Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(int active);
181 #else
182 static inline void update_cpu_load_nohz(int active) { }
183 #endif
184
185 extern void dump_cpu_task(int cpu);
186
187 struct seq_file;
188 struct cfs_rq;
189 struct task_group;
190 #ifdef CONFIG_SCHED_DEBUG
191 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
192 extern void proc_sched_set_task(struct task_struct *p);
193 #endif
194
195 /*
196 * Task state bitmask. NOTE! These bits are also
197 * encoded in fs/proc/array.c: get_task_state().
198 *
199 * We have two separate sets of flags: task->state
200 * is about runnability, while task->exit_state are
201 * about the task exiting. Confusing, but this way
202 * modifying one set can't modify the other one by
203 * mistake.
204 */
205 #define TASK_RUNNING 0
206 #define TASK_INTERRUPTIBLE 1
207 #define TASK_UNINTERRUPTIBLE 2
208 #define __TASK_STOPPED 4
209 #define __TASK_TRACED 8
210 /* in tsk->exit_state */
211 #define EXIT_DEAD 16
212 #define EXIT_ZOMBIE 32
213 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
214 /* in tsk->state again */
215 #define TASK_DEAD 64
216 #define TASK_WAKEKILL 128
217 #define TASK_WAKING 256
218 #define TASK_PARKED 512
219 #define TASK_NOLOAD 1024
220 #define TASK_STATE_MAX 2048
221
222 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
223
224 extern char ___assert_task_state[1 - 2*!!(
225 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
226
227 /* Convenience macros for the sake of set_task_state */
228 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
229 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
230 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
231
232 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
233
234 /* Convenience macros for the sake of wake_up */
235 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
236 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
237
238 /* get_task_state() */
239 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
240 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
241 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
242
243 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
244 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
245 #define task_is_stopped_or_traced(task) \
246 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
247 #define task_contributes_to_load(task) \
248 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
249 (task->flags & PF_FROZEN) == 0 && \
250 (task->state & TASK_NOLOAD) == 0)
251
252 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
253
254 #define __set_task_state(tsk, state_value) \
255 do { \
256 (tsk)->task_state_change = _THIS_IP_; \
257 (tsk)->state = (state_value); \
258 } while (0)
259 #define set_task_state(tsk, state_value) \
260 do { \
261 (tsk)->task_state_change = _THIS_IP_; \
262 smp_store_mb((tsk)->state, (state_value)); \
263 } while (0)
264
265 /*
266 * set_current_state() includes a barrier so that the write of current->state
267 * is correctly serialised wrt the caller's subsequent test of whether to
268 * actually sleep:
269 *
270 * set_current_state(TASK_UNINTERRUPTIBLE);
271 * if (do_i_need_to_sleep())
272 * schedule();
273 *
274 * If the caller does not need such serialisation then use __set_current_state()
275 */
276 #define __set_current_state(state_value) \
277 do { \
278 current->task_state_change = _THIS_IP_; \
279 current->state = (state_value); \
280 } while (0)
281 #define set_current_state(state_value) \
282 do { \
283 current->task_state_change = _THIS_IP_; \
284 smp_store_mb(current->state, (state_value)); \
285 } while (0)
286
287 #else
288
289 #define __set_task_state(tsk, state_value) \
290 do { (tsk)->state = (state_value); } while (0)
291 #define set_task_state(tsk, state_value) \
292 smp_store_mb((tsk)->state, (state_value))
293
294 /*
295 * set_current_state() includes a barrier so that the write of current->state
296 * is correctly serialised wrt the caller's subsequent test of whether to
297 * actually sleep:
298 *
299 * set_current_state(TASK_UNINTERRUPTIBLE);
300 * if (do_i_need_to_sleep())
301 * schedule();
302 *
303 * If the caller does not need such serialisation then use __set_current_state()
304 */
305 #define __set_current_state(state_value) \
306 do { current->state = (state_value); } while (0)
307 #define set_current_state(state_value) \
308 smp_store_mb(current->state, (state_value))
309
310 #endif
311
312 /* Task command name length */
313 #define TASK_COMM_LEN 16
314
315 #include <linux/spinlock.h>
316
317 /*
318 * This serializes "schedule()" and also protects
319 * the run-queue from deletions/modifications (but
320 * _adding_ to the beginning of the run-queue has
321 * a separate lock).
322 */
323 extern rwlock_t tasklist_lock;
324 extern spinlock_t mmlist_lock;
325
326 struct task_struct;
327
328 #ifdef CONFIG_PROVE_RCU
329 extern int lockdep_tasklist_lock_is_held(void);
330 #endif /* #ifdef CONFIG_PROVE_RCU */
331
332 extern void sched_init(void);
333 extern void sched_init_smp(void);
334 extern asmlinkage void schedule_tail(struct task_struct *prev);
335 extern void init_idle(struct task_struct *idle, int cpu);
336 extern void init_idle_bootup_task(struct task_struct *idle);
337
338 extern cpumask_var_t cpu_isolated_map;
339
340 extern int runqueue_is_locked(int cpu);
341
342 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
343 extern void nohz_balance_enter_idle(int cpu);
344 extern void set_cpu_sd_state_idle(void);
345 extern int get_nohz_timer_target(void);
346 #else
347 static inline void nohz_balance_enter_idle(int cpu) { }
348 static inline void set_cpu_sd_state_idle(void) { }
349 #endif
350
351 /*
352 * Only dump TASK_* tasks. (0 for all tasks)
353 */
354 extern void show_state_filter(unsigned long state_filter);
355
356 static inline void show_state(void)
357 {
358 show_state_filter(0);
359 }
360
361 extern void show_regs(struct pt_regs *);
362
363 /*
364 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
365 * task), SP is the stack pointer of the first frame that should be shown in the back
366 * trace (or NULL if the entire call-chain of the task should be shown).
367 */
368 extern void show_stack(struct task_struct *task, unsigned long *sp);
369
370 extern void cpu_init (void);
371 extern void trap_init(void);
372 extern void update_process_times(int user);
373 extern void scheduler_tick(void);
374
375 extern void sched_show_task(struct task_struct *p);
376
377 #ifdef CONFIG_LOCKUP_DETECTOR
378 extern void touch_softlockup_watchdog_sched(void);
379 extern void touch_softlockup_watchdog(void);
380 extern void touch_softlockup_watchdog_sync(void);
381 extern void touch_all_softlockup_watchdogs(void);
382 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
383 void __user *buffer,
384 size_t *lenp, loff_t *ppos);
385 extern unsigned int softlockup_panic;
386 extern unsigned int hardlockup_panic;
387 void lockup_detector_init(void);
388 #else
389 static inline void touch_softlockup_watchdog_sched(void)
390 {
391 }
392 static inline void touch_softlockup_watchdog(void)
393 {
394 }
395 static inline void touch_softlockup_watchdog_sync(void)
396 {
397 }
398 static inline void touch_all_softlockup_watchdogs(void)
399 {
400 }
401 static inline void lockup_detector_init(void)
402 {
403 }
404 #endif
405
406 #ifdef CONFIG_DETECT_HUNG_TASK
407 void reset_hung_task_detector(void);
408 #else
409 static inline void reset_hung_task_detector(void)
410 {
411 }
412 #endif
413
414 /* Attach to any functions which should be ignored in wchan output. */
415 #define __sched __attribute__((__section__(".sched.text")))
416
417 /* Linker adds these: start and end of __sched functions */
418 extern char __sched_text_start[], __sched_text_end[];
419
420 /* Is this address in the __sched functions? */
421 extern int in_sched_functions(unsigned long addr);
422
423 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
424 extern signed long schedule_timeout(signed long timeout);
425 extern signed long schedule_timeout_interruptible(signed long timeout);
426 extern signed long schedule_timeout_killable(signed long timeout);
427 extern signed long schedule_timeout_uninterruptible(signed long timeout);
428 asmlinkage void schedule(void);
429 extern void schedule_preempt_disabled(void);
430
431 extern long io_schedule_timeout(long timeout);
432
433 static inline void io_schedule(void)
434 {
435 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
436 }
437
438 struct nsproxy;
439 struct user_namespace;
440
441 #ifdef CONFIG_MMU
442 extern void arch_pick_mmap_layout(struct mm_struct *mm);
443 extern unsigned long
444 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
445 unsigned long, unsigned long);
446 extern unsigned long
447 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
448 unsigned long len, unsigned long pgoff,
449 unsigned long flags);
450 #else
451 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
452 #endif
453
454 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
455 #define SUID_DUMP_USER 1 /* Dump as user of process */
456 #define SUID_DUMP_ROOT 2 /* Dump as root */
457
458 /* mm flags */
459
460 /* for SUID_DUMP_* above */
461 #define MMF_DUMPABLE_BITS 2
462 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
463
464 extern void set_dumpable(struct mm_struct *mm, int value);
465 /*
466 * This returns the actual value of the suid_dumpable flag. For things
467 * that are using this for checking for privilege transitions, it must
468 * test against SUID_DUMP_USER rather than treating it as a boolean
469 * value.
470 */
471 static inline int __get_dumpable(unsigned long mm_flags)
472 {
473 return mm_flags & MMF_DUMPABLE_MASK;
474 }
475
476 static inline int get_dumpable(struct mm_struct *mm)
477 {
478 return __get_dumpable(mm->flags);
479 }
480
481 /* coredump filter bits */
482 #define MMF_DUMP_ANON_PRIVATE 2
483 #define MMF_DUMP_ANON_SHARED 3
484 #define MMF_DUMP_MAPPED_PRIVATE 4
485 #define MMF_DUMP_MAPPED_SHARED 5
486 #define MMF_DUMP_ELF_HEADERS 6
487 #define MMF_DUMP_HUGETLB_PRIVATE 7
488 #define MMF_DUMP_HUGETLB_SHARED 8
489 #define MMF_DUMP_DAX_PRIVATE 9
490 #define MMF_DUMP_DAX_SHARED 10
491
492 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
493 #define MMF_DUMP_FILTER_BITS 9
494 #define MMF_DUMP_FILTER_MASK \
495 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
496 #define MMF_DUMP_FILTER_DEFAULT \
497 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
498 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
499
500 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
501 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
502 #else
503 # define MMF_DUMP_MASK_DEFAULT_ELF 0
504 #endif
505 /* leave room for more dump flags */
506 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
507 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
508 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
509
510 #define MMF_HAS_UPROBES 19 /* has uprobes */
511 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
512
513 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
514
515 struct sighand_struct {
516 atomic_t count;
517 struct k_sigaction action[_NSIG];
518 spinlock_t siglock;
519 wait_queue_head_t signalfd_wqh;
520 };
521
522 struct pacct_struct {
523 int ac_flag;
524 long ac_exitcode;
525 unsigned long ac_mem;
526 cputime_t ac_utime, ac_stime;
527 unsigned long ac_minflt, ac_majflt;
528 };
529
530 struct cpu_itimer {
531 cputime_t expires;
532 cputime_t incr;
533 u32 error;
534 u32 incr_error;
535 };
536
537 /**
538 * struct prev_cputime - snaphsot of system and user cputime
539 * @utime: time spent in user mode
540 * @stime: time spent in system mode
541 * @lock: protects the above two fields
542 *
543 * Stores previous user/system time values such that we can guarantee
544 * monotonicity.
545 */
546 struct prev_cputime {
547 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
548 cputime_t utime;
549 cputime_t stime;
550 raw_spinlock_t lock;
551 #endif
552 };
553
554 static inline void prev_cputime_init(struct prev_cputime *prev)
555 {
556 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
557 prev->utime = prev->stime = 0;
558 raw_spin_lock_init(&prev->lock);
559 #endif
560 }
561
562 /**
563 * struct task_cputime - collected CPU time counts
564 * @utime: time spent in user mode, in &cputime_t units
565 * @stime: time spent in kernel mode, in &cputime_t units
566 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
567 *
568 * This structure groups together three kinds of CPU time that are tracked for
569 * threads and thread groups. Most things considering CPU time want to group
570 * these counts together and treat all three of them in parallel.
