {
535 pid_t pgrp __deprecated;
536 pid_t __pgrp;
537 };
538
539 struct pid *tty_old_pgrp;
540
541 union {
542 pid_t session __deprecated;
543 pid_t __session;
544 };
545
546 /* boolean value for session group leader */
547 int leader;
548
549 struct tty_struct *tty; /* NULL if no tty */
550
551 /*
552 * Cumulative resource counters for dead threads in the group,
553 * and for reaped dead child processes forked by this group.
554 * Live threads maintain their own counters and add to these
555 * in __exit_signal, except for the group leader.
556 */
557 cputime_t cutime, cstime;
558 cputime_t gtime;
559 cputime_t cgtime;
560 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
561 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
562 unsigned long inblock, oublock, cinblock, coublock;
563 struct task_io_accounting ioac;
564
565 /*
566 * We don't bother to synchronize most readers of this at all,
567 * because there is no reader checking a limit that actually needs
568 * to get both rlim_cur and rlim_max atomically, and either one
569 * alone is a single word that can safely be read normally.
570 * getrlimit/setrlimit use task_lock(current->group_leader) to
571 * protect this instead of the siglock, because they really
572 * have no need to disable irqs.
573 */
574 struct rlimit rlim[RLIM_NLIMITS];
575
576 /* keep the process-shared keyrings here so that they do the right
577 * thing in threads created with CLONE_THREAD */
578 #ifdef CONFIG_KEYS
579 struct key *session_keyring; /* keyring inherited over fork */
580 struct key *process_keyring; /* keyring private to this process */
581 #endif
582 #ifdef CONFIG_BSD_PROCESS_ACCT
583 struct pacct_struct pacct; /* per-process accounting information */
584 #endif
585 #ifdef CONFIG_TASKSTATS
586 struct taskstats *stats;
587 #endif
588 #ifdef CONFIG_AUDIT
589 unsigned audit_tty;
590 struct tty_audit_buf *tty_audit_buf;
591 #endif
592 };
593
594 /* Context switch must be unlocked if interrupts are to be enabled */
595 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
596 # define __ARCH_WANT_UNLOCKED_CTXSW
597 #endif
598
599 /*
600 * Bits in flags field of signal_struct.
601 */
602 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
603 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
604 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
605 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
606 /*
607 * Pending notifications to parent.
608 */
609 #define SIGNAL_CLD_STOPPED 0x00000010
610 #define SIGNAL_CLD_CONTINUED 0x00000020
611 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
612
613 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
614
615 /* If true, all threads except ->group_exit_task have pending SIGKILL */
616 static inline int signal_group_exit(const struct signal_struct *sig)
617 {
618 return (sig->flags & SIGNAL_GROUP_EXIT) ||
619 (sig->group_exit_task != NULL);
620 }
621
622 /*
623 * Some day this will be a full-fledged user tracking system..
624 */
625 struct user_struct {
626 atomic_t __count; /* reference count */
627 atomic_t processes; /* How many processes does this user have? */
628 atomic_t files; /* How many open files does this user have? */
629 atomic_t sigpending; /* How many pending signals does this user have? */
630 #ifdef CONFIG_INOTIFY_USER
631 atomic_t inotify_watches; /* How many inotify watches does this user have? */
632 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
633 #endif
634 #ifdef CONFIG_EPOLL
635 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
636 atomic_t epoll_watches; /* The number of file descriptors currently watched */
637 #endif
638 #ifdef CONFIG_POSIX_MQUEUE
639 /* protected by mq_lock */
640 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
641 #endif
642 unsigned long locked_shm; /* How many pages of mlocked shm ? */
643
644 #ifdef CONFIG_KEYS
645 struct key *uid_keyring; /* UID specific keyring */
646 struct key *session_keyring; /* UID's default session keyring */
647 #endif
648
649 /* Hash table maintenance information */
650 struct hlist_node uidhash_node;
651 uid_t uid;
652
653 #ifdef CONFIG_USER_SCHED
654 struct task_group *tg;
655 #ifdef CONFIG_SYSFS
656 struct kobject kobj;
657 struct work_struct work;
658 #endif
659 #endif
660 };
661
662 extern int uids_sysfs_init(void);
663
664 extern struct user_struct *find_user(uid_t);
665
666 extern struct user_struct root_user;
667 #define INIT_USER (&root_user)
668
669 struct backing_dev_info;
670 struct reclaim_state;
671
672 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
673 struct sched_info {
674 /* cumulative counters */
675 unsigned long pcount; /* # of times run on this cpu */
676 unsigned long long cpu_time, /* time spent on the cpu */
677 run_delay; /* time spent waiting on a runqueue */
678
679 /* timestamps */
680 unsigned long long last_arrival,/* when we last ran on a cpu */
681 last_queued; /* when we were last queued to run */
682 #ifdef CONFIG_SCHEDSTATS
683 /* BKL stats */
684 unsigned int bkl_count;
685 #endif
686 };
687 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
688
689 #ifdef CONFIG_TASK_DELAY_ACCT
690 struct task_delay_info {
691 spinlock_t lock;
692 unsigned int flags; /* Private per-task flags */
693
694 /* For each stat XXX, add following, aligned appropriately
695 *
696 * struct timespec XXX_start, XXX_end;
697 * u64 XXX_delay;
698 * u32 XXX_count;
699 *
700 * Atomicity of updates to XXX_delay, XXX_count protected by
701 * single lock above (split into XXX_lock if contention is an issue).
702 */
703
704 /*
705 * XXX_count is incremented on every XXX operation, the delay
706 * associated with the operation is added to XXX_delay.
707 * XXX_delay contains the accumulated delay time in nanoseconds.
708 */
709 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
710 u64 blkio_delay; /* wait for sync block io completion */
711 u64 swapin_delay; /* wait for swapin block io completion */
712 u32 blkio_count; /* total count of the number of sync block */
713 /* io operations performed */
714 u32 swapin_count; /* total count of the number of swapin block */
715 /* io operations performed */
716
717 struct timespec freepages_start, freepages_end;
718 u64 freepages_delay; /* wait for memory reclaim */
719 u32 freepages_count; /* total count of memory reclaim */
720 };
721 #endif /* CONFIG_TASK_DELAY_ACCT */
722
723 static inline int sched_info_on(void)
724 {
725 #ifdef CONFIG_SCHEDSTATS
726 return 1;
727 #elif defined(CONFIG_TASK_DELAY_ACCT)
728 extern int delayacct_on;
729 return delayacct_on;
730 #else
731 return 0;
732 #endif
733 }
734
735 enum cpu_idle_type {
736 CPU_IDLE,
737 CPU_NOT_IDLE,
738 CPU_NEWLY_IDLE,
739 CPU_MAX_IDLE_TYPES
740 };
741
742 /*
743 * sched-domains (multiprocessor balancing) declarations:
744 */
745
746 /*
747 * Increase resolution of nice-level calculations:
748 */
749 #define SCHED_LOAD_SHIFT 10
750 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
751
752 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
753
754 #ifdef CONFIG_SMP
755 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
756 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
757 #define SD_BALANCE_EXEC 4 /* Balance on exec */
758 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
759 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
760 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
761 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
762 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
763 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
764 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
765 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
766 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
767
768 #define BALANCE_FOR_MC_POWER \
769 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
770
771 #define BALANCE_FOR_PKG_POWER \
772 ((sched_mc_power_savings || sched_smt_power_savings) ? \
773 SD_POWERSAVINGS_BALANCE : 0)
774
775 #define test_sd_parent(sd, flag) ((sd->parent && \
776 (sd->parent->flags & flag)) ? 1 : 0)
777
778
779 struct sched_group {
780 struct sched_group *next; /* Must be a circular list */
781 cpumask_t cpumask;
782
783 /*
784 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
785 * single CPU. This is read only (except for setup, hotplug CPU).
