4 #include <uapi/linux/sched.h>
6 #include <linux/sched/prio.h>
13 #include <asm/param.h> /* for HZ */
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
62 #include <asm/processor.h>
64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
67 * Extended scheduling parameters data structure.
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
90 * This is reflected by the actual fields of the sched_attr structure:
92 * @size size of the structure, for fwd/bwd compat.
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
116 /* SCHED_NORMAL, SCHED_BATCH */
119 /* SCHED_FIFO, SCHED_RR */
129 struct futex_pi_state
;
130 struct robust_list_head
;
133 struct perf_event_context
;
137 #define VMACACHE_BITS 2
138 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
139 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
142 * These are the constant used to fake the fixed-point load-average
143 * counting. Some notes:
144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
145 * a load-average precision of 10 bits integer + 11 bits fractional
146 * - if you want to count load-averages more often, you need more
147 * precision, or rounding will get you. With 2-second counting freq,
148 * the EXP_n values would be 1981, 2034 and 2043 if still using only
151 extern unsigned long avenrun
[]; /* Load averages */
152 extern void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
);
154 #define FSHIFT 11 /* nr of bits of precision */
155 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
156 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
157 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
158 #define EXP_5 2014 /* 1/exp(5sec/5min) */
159 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161 #define CALC_LOAD(load,exp,n) \
163 load += n*(FIXED_1-exp); \
166 extern unsigned long total_forks
;
167 extern int nr_threads
;
168 DECLARE_PER_CPU(unsigned long, process_counts
);
169 extern int nr_processes(void);
170 extern unsigned long nr_running(void);
171 extern bool single_task_running(void);
172 extern unsigned long nr_iowait(void);
173 extern unsigned long nr_iowait_cpu(int cpu
);
174 extern void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
);
176 extern void calc_global_load(unsigned long ticks
);
177 extern void update_cpu_load_nohz(void);
179 extern unsigned long get_parent_ip(unsigned long addr
);
181 extern void dump_cpu_task(int cpu
);
186 #ifdef CONFIG_SCHED_DEBUG
187 extern void proc_sched_show_task(struct task_struct
*p
, struct seq_file
*m
);
188 extern void proc_sched_set_task(struct task_struct
*p
);
190 print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
194 * Task state bitmask. NOTE! These bits are also
195 * encoded in fs/proc/array.c: get_task_state().
197 * We have two separate sets of flags: task->state
198 * is about runnability, while task->exit_state are
199 * about the task exiting. Confusing, but this way
200 * modifying one set can't modify the other one by
203 #define TASK_RUNNING 0
204 #define TASK_INTERRUPTIBLE 1
205 #define TASK_UNINTERRUPTIBLE 2
206 #define __TASK_STOPPED 4
207 #define __TASK_TRACED 8
208 /* in tsk->exit_state */
210 #define EXIT_ZOMBIE 32
211 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
212 /* in tsk->state again */
214 #define TASK_WAKEKILL 128
215 #define TASK_WAKING 256
216 #define TASK_PARKED 512
217 #define TASK_STATE_MAX 1024
219 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
221 extern char ___assert_task_state
[1 - 2*!!(
222 sizeof(TASK_STATE_TO_CHAR_STR
)-1 != ilog2(TASK_STATE_MAX
)+1)];
224 /* Convenience macros for the sake of set_task_state */
225 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
226 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
227 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
229 /* Convenience macros for the sake of wake_up */
230 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
231 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
233 /* get_task_state() */
234 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
235 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
236 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
238 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
239 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
240 #define task_is_stopped_or_traced(task) \
241 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
242 #define task_contributes_to_load(task) \
243 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
244 (task->flags & PF_FROZEN) == 0)
246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
248 #define __set_task_state(tsk, state_value) \
250 (tsk)->task_state_change = _THIS_IP_; \
251 (tsk)->state = (state_value); \
253 #define set_task_state(tsk, state_value) \
255 (tsk)->task_state_change = _THIS_IP_; \
256 set_mb((tsk)->state, (state_value)); \
260 * set_current_state() includes a barrier so that the write of current->state
261 * is correctly serialised wrt the caller's subsequent test of whether to
264 * set_current_state(TASK_UNINTERRUPTIBLE);
265 * if (do_i_need_to_sleep())