571 */
572 struct task_cputime {
573 cputime_t utime;
574 cputime_t stime;
575 unsigned long long sum_exec_runtime;
576 };
577
578 /* Alternate field names when used to cache expirations. */
579 #define virt_exp utime
580 #define prof_exp stime
581 #define sched_exp sum_exec_runtime
582
583 #define INIT_CPUTIME \
584 (struct task_cputime) { \
585 .utime = 0, \
586 .stime = 0, \
587 .sum_exec_runtime = 0, \
588 }
589
590 /*
591 * This is the atomic variant of task_cputime, which can be used for
592 * storing and updating task_cputime statistics without locking.
593 */
594 struct task_cputime_atomic {
595 atomic64_t utime;
596 atomic64_t stime;
597 atomic64_t sum_exec_runtime;
598 };
599
600 #define INIT_CPUTIME_ATOMIC \
601 (struct task_cputime_atomic) { \
602 .utime = ATOMIC64_INIT(0), \
603 .stime = ATOMIC64_INIT(0), \
604 .sum_exec_runtime = ATOMIC64_INIT(0), \
605 }
606
607 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
608
609 /*
610 * Disable preemption until the scheduler is running -- use an unconditional
611 * value so that it also works on !PREEMPT_COUNT kernels.
612 *
613 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
614 */
615 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
616
617 /*
618 * Initial preempt_count value; reflects the preempt_count schedule invariant
619 * which states that during context switches:
620 *
621 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
622 *
623 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
624 * Note: See finish_task_switch().
625 */
626 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
627
628 /**
629 * struct thread_group_cputimer - thread group interval timer counts
630 * @cputime_atomic: atomic thread group interval timers.
631 * @running: true when there are timers running and
632 * @cputime_atomic receives updates.
633 * @checking_timer: true when a thread in the group is in the
634 * process of checking for thread group timers.
635 *
636 * This structure contains the version of task_cputime, above, that is
637 * used for thread group CPU timer calculations.
638 */
639 struct thread_group_cputimer {
640 struct task_cputime_atomic cputime_atomic;
641 bool running;
642 bool checking_timer;
643 };
644
645 #include <linux/rwsem.h>
646 struct autogroup;
647
648 /*
649 * NOTE! "signal_struct" does not have its own
650 * locking, because a shared signal_struct always
651 * implies a shared sighand_struct, so locking
652 * sighand_struct is always a proper superset of
653 * the locking of signal_struct.
654 */
655 struct signal_struct {
656 atomic_t sigcnt;
657 atomic_t live;
658 int nr_threads;
659 struct list_head thread_head;
660
661 wait_queue_head_t wait_chldexit; /* for wait4() */
662
663 /* current thread group signal load-balancing target: */
664 struct task_struct *curr_target;
665
666 /* shared signal handling: */
667 struct sigpending shared_pending;
668
669 /* thread group exit support */
670 int group_exit_code;
671 /* overloaded:
672 * - notify group_exit_task when ->count is equal to notify_count
673 * - everyone except group_exit_task is stopped during signal delivery
674 * of fatal signals, group_exit_task processes the signal.
675 */
676 int notify_count;
677 struct task_struct *group_exit_task;
678
679 /* thread group stop support, overloads group_exit_code too */
680 int group_stop_count;
681 unsigned int flags; /* see SIGNAL_* flags below */
682
683 /*
684 * PR_SET_CHILD_SUBREAPER marks a process, like a service
685 * manager, to re-parent orphan (double-forking) child processes
686 * to this process instead of 'init'. The service manager is
687 * able to receive SIGCHLD signals and is able to investigate
688 * the process until it calls wait(). All children of this
689 * process will inherit a flag if they should look for a
690 * child_subreaper process at exit.
691 */
692 unsigned int is_child_subreaper:1;
693 unsigned int has_child_subreaper:1;
694
695 /* POSIX.1b Interval Timers */
696 int posix_timer_id;
697 struct list_head posix_timers;
698
699 /* ITIMER_REAL timer for the process */
700 struct hrtimer real_timer;
701 struct pid *leader_pid;
702 ktime_t it_real_incr;
703
704 /*
705 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
706 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
707 * values are defined to 0 and 1 respectively
708 */
709 struct cpu_itimer it[2];
710
711 /*
712 * Thread group totals for process CPU timers.
713 * See thread_group_cputimer(), et al, for details.
714 */
715 struct thread_group_cputimer cputimer;
716
717 /* Earliest-expiration cache. */
718 struct task_cputime cputime_expires;
719
720 #ifdef CONFIG_NO_HZ_FULL
721 unsigned long tick_dep_mask;
722 #endif
723
724 struct list_head cpu_timers[3];
725
726 struct pid *tty_old_pgrp;
727
728 /* boolean value for session group leader */
729 int leader;
730
731 struct tty_struct *tty; /* NULL if no tty */
732
733 #ifdef CONFIG_SCHED_AUTOGROUP
734 struct autogroup *autogroup;
735 #endif
736 /*
737 * Cumulative resource counters for dead threads in the group,
738 * and for reaped dead child processes forked by this group.
739 * Live threads maintain their own counters and add to these
740 * in __exit_signal, except for the group leader.
741 */
742 seqlock_t stats_lock;
743 cputime_t utime, stime, cutime, cstime;
744 cputime_t gtime;
745 cputime_t cgtime;
746 struct prev_cputime prev_cputime;
747 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
748 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
749 unsigned long inblock, oublock, cinblock, coublock;
750 unsigned long maxrss, cmaxrss;
751 struct task_io_accounting ioac;
752
753 /*
754 * Cumulative ns of schedule CPU time fo dead threads in the
755 * group, not including a zombie group leader, (This only differs
756 * from jiffies_to_ns(utime + stime) if sched_clock uses something
757 * other than jiffies.)
758 */
759 unsigned long long sum_sched_runtime;
760
761 /*
762 * We don't bother to synchronize most readers of this at all,
763 * because there is no reader checking a limit that actually needs
764 * to get both rlim_cur and rlim_max atomically, and either one
765 * alone is a single word that can safely be read normally.
766 * getrlimit/setrlimit use task_lock(current->group_leader) to
767 * protect this instead of the siglock, because they really
768 * have no need to disable irqs.
769 */
770 struct rlimit rlim[RLIM_NLIMITS];
771
772 #ifdef CONFIG_BSD_PROCESS_ACCT
773 struct pacct_struct pacct; /* per-process accounting information */
774 #endif
775 #ifdef CONFIG_TASKSTATS
776 struct taskstats *stats;
777 #endif
778 #ifdef CONFIG_AUDIT
779 unsigned audit_tty;
780 struct tty_audit_buf *tty_audit_buf;
781 #endif
782
783 oom_flags_t oom_flags;
784 short oom_score_adj; /* OOM kill score adjustment */
785 short oom_score_adj_min; /* OOM kill score adjustment min value.
786 * Only settable by CAP_SYS_RESOURCE. */
787
788 struct mutex cred_guard_mutex; /* guard against foreign influences on
789 * credential calculations
790 * (notably. ptrace) */
791 };
792
793 /*
794 * Bits in flags field of signal_struct.
795 */
796 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
797 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
798 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
799 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
800 /*
801 * Pending notifications to parent.
802 */
803 #define SIGNAL_CLD_STOPPED 0x00000010
804 #define SIGNAL_CLD_CONTINUED 0x00000020
805 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
806
807 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
808
809 /* If true, all threads except ->group_exit_task have pending SIGKILL */
810 static inline int signal_group_exit(const struct signal_struct *sig)
811 {
812 return (sig->flags & SIGNAL_GROUP_EXIT) ||
813 (sig->group_exit_task != NULL);
814 }
815
816 /*
817 * Some day this will be a full-fledged user tracking system..
818 */
819 struct user_struct {
820 atomic_t __count; /* reference count */
821 atomic_t processes; /* How many processes does this user have? */
822 atomic_t sigpending; /* How many pending signals does this user have? */
823 #ifdef CONFIG_INOTIFY_USER
824 atomic_t inotify_watches; /* How many inotify watches does this user have? */
825 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
826 #endif
827 #ifdef CONFIG_FANOTIFY
828 atomic_t fanotify_listeners;
829 #endif
830 #ifdef CONFIG_EPOLL
831 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
832 #endif
833 #ifdef CONFIG_POSIX_MQUEUE
834 /* protected by mq_lock */
835 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
836 #endif
837 unsigned long locked_shm; /* How many pages of mlocked shm ? */
838 unsigned long unix_inflight; /* How many files in flight in unix sockets */
839 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
840
841 #ifdef CONFIG_KEYS
842 struct key *uid_keyring; /* UID specific keyring */
843 struct key *session_keyring; /* UID's default session keyring */
844 #endif
845
846 /* Hash table maintenance information */
847 struct hlist_node uidhash_node;
848 kuid_t uid;
849
850 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
851 atomic_long_t locked_vm;
852 #endif
853 };
854
855 extern int uids_sysfs_init(void);
856
857 extern struct user_struct *find_user(kuid_t);
858
859 extern struct user_struct root_user;
860 #define INIT_USER (&root_user)
861
862
863 struct backing_dev_info;
864 struct reclaim_state;
865
866 #ifdef CONFIG_SCHED_INFO
867 struct sched_info {
868 /* cumulative counters */
869 unsigned long pcount; /* # of times run on this cpu */
870 unsigned long long run_delay; /* time spent waiting on a runqueue */
871
872 /* timestamps */
873 unsigned long long last_arrival,/* when we last ran on a cpu */
874 last_queued; /* when we were last queued to run */
875 };
876 #endif /* CONFIG_SCHED_INFO */
877
878 #ifdef CONFIG_TASK_DELAY_ACCT
879 struct task_delay_info {
880 spinlock_t lock;
881 unsigned int flags; /* Private per-task flags */
882
883 /* For each stat XXX, add following, aligned appropriately
884 *
885 * struct timespec XXX_start, XXX_end;
886 * u64 XXX_delay;
887 * u32 XXX_count;
888 *
889 * Atomicity of updates to XXX_delay, XXX_count protected by
890 * single lock above (split into XXX_lock if contention is an issue).
891 */
892
893 /*
894 * XXX_count is incremented on every XXX operation, the delay
895 * associated with the operation is added to XXX_delay.
896 * XXX_delay contains the accumulated delay time in nanoseconds.
897 */
898 u64 blkio_start; /* Shared by blkio, swapin */
899 u64 blkio_delay; /* wait for sync block io completion */
900 u64 swapin_delay; /* wait for swapin block io completion */
901 u32 blkio_count; /* total count of the number of sync block */
902 /* io operations performed */
903 u32 swapin_count; /* total count of the number of swapin block */
904 /* io operations performed */
905
906 u64 freepages_start;
907 u64 freepages_delay; /* wait for memory reclaim */
908 u32 freepages_count; /* total count of memory reclaim */
909 };
910 #endif /* CONFIG_TASK_DELAY_ACCT */
911
912 static inline int sched_info_on(void)
913 {
914 #ifdef CONFIG_SCHEDSTATS
915 return 1;
916 #elif defined(CONFIG_TASK_DELAY_ACCT)
917 extern int delayacct_on;
918 return delayacct_on;
919 #else
920 return 0;
921 #endif
922 }
923
924 #ifdef CONFIG_SCHEDSTATS
925 void force_schedstat_enabled(void);
926 #endif
927
928 enum cpu_idle_type {
929 CPU_IDLE,
930 CPU_NOT_IDLE,
931 CPU_NEWLY_IDLE,
932 CPU_MAX_IDLE_TYPES
933 };
934
935 /*
936 * Increase resolution of cpu_capacity calculations
937 */
938 #define SCHED_CAPACITY_SHIFT 10
939 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
940
941 /*
942 * Wake-queues are lists of tasks with a pending wakeup, whose
943 * callers have already marked the task as woken internally,
944 * and can thus carry on. A common use case is being able to
945 * do the wakeups once the corresponding user lock as been
946 * released.