786 * Note : Never change cpu_power without recompute its reciprocal
787 */
788 unsigned int __cpu_power;
789 /*
790 * reciprocal value of cpu_power to avoid expensive divides
791 * (see include/linux/reciprocal_div.h)
792 */
793 u32 reciprocal_cpu_power;
794 };
795
796 enum sched_domain_level {
797 SD_LV_NONE = 0,
798 SD_LV_SIBLING,
799 SD_LV_MC,
800 SD_LV_CPU,
801 SD_LV_NODE,
802 SD_LV_ALLNODES,
803 SD_LV_MAX
804 };
805
806 struct sched_domain_attr {
807 int relax_domain_level;
808 };
809
810 #define SD_ATTR_INIT (struct sched_domain_attr) { \
811 .relax_domain_level = -1, \
812 }
813
814 struct sched_domain {
815 /* These fields must be setup */
816 struct sched_domain *parent; /* top domain must be null terminated */
817 struct sched_domain *child; /* bottom domain must be null terminated */
818 struct sched_group *groups; /* the balancing groups of the domain */
819 cpumask_t span; /* span of all CPUs in this domain */
820 unsigned long min_interval; /* Minimum balance interval ms */
821 unsigned long max_interval; /* Maximum balance interval ms */
822 unsigned int busy_factor; /* less balancing by factor if busy */
823 unsigned int imbalance_pct; /* No balance until over watermark */
824 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
825 unsigned int busy_idx;
826 unsigned int idle_idx;
827 unsigned int newidle_idx;
828 unsigned int wake_idx;
829 unsigned int forkexec_idx;
830 int flags; /* See SD_* */
831 enum sched_domain_level level;
832
833 /* Runtime fields. */
834 unsigned long last_balance; /* init to jiffies. units in jiffies */
835 unsigned int balance_interval; /* initialise to 1. units in ms. */
836 unsigned int nr_balance_failed; /* initialise to 0 */
837
838 u64 last_update;
839
840 #ifdef CONFIG_SCHEDSTATS
841 /* load_balance() stats */
842 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
843 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
844 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
845 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
846 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
847 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
848 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
849 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
850
851 /* Active load balancing */
852 unsigned int alb_count;
853 unsigned int alb_failed;
854 unsigned int alb_pushed;
855
856 /* SD_BALANCE_EXEC stats */
857 unsigned int sbe_count;
858 unsigned int sbe_balanced;
859 unsigned int sbe_pushed;
860
861 /* SD_BALANCE_FORK stats */
862 unsigned int sbf_count;
863 unsigned int sbf_balanced;
864 unsigned int sbf_pushed;
865
866 /* try_to_wake_up() stats */
867 unsigned int ttwu_wake_remote;
868 unsigned int ttwu_move_affine;
869 unsigned int ttwu_move_balance;
870 #endif
871 #ifdef CONFIG_SCHED_DEBUG
872 char *name;
873 #endif
874 };
875
876 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
877 struct sched_domain_attr *dattr_new);
878 extern int arch_reinit_sched_domains(void);
879
880 #else /* CONFIG_SMP */
881
882 struct sched_domain_attr;
883
884 static inline void
885 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
886 struct sched_domain_attr *dattr_new)
887 {
888 }
889 #endif /* !CONFIG_SMP */
890
891 struct io_context; /* See blkdev.h */
892 #define NGROUPS_SMALL 32
893 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
894 struct group_info {
895 int ngroups;
896 atomic_t usage;
897 gid_t small_block[NGROUPS_SMALL];
898 int nblocks;
899 gid_t *blocks[0];
900 };
901
902 /*
903 * get_group_info() must be called with the owning task locked (via task_lock())
904 * when task != current. The reason being that the vast majority of callers are
905 * looking at current->group_info, which can not be changed except by the
906 * current task. Changing current->group_info requires the task lock, too.
907 */
908 #define get_group_info(group_info) do { \
909 atomic_inc(&(group_info)->usage); \
910 } while (0)
911
912 #define put_group_info(group_info) do { \
913 if (atomic_dec_and_test(&(group_info)->usage)) \
914 groups_free(group_info); \
915 } while (0)
916
917 extern struct group_info *groups_alloc(int gidsetsize);
918 extern void groups_free(struct group_info *group_info);
919 extern int set_current_groups(struct group_info *group_info);
920 extern int groups_search(struct group_info *group_info, gid_t grp);
921 /* access the groups "array" with this macro */
922 #define GROUP_AT(gi, i) \
923 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
924
925 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
926 extern void prefetch_stack(struct task_struct *t);
927 #else
928 static inline void prefetch_stack(struct task_struct *t) { }
929 #endif
930
931 struct audit_context; /* See audit.c */
932 struct mempolicy;
933 struct pipe_inode_info;
934 struct uts_namespace;
935
936 struct rq;
937 struct sched_domain;
938
939 struct sched_class {
940 const struct sched_class *next;
941
942 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
943 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
944 void (*yield_task) (struct rq *rq);
945
946 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
947
948 struct task_struct * (*pick_next_task) (struct rq *rq);
949 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
950
951 #ifdef CONFIG_SMP
952 int (*select_task_rq)(struct task_struct *p, int sync);
953
954 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
955 struct rq *busiest, unsigned long max_load_move,
956 struct sched_domain *sd, enum cpu_idle_type idle,
957 int *all_pinned, int *this_best_prio);
958
959 int (*move_one_task) (struct rq *this_rq, int this_cpu,
960 struct rq *busiest, struct sched_domain *sd,
961 enum cpu_idle_type idle);
962 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
963 void (*post_schedule) (struct rq *this_rq);
964 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
965
966 void (*set_cpus_allowed)(struct task_struct *p,