268 * If the caller does not need such serialisation then use __set_current_state()
270 #define __set_current_state(state_value) \
272 current->task_state_change = _THIS_IP_; \
273 current->state = (state_value); \
275 #define set_current_state(state_value) \
277 current->task_state_change = _THIS_IP_; \
278 set_mb(current->state, (state_value)); \
283 #define __set_task_state(tsk, state_value) \
284 do { (tsk)->state = (state_value); } while (0)
285 #define set_task_state(tsk, state_value) \
286 set_mb((tsk)->state, (state_value))
289 * set_current_state() includes a barrier so that the write of current->state
290 * is correctly serialised wrt the caller's subsequent test of whether to
293 * set_current_state(TASK_UNINTERRUPTIBLE);
294 * if (do_i_need_to_sleep())
297 * If the caller does not need such serialisation then use __set_current_state()
299 #define __set_current_state(state_value) \
300 do { current->state = (state_value); } while (0)
301 #define set_current_state(state_value) \
302 set_mb(current->state, (state_value))
306 /* Task command name length */
307 #define TASK_COMM_LEN 16
309 #include <linux/spinlock.h>
312 * This serializes "schedule()" and also protects
313 * the run-queue from deletions/modifications (but
314 * _adding_ to the beginning of the run-queue has
317 extern rwlock_t tasklist_lock
;
318 extern spinlock_t mmlist_lock
;
322 #ifdef CONFIG_PROVE_RCU
323 extern int lockdep_tasklist_lock_is_held(void);
324 #endif /* #ifdef CONFIG_PROVE_RCU */
326 extern void sched_init(void);
327 extern void sched_init_smp(void);
328 extern asmlinkage
void schedule_tail(struct task_struct
*prev
);
329 extern void init_idle(struct task_struct
*idle
, int cpu
);
330 extern void init_idle_bootup_task(struct task_struct
*idle
);
332 extern int runqueue_is_locked(int cpu
);
334 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
335 extern void nohz_balance_enter_idle(int cpu
);
336 extern void set_cpu_sd_state_idle(void);
337 extern int get_nohz_timer_target(int pinned
);
339 static inline void nohz_balance_enter_idle(int cpu
) { }
340 static inline void set_cpu_sd_state_idle(void) { }
341 static inline int get_nohz_timer_target(int pinned
)
343 return smp_processor_id();
348 * Only dump TASK_* tasks. (0 for all tasks)
350 extern void show_state_filter(unsigned long state_filter
);
352 static inline void show_state(void)
354 show_state_filter(0);
357 extern void show_regs(struct pt_regs
*);
360 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
361 * task), SP is the stack pointer of the first frame that should be shown in the back
362 * trace (or NULL if the entire call-chain of the task should be shown).
364 extern void show_stack(struct task_struct
*task
, unsigned long *sp
);
366 void io_schedule(void);
367 long io_schedule_timeout(long timeout
);
369 extern void cpu_init (void);
370 extern void trap_init(void);
371 extern void update_process_times(int user
);
372 extern void scheduler_tick(void);
374 extern void sched_show_task(struct task_struct
*p
);
376 #ifdef CONFIG_LOCKUP_DETECTOR
377 extern void touch_softlockup_watchdog(void);
378 extern void touch_softlockup_watchdog_sync(void);
379 extern void touch_all_softlockup_watchdogs(void);
380 extern int proc_dowatchdog_thresh(struct ctl_table
*table
, int write
,
382 size_t *lenp
, loff_t
*ppos
);
383 extern unsigned int softlockup_panic
;
384 void lockup_detector_init(void);
386 static inline void touch_softlockup_watchdog(void)
389 static inline void touch_softlockup_watchdog_sync(void)
392 static inline void touch_all_softlockup_watchdogs(void)
395 static inline void lockup_detector_init(void)
400 #ifdef CONFIG_DETECT_HUNG_TASK
401 void reset_hung_task_detector(void);
403 static inline void reset_hung_task_detector(void)
408 /* Attach to any functions which should be ignored in wchan output. */
409 #define __sched __attribute__((__section__(".sched.text")))
411 /* Linker adds these: start and end of __sched functions */
412 extern char __sched_text_start
[], __sched_text_end
[];
414 /* Is this address in the __sched functions? */
415 extern int in_sched_functions(unsigned long addr
);
417 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
418 extern signed long schedule_timeout(signed long timeout
);
419 extern signed long schedule_timeout_interruptible(signed long timeout
);
420 extern signed long schedule_timeout_killable(signed long timeout
);
421 extern signed long schedule_timeout_uninterruptible(signed long timeout
);
422 asmlinkage
void schedule(void);
423 extern void schedule_preempt_disabled(void);
426 struct user_namespace
;
429 extern void arch_pick_mmap_layout(struct mm_struct
*mm
);
431 arch_get_unmapped_area(struct file
*, unsigned long, unsigned long,
432 unsigned long, unsigned long);
434 arch_get_unmapped_area_topdown(struct file
*filp
, unsigned long addr
,
435 unsigned long len
, unsigned long pgoff
,
436 unsigned long flags
);
438 static inline void arch_pick_mmap_layout(struct mm_struct
*mm
) {}
441 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