947 *
948 * We hold reference to each task in the list across the wakeup,
949 * thus guaranteeing that the memory is still valid by the time
950 * the actual wakeups are performed in wake_up_q().
951 *
952 * One per task suffices, because there's never a need for a task to be
953 * in two wake queues simultaneously; it is forbidden to abandon a task
954 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
955 * already in a wake queue, the wakeup will happen soon and the second
956 * waker can just skip it.
957 *
958 * The WAKE_Q macro declares and initializes the list head.
959 * wake_up_q() does NOT reinitialize the list; it's expected to be
960 * called near the end of a function, where the fact that the queue is
961 * not used again will be easy to see by inspection.
962 *
963 * Note that this can cause spurious wakeups. schedule() callers
964 * must ensure the call is done inside a loop, confirming that the
965 * wakeup condition has in fact occurred.
966 */
967 struct wake_q_node {
968 struct wake_q_node *next;
969 };
970
971 struct wake_q_head {
972 struct wake_q_node *first;
973 struct wake_q_node **lastp;
974 };
975
976 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
977
978 #define WAKE_Q(name) \
979 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
980
981 extern void wake_q_add(struct wake_q_head *head,
982 struct task_struct *task);
983 extern void wake_up_q(struct wake_q_head *head);
984
985 /*
986 * sched-domains (multiprocessor balancing) declarations:
987 */
988 #ifdef CONFIG_SMP
989 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
990 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
991 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
992 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
993 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
994 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
995 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
996 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
997 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
998 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
999 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1000 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1001 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1002 #define SD_NUMA 0x4000 /* cross-node balancing */
1003
1004 #ifdef CONFIG_SCHED_SMT
1005 static inline int cpu_smt_flags(void)
1006 {
1007 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1008 }
1009 #endif
1010
1011 #ifdef CONFIG_SCHED_MC
1012 static inline int cpu_core_flags(void)
1013 {
1014 return SD_SHARE_PKG_RESOURCES;
1015 }
1016 #endif
1017
1018 #ifdef CONFIG_NUMA
1019 static inline int cpu_numa_flags(void)
1020 {
1021 return SD_NUMA;
1022 }
1023 #endif
1024
1025 struct sched_domain_attr {
1026 int relax_domain_level;
1027 };
1028
1029 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1030 .relax_domain_level = -1, \
1031 }
1032
1033 extern int sched_domain_level_max;
1034
1035 struct sched_group;
1036
1037 struct sched_domain {
1038 /* These fields must be setup */
1039 struct sched_domain *parent; /* top domain must be null terminated */
1040 struct sched_domain *child; /* bottom domain must be null terminated */
1041 struct sched_group *groups; /* the balancing groups of the domain */
1042 unsigned long min_interval; /* Minimum balance interval ms */
1043 unsigned long max_interval; /* Maximum balance interval ms */
1044 unsigned int busy_factor; /* less balancing by factor if busy */
1045 unsigned int imbalance_pct; /* No balance until over watermark */
1046 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1047 unsigned int busy_idx;
1048 unsigned int idle_idx;
1049 unsigned int newidle_idx;
1050 unsigned int wake_idx;
1051 unsigned int forkexec_idx;
1052 unsigned int smt_gain;
1053
1054 int nohz_idle; /* NOHZ IDLE status */
1055 int flags; /* See SD_* */
1056 int level;
1057
1058 /* Runtime fields. */
1059 unsigned long last_balance; /* init to jiffies. units in jiffies */
1060 unsigned int balance_interval; /* initialise to 1. units in ms. */
1061 unsigned int nr_balance_failed; /* initialise to 0 */
1062
1063 /* idle_balance() stats */
1064 u64 max_newidle_lb_cost;
1065 unsigned long next_decay_max_lb_cost;
1066
1067 #ifdef CONFIG_SCHEDSTATS
1068 /* load_balance() stats */
1069 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1070 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1071 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1076 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1077
1078 /* Active load balancing */
1079 unsigned int alb_count;
1080 unsigned int alb_failed;
1081 unsigned int alb_pushed;
1082
1083 /* SD_BALANCE_EXEC stats */
1084 unsigned int sbe_count;
1085 unsigned int sbe_balanced;
1086 unsigned int sbe_pushed;
1087
1088 /* SD_BALANCE_FORK stats */
1089 unsigned int sbf_count;
1090 unsigned int sbf_balanced;
1091 unsigned int sbf_pushed;
1092
1093 /* try_to_wake_up() stats */
1094 unsigned int ttwu_wake_remote;
1095 unsigned int ttwu_move_affine;
1096 unsigned int ttwu_move_balance;
1097 #endif
1098 #ifdef CONFIG_SCHED_DEBUG
1099 char *name;
1100 #endif
1101 union {
1102 void *private; /* used during construction */
1103 struct rcu_head rcu; /* used during destruction */
1104 };
1105
1106 unsigned int span_weight;
1107 /*
1108 * Span of all CPUs in this domain.
1109 *
1110 * NOTE: this field is variable length. (Allocated dynamically
1111 * by attaching extra space to the end of the structure,
1112 * depending on how many CPUs the kernel has booted up with)
1113 */
1114 unsigned long span[0];
1115 };
1116
1117 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1118 {
1119 return to_cpumask(sd->span);
1120 }
1121
1122 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1123 struct sched_domain_attr *dattr_new);
1124
1125 /* Allocate an array of sched domains, for partition_sched_domains(). */
1126 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1127 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1128
1129 bool cpus_share_cache(int this_cpu, int that_cpu);
1130
1131 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1132 typedef int (*sched_domain_flags_f)(void);
1133
1134 #define SDTL_OVERLAP 0x01
1135
1136 struct sd_data {
1137 struct sched_domain **__percpu sd;
1138 struct sched_group **__percpu sg;
1139 struct sched_group_capacity **__percpu sgc;
1140 };
1141
1142 struct sched_domain_topology_level {
1143 sched_domain_mask_f mask;
1144 sched_domain_flags_f sd_flags;
1145 int flags;
1146 int numa_level;
1147 struct sd_data data;
1148 #ifdef CONFIG_SCHED_DEBUG
1149 char *name;
1150 #endif
1151 };
1152
1153 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1154 extern void wake_up_if_idle(int cpu);
1155
1156 #ifdef CONFIG_SCHED_DEBUG
1157 # define SD_INIT_NAME(type) .name = #type
1158 #else
1159 # define SD_INIT_NAME(type)
1160 #endif
1161
1162 #else /* CONFIG_SMP */
1163
1164 struct sched_domain_attr;
1165
1166 static inline void
1167 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1168 struct sched_domain_attr *dattr_new)
1169 {
1170 }
1171
1172 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1173 {
1174 return true;
1175 }
1176
1177 #endif /* !CONFIG_SMP */
1178
1179
1180 struct io_context; /* See blkdev.h */
1181
1182
1183 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1184 extern void prefetch_stack(struct task_struct *t);
1185 #else
1186 static inline void prefetch_stack(struct task_struct *t) { }
1187 #endif
1188
1189 struct audit_context; /* See audit.c */
1190 struct mempolicy;
1191 struct pipe_inode_info;
1192 struct uts_namespace;
1193
1194 struct load_weight {
1195 unsigned long weight;
1196 u32 inv_weight;
1197 };
1198
1199 /*
1200 * The load_avg/util_avg accumulates an infinite geometric series.
1201 * 1) load_avg factors frequency scaling into the amount of time that a
1202 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1203 * aggregated such weights of all runnable and blocked sched_entities.
1204 * 2) util_avg factors frequency and cpu scaling into the amount of time
1205 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1206 * For cfs_rq, it is the aggregated such times of all runnable and
1207 * blocked sched_entities.
1208 * The 64 bit load_sum can:
1209 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1210 * the highest weight (=88761) always runnable, we should not overflow
1211 * 2) for entity, support any load.weight always runnable
1212 */
1213 struct sched_avg {
1214 u64 last_update_time, load_sum;
1215 u32 util_sum, period_contrib;
1216 unsigned long load_avg, util_avg;
1217 };
1218
1219 #ifdef CONFIG_SCHEDSTATS
1220 struct sched_statistics {
1221 u64 wait_start;
1222 u64 wait_max;
1223 u64 wait_count;
1224 u64 wait_sum;
1225 u64 iowait_count;
1226 u64 iowait_sum;
1227
1228 u64 sleep_start;
1229 u64 sleep_max;
1230 s64 sum_sleep_runtime;
1231
1232 u64 block_start;
1233 u64 block_max;
1234 u64 exec_max;
1235 u64 slice_max;
1236
1237 u64 nr_migrations_cold;
1238 u64 nr_failed_migrations_affine;
1239 u64 nr_failed_migrations_running;
1240 u64 nr_failed_migrations_hot;
1241 u64 nr_forced_migrations;
1242
1243 u64 nr_wakeups;
1244 u64 nr_wakeups_sync;
1245 u64 nr_wakeups_migrate;
1246 u64 nr_wakeups_local;
1247 u64 nr_wakeups_remote;
1248 u64 nr_wakeups_affine;
1249 u64 nr_wakeups_affine_attempts;
1250 u64 nr_wakeups_passive;
1251 u64 nr_wakeups_idle;
1252 };
1253 #endif
1254
1255 struct sched_entity {
1256 struct load_weight load; /* for load-balancing */
1257 struct rb_node run_node;
1258 struct list_head group_node;
1259 unsigned int on_rq;
1260
1261 u64 exec_start;
1262 u64 sum_exec_runtime;
1263 u64 vruntime;
1264 u64 prev_sum_exec_runtime;
1265
1266 u64 nr_migrations;
1267
1268 #ifdef CONFIG_SCHEDSTATS
1269 struct sched_statistics statistics;
1270 #endif
1271
1272 #ifdef CONFIG_FAIR_GROUP_SCHED
1273 int depth;
1274 struct sched_entity *parent;
1275 /* rq on which this entity is (to be) queued: */
1276 struct cfs_rq *cfs_rq;
1277 /* rq "owned" by this entity/group: */
1278 struct cfs_rq *my_q;
1279 #endif
1280
1281 #ifdef CONFIG_SMP
1282 /*
1283 * Per entity load average tracking.
1284 *
1285 * Put into separate cache line so it does not
1286 * collide with read-mostly values above.
1287 */
1288 struct sched_avg avg ____cacheline_aligned_in_smp;
1289 #endif
1290 };
1291
1292 struct sched_rt_entity {
1293 struct list_head run_list;
1294 unsigned long timeout;
1295 unsigned long watchdog_stamp;
1296 unsigned int time_slice;
1297 unsigned short on_rq;
1298 unsigned short on_list;
1299
1300 struct sched_rt_entity *back;
1301 #ifdef CONFIG_RT_GROUP_SCHED
1302 struct sched_rt_entity *parent;
1303 /* rq on which this entity is (to be) queued: */
1304 struct rt_rq *rt_rq;
1305 /* rq "owned" by this entity/group: */
1306 struct rt_rq *my_q;
1307 #endif
1308 };
1309
1310 struct sched_dl_entity {
1311 struct rb_node rb_node;
1312
1313 /*
1314 * Original scheduling parameters. Copied here from sched_attr
1315 * during sched_setattr(), they will remain the same until
1316 * the next sched_setattr().