967 const cpumask_t *newmask);
968
969 void (*rq_online)(struct rq *rq);
970 void (*rq_offline)(struct rq *rq);
971 #endif
972
973 void (*set_curr_task) (struct rq *rq);
974 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
975 void (*task_new) (struct rq *rq, struct task_struct *p);
976
977 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
978 int running);
979 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
980 int running);
981 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
982 int oldprio, int running);
983
984 #ifdef CONFIG_FAIR_GROUP_SCHED
985 void (*moved_group) (struct task_struct *p);
986 #endif
987 };
988
989 struct load_weight {
990 unsigned long weight, inv_weight;
991 };
992
993 /*
994 * CFS stats for a schedulable entity (task, task-group etc)
995 *
996 * Current field usage histogram:
997 *
998 * 4 se->block_start
999 * 4 se->run_node
1000 * 4 se->sleep_start
1001 * 6 se->load.weight
1002 */
1003 struct sched_entity {
1004 struct load_weight load; /* for load-balancing */
1005 struct rb_node run_node;
1006 struct list_head group_node;
1007 unsigned int on_rq;
1008
1009 u64 exec_start;
1010 u64 sum_exec_runtime;
1011 u64 vruntime;
1012 u64 prev_sum_exec_runtime;
1013
1014 u64 last_wakeup;
1015 u64 avg_overlap;
1016
1017 #ifdef CONFIG_SCHEDSTATS
1018 u64 wait_start;
1019 u64 wait_max;
1020 u64 wait_count;
1021 u64 wait_sum;
1022
1023 u64 sleep_start;
1024 u64 sleep_max;
1025 s64 sum_sleep_runtime;
1026
1027 u64 block_start;
1028 u64 block_max;
1029 u64 exec_max;
1030 u64 slice_max;
1031
1032 u64 nr_migrations;
1033 u64 nr_migrations_cold;
1034 u64 nr_failed_migrations_affine;
1035 u64 nr_failed_migrations_running;
1036 u64 nr_failed_migrations_hot;
1037 u64 nr_forced_migrations;
1038 u64 nr_forced2_migrations;
1039
1040 u64 nr_wakeups;
1041 u64 nr_wakeups_sync;
1042 u64 nr_wakeups_migrate;
1043 u64 nr_wakeups_local;
1044 u64 nr_wakeups_remote;
1045 u64 nr_wakeups_affine;
1046 u64 nr_wakeups_affine_attempts;
1047 u64 nr_wakeups_passive;
1048 u64 nr_wakeups_idle;
1049 #endif
1050
1051 #ifdef CONFIG_FAIR_GROUP_SCHED
1052 struct sched_entity *parent;
1053 /* rq on which this entity is (to be) queued: */
1054 struct cfs_rq *cfs_rq;
1055 /* rq "owned" by this entity/group: */
1056 struct cfs_rq *my_q;
1057 #endif
1058 };
1059
1060 struct sched_rt_entity {
1061 struct list_head run_list;
1062 unsigned long timeout;
1063 unsigned int time_slice;
1064 int nr_cpus_allowed;
1065
1066 struct sched_rt_entity *back;
1067 #ifdef CONFIG_RT_GROUP_SCHED
1068 struct sched_rt_entity *parent;
1069 /* rq on which this entity is (to be) queued: */
1070 struct rt_rq *rt_rq;
1071 /* rq "owned" by this entity/group: */
1072 struct rt_rq *my_q;
1073 #endif
1074 };
1075
1076 struct task_struct {
1077 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1078 void *stack;
1079 atomic_t usage;
1080 unsigned int flags; /* per process flags, defined below */
1081 unsigned int ptrace;
1082
1083 int lock_depth; /* BKL lock depth */
1084
1085 #ifdef CONFIG_SMP
1086 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1087 int oncpu;
1088 #endif
1089 #endif
1090
1091 int prio, static_prio, normal_prio;
1092 unsigned int rt_priority;
1093 const struct sched_class *sched_class;
1094 struct sched_entity se;
1095 struct sched_rt_entity rt;
1096
1097 #ifdef CONFIG_PREEMPT_NOTIFIERS
1098 /* list of struct preempt_notifier: */
1099 struct hlist_head preempt_notifiers;
1100 #endif
1101
1102 /*
1103 * fpu_counter contains the number of consecutive context switches
1104 * that the FPU is used. If this is over a threshold, the lazy fpu
1105 * saving becomes unlazy to save the trap. This is an unsigned char
1106 * so that after 256 times the counter wraps and the behavior turns
1107 * lazy again; this to deal with bursty apps that only use FPU for
1108 * a short time
1109 */
1110 unsigned char fpu_counter;
1111 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1112 #ifdef CONFIG_BLK_DEV_IO_TRACE
1113 unsigned int btrace_seq;
1114 #endif
1115
1116 unsigned int policy;
1117 cpumask_t cpus_allowed;
1118
1119 #ifdef CONFIG_PREEMPT_RCU
1120 int rcu_read_lock_nesting;
1121 int rcu_flipctr_idx;
1122 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1123
1124 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1125 struct sched_info sched_info;
1126 #endif
1127
1128 struct list_head tasks;
1129
1130 struct mm_struct *mm, *active_mm;
1131
1132 /* task state */
1133 struct linux_binfmt *binfmt;
1134 int exit_state;
1135 int exit_code, exit_signal;
1136 int pdeath_signal; /* The signal sent when the parent dies */
1137 /* ??? */
1138 unsigned int personality;
1139 unsigned did_exec:1;
1140 pid_t pid;
1141 pid_t tgid;
1142
1143 #ifdef CONFIG_CC_STACKPROTECTOR
1144 /* Canary value for the -fstack-protector gcc feature */
1145 unsigned long stack_canary;
1146 #endif
1147 /*
1148 * pointers to (original) parent process, youngest child, younger sibling,
1149 * older sibling, respectively. (p->father can be replaced with
1150 * p->real_parent->pid)
1151 */
1152 struct task_struct *real_parent; /* real parent process */
1153 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1154 /*
1155 * children/sibling forms the list of my natural children
1156 */
1157 struct list_head children; /* list of my children */
1158 struct list_head sibling; /* linkage in my parent's children list */
1159 struct task_struct *group_leader; /* threadgroup leader */
1160
1161 /*
1162 * ptraced is the list of tasks this task is using ptrace on.
1163 * This includes both natural children and PTRACE_ATTACH targets.
1164 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1165 */
1166 struct list_head ptraced;
1167 struct list_head ptrace_entry;
1168
1169 #ifdef CONFIG_X86_PTRACE_BTS
1170 /*
1171 * This is the tracer handle for the ptrace BTS extension.
1172 * This field actually belongs to the ptracer task.
1173 */
1174 struct bts_tracer *bts;
1175 /*
1176 * The buffer to hold the BTS data.
1177 */
1178 void *bts_buffer;
1179 #endif /* CONFIG_X86_PTRACE_BTS */
1180
1181 /* PID/PID hash table linkage. */
1182 struct pid_link pids[PIDTYPE_MAX];
1183 struct list_head thread_group;
1184
1185 struct completion *vfork_done; /* for vfork() */
1186 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1187 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1188
1189 cputime_t utime, stime, utimescaled, stimescaled;
1190 cputime_t gtime;
1191 cputime_t prev_utime, prev_stime;
1192 unsigned long nvcsw, nivcsw; /* context switch counts */
1193 struct timespec start_time; /* monotonic time */
1194 struct timespec real_start_time; /* boot based time */
1195 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1196 unsigned long min_flt, maj_flt;
1197
1198 struct task_cputime cputime_expires;
1199 struct list_head cpu_timers[3];
1200
1201 /* process credentials */
1202 uid_t uid,euid,suid,fsuid;
1203 gid_t gid,egid,sgid,fsgid;
1204 struct group_info *group_info;
1205 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1206 struct user_struct *user;
1207 unsigned securebits;
1208 #ifdef CONFIG_KEYS
1209 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1210 struct key *request_key_auth; /* assumed request_key authority */
1211 struct key *thread_keyring; /* keyring private to this thread */
1212 #endif
1213 char comm[TASK_COMM_LEN]; /* executable name excluding path
1214 - access with [gs]et_task_comm (which lock
1215 it with task_lock())
1216 - initialized normally by flush_old_exec */
1217 /* file system info */
1218 int link_count, total_link_count;
1219 #ifdef CONFIG_SYSVIPC
1220 /* ipc stuff */
1221 struct sysv_sem sysvsem;
1222 #endif
1223 #ifdef CONFIG_DETECT_SOFTLOCKUP
1224 /* hung task detection */
1225 unsigned long last_switch_timestamp;
1226 unsigned long last_switch_count;
1227 #endif
1228 /* CPU-specific state of this task */
1229 struct thread_struct thread;
1230 /* filesystem information */
1231 struct fs_struct *fs;
1232 /* open file information */
1233 struct files_struct *files;
1234 /* namespaces */
1235 struct nsproxy *nsproxy;
1236 /* signal handlers */
1237 struct signal_struct *signal;
1238 struct sighand_struct *sighand;
1239
1240 sigset_t blocked, real_blocked;
1241 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1242 struct sigpending pending;
1243
1244 unsigned long sas_ss_sp;
1245 size_t sas_ss_size;
1246 int (*notifier)(void *priv);
1247 void *notifier_data;
1248 sigset_t *notifier_mask;
1249 #ifdef CONFIG_SECURITY
1250 void *security;
1251 #endif
1252 struct audit_context *audit_context;
1253 #ifdef CONFIG_AUDITSYSCALL
1254 uid_t loginuid;
1255 unsigned int sessionid;
1256 #endif
1257 seccomp_t seccomp;
1258
1259 /* Thread group tracking */
1260 u32 parent_exec_id;
1261 u32 self_exec_id;
1262 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1263 spinlock_t alloc_lock;
1264
1265 /* Protection of the PI data structures: */
1266 spinlock_t pi_lock;
1267
1268 #ifdef CONFIG_RT_MUTEXES
1269 /* PI waiters blocked on a rt_mutex held by this task */
1270 struct plist_head pi_waiters;
1271 /* Deadlock detection and priority inheritance handling */
1272 struct rt_mutex_waiter *pi_blocked_on;
1273 #endif
1274
1275 #ifdef CONFIG_DEBUG_MUTEXES
1276 /* mutex deadlock detection */
1277 struct mutex_waiter *blocked_on;
1278 #endif
1279 #ifdef CONFIG_TRACE_IRQFLAGS
1280 unsigned int irq_events;
1281 int hardirqs_enabled;
1282 unsigned long hardirq_enable_ip;
1283 unsigned int hardirq_enable_event;
1284 unsigned long hardirq_disable_ip;
1285 unsigned int hardirq_disable_event;
1286 int softirqs_enabled;
1287 unsigned long softirq_disable_ip;
1288 unsigned int softirq_disable_event;
1289 unsigned long softirq_enable_ip;
1290 unsigned int softirq_enable_event;
1291 int hardirq_context;
1292 int softirq_context;
1293 #endif
1294 #ifdef CONFIG_LOCKDEP
1295 # define MAX_LOCK_DEPTH 48UL
1296 u64 curr_chain_key;
1297 int lockdep_depth;
1298 unsigned int lockdep_recursion;
1299 struct held_lock held_locks[MAX_LOCK_DEPTH];
1300 #endif
1301
1302 /* journalling filesystem info */
1303 void *journal_info;
1304
1305 /* stacked block device info */
1306 struct bio *bio_list, **bio_tail;
1307
1308 /* VM state */
1309 struct reclaim_state *reclaim_state;
1310
1311 struct backing_dev_info *backing_dev_info;
1312
1313 struct io_context *io_context;
1314
1315 unsigned long ptrace_message;
1316 siginfo_t *last_siginfo; /* For ptrace use. */
1317 struct task_io_accounting ioac;
1318 #if defined(CONFIG_TASK_XACCT)
1319 u64 acct_rss_mem1; /* accumulated rss usage */
1320 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1321 cputime_t acct_timexpd; /* stime + utime since last update */
1322 #endif
1323 #ifdef CONFIG_CPUSETS
1324 nodemask_t mems_allowed;
1325 int cpuset_mems_generation;
1326 int cpuset_mem_spread_rotor;
1327 #endif
1328 #ifdef CONFIG_CGROUPS
1329 /* Control Group info protected by css_set_lock */
1330 struct css_set *cgroups;
1331 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1332 struct list_head cg_list;
1333 #endif
1334 #ifdef CONFIG_FUTEX
1335 struct robust_list_head __user *robust_list;
1336 #ifdef CONFIG_COMPAT
1337 struct compat_robust_list_head __user *compat_robust_list;
1338 #endif
1339 struct list_head pi_state_list;
1340 struct futex_pi_state *pi_state_cache;
1341 #endif
1342 #ifdef CONFIG_NUMA
1343 struct mempolicy *mempolicy;
1344 short il_next;
1345 #endif
1346 atomic_t fs_excl; /* holding fs exclusive resources */
1347 struct rcu_head rcu;
1348
1349 /*
1350 * cache last used pipe for splice
1351 */
1352 struct pipe_inode_info *splice_pipe;
1353 #ifdef CONFIG_TASK_DELAY_ACCT
1354 struct task_delay_info *delays;
1355 #endif
1356 #ifdef CONFIG_FAULT_INJECTION
1357 int make_it_fail;
1358 #endif
1359 struct prop_local_single dirties;
1360 #ifdef CONFIG_LATENCYTOP
1361 int latency_record_count;
1362 struct latency_record latency_record[LT_SAVECOUNT];
1363 #endif
1364 /*
1365 * time slack values; these are used to round up poll() and
1366 * select() etc timeout values. These are in nanoseconds.
1367 */
1368 unsigned long timer_slack_ns;
1369 unsigned long default_timer_slack_ns;
1370
1371 struct list_head *scm_work_list;
1372 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1373 /* Index of current stored adress in ret_stack */
1374 int curr_ret_stack;
1375 /* Stack of return addresses for return function tracing */
1376 struct ftrace_ret_stack *ret_stack;
1377 /*
1378 * Number of functions that haven't been traced
1379 * because of depth overrun.