1317 */
1318 u64 dl_runtime; /* maximum runtime for each instance */
1319 u64 dl_deadline; /* relative deadline of each instance */
1320 u64 dl_period; /* separation of two instances (period) */
1321 u64 dl_bw; /* dl_runtime / dl_deadline */
1322
1323 /*
1324 * Actual scheduling parameters. Initialized with the values above,
1325 * they are continously updated during task execution. Note that
1326 * the remaining runtime could be < 0 in case we are in overrun.
1327 */
1328 s64 runtime; /* remaining runtime for this instance */
1329 u64 deadline; /* absolute deadline for this instance */
1330 unsigned int flags; /* specifying the scheduler behaviour */
1331
1332 /*
1333 * Some bool flags:
1334 *
1335 * @dl_throttled tells if we exhausted the runtime. If so, the
1336 * task has to wait for a replenishment to be performed at the
1337 * next firing of dl_timer.
1338 *
1339 * @dl_boosted tells if we are boosted due to DI. If so we are
1340 * outside bandwidth enforcement mechanism (but only until we
1341 * exit the critical section);
1342 *
1343 * @dl_yielded tells if task gave up the cpu before consuming
1344 * all its available runtime during the last job.
1345 */
1346 int dl_throttled, dl_boosted, dl_yielded;
1347
1348 /*
1349 * Bandwidth enforcement timer. Each -deadline task has its
1350 * own bandwidth to be enforced, thus we need one timer per task.
1351 */
1352 struct hrtimer dl_timer;
1353 };
1354
1355 union rcu_special {
1356 struct {
1357 u8 blocked;
1358 u8 need_qs;
1359 u8 exp_need_qs;
1360 u8 pad; /* Otherwise the compiler can store garbage here. */
1361 } b; /* Bits. */
1362 u32 s; /* Set of bits. */
1363 };
1364 struct rcu_node;
1365
1366 enum perf_event_task_context {
1367 perf_invalid_context = -1,
1368 perf_hw_context = 0,
1369 perf_sw_context,
1370 perf_nr_task_contexts,
1371 };
1372
1373 /* Track pages that require TLB flushes */
1374 struct tlbflush_unmap_batch {
1375 /*
1376 * Each bit set is a CPU that potentially has a TLB entry for one of
1377 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1378 */
1379 struct cpumask cpumask;
1380
1381 /* True if any bit in cpumask is set */
1382 bool flush_required;
1383
1384 /*
1385 * If true then the PTE was dirty when unmapped. The entry must be
1386 * flushed before IO is initiated or a stale TLB entry potentially
1387 * allows an update without redirtying the page.
1388 */
1389 bool writable;
1390 };
1391
1392 struct task_struct {
1393 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1394 void *stack;
1395 atomic_t usage;
1396 unsigned int flags; /* per process flags, defined below */
1397 unsigned int ptrace;
1398
1399 #ifdef CONFIG_SMP
1400 struct llist_node wake_entry;
1401 int on_cpu;
1402 unsigned int wakee_flips;
1403 unsigned long wakee_flip_decay_ts;
1404 struct task_struct *last_wakee;
1405
1406 int wake_cpu;
1407 #endif
1408 int on_rq;
1409
1410 int prio, static_prio, normal_prio;
1411 unsigned int rt_priority;
1412 const struct sched_class *sched_class;
1413 struct sched_entity se;
1414 struct sched_rt_entity rt;
1415 #ifdef CONFIG_CGROUP_SCHED
1416 struct task_group *sched_task_group;
1417 #endif
1418 struct sched_dl_entity dl;
1419
1420 #ifdef CONFIG_PREEMPT_NOTIFIERS
1421 /* list of struct preempt_notifier: */
1422 struct hlist_head preempt_notifiers;
1423 #endif
1424
1425 #ifdef CONFIG_BLK_DEV_IO_TRACE
1426 unsigned int btrace_seq;
1427 #endif
1428
1429 unsigned int policy;
1430 int nr_cpus_allowed;
1431 cpumask_t cpus_allowed;
1432
1433 #ifdef CONFIG_PREEMPT_RCU
1434 int rcu_read_lock_nesting;
1435 union rcu_special rcu_read_unlock_special;
1436 struct list_head rcu_node_entry;
1437 struct rcu_node *rcu_blocked_node;
1438 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1439 #ifdef CONFIG_TASKS_RCU
1440 unsigned long rcu_tasks_nvcsw;
1441 bool rcu_tasks_holdout;
1442 struct list_head rcu_tasks_holdout_list;
1443 int rcu_tasks_idle_cpu;
1444 #endif /* #ifdef CONFIG_TASKS_RCU */
1445
1446 #ifdef CONFIG_SCHED_INFO
1447 struct sched_info sched_info;
1448 #endif
1449
1450 struct list_head tasks;
1451 #ifdef CONFIG_SMP
1452 struct plist_node pushable_tasks;
1453 struct rb_node pushable_dl_tasks;
1454 #endif
1455
1456 struct mm_struct *mm, *active_mm;
1457 /* per-thread vma caching */
1458 u32 vmacache_seqnum;
1459 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1460 #if defined(SPLIT_RSS_COUNTING)
1461 struct task_rss_stat rss_stat;
1462 #endif
1463 /* task state */
1464 int exit_state;
1465 int exit_code, exit_signal;
1466 int pdeath_signal; /* The signal sent when the parent dies */
1467 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1468
1469 /* Used for emulating ABI behavior of previous Linux versions */
1470 unsigned int personality;
1471
1472 /* scheduler bits, serialized by scheduler locks */
1473 unsigned sched_reset_on_fork:1;
1474 unsigned sched_contributes_to_load:1;
1475 unsigned sched_migrated:1;
1476 unsigned :0; /* force alignment to the next boundary */
1477
1478 /* unserialized, strictly 'current' */
1479 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1480 unsigned in_iowait:1;
1481 #ifdef CONFIG_MEMCG
1482 unsigned memcg_may_oom:1;
1483 #ifndef CONFIG_SLOB
1484 unsigned memcg_kmem_skip_account:1;
1485 #endif
1486 #endif
1487 #ifdef CONFIG_COMPAT_BRK
1488 unsigned brk_randomized:1;
1489 #endif
1490
1491 unsigned long atomic_flags; /* Flags needing atomic access. */
1492
1493 struct restart_block restart_block;
1494
1495 pid_t pid;
1496 pid_t tgid;
1497
1498 #ifdef CONFIG_CC_STACKPROTECTOR
1499 /* Canary value for the -fstack-protector gcc feature */
1500 unsigned long stack_canary;
1501 #endif
1502 /*
1503 * pointers to (original) parent process, youngest child, younger sibling,
1504 * older sibling, respectively. (p->father can be replaced with
1505 * p->real_parent->pid)
1506 */
1507 struct task_struct __rcu *real_parent; /* real parent process */
1508 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1509 /*
1510 * children/sibling forms the list of my natural children
1511 */
1512 struct list_head children; /* list of my children */
1513 struct list_head sibling; /* linkage in my parent's children list */
1514 struct task_struct *group_leader; /* threadgroup leader */
1515
1516 /*
1517 * ptraced is the list of tasks this task is using ptrace on.
1518 * This includes both natural children and PTRACE_ATTACH targets.
1519 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1520 */
1521 struct list_head ptraced;
1522 struct list_head ptrace_entry;
1523
1524 /* PID/PID hash table linkage. */
1525 struct pid_link pids[PIDTYPE_MAX];
1526 struct list_head thread_group;
1527 struct list_head thread_node;
1528
1529 struct completion *vfork_done; /* for vfork() */
1530 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1531 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1532
1533 cputime_t utime, stime, utimescaled, stimescaled;
1534 cputime_t gtime;
1535 struct prev_cputime prev_cputime;
1536 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1537 seqcount_t vtime_seqcount;
1538 unsigned long long vtime_snap;
1539 enum {
1540 /* Task is sleeping or running in a CPU with VTIME inactive */
1541 VTIME_INACTIVE = 0,
1542 /* Task runs in userspace in a CPU with VTIME active */
1543 VTIME_USER,
1544 /* Task runs in kernelspace in a CPU with VTIME active */
1545 VTIME_SYS,
1546 } vtime_snap_whence;
1547 #endif
1548
1549 #ifdef CONFIG_NO_HZ_FULL
1550 unsigned long tick_dep_mask;
1551 #endif
1552 unsigned long nvcsw, nivcsw; /* context switch counts */
1553 u64 start_time; /* monotonic time in nsec */
1554 u64 real_start_time; /* boot based time in nsec */
1555 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1556 unsigned long min_flt, maj_flt;
1557
1558 struct task_cputime cputime_expires;
1559 struct list_head cpu_timers[3];
1560
1561 /* process credentials */
1562 const struct cred __rcu *real_cred; /* objective and real subjective task
1563 * credentials (COW) */
1564 const struct cred __rcu *cred; /* effective (overridable) subjective task
1565 * credentials (COW) */
1566 char comm[TASK_COMM_LEN]; /* executable name excluding path
1567 - access with [gs]et_task_comm (which lock
1568 it with task_lock())
1569 - initialized normally by setup_new_exec */
1570 /* file system info */
1571 struct nameidata *nameidata;
1572 #ifdef CONFIG_SYSVIPC
1573 /* ipc stuff */
1574 struct sysv_sem sysvsem;
1575 struct sysv_shm sysvshm;
1576 #endif
1577 #ifdef CONFIG_DETECT_HUNG_TASK
1578 /* hung task detection */
1579 unsigned long last_switch_count;
1580 #endif
1581 /* filesystem information */
1582 struct fs_struct *fs;
1583 /* open file information */
1584 struct files_struct *files;
1585 /* namespaces */
1586 struct nsproxy *nsproxy;
1587 /* signal handlers */
1588 struct signal_struct *signal;
1589 struct sighand_struct *sighand;
1590
1591 sigset_t blocked, real_blocked;
1592 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1593 struct sigpending pending;
1594
1595 unsigned long sas_ss_sp;
1596 size_t sas_ss_size;
1597
1598 struct callback_head *task_works;
1599
1600 struct audit_context *audit_context;
1601 #ifdef CONFIG_AUDITSYSCALL
1602 kuid_t loginuid;
1603 unsigned int sessionid;
1604 #endif
1605 struct seccomp seccomp;
1606
1607 /* Thread group tracking */
1608 u32 parent_exec_id;
1609 u32 self_exec_id;
1610 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1611 * mempolicy */
1612 spinlock_t alloc_lock;
1613
1614 /* Protection of the PI data structures: */
1615 raw_spinlock_t pi_lock;
1616
1617 struct wake_q_node wake_q;
1618
1619 #ifdef CONFIG_RT_MUTEXES
1620 /* PI waiters blocked on a rt_mutex held by this task */
1621 struct rb_root pi_waiters;
1622 struct rb_node *pi_waiters_leftmost;
1623 /* Deadlock detection and priority inheritance handling */
1624 struct rt_mutex_waiter *pi_blocked_on;
1625 #endif
1626
1627 #ifdef CONFIG_DEBUG_MUTEXES
1628 /* mutex deadlock detection */
1629 struct mutex_waiter *blocked_on;
1630 #endif
1631 #ifdef CONFIG_TRACE_IRQFLAGS
1632 unsigned int irq_events;
1633 unsigned long hardirq_enable_ip;
1634 unsigned long hardirq_disable_ip;
1635 unsigned int hardirq_enable_event;
1636 unsigned int hardirq_disable_event;
1637 int hardirqs_enabled;
1638 int hardirq_context;
1639 unsigned long softirq_disable_ip;
1640 unsigned long softirq_enable_ip;
1641 unsigned int softirq_disable_event;
1642 unsigned int softirq_enable_event;
1643 int softirqs_enabled;
1644 int softirq_context;
1645 #endif
1646 #ifdef CONFIG_LOCKDEP
1647 # define MAX_LOCK_DEPTH 48UL
1648 u64 curr_chain_key;
1649 int lockdep_depth;
1650 unsigned int lockdep_recursion;
1651 struct held_lock held_locks[MAX_LOCK_DEPTH];
1652 gfp_t lockdep_reclaim_gfp;
1653 #endif
1654 #ifdef CONFIG_UBSAN
1655 unsigned int in_ubsan;
1656 #endif
1657
1658 /* journalling filesystem info */
1659 void *journal_info;
1660
1661 /* stacked block device info */
1662 struct bio_list *bio_list;
1663
1664 #ifdef CONFIG_BLOCK
1665 /* stack plugging */
1666 struct blk_plug *plug;
1667 #endif
1668
1669 /* VM state */
1670 struct reclaim_state *reclaim_state;
1671
1672 struct backing_dev_info *backing_dev_info;
1673
1674 struct io_context *io_context;
1675
1676 unsigned long ptrace_message;
1677 siginfo_t *last_siginfo; /* For ptrace use. */
1678 struct task_io_accounting ioac;
1679 #if defined(CONFIG_TASK_XACCT)
1680 u64 acct_rss_mem1; /* accumulated rss usage */
1681 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1682 cputime_t acct_timexpd; /* stime + utime since last update */
1683 #endif
1684 #ifdef CONFIG_CPUSETS
1685 nodemask_t mems_allowed; /* Protected by alloc_lock */
1686 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1687 int cpuset_mem_spread_rotor;
1688 int cpuset_slab_spread_rotor;
1689 #endif
1690 #ifdef CONFIG_CGROUPS
1691 /* Control Group info protected by css_set_lock */
1692 struct css_set __rcu *cgroups;
1693 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1694 struct list_head cg_list;
1695 #endif
1696 #ifdef CONFIG_FUTEX
1697 struct robust_list_head __user *robust_list;
1698 #ifdef CONFIG_COMPAT
1699 struct compat_robust_list_head __user *compat_robust_list;
1700 #endif
1701 struct list_head pi_state_list;
1702 struct futex_pi_state *pi_state_cache;
1703 #endif
1704 #ifdef CONFIG_PERF_EVENTS
1705 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1706 struct mutex perf_event_mutex;
1707 struct list_head perf_event_list;
1708 #endif
1709 #ifdef CONFIG_DEBUG_PREEMPT
1710 unsigned long preempt_disable_ip;
1711 #endif
1712 #ifdef CONFIG_NUMA
1713 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1714 short il_next;
1715 short pref_node_fork;
1716 #endif
1717 #ifdef CONFIG_NUMA_BALANCING
1718 int numa_scan_seq;
1719 unsigned int numa_scan_period;
1720 unsigned int numa_scan_period_max;
1721 int numa_preferred_nid;
1722 unsigned long numa_migrate_retry;
1723 u64 node_stamp; /* migration stamp */
1724 u64 last_task_numa_placement;
1725 u64 last_sum_exec_runtime;
1726 struct callback_head numa_work;
1727
1728 struct list_head numa_entry;
1729 struct numa_group *numa_group;
1730
1731 /*
1732 * numa_faults is an array split into four regions:
1733 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1734 * in this precise order.