1380 */
1381 atomic_t trace_overrun;
1382 #endif
1383 #ifdef CONFIG_TRACING
1384 /* state flags for use by tracers */
1385 unsigned long trace;
1386 #endif
1387 };
1388
1389 /*
1390 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1391 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1392 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1393 * values are inverted: lower p->prio value means higher priority.
1394 *
1395 * The MAX_USER_RT_PRIO value allows the actual maximum
1396 * RT priority to be separate from the value exported to
1397 * user-space. This allows kernel threads to set their
1398 * priority to a value higher than any user task. Note:
1399 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1400 */
1401
1402 #define MAX_USER_RT_PRIO 100
1403 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1404
1405 #define MAX_PRIO (MAX_RT_PRIO + 40)
1406 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1407
1408 static inline int rt_prio(int prio)
1409 {
1410 if (unlikely(prio < MAX_RT_PRIO))
1411 return 1;
1412 return 0;
1413 }
1414
1415 static inline int rt_task(struct task_struct *p)
1416 {
1417 return rt_prio(p->prio);
1418 }
1419
1420 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1421 {
1422 tsk->signal->__session = session;
1423 }
1424
1425 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1426 {
1427 tsk->signal->__pgrp = pgrp;
1428 }
1429
1430 static inline struct pid *task_pid(struct task_struct *task)
1431 {
1432 return task->pids[PIDTYPE_PID].pid;
1433 }
1434
1435 static inline struct pid *task_tgid(struct task_struct *task)
1436 {
1437 return task->group_leader->pids[PIDTYPE_PID].pid;
1438 }
1439
1440 static inline struct pid *task_pgrp(struct task_struct *task)
1441 {
1442 return task->group_leader->pids[PIDTYPE_PGID].pid;
1443 }
1444
1445 static inline struct pid *task_session(struct task_struct *task)
1446 {
1447 return task->group_leader->pids[PIDTYPE_SID].pid;
1448 }
1449
1450 struct pid_namespace;
1451
1452 /*
1453 * the helpers to get the task's different pids as they are seen
1454 * from various namespaces
1455 *
1456 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1457 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1458 * current.
1459 * task_xid_nr_ns() : id seen from the ns specified;
1460 *
1461 * set_task_vxid() : assigns a virtual id to a task;
1462 *
1463 * see also pid_nr() etc in include/linux/pid.h
1464 */
1465
1466 static inline pid_t task_pid_nr(struct task_struct *tsk)
1467 {
1468 return tsk->pid;
1469 }
1470
1471 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1472
1473 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1474 {
1475 return pid_vnr(task_pid(tsk));
1476 }
1477
1478
1479 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1480 {
1481 return tsk->tgid;
1482 }
1483
1484 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1485
1486 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1487 {
1488 return pid_vnr(task_tgid(tsk));
1489 }
1490
1491
1492 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1493 {
1494 return tsk->signal->__pgrp;
1495 }
1496
1497 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1498
1499 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1500 {
1501 return pid_vnr(task_pgrp(tsk));
1502 }
1503
1504
1505 static inline pid_t task_session_nr(struct task_struct *tsk)
1506 {
1507 return tsk->signal->__session;
1508 }
1509
1510 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1511
1512 static inline pid_t task_session_vnr(struct task_struct *tsk)
1513 {
1514 return pid_vnr(task_session(tsk));
1515 }
1516
1517
1518 /**
1519 * pid_alive - check that a task structure is not stale
1520 * @p: Task structure to be checked.
1521 *
1522 * Test if a process is not yet dead (at most zombie state)
1523 * If pid_alive fails, then pointers within the task structure
1524 * can be stale and must not be dereferenced.
1525 */
1526 static inline int pid_alive(struct task_struct *p)
1527 {
1528 return p->pids[PIDTYPE_PID].pid != NULL;
1529 }
1530
1531 /**
1532 * is_global_init - check if a task structure is init
1533 * @tsk: Task structure to be checked.
1534 *
1535 * Check if a task structure is the first user space task the kernel created.
1536 */
1537 static inline int is_global_init(struct task_struct *tsk)
1538 {
1539 return tsk->pid == 1;
1540 }
1541
1542 /*
1543 * is_container_init:
1544 * check whether in the task is init in its own pid namespace.
1545 */
1546 extern int is_container_init(struct task_struct *tsk);
1547
1548 extern struct pid *cad_pid;
1549
1550 extern void free_task(struct task_struct *tsk);
1551 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1552
1553 extern void __put_task_struct(struct task_struct *t);
1554
1555 static inline void put_task_struct(struct task_struct *t)
1556 {
1557 if (atomic_dec_and_test(&t->usage))
1558 __put_task_struct(t);
1559 }
1560
1561 extern cputime_t task_utime(struct task_struct *p);
1562 extern cputime_t task_stime(struct task_struct *p);
1563 extern cputime_t task_gtime(struct task_struct *p);
1564
1565 /*
1566 * Per process flags
1567 */
1568 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1569 /* Not implemented yet, only for 486*/
1570 #define PF_STARTING 0x00000002 /* being created */
1571 #define PF_EXITING 0x00000004 /* getting shut down */
1572 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1573 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1574 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1575 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1576 #define PF_DUMPCORE 0x00000200 /* dumped core */
1577 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1578 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1579 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1580 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1581 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1582 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1583 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1584 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1585 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1586 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1587 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1588 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1589 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1590 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1591 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1592 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1593 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1594 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1595 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1596 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1597
1598 /*
1599 * Only the _current_ task can read/write to tsk->flags, but other
1600 * tasks can access tsk->flags in readonly mode for example
1601 * with tsk_used_math (like during threaded core dumping).
1602 * There is however an exception to this rule during ptrace
1603 * or during fork: the ptracer task is allowed to write to the
1604 * child->flags of its traced child (same goes for fork, the parent
1605 * can write to the child->flags), because we're guaranteed the
1606 * child is not running and in turn not changing child->flags
1607 * at the same time the parent does it.