1735 *
1736 * faults_memory: Exponential decaying average of faults on a per-node
1737 * basis. Scheduling placement decisions are made based on these
1738 * counts. The values remain static for the duration of a PTE scan.
1739 * faults_cpu: Track the nodes the process was running on when a NUMA
1740 * hinting fault was incurred.
1741 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1742 * during the current scan window. When the scan completes, the counts
1743 * in faults_memory and faults_cpu decay and these values are copied.
1744 */
1745 unsigned long *numa_faults;
1746 unsigned long total_numa_faults;
1747
1748 /*
1749 * numa_faults_locality tracks if faults recorded during the last
1750 * scan window were remote/local or failed to migrate. The task scan
1751 * period is adapted based on the locality of the faults with different
1752 * weights depending on whether they were shared or private faults
1753 */
1754 unsigned long numa_faults_locality[3];
1755
1756 unsigned long numa_pages_migrated;
1757 #endif /* CONFIG_NUMA_BALANCING */
1758
1759 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1760 struct tlbflush_unmap_batch tlb_ubc;
1761 #endif
1762
1763 struct rcu_head rcu;
1764
1765 /*
1766 * cache last used pipe for splice
1767 */
1768 struct pipe_inode_info *splice_pipe;
1769
1770 struct page_frag task_frag;
1771
1772 #ifdef CONFIG_TASK_DELAY_ACCT
1773 struct task_delay_info *delays;
1774 #endif
1775 #ifdef CONFIG_FAULT_INJECTION
1776 int make_it_fail;
1777 #endif
1778 /*
1779 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1780 * balance_dirty_pages() for some dirty throttling pause
1781 */
1782 int nr_dirtied;
1783 int nr_dirtied_pause;
1784 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1785
1786 #ifdef CONFIG_LATENCYTOP
1787 int latency_record_count;
1788 struct latency_record latency_record[LT_SAVECOUNT];
1789 #endif
1790 /*
1791 * time slack values; these are used to round up poll() and
1792 * select() etc timeout values. These are in nanoseconds.
1793 */
1794 u64 timer_slack_ns;
1795 u64 default_timer_slack_ns;
1796
1797 #ifdef CONFIG_KASAN
1798 unsigned int kasan_depth;
1799 #endif
1800 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1801 /* Index of current stored address in ret_stack */
1802 int curr_ret_stack;
1803 /* Stack of return addresses for return function tracing */
1804 struct ftrace_ret_stack *ret_stack;
1805 /* time stamp for last schedule */
1806 unsigned long long ftrace_timestamp;
1807 /*
1808 * Number of functions that haven't been traced
1809 * because of depth overrun.
1810 */
1811 atomic_t trace_overrun;
1812 /* Pause for the tracing */
1813 atomic_t tracing_graph_pause;
1814 #endif
1815 #ifdef CONFIG_TRACING
1816 /* state flags for use by tracers */
1817 unsigned long trace;
1818 /* bitmask and counter of trace recursion */
1819 unsigned long trace_recursion;
1820 #endif /* CONFIG_TRACING */
1821 #ifdef CONFIG_MEMCG
1822 struct mem_cgroup *memcg_in_oom;
1823 gfp_t memcg_oom_gfp_mask;
1824 int memcg_oom_order;
1825
1826 /* number of pages to reclaim on returning to userland */
1827 unsigned int memcg_nr_pages_over_high;
1828 #endif
1829 #ifdef CONFIG_UPROBES
1830 struct uprobe_task *utask;
1831 #endif
1832 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1833 unsigned int sequential_io;
1834 unsigned int sequential_io_avg;
1835 #endif
1836 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1837 unsigned long task_state_change;
1838 #endif
1839 int pagefault_disabled;
1840 /* CPU-specific state of this task */
1841 struct thread_struct thread;
1842 /*
1843 * WARNING: on x86, 'thread_struct' contains a variable-sized
1844 * structure. It *MUST* be at the end of 'task_struct'.
1845 *
1846 * Do not put anything below here!
1847 */
1848 };
1849
1850 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1851 extern int arch_task_struct_size __read_mostly;
1852 #else
1853 # define arch_task_struct_size (sizeof(struct task_struct))
1854 #endif
1855
1856 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1857 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1858
1859 #define TNF_MIGRATED 0x01
1860 #define TNF_NO_GROUP 0x02
1861 #define TNF_SHARED 0x04
1862 #define TNF_FAULT_LOCAL 0x08
1863 #define TNF_MIGRATE_FAIL 0x10
1864
1865 #ifdef CONFIG_NUMA_BALANCING
1866 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1867 extern pid_t task_numa_group_id(struct task_struct *p);
1868 extern void set_numabalancing_state(bool enabled);
1869 extern void task_numa_free(struct task_struct *p);
1870 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1871 int src_nid, int dst_cpu);
1872 #else
1873 static inline void task_numa_fault(int last_node, int node, int pages,
1874 int flags)
1875 {
1876 }
1877 static inline pid_t task_numa_group_id(struct task_struct *p)
1878 {
1879 return 0;
1880 }
1881 static inline void set_numabalancing_state(bool enabled)
1882 {
1883 }
1884 static inline void task_numa_free(struct task_struct *p)
1885 {
1886 }
1887 static inline bool should_numa_migrate_memory(struct task_struct *p,
1888 struct page *page, int src_nid, int dst_cpu)
1889 {
1890 return true;
1891 }
1892 #endif
1893
1894 static inline struct pid *task_pid(struct task_struct *task)
1895 {
1896 return task->pids[PIDTYPE_PID].pid;
1897 }
1898
1899 static inline struct pid *task_tgid(struct task_struct *task)
1900 {
1901 return task->group_leader->pids[PIDTYPE_PID].pid;
1902 }
1903
1904 /*
1905 * Without tasklist or rcu lock it is not safe to dereference
1906 * the result of task_pgrp/task_session even if task == current,
1907 * we can race with another thread doing sys_setsid/sys_setpgid.
1908 */
1909 static inline struct pid *task_pgrp(struct task_struct *task)
1910 {
1911 return task->group_leader->pids[PIDTYPE_PGID].pid;
1912 }
1913
1914 static inline struct pid *task_session(struct task_struct *task)
1915 {
1916 return task->group_leader->pids[PIDTYPE_SID].pid;
1917 }
1918
1919 struct pid_namespace;
1920
1921 /*
1922 * the helpers to get the task's different pids as they are seen
1923 * from various namespaces
1924 *
1925 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1926 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1927 * current.
1928 * task_xid_nr_ns() : id seen from the ns specified;
1929 *
1930 * set_task_vxid() : assigns a virtual id to a task;
1931 *
1932 * see also pid_nr() etc in include/linux/pid.h
1933 */
1934 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1935 struct pid_namespace *ns);
1936
1937 static inline pid_t task_pid_nr(struct task_struct *tsk)
1938 {
1939 return tsk->pid;
1940 }
1941
1942 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1943 struct pid_namespace *ns)
1944 {
1945 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1946 }
1947
1948 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1949 {
1950 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1951 }
1952
1953
1954 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1955 {
1956 return tsk->tgid;
1957 }
1958
1959 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1960
1961 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1962 {
1963 return pid_vnr(task_tgid(tsk));
1964 }
1965
1966
1967 static inline int pid_alive(const struct task_struct *p);
1968 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1969 {
1970 pid_t pid = 0;
1971
1972 rcu_read_lock();
1973 if (pid_alive(tsk))
1974 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1975 rcu_read_unlock();
1976
1977 return pid;
1978 }
1979
1980 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1981 {
1982 return task_ppid_nr_ns(tsk, &init_pid_ns);
1983 }
1984
1985 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1986 struct pid_namespace *ns)
1987 {
1988 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1989 }
1990
1991 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1992 {
1993 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1994 }
1995
1996
1997 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1998 struct pid_namespace *ns)
1999 {
2000 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2001 }
2002
2003 static inline pid_t task_session_vnr(struct task_struct *tsk)
2004 {
2005 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2006 }
2007
2008 /* obsolete, do not use */
2009 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2010 {
2011 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2012 }
2013
2014 /**
2015 * pid_alive - check that a task structure is not stale
2016 * @p: Task structure to be checked.