1608 */
1609 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1610 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1611 #define clear_used_math() clear_stopped_child_used_math(current)
1612 #define set_used_math() set_stopped_child_used_math(current)
1613 #define conditional_stopped_child_used_math(condition, child) \
1614 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1615 #define conditional_used_math(condition) \
1616 conditional_stopped_child_used_math(condition, current)
1617 #define copy_to_stopped_child_used_math(child) \
1618 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1619 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1620 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1621 #define used_math() tsk_used_math(current)
1622
1623 #ifdef CONFIG_SMP
1624 extern int set_cpus_allowed_ptr(struct task_struct *p,
1625 const cpumask_t *new_mask);
1626 #else
1627 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1628 const cpumask_t *new_mask)
1629 {
1630 if (!cpu_isset(0, *new_mask))
1631 return -EINVAL;
1632 return 0;
1633 }
1634 #endif
1635 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1636 {
1637 return set_cpus_allowed_ptr(p, &new_mask);
1638 }
1639
1640 extern unsigned long long sched_clock(void);
1641
1642 extern void sched_clock_init(void);
1643 extern u64 sched_clock_cpu(int cpu);
1644
1645 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1646 static inline void sched_clock_tick(void)
1647 {
1648 }
1649
1650 static inline void sched_clock_idle_sleep_event(void)
1651 {
1652 }
1653
1654 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1655 {
1656 }
1657 #else
1658 extern void sched_clock_tick(void);
1659 extern void sched_clock_idle_sleep_event(void);
1660 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1661 #endif
1662
1663 /*
1664 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1665 * clock constructed from sched_clock():
1666 */
1667 extern unsigned long long cpu_clock(int cpu);
1668
1669 extern unsigned long long
1670 task_sched_runtime(struct task_struct *task);
1671 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1672
1673 /* sched_exec is called by processes performing an exec */
1674 #ifdef CONFIG_SMP
1675 extern void sched_exec(void);
1676 #else
1677 #define sched_exec() {}
1678 #endif
1679
1680 extern void sched_clock_idle_sleep_event(void);
1681 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1682
1683 #ifdef CONFIG_HOTPLUG_CPU
1684 extern void idle_task_exit(void);
1685 #else
1686 static inline void idle_task_exit(void) {}
1687 #endif
1688
1689 extern void sched_idle_next(void);
1690
1691 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1692 extern void wake_up_idle_cpu(int cpu);
1693 #else
1694 static inline void wake_up_idle_cpu(int cpu) { }
1695 #endif
1696
1697 #ifdef CONFIG_SCHED_DEBUG
1698 extern unsigned int sysctl_sched_latency;
1699 extern unsigned int sysctl_sched_min_granularity;
1700 extern unsigned int sysctl_sched_wakeup_granularity;
1701 extern unsigned int sysctl_sched_child_runs_first;
1702 extern unsigned int sysctl_sched_features;
1703 extern unsigned int sysctl_sched_migration_cost;
1704 extern unsigned int sysctl_sched_nr_migrate;
1705 extern unsigned int sysctl_sched_shares_ratelimit;
1706 extern unsigned int sysctl_sched_shares_thresh;
1707
1708 int sched_nr_latency_handler(struct ctl_table *table, int write,
1709 struct file *file, void __user *buffer, size_t *length,
1710 loff_t *ppos);
1711 #endif
1712 extern unsigned int sysctl_sched_rt_period;
1713 extern int sysctl_sched_rt_runtime;
1714
1715 int sched_rt_handler(struct ctl_table *table, int write,
1716 struct file *filp, void __user *buffer, size_t *lenp,
1717 loff_t *ppos);
1718
1719 extern unsigned int sysctl_sched_compat_yield;
1720
1721 #ifdef CONFIG_RT_MUTEXES
1722 extern int rt_mutex_getprio(struct task_struct *p);
1723 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1724 extern void rt_mutex_adjust_pi(struct task_struct *p);
1725 #else
1726 static inline int rt_mutex_getprio(struct task_struct *p)
1727 {
1728 return p->normal_prio;
1729 }
1730 # define rt_mutex_adjust_pi(p) do { } while (0)
1731 #endif
1732
1733 extern void set_user_nice(struct task_struct *p, long nice);
1734 extern int task_prio(const struct task_struct *p);
1735 extern int task_nice(const struct task_struct *p);
1736 extern int can_nice(const struct task_struct *p, const int nice);
1737 extern int task_curr(const struct task_struct *p);
1738 extern int idle_cpu(int cpu);
1739 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1740 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1741 struct sched_param *);
1742 extern struct task_struct *idle_task(int cpu);
1743 extern struct task_struct *curr_task(int cpu);
1744 extern void set_curr_task(int cpu, struct task_struct *p);
1745
1746 void yield(void);
1747
1748 /*
1749 * The default (Linux) execution domain.
1750 */
1751 extern struct exec_domain default_exec_domain;
1752
1753 union thread_union {
1754 struct thread_info thread_info;
1755 unsigned long stack[THREAD_SIZE/sizeof(long)];
1756 };
1757
1758 #ifndef __HAVE_ARCH_KSTACK_END
1759 static inline int kstack_end(void *addr)
1760 {
1761 /* Reliable end of stack detection:
1762 * Some APM bios versions misalign the stack
1763 */
1764 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1765 }
1766 #endif
1767
1768 extern union thread_union init_thread_union;
1769 extern struct task_struct init_task;
1770
1771 extern struct mm_struct init_mm;
1772
1773 extern struct pid_namespace init_pid_ns;
1774
1775 /*
1776 * find a task by one of its numerical ids
1777 *
1778 * find_task_by_pid_type_ns():
1779 * it is the most generic call - it finds a task by all id,
1780 * type and namespace specified
1781 * find_task_by_pid_ns():
1782 * finds a task by its pid in the specified namespace
1783 * find_task_by_vpid():
1784 * finds a task by its virtual pid
1785 *
1786 * see also find_vpid() etc in include/linux/pid.h
1787 */
1788
1789 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1790 struct pid_namespace *ns);
1791
1792 extern struct task_struct *find_task_by_vpid(pid_t nr);
1793 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1794 struct pid_namespace *ns);
1795
1796 extern void __set_special_pids(struct pid *pid);
1797
1798 /* per-UID process charging. */
1799 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1800 static inline struct user_struct *get_uid(struct user_struct *u)
1801 {
1802 atomic_inc(&u->__count);
1803 return u;
1804 }
1805 extern void free_uid(struct user_struct *);
1806 extern void switch_uid(struct user_struct *);
1807 extern void release_uids(struct user_namespace *ns);
1808
1809 #include <asm/current.h>
1810
1811 extern void do_timer(unsigned long ticks);
1812
1813 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1814 extern int wake_up_process(struct task_struct *tsk);
1815 extern void wake_up_new_task(struct task_struct *tsk,
1816 unsigned long clone_flags);
1817 #ifdef CONFIG_SMP
1818 extern void kick_process(struct task_struct *tsk);
1819 #else
1820 static inline void kick_process(struct task_struct *tsk) { }
1821 #endif
1822 extern void sched_fork(struct task_struct *p, int clone_flags);
1823 extern void sched_dead(struct task_struct *p);
1824
1825 extern int in_group_p(gid_t);
1826 extern int in_egroup_p(gid_t);
1827
1828 extern void proc_caches_init(void);
1829 extern void flush_signals(struct task_struct *);
1830 extern void ignore_signals(struct task_struct *);
1831 extern void flush_signal_handlers(struct task_struct *, int force_default);
1832 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1833
1834 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1835 {
1836 unsigned long flags;
1837 int ret;
1838
1839 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1840 ret = dequeue_signal(tsk, mask, info);
1841 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1842
1843 return ret;
1844 }
1845
1846 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1847 sigset_t *mask);
1848 extern void unblock_all_signals(void);
1849 extern void release_task(struct task_struct * p);
1850 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1851 extern int force_sigsegv(int, struct task_struct *);
1852 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1853 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1854 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1855 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1856 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1857 extern int kill_pid(struct pid *pid, int sig, int priv);
1858 extern int kill_proc_info(int, struct siginfo *, pid_t);
1859 extern int do_notify_parent(struct task_struct *, int);
1860 extern void force_sig(int, struct task_struct *);
1861 extern void force_sig_specific(int, struct task_struct *);
1862 extern int send_sig(int, struct task_struct *, int);
1863 extern void zap_other_threads(struct task_struct *p);
1864 extern struct sigqueue *sigqueue_alloc(void);
1865 extern void sigqueue_free(struct sigqueue *);
1866 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1867 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1868 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1869
1870 static inline int kill_cad_pid(int sig, int priv)
1871 {
1872 return kill_pid(cad_pid, sig, priv);
1873 }
1874
1875 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1876 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1877 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1878 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1879
1880 static inline int is_si_special(const struct siginfo *info)
1881 {
1882 return info <= SEND_SIG_FORCED;
1883 }
1884
1885 /* True if we are on the alternate signal stack. */
1886
1887 static inline int on_sig_stack(unsigned long sp)
1888 {
1889 return (sp - current->sas_ss_sp < current->sas_ss_size);
1890 }
1891
1892 static inline int sas_ss_flags(unsigned long sp)
1893 {
1894 return (current->sas_ss_size == 0 ? SS_DISABLE
1895 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1896 }
1897
1898 /*
1899 * Routines for handling mm_structs
1900 */
1901 extern struct mm_struct * mm_alloc(void);
1902
1903 /* mmdrop drops the mm and the page tables */
1904 extern void __mmdrop(struct mm_struct *);
1905 static inline void mmdrop(struct mm_struct * mm)
1906 {
1907 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1908 __mmdrop(mm);
1909 }
1910
1911 /* mmput gets rid of the mappings and all user-space */
1912 extern void mmput(struct mm_struct *);
1913 /* Grab a reference to a task's mm, if it is not already going away */
1914 extern struct mm_struct *get_task_mm(struct task_struct *task);
1915 /* Remove the current tasks stale references to the old mm_struct */
1916 extern void mm_release(struct task_struct *, struct mm_struct *);
1917 /* Allocate a new mm structure and copy contents from tsk->mm */
1918 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1919
1920 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1921 extern void flush_thread(void);
1922 extern void exit_thread(void);
1923
1924 extern void exit_files(struct task_struct *);
1925 extern void __cleanup_signal(struct signal_struct *);
1926 extern void __cleanup_sighand(struct sighand_struct *);
1927
1928 extern void exit_itimers(struct signal_struct *);
1929 extern void flush_itimer_signals(void);
1930
1931 extern NORET_TYPE void do_group_exit(int);
1932
1933 extern void daemonize(const char *, ...);
1934 extern int allow_signal(int);
1935 extern int disallow_signal(int);
1936
1937 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1938 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1939 struct task_struct *fork_idle(int);
1940
1941 extern void set_task_comm(struct task_struct *tsk, char *from);
1942 extern char *get_task_comm(char *to, struct task_struct *tsk);
1943
1944 #ifdef CONFIG_SMP
1945 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1946 #else
1947 static inline unsigned long wait_task_inactive(struct task_struct *p,
1948 long match_state)
1949 {
1950 return 1;
1951 }
1952 #endif
1953
1954 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1955
1956 #define for_each_process(p) \
1957 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1958
1959 /*
1960 * Careful: do_each_thread/while_each_thread is a double loop so
1961 * 'break' will not work as expected - use goto instead.
1962 */
1963 #define do_each_thread(g, t) \
1964 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1965
1966 #define while_each_thread(g, t) \
1967 while ((t = next_thread(t)) != g)
1968
1969 /* de_thread depends on thread_group_leader not being a pid based check */
1970 #define thread_group_leader(p) (p == p->group_leader)
1971
1972 /* Do to the insanities of de_thread it is possible for a process
1973 * to have the pid of the thread group leader without actually being
1974 * the thread group leader. For iteration through the pids in proc
1975 * all we care about is that we have a task with the appropriate
1976 * pid, we don't actually care if we have the right task.
1977 */
1978 static inline int has_group_leader_pid(struct task_struct *p)
1979 {
1980 return p->pid == p->tgid;
1981 }
1982
1983 static inline
1984 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1985 {
1986 return p1->tgid == p2->tgid;
1987 }
1988
1989 static inline struct task_struct *next_thread(const struct task_struct *p)
1990 {
1991 return list_entry(rcu_dereference(p->thread_group.next),
1992 struct task_struct, thread_group);
1993 }
1994
1995 static inline int thread_group_empty(struct task_struct *p)
1996 {
1997 return list_empty(&p->thread_group);
1998 }
1999
2000 #define delay_group_leader(p) \
2001 (thread_group_leader(p) && !thread_group_empty(p))
2002
2003 /*
2004 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2005 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2006 * pins the final release of task.io_context. Also protects ->cpuset and
2007 * ->cgroup.subsys[].
2008 *
2009 * Nests both inside and outside of read_lock(&tasklist_lock).
2010 * It must not be nested with write_lock_irq(&tasklist_lock),
2011 * neither inside nor outside.
2012 */
2013 static inline void task_lock(struct task_struct *p)
2014 {
2015 spin_lock(&p->alloc_lock);
2016 }
2017
2018 static inline void task_unlock(struct task_struct *p)
2019 {
2020 spin_unlock(&p->alloc_lock);
2021 }
2022
2023 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2024 unsigned long *flags);
2025
2026 static inline void unlock_task_sighand(struct task_struct *tsk,
2027 unsigned long *flags)
2028 {
2029 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2030 }
2031
2032 #ifndef __HAVE_THREAD_FUNCTIONS
2033
2034 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2035 #define task_stack_page(task) ((task)->stack)
2036
2037 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2038 {
2039 *task_thread_info(p) = *task_thread_info(org);
2040 task_thread_info(p)->task = p;
2041 }
2042
2043 static inline unsigned long *end_of_stack(struct task_struct *p)
2044 {
2045 return (unsigned long *)(task_thread_info(p) + 1);
2046 }
2047
2048 #endif
2049
2050 static inline int object_is_on_stack(void *obj)
2051 {
2052 void *stack = task_stack_page(current);
2053
2054 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2055 }
2056
2057 extern void thread_info_cache_init(void);
2058
2059 /* set thread flags in other task's structures
2060 * - see asm/thread_info.h for TIF_xxxx flags available
2061 */
2062 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2063 {
2064 set_ti_thread_flag(task_thread_info(tsk), flag);
2065 }
2066
2067 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2068 {
2069 clear_ti_thread_flag(task_thread_info(tsk), flag);
2070 }
2071
2072 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2073 {
2074 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2075 }
2076
2077 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2078 {
2079 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2080 }
2081
2082 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2083 {
2084 return test_ti_thread_flag(task_thread_info(tsk), flag);
2085 }
2086
2087 static inline void set_tsk_need_resched(struct task_struct *tsk)
2088 {
2089 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2090 }
2091
2092 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2093 {
2094 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2095 }
2096
2097 static inline int test_tsk_need_resched(struct task_struct *tsk)
2098 {
2099 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2100 }
2101
2102 static inline int signal_pending(struct task_struct *p)
2103 {
2104 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2105 }
2106
2107 extern int __fatal_signal_pending(struct task_struct *p);
2108
2109 static inline int fatal_signal_pending(struct task_struct *p)
2110 {
2111 return signal_pending(p) && __fatal_signal_pending(p);
2112 }
2113
2114 static inline int signal_pending_state(long state, struct task_struct *p)
2115 {
2116 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2117 return 0;
2118 if (!signal_pending(p))
2119 return 0;
2120
2121 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2122 }
2123
2124 static inline int need_resched(void)
2125 {
2126 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2127 }
2128
2129 /*
2130 * cond_resched() and cond_resched_lock(): latency reduction via
2131 * explicit rescheduling in places that are safe. The return
2132 * value indicates whether a reschedule was done in fact.