2017 *
2018 * Test if a process is not yet dead (at most zombie state)
2019 * If pid_alive fails, then pointers within the task structure
2020 * can be stale and must not be dereferenced.
2021 *
2022 * Return: 1 if the process is alive. 0 otherwise.
2023 */
2024 static inline int pid_alive(const struct task_struct *p)
2025 {
2026 return p->pids[PIDTYPE_PID].pid != NULL;
2027 }
2028
2029 /**
2030 * is_global_init - check if a task structure is init. Since init
2031 * is free to have sub-threads we need to check tgid.
2032 * @tsk: Task structure to be checked.
2033 *
2034 * Check if a task structure is the first user space task the kernel created.
2035 *
2036 * Return: 1 if the task structure is init. 0 otherwise.
2037 */
2038 static inline int is_global_init(struct task_struct *tsk)
2039 {
2040 return task_tgid_nr(tsk) == 1;
2041 }
2042
2043 extern struct pid *cad_pid;
2044
2045 extern void free_task(struct task_struct *tsk);
2046 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2047
2048 extern void __put_task_struct(struct task_struct *t);
2049
2050 static inline void put_task_struct(struct task_struct *t)
2051 {
2052 if (atomic_dec_and_test(&t->usage))
2053 __put_task_struct(t);
2054 }
2055
2056 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2057 extern void task_cputime(struct task_struct *t,
2058 cputime_t *utime, cputime_t *stime);
2059 extern void task_cputime_scaled(struct task_struct *t,
2060 cputime_t *utimescaled, cputime_t *stimescaled);
2061 extern cputime_t task_gtime(struct task_struct *t);
2062 #else
2063 static inline void task_cputime(struct task_struct *t,
2064 cputime_t *utime, cputime_t *stime)
2065 {
2066 if (utime)
2067 *utime = t->utime;
2068 if (stime)
2069 *stime = t->stime;
2070 }
2071
2072 static inline void task_cputime_scaled(struct task_struct *t,
2073 cputime_t *utimescaled,
2074 cputime_t *stimescaled)
2075 {
2076 if (utimescaled)
2077 *utimescaled = t->utimescaled;
2078 if (stimescaled)
2079 *stimescaled = t->stimescaled;
2080 }
2081
2082 static inline cputime_t task_gtime(struct task_struct *t)
2083 {
2084 return t->gtime;
2085 }
2086 #endif
2087 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2088 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2089
2090 /*
2091 * Per process flags
2092 */
2093 #define PF_EXITING 0x00000004 /* getting shut down */
2094 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2095 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2096 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2097 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2098 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2099 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2100 #define PF_DUMPCORE 0x00000200 /* dumped core */
2101 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2102 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2103 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2104 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2105 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2106 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2107 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2108 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2109 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2110 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2111 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2112 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2113 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2114 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2115 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2116 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2117 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2118 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2119 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2120
2121 /*
2122 * Only the _current_ task can read/write to tsk->flags, but other
2123 * tasks can access tsk->flags in readonly mode for example
2124 * with tsk_used_math (like during threaded core dumping).
2125 * There is however an exception to this rule during ptrace
2126 * or during fork: the ptracer task is allowed to write to the
2127 * child->flags of its traced child (same goes for fork, the parent
2128 * can write to the child->flags), because we're guaranteed the
2129 * child is not running and in turn not changing child->flags
2130 * at the same time the parent does it.
2131 */
2132 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2133 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2134 #define clear_used_math() clear_stopped_child_used_math(current)
2135 #define set_used_math() set_stopped_child_used_math(current)
2136 #define conditional_stopped_child_used_math(condition, child) \
2137 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2138 #define conditional_used_math(condition) \
2139 conditional_stopped_child_used_math(condition, current)
2140 #define copy_to_stopped_child_used_math(child) \
2141 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2142 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2143 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2144 #define used_math() tsk_used_math(current)
2145
2146 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2147 * __GFP_FS is also cleared as it implies __GFP_IO.
2148 */
2149 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2150 {
2151 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2152 flags &= ~(__GFP_IO | __GFP_FS);
2153 return flags;
2154 }
2155
2156 static inline unsigned int memalloc_noio_save(void)
2157 {
2158 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2159 current->flags |= PF_MEMALLOC_NOIO;
2160 return flags;
2161 }
2162
2163 static inline void memalloc_noio_restore(unsigned int flags)
2164 {
2165 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2166 }
2167
2168 /* Per-process atomic flags. */
2169 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2170 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2171 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2172
2173
2174 #define TASK_PFA_TEST(name, func) \
2175 static inline bool task_##func(struct task_struct *p) \
2176 { return test_bit(PFA_##name, &p->atomic_flags); }
2177 #define TASK_PFA_SET(name, func) \
2178 static inline void task_set_##func(struct task_struct *p) \
2179 { set_bit(PFA_##name, &p->atomic_flags); }
2180 #define TASK_PFA_CLEAR(name, func) \
2181 static inline void task_clear_##func(struct task_struct *p) \
2182 { clear_bit(PFA_##name, &p->atomic_flags); }
2183
2184 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2185 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2186
2187 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2188 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2189 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2190
2191 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2192 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2193 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2194
2195 /*
2196 * task->jobctl flags
2197 */
2198 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2199
2200 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2201 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2202 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2203 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2204 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2205 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2206 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2207
2208 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2209 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2210 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2211 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2212 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2213 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2214 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2215
2216 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2217 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2218
2219 extern bool task_set_jobctl_pending(struct task_struct *task,
2220 unsigned long mask);
2221 extern void task_clear_jobctl_trapping(struct task_struct *task);
2222 extern void task_clear_jobctl_pending(struct task_struct *task,
2223 unsigned long mask);
2224
2225 static inline void rcu_copy_process(struct task_struct *p)
2226 {
2227 #ifdef CONFIG_PREEMPT_RCU
2228 p->rcu_read_lock_nesting = 0;
2229 p->rcu_read_unlock_special.s = 0;
2230 p->rcu_blocked_node = NULL;
2231 INIT_LIST_HEAD(&p->rcu_node_entry);
2232 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2233 #ifdef CONFIG_TASKS_RCU
2234 p->rcu_tasks_holdout = false;
2235 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2236 p->rcu_tasks_idle_cpu = -1;
2237 #endif /* #ifdef CONFIG_TASKS_RCU */
2238 }
2239
2240 static inline void tsk_restore_flags(struct task_struct *task,
2241 unsigned long orig_flags, unsigned long flags)
2242 {
2243 task->flags &= ~flags;
2244 task->flags |= orig_flags & flags;
2245 }
2246
2247 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2248 const struct cpumask *trial);
2249 extern int task_can_attach(struct task_struct *p,
2250 const struct cpumask *cs_cpus_allowed);
2251 #ifdef CONFIG_SMP
2252 extern void do_set_cpus_allowed(struct task_struct *p,
2253 const struct cpumask *new_mask);
2254
2255 extern int set_cpus_allowed_ptr(struct task_struct *p,
2256 const struct cpumask *new_mask);
2257 #else
2258 static inline void do_set_cpus_allowed(struct task_struct *p,
2259 const struct cpumask *new_mask)
2260 {
2261 }
2262 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2263 const struct cpumask *new_mask)
2264 {
2265 if (!cpumask_test_cpu(0, new_mask))
2266 return -EINVAL;
2267 return 0;
2268 }
2269 #endif
2270
2271 #ifdef CONFIG_NO_HZ_COMMON
2272 void calc_load_enter_idle(void);
2273 void calc_load_exit_idle(void);
2274 #else
2275 static inline void calc_load_enter_idle(void) { }
2276 static inline void calc_load_exit_idle(void) { }
2277 #endif /* CONFIG_NO_HZ_COMMON */
2278
2279 /*
2280 * Do not use outside of architecture code which knows its limitations.
2281 *
2282 * sched_clock() has no promise of monotonicity or bounded drift between
2283 * CPUs, use (which you should not) requires disabling IRQs.
2284 *
2285 * Please use one of the three interfaces below.
2286 */
2287 extern unsigned long long notrace sched_clock(void);
2288 /*
2289 * See the comment in kernel/sched/clock.c
2290 */
2291 extern u64 cpu_clock(int cpu);
2292 extern u64 local_clock(void);
2293 extern u64 running_clock(void);
2294 extern u64 sched_clock_cpu(int cpu);
2295
2296
2297 extern void sched_clock_init(void);
2298
2299 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2300 static inline void sched_clock_tick(void)
2301 {
2302 }
2303
2304 static inline void sched_clock_idle_sleep_event(void)
2305 {
2306 }
2307
2308 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2309 {
2310 }
2311 #else
2312 /*
2313 * Architectures can set this to 1 if they have specified
2314 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2315 * but then during bootup it turns out that sched_clock()
2316 * is reliable after all:
2317 */
2318 extern int sched_clock_stable(void);
2319 extern void set_sched_clock_stable(void);
2320 extern void clear_sched_clock_stable(void);
2321
2322 extern void sched_clock_tick(void);
2323 extern void sched_clock_idle_sleep_event(void);
2324 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2325 #endif
2326
2327 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2328 /*
2329 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2330 * The reason for this explicit opt-in is not to have perf penalty with
2331 * slow sched_clocks.
2332 */
2333 extern void enable_sched_clock_irqtime(void);
2334 extern void disable_sched_clock_irqtime(void);
2335 #else
2336 static inline void enable_sched_clock_irqtime(void) {}
2337 static inline void disable_sched_clock_irqtime(void) {}
2338 #endif
2339
2340 extern unsigned long long
2341 task_sched_runtime(struct task_struct *task);
2342
2343 /* sched_exec is called by processes performing an exec */
2344 #ifdef CONFIG_SMP
2345 extern void sched_exec(void);
2346 #else
2347 #define sched_exec() {}
2348 #endif
2349
2350 extern void sched_clock_idle_sleep_event(void);
2351 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2352
2353 #ifdef CONFIG_HOTPLUG_CPU
2354 extern void idle_task_exit(void);
2355 #else
2356 static inline void idle_task_exit(void) {}
2357 #endif
2358
2359 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2360 extern void wake_up_nohz_cpu(int cpu);
2361 #else
2362 static inline void wake_up_nohz_cpu(int cpu) { }
2363 #endif
2364
2365 #ifdef CONFIG_NO_HZ_FULL
2366 extern u64 scheduler_tick_max_deferment(void);
2367 #endif
2368
2369 #ifdef CONFIG_SCHED_AUTOGROUP
2370 extern void sched_autogroup_create_attach(struct task_struct *p);
2371 extern void sched_autogroup_detach(struct task_struct *p);
2372 extern void sched_autogroup_fork(struct signal_struct *sig);
2373 extern void sched_autogroup_exit(struct signal_struct *sig);
2374 #ifdef CONFIG_PROC_FS
2375 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2376 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2377 #endif
2378 #else
2379 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2380 static inline void sched_autogroup_detach(struct task_struct *p) { }
2381 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2382 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2383 #endif
2384
2385 extern int yield_to(struct task_struct *p, bool preempt);
2386 extern void set_user_nice(struct task_struct *p, long nice);
2387 extern int task_prio(const struct task_struct *p);
2388 /**
2389 * task_nice - return the nice value of a given task.
2390 * @p: the task in question.
2391 *
2392 * Return: The nice value [ -20 ... 0 ... 19 ].
2393 */
2394 static inline int task_nice(const struct task_struct *p)
2395 {
2396 return PRIO_TO_NICE((p)->static_prio);
2397 }
2398 extern int can_nice(const struct task_struct *p, const int nice);
2399 extern int task_curr(const struct task_struct *p);
2400 extern int idle_cpu(int cpu);
2401 extern int sched_setscheduler(struct task_struct *, int,
2402 const struct sched_param *);
2403 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2404 const struct sched_param *);
2405 extern int sched_setattr(struct task_struct *,
2406 const struct sched_attr *);
2407 extern struct task_struct *idle_task(int cpu);
2408 /**
2409 * is_idle_task - is the specified task an idle task?