2133 * cond_resched_lock() will drop the spinlock before scheduling,
2134 * cond_resched_softirq() will enable bhs before scheduling.
2135 */
2136 extern int _cond_resched(void);
2137 #ifdef CONFIG_PREEMPT_BKL
2138 static inline int cond_resched(void)
2139 {
2140 return 0;
2141 }
2142 #else
2143 static inline int cond_resched(void)
2144 {
2145 return _cond_resched();
2146 }
2147 #endif
2148 extern int cond_resched_lock(spinlock_t * lock);
2149 extern int cond_resched_softirq(void);
2150 static inline int cond_resched_bkl(void)
2151 {
2152 return _cond_resched();
2153 }
2154
2155 /*
2156 * Does a critical section need to be broken due to another
2157 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2158 * but a general need for low latency)
2159 */
2160 static inline int spin_needbreak(spinlock_t *lock)
2161 {
2162 #ifdef CONFIG_PREEMPT
2163 return spin_is_contended(lock);
2164 #else
2165 return 0;
2166 #endif
2167 }
2168
2169 /*
2170 * Thread group CPU time accounting.
2171 */
2172
2173 extern int thread_group_cputime_alloc(struct task_struct *);
2174 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2175
2176 static inline void thread_group_cputime_init(struct signal_struct *sig)
2177 {
2178 sig->cputime.totals = NULL;
2179 }
2180
2181 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2182 {
2183 if (curr->signal->cputime.totals)
2184 return 0;
2185 return thread_group_cputime_alloc(curr);
2186 }
2187
2188 static inline void thread_group_cputime_free(struct signal_struct *sig)
2189 {
2190 free_percpu(sig->cputime.totals);
2191 }
2192
2193 /*
2194 * Reevaluate whether the task has signals pending delivery.
2195 * Wake the task if so.
2196 * This is required every time the blocked sigset_t changes.
2197 * callers must hold sighand->siglock.
2198 */
2199 extern void recalc_sigpending_and_wake(struct task_struct *t);
2200 extern void recalc_sigpending(void);
2201
2202 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2203
2204 /*
2205 * Wrappers for p->thread_info->cpu access. No-op on UP.
2206 */
2207 #ifdef CONFIG_SMP
2208
2209 static inline unsigned int task_cpu(const struct task_struct *p)
2210 {
2211 return task_thread_info(p)->cpu;
2212 }
2213
2214 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2215
2216 #else
2217
2218 static inline unsigned int task_cpu(const struct task_struct *p)
2219 {
2220 return 0;
2221 }
2222
2223 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2224 {
2225 }
2226
2227 #endif /* CONFIG_SMP */
2228
2229 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2230
2231 #ifdef CONFIG_TRACING
2232 extern void
2233 __trace_special(void *__tr, void *__data,
2234 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2235 #else
2236 static inline void
2237 __trace_special(void *__tr, void *__data,
2238 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2239 {
2240 }
2241 #endif
2242
2243 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2244 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2245
2246 extern int sched_mc_power_savings, sched_smt_power_savings;
2247
2248 extern void normalize_rt_tasks(void);
2249
2250 #ifdef CONFIG_GROUP_SCHED
2251
2252 extern struct task_group init_task_group;
2253 #ifdef CONFIG_USER_SCHED
2254 extern struct task_group root_task_group;
2255 #endif
2256
2257 extern struct task_group *sched_create_group(struct task_group *parent);
2258 extern void sched_destroy_group(struct task_group *tg);
2259 extern void sched_move_task(struct task_struct *tsk);
2260 #ifdef CONFIG_FAIR_GROUP_SCHED
2261 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2262 extern unsigned long sched_group_shares(struct task_group *tg);
2263 #endif
2264 #ifdef CONFIG_RT_GROUP_SCHED
2265 extern int sched_group_set_rt_runtime(struct task_group *tg,
2266 long rt_runtime_us);
2267 extern long sched_group_rt_runtime(struct task_group *tg);
2268 extern int sched_group_set_rt_period(struct task_group *tg,
2269 long rt_period_us);
2270 extern long sched_group_rt_period(struct task_group *tg);
2271 #endif
2272 #endif
2273
2274 #ifdef CONFIG_TASK_XACCT
2275 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2276 {
2277 tsk->ioac.rchar += amt;
2278 }
2279
2280 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2281 {
2282 tsk->ioac.wchar += amt;
2283 }
2284
2285 static inline void inc_syscr(struct task_struct *tsk)
2286 {
2287 tsk->ioac.syscr++;
2288 }
2289
2290 static inline void inc_syscw(struct task_struct *tsk)
2291 {
2292 tsk->ioac.syscw++;
2293 }
2294 #else
2295 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2296 {
2297 }
2298
2299 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2300 {
2301 }
2302
2303 static inline void inc_syscr(struct task_struct *tsk)
2304 {
2305 }
2306
2307 static inline void inc_syscw(struct task_struct *tsk)
2308 {
2309 }
2310 #endif
2311
2312 #ifndef TASK_SIZE_OF
2313 #define TASK_SIZE_OF(tsk) TASK_SIZE
2314 #endif
2315
2316 #ifdef CONFIG_MM_OWNER
2317 extern void mm_update_next_owner(struct mm_struct *mm);
2318 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2319 #else
2320 static inline void mm_update_next_owner(struct mm_struct *mm)
2321 {
2322 }
2323
2324 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2325 {
2326 }
2327 #endif /* CONFIG_MM_OWNER */
2328
2329 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2330
2331 #endif /* __KERNEL__ */
2332
2333 #endif
This page took 0.078888 seconds and 5 git commands to generate.