2410 * @p: the task in question.
2411 *
2412 * Return: 1 if @p is an idle task. 0 otherwise.
2413 */
2414 static inline bool is_idle_task(const struct task_struct *p)
2415 {
2416 return p->pid == 0;
2417 }
2418 extern struct task_struct *curr_task(int cpu);
2419 extern void set_curr_task(int cpu, struct task_struct *p);
2420
2421 void yield(void);
2422
2423 union thread_union {
2424 struct thread_info thread_info;
2425 unsigned long stack[THREAD_SIZE/sizeof(long)];
2426 };
2427
2428 #ifndef __HAVE_ARCH_KSTACK_END
2429 static inline int kstack_end(void *addr)
2430 {
2431 /* Reliable end of stack detection:
2432 * Some APM bios versions misalign the stack
2433 */
2434 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2435 }
2436 #endif
2437
2438 extern union thread_union init_thread_union;
2439 extern struct task_struct init_task;
2440
2441 extern struct mm_struct init_mm;
2442
2443 extern struct pid_namespace init_pid_ns;
2444
2445 /*
2446 * find a task by one of its numerical ids
2447 *
2448 * find_task_by_pid_ns():
2449 * finds a task by its pid in the specified namespace
2450 * find_task_by_vpid():
2451 * finds a task by its virtual pid
2452 *
2453 * see also find_vpid() etc in include/linux/pid.h
2454 */
2455
2456 extern struct task_struct *find_task_by_vpid(pid_t nr);
2457 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2458 struct pid_namespace *ns);
2459
2460 /* per-UID process charging. */
2461 extern struct user_struct * alloc_uid(kuid_t);
2462 static inline struct user_struct *get_uid(struct user_struct *u)
2463 {
2464 atomic_inc(&u->__count);
2465 return u;
2466 }
2467 extern void free_uid(struct user_struct *);
2468
2469 #include <asm/current.h>
2470
2471 extern void xtime_update(unsigned long ticks);
2472
2473 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2474 extern int wake_up_process(struct task_struct *tsk);
2475 extern void wake_up_new_task(struct task_struct *tsk);
2476 #ifdef CONFIG_SMP
2477 extern void kick_process(struct task_struct *tsk);
2478 #else
2479 static inline void kick_process(struct task_struct *tsk) { }
2480 #endif
2481 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2482 extern void sched_dead(struct task_struct *p);
2483
2484 extern void proc_caches_init(void);
2485 extern void flush_signals(struct task_struct *);
2486 extern void ignore_signals(struct task_struct *);
2487 extern void flush_signal_handlers(struct task_struct *, int force_default);
2488 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2489
2490 static inline int kernel_dequeue_signal(siginfo_t *info)
2491 {
2492 struct task_struct *tsk = current;
2493 siginfo_t __info;
2494 int ret;
2495
2496 spin_lock_irq(&tsk->sighand->siglock);
2497 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2498 spin_unlock_irq(&tsk->sighand->siglock);
2499
2500 return ret;
2501 }
2502
2503 static inline void kernel_signal_stop(void)
2504 {
2505 spin_lock_irq(&current->sighand->siglock);
2506 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2507 __set_current_state(TASK_STOPPED);
2508 spin_unlock_irq(&current->sighand->siglock);
2509
2510 schedule();
2511 }
2512
2513 extern void release_task(struct task_struct * p);
2514 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2515 extern int force_sigsegv(int, struct task_struct *);
2516 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2517 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2518 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2519 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2520 const struct cred *, u32);
2521 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2522 extern int kill_pid(struct pid *pid, int sig, int priv);
2523 extern int kill_proc_info(int, struct siginfo *, pid_t);
2524 extern __must_check bool do_notify_parent(struct task_struct *, int);
2525 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2526 extern void force_sig(int, struct task_struct *);
2527 extern int send_sig(int, struct task_struct *, int);
2528 extern int zap_other_threads(struct task_struct *p);
2529 extern struct sigqueue *sigqueue_alloc(void);
2530 extern void sigqueue_free(struct sigqueue *);
2531 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2532 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2533
2534 static inline void restore_saved_sigmask(void)
2535 {
2536 if (test_and_clear_restore_sigmask())
2537 __set_current_blocked(&current->saved_sigmask);
2538 }
2539
2540 static inline sigset_t *sigmask_to_save(void)
2541 {
2542 sigset_t *res = &current->blocked;
2543 if (unlikely(test_restore_sigmask()))
2544 res = &current->saved_sigmask;
2545 return res;
2546 }
2547
2548 static inline int kill_cad_pid(int sig, int priv)
2549 {
2550 return kill_pid(cad_pid, sig, priv);
2551 }
2552
2553 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2554 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2555 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2556 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2557
2558 /*
2559 * True if we are on the alternate signal stack.
2560 */
2561 static inline int on_sig_stack(unsigned long sp)
2562 {
2563 #ifdef CONFIG_STACK_GROWSUP
2564 return sp >= current->sas_ss_sp &&
2565 sp - current->sas_ss_sp < current->sas_ss_size;
2566 #else
2567 return sp > current->sas_ss_sp &&
2568 sp - current->sas_ss_sp <= current->sas_ss_size;
2569 #endif
2570 }
2571
2572 static inline int sas_ss_flags(unsigned long sp)
2573 {
2574 if (!current->sas_ss_size)
2575 return SS_DISABLE;
2576
2577 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2578 }
2579
2580 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2581 {
2582 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2583 #ifdef CONFIG_STACK_GROWSUP
2584 return current->sas_ss_sp;
2585 #else
2586 return current->sas_ss_sp + current->sas_ss_size;
2587 #endif
2588 return sp;
2589 }
2590
2591 /*
2592 * Routines for handling mm_structs
2593 */
2594 extern struct mm_struct * mm_alloc(void);
2595
2596 /* mmdrop drops the mm and the page tables */
2597 extern void __mmdrop(struct mm_struct *);
2598 static inline void mmdrop(struct mm_struct * mm)
2599 {
2600 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2601 __mmdrop(mm);
2602 }
2603
2604 /* mmput gets rid of the mappings and all user-space */
2605 extern void mmput(struct mm_struct *);
2606 /* Grab a reference to a task's mm, if it is not already going away */
2607 extern struct mm_struct *get_task_mm(struct task_struct *task);
2608 /*
2609 * Grab a reference to a task's mm, if it is not already going away
2610 * and ptrace_may_access with the mode parameter passed to it
2611 * succeeds.
2612 */
2613 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2614 /* Remove the current tasks stale references to the old mm_struct */
2615 extern void mm_release(struct task_struct *, struct mm_struct *);
2616
2617 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2618 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2619 struct task_struct *, unsigned long);
2620 #else
2621 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2622 struct task_struct *);
2623
2624 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2625 * via pt_regs, so ignore the tls argument passed via C. */
2626 static inline int copy_thread_tls(
2627 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2628 struct task_struct *p, unsigned long tls)
2629 {
2630 return copy_thread(clone_flags, sp, arg, p);
2631 }
2632 #endif
2633 extern void flush_thread(void);
2634 extern void exit_thread(void);
2635
2636 extern void exit_files(struct task_struct *);
2637 extern void __cleanup_sighand(struct sighand_struct *);
2638
2639 extern void exit_itimers(struct signal_struct *);
2640 extern void flush_itimer_signals(void);
2641
2642 extern void do_group_exit(int);
2643
2644 extern int do_execve(struct filename *,
2645 const char __user * const __user *,
2646 const char __user * const __user *);
2647 extern int do_execveat(int, struct filename *,
2648 const char __user * const __user *,
2649 const char __user * const __user *,
2650 int);
2651 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2652 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2653 struct task_struct *fork_idle(int);
2654 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2655
2656 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2657 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2658 {
2659 __set_task_comm(tsk, from, false);
2660 }
2661 extern char *get_task_comm(char *to, struct task_struct *tsk);
2662
2663 #ifdef CONFIG_SMP
2664 void scheduler_ipi(void);
2665 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2666 #else
2667 static inline void scheduler_ipi(void) { }
2668 static inline unsigned long wait_task_inactive(struct task_struct *p,
2669 long match_state)
2670 {
2671 return 1;
2672 }
2673 #endif
2674
2675 #define tasklist_empty() \
2676 list_empty(&init_task.tasks)
2677
2678 #define next_task(p) \
2679 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2680
2681 #define for_each_process(p) \
2682 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2683
2684 extern bool current_is_single_threaded(void);
2685
2686 /*
2687 * Careful: do_each_thread/while_each_thread is a double loop so
2688 * 'break' will not work as expected - use goto instead.
2689 */
2690 #define do_each_thread(g, t) \
2691 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2692
2693 #define while_each_thread(g, t) \
2694 while ((t = next_thread(t)) != g)
2695
2696 #define __for_each_thread(signal, t) \
2697 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2698
2699 #define for_each_thread(p, t) \
2700 __for_each_thread((p)->signal, t)
2701
2702 /* Careful: this is a double loop, 'break' won't work as expected. */
2703 #define for_each_process_thread(p, t) \
2704 for_each_process(p) for_each_thread(p, t)
2705
2706 static inline int get_nr_threads(struct task_struct *tsk)
2707 {
2708 return tsk->signal->nr_threads;
2709 }
2710
2711 static inline bool thread_group_leader(struct task_struct *p)
2712 {
2713 return p->exit_signal >= 0;
2714 }
2715
2716 /* Do to the insanities of de_thread it is possible for a process
2717 * to have the pid of the thread group leader without actually being
2718 * the thread group leader. For iteration through the pids in proc
2719 * all we care about is that we have a task with the appropriate
2720 * pid, we don't actually care if we have the right task.
2721 */
2722 static inline bool has_group_leader_pid(struct task_struct *p)
2723 {
2724 return task_pid(p) == p->signal->leader_pid;
2725 }
2726
2727 static inline
2728 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2729 {
2730 return p1->signal == p2->signal;
2731 }
2732
2733 static inline struct task_struct *next_thread(const struct task_struct *p)
2734 {
2735 return list_entry_rcu(p->thread_group.next,
2736 struct task_struct, thread_group);
2737 }
2738
2739 static inline int thread_group_empty(struct task_struct *p)
2740 {
2741 return list_empty(&p->thread_group);
2742 }
2743
2744 #define delay_group_leader(p) \
2745 (thread_group_leader(p) && !thread_group_empty(p))
2746
2747 /*
2748 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2749 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2750 * pins the final release of task.io_context. Also protects ->cpuset and
2751 * ->cgroup.subsys[]. And ->vfork_done.
2752 *
2753 * Nests both inside and outside of read_lock(&tasklist_lock).
2754 * It must not be nested with write_lock_irq(&tasklist_lock),
2755 * neither inside nor outside.
2756 */
2757 static inline void task_lock(struct task_struct *p)
2758 {
2759 spin_lock(&p->alloc_lock);
2760 }
2761
2762 static inline void task_unlock(struct task_struct *p)
2763 {
2764 spin_unlock(&p->alloc_lock);
2765 }
2766
2767 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2768 unsigned long *flags);
2769
2770 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2771 unsigned long *flags)
2772 {
2773 struct sighand_struct *ret;
2774
2775 ret = __lock_task_sighand(tsk, flags);
2776 (void)__cond_lock(&tsk->sighand->siglock, ret);
2777 return ret;
2778 }
2779
2780 static inline void unlock_task_sighand(struct task_struct *tsk,
2781 unsigned long *flags)
2782 {
2783 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2784 }
2785
2786 /**
2787 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2788 * @tsk: task causing the changes
2789 *
2790 * All operations which modify a threadgroup - a new thread joining the
2791 * group, death of a member thread (the assertion of PF_EXITING) and
2792 * exec(2) dethreading the process and replacing the leader - are wrapped
2793 * by threadgroup_change_{begin|end}(). This is to provide a place which
2794 * subsystems needing threadgroup stability can hook into for
2795 * synchronization.
2796 */
2797 static inline void threadgroup_change_begin(struct task_struct *tsk)
2798 {
2799 might_sleep();
2800 cgroup_threadgroup_change_begin(tsk);
2801 }
2802
2803 /**
2804 * threadgroup_change_end - mark the end of changes to a threadgroup
2805 * @tsk: task causing the changes
2806 *
2807 * See threadgroup_change_begin().
2808 */
2809 static inline void threadgroup_change_end(struct task_struct *tsk)
2810 {
2811 cgroup_threadgroup_change_end(tsk);
2812 }
2813
2814 #ifndef __HAVE_THREAD_FUNCTIONS
2815
2816 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2817 #define task_stack_page(task) ((task)->stack)
2818
2819 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2820 {
2821 *task_thread_info(p) = *task_thread_info(org);
2822 task_thread_info(p)->task = p;
2823 }
2824
2825 /*
2826 * Return the address of the last usable long on the stack.
2827 *
2828 * When the stack grows down, this is just above the thread
2829 * info struct. Going any lower will corrupt the threadinfo.
2830 *
2831 * When the stack grows up, this is the highest address.
2832 * Beyond that position, we corrupt data on the next page.
2833 */
2834 static inline unsigned long *end_of_stack(struct task_struct *p)
2835 {
2836 #ifdef CONFIG_STACK_GROWSUP
2837 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2838 #else
2839 return (unsigned long *)(task_thread_info(p) + 1);
2840 #endif
2841 }
2842
2843 #endif
2844 #define task_stack_end_corrupted(task) \
2845 (*(end_of_stack(task)) != STACK_END_MAGIC)
2846
2847 static inline int object_is_on_stack(void *obj)
2848 {
2849 void *stack = task_stack_page(current);
2850
2851 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2852 }
2853
2854 extern void thread_info_cache_init(void);
2855
2856 #ifdef CONFIG_DEBUG_STACK_USAGE
2857 static inline unsigned long stack_not_used(struct task_struct *p)
2858 {
2859 unsigned long *n = end_of_stack(p);
2860
2861 do { /* Skip over canary */
2862 n++;
2863 } while (!*n);
2864
2865 return (unsigned long)n - (unsigned long)end_of_stack(p);
2866 }
2867 #endif
2868 extern void set_task_stack_end_magic(struct task_struct *tsk);
2869
2870 /* set thread flags in other task's structures
2871 * - see asm/thread_info.h for TIF_xxxx flags available
2872 */
2873 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2874 {
2875 set_ti_thread_flag(task_thread_info(tsk), flag);
2876 }
2877
2878 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2879 {
2880 clear_ti_thread_flag(task_thread_info(tsk), flag);
2881 }
2882
2883 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2884 {
2885 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2886 }
2887
2888 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2889 {
2890 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2891 }
2892
2893 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2894 {
2895 return test_ti_thread_flag(task_thread_info(tsk), flag);
2896 }
2897
2898 static inline void set_tsk_need_resched(struct task_struct *tsk)
2899 {
2900 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2901 }
2902
2903 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2904 {
2905 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2906 }
2907
2908 static inline int test_tsk_need_resched(struct task_struct *tsk)
2909 {
2910 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2911 }
2912
2913 static inline int restart_syscall(void)
2914 {
2915 set_tsk_thread_flag(current, TIF_SIGPENDING);
2916 return -ERESTARTNOINTR;
2917 }
2918
2919 static inline int signal_pending(struct task_struct *p)
2920 {
2921 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2922 }
2923
2924 static inline int __fatal_signal_pending(struct task_struct *p)
2925 {
2926 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2927 }
2928
2929 static inline int fatal_signal_pending(struct task_struct *p)
2930 {
2931 return signal_pending(p) && __fatal_signal_pending(p);
2932 }
2933
2934 static inline int signal_pending_state(long state, struct task_struct *p)
2935 {
2936 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2937 return 0;
2938 if (!signal_pending(p))
2939 return 0;
2940
2941 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2942 }
2943
2944 /*
2945 * cond_resched() and cond_resched_lock(): latency reduction via
2946 * explicit rescheduling in places that are safe. The return
2947 * value indicates whether a reschedule was done in fact.
2948 * cond_resched_lock() will drop the spinlock before scheduling,
2949 * cond_resched_softirq() will enable bhs before scheduling.
2950 */
2951 extern int _cond_resched(void);
2952
2953 #define cond_resched() ({ \
2954 ___might_sleep(__FILE__, __LINE__, 0); \
2955 _cond_resched(); \
2956 })
2957
2958 extern int __cond_resched_lock(spinlock_t *lock);
2959
2960 #define cond_resched_lock(lock) ({ \
2961 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2962 __cond_resched_lock(lock); \
2963 })
2964
2965 extern int __cond_resched_softirq(void);
2966
2967 #define cond_resched_softirq() ({ \
2968 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2969 __cond_resched_softirq(); \
2970 })
2971
2972 static inline void cond_resched_rcu(void)
2973 {
2974 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2975 rcu_read_unlock();
2976 cond_resched();
2977 rcu_read_lock();
2978 #endif
2979 }
2980
2981 /*
2982 * Does a critical section need to be broken due to another
2983 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2984 * but a general need for low latency)
2985 */
2986 static inline int spin_needbreak(spinlock_t *lock)
2987 {
2988 #ifdef CONFIG_PREEMPT
2989 return spin_is_contended(lock);
2990 #else
2991 return 0;
2992 #endif
2993 }
2994
2995 /*
2996 * Idle thread specific functions to determine the need_resched
2997 * polling state.
2998 */
2999 #ifdef TIF_POLLING_NRFLAG
3000 static inline int tsk_is_polling(struct task_struct *p)
3001 {
3002 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3003 }
3004
3005 static inline void __current_set_polling(void)
3006 {
3007 set_thread_flag(TIF_POLLING_NRFLAG);
3008 }
3009
3010 static inline bool __must_check current_set_polling_and_test(void)
3011 {
3012 __current_set_polling();
3013
3014 /*
3015 * Polling state must be visible before we test NEED_RESCHED,
3016 * paired by resched_curr()
3017 */
3018 smp_mb__after_atomic();
3019
3020 return unlikely(tif_need_resched());
3021 }
3022
3023 static inline void __current_clr_polling(void)
3024 {
3025 clear_thread_flag(TIF_POLLING_NRFLAG);
3026 }
3027
3028 static inline bool __must_check current_clr_polling_and_test(void)
3029 {
3030 __current_clr_polling();
3031
3032 /*
3033 * Polling state must be visible before we test NEED_RESCHED,
3034 * paired by resched_curr()
3035 */
3036 smp_mb__after_atomic();
3037
3038 return unlikely(tif_need_resched());
3039 }
3040
3041 #else
3042 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3043 static inline void __current_set_polling(void) { }
3044 static inline void __current_clr_polling(void) { }
3045
3046 static inline bool __must_check current_set_polling_and_test(void)
3047 {
3048 return unlikely(tif_need_resched());
3049 }
3050 static inline bool __must_check current_clr_polling_and_test(void)
3051 {
3052 return unlikely(tif_need_resched());
3053 }
3054 #endif
3055
3056 static inline void current_clr_polling(void)
3057 {
3058 __current_clr_polling();
3059
3060 /*
3061 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3062 * Once the bit is cleared, we'll get IPIs with every new
3063 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3064 * fold.
3065 */
3066 smp_mb(); /* paired with resched_curr() */
3067
3068 preempt_fold_need_resched();
3069 }
3070
3071 static __always_inline bool need_resched(void)
3072 {
3073 return unlikely(tif_need_resched());
3074 }
3075
3076 /*
3077 * Thread group CPU time accounting.
3078 */
3079 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3080 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3081
3082 /*
3083 * Reevaluate whether the task has signals pending delivery.
3084 * Wake the task if so.
3085 * This is required every time the blocked sigset_t changes.
3086 * callers must hold sighand->siglock.
3087 */
3088 extern void recalc_sigpending_and_wake(struct task_struct *t);
3089 extern void recalc_sigpending(void);
3090
3091 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3092
3093 static inline void signal_wake_up(struct task_struct *t, bool resume)
3094 {
3095 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3096 }
3097 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3098 {
3099 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3100 }
3101
3102 /*
3103 * Wrappers for p->thread_info->cpu access. No-op on UP.
3104 */
3105 #ifdef CONFIG_SMP
3106
3107 static inline unsigned int task_cpu(const struct task_struct *p)
3108 {
3109 return task_thread_info(p)->cpu;
3110 }
3111
3112 static inline int task_node(const struct task_struct *p)
3113 {
3114 return cpu_to_node(task_cpu(p));
3115 }
3116
3117 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3118
3119 #else
3120
3121 static inline unsigned int task_cpu(const struct task_struct *p)
3122 {
3123 return 0;
3124 }
3125
3126 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3127 {
3128 }
3129
3130 #endif /* CONFIG_SMP */
3131
3132 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3133 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3134
3135 #ifdef CONFIG_CGROUP_SCHED
3136 extern struct task_group root_task_group;
3137 #endif /* CONFIG_CGROUP_SCHED */
3138
3139 extern int task_can_switch_user(struct user_struct *up,
3140 struct task_struct *tsk);
3141
3142 #ifdef CONFIG_TASK_XACCT
3143 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3144 {
3145 tsk->ioac.rchar += amt;
3146 }
3147
3148 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3149 {
3150 tsk->ioac.wchar += amt;
3151 }
3152
3153 static inline void inc_syscr(struct task_struct *tsk)
3154 {
3155 tsk->ioac.syscr++;
3156 }
3157
3158 static inline void inc_syscw(struct task_struct *tsk)
3159 {
3160 tsk->ioac.syscw++;
3161 }
3162 #else
3163 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3164 {
3165 }
3166
3167 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3168 {
3169 }
3170
3171 static inline void inc_syscr(struct task_struct *tsk)
3172 {
3173 }
3174
3175 static inline void inc_syscw(struct task_struct *tsk)
3176 {
3177 }
3178 #endif
3179
3180 #ifndef TASK_SIZE_OF
3181 #define TASK_SIZE_OF(tsk) TASK_SIZE
3182 #endif
3183
3184 #ifdef CONFIG_MEMCG
3185 extern void mm_update_next_owner(struct mm_struct *mm);
3186 #else
3187 static inline void mm_update_next_owner(struct mm_struct *mm)
3188 {
3189 }
3190 #endif /* CONFIG_MEMCG */
3191
3192 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3193 unsigned int limit)
3194 {
3195 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3196 }
3197
3198 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3199 unsigned int limit)
3200 {
3201 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3202 }
3203
3204 static inline unsigned long rlimit(unsigned int limit)
3205 {
3206 return task_rlimit(current, limit);
3207 }
3208
3209 static inline unsigned long rlimit_max(unsigned int limit)
3210 {
3211 return task_rlimit_max(current, limit);
3212 }
3213
3214 #ifdef CONFIG_CPU_FREQ
3215 struct update_util_data {
3216 void (*func)(struct update_util_data *data,
3217 u64 time, unsigned long util, unsigned long max);
3218 };
3219
3220 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3221 #endif /* CONFIG_CPU_FREQ */
3222
3223 #endif
This page took 0.09633 seconds and 6 git commands to generate.