442 #define SUID_DUMP_USER 1 /* Dump as user of process */
443 #define SUID_DUMP_ROOT 2 /* Dump as root */
447 /* for SUID_DUMP_* above */
448 #define MMF_DUMPABLE_BITS 2
449 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
451 extern void set_dumpable(struct mm_struct
*mm
, int value
);
453 * This returns the actual value of the suid_dumpable flag. For things
454 * that are using this for checking for privilege transitions, it must
455 * test against SUID_DUMP_USER rather than treating it as a boolean
458 static inline int __get_dumpable(unsigned long mm_flags
)
460 return mm_flags
& MMF_DUMPABLE_MASK
;
463 static inline int get_dumpable(struct mm_struct
*mm
)
465 return __get_dumpable(mm
->flags
);
468 /* coredump filter bits */
469 #define MMF_DUMP_ANON_PRIVATE 2
470 #define MMF_DUMP_ANON_SHARED 3
471 #define MMF_DUMP_MAPPED_PRIVATE 4
472 #define MMF_DUMP_MAPPED_SHARED 5
473 #define MMF_DUMP_ELF_HEADERS 6
474 #define MMF_DUMP_HUGETLB_PRIVATE 7
475 #define MMF_DUMP_HUGETLB_SHARED 8
477 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
478 #define MMF_DUMP_FILTER_BITS 7
479 #define MMF_DUMP_FILTER_MASK \
480 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
481 #define MMF_DUMP_FILTER_DEFAULT \
482 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
483 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
485 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
486 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
488 # define MMF_DUMP_MASK_DEFAULT_ELF 0
490 /* leave room for more dump flags */
491 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
492 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
493 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
495 #define MMF_HAS_UPROBES 19 /* has uprobes */
496 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
498 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
500 struct sighand_struct
{
502 struct k_sigaction action
[_NSIG
];
504 wait_queue_head_t signalfd_wqh
;
507 struct pacct_struct
{
510 unsigned long ac_mem
;
511 cputime_t ac_utime
, ac_stime
;
512 unsigned long ac_minflt
, ac_majflt
;
523 * struct cputime - snaphsot of system and user cputime
524 * @utime: time spent in user mode
525 * @stime: time spent in system mode
527 * Gathers a generic snapshot of user and system time.
535 * struct task_cputime - collected CPU time counts
536 * @utime: time spent in user mode, in &cputime_t units
537 * @stime: time spent in kernel mode, in &cputime_t units
538 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
540 * This is an extension of struct cputime that includes the total runtime
541 * spent by the task from the scheduler point of view.
543 * As a result, this structure groups together three kinds of CPU time
544 * that are tracked for threads and thread groups. Most things considering
545 * CPU time want to group these counts together and treat all three
546 * of them in parallel.
548 struct task_cputime
{
551 unsigned long long sum_exec_runtime
;
553 /* Alternate field names when used to cache expirations. */
554 #define prof_exp stime
555 #define virt_exp utime
556 #define sched_exp sum_exec_runtime
558 #define INIT_CPUTIME \
559 (struct task_cputime) { \
562 .sum_exec_runtime = 0, \
565 #ifdef CONFIG_PREEMPT_COUNT
566 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
568 #define PREEMPT_DISABLED PREEMPT_ENABLED
572 * Disable preemption until the scheduler is running.
573 * Reset by start_kernel()->sched_init()->init_idle().
575 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
576 * before the scheduler is active -- see should_resched().
578 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
581 * struct thread_group_cputimer - thread group interval timer counts
582 * @cputime: thread group interval timers.
583 * @running: non-zero when there are timers running and
584 * @cputime receives updates.
585 * @lock: lock for fields in this struct.
587 * This structure contains the version of task_cputime, above, that is
588 * used for thread group CPU timer calculations.
590 struct thread_group_cputimer
{
591 struct task_cputime cputime
;
596 #include <linux/rwsem.h>
600 * NOTE! "signal_struct" does not have its own
601 * locking, because a shared signal_struct always
602 * implies a shared sighand_struct, so locking
603 * sighand_struct is always a proper superset of
604 * the locking of signal_struct.
606 struct signal_struct
{
610 struct list_head thread_head
;
612 wait_queue_head_t wait_chldexit
; /* for wait4() */
614 /* current thread group signal load-balancing target: */
615 struct task_struct
*curr_target
;
617 /* shared signal handling: */
618 struct sigpending shared_pending
;
620 /* thread group exit support */
623 * - notify group_exit_task when ->count is equal to notify_count
624 * - everyone except group_exit_task is stopped during signal delivery
625 * of fatal signals, group_exit_task processes the signal.
628 struct task_struct
*group_exit_task
;
630 /* thread group stop support, overloads group_exit_code too */
631 int group_stop_count
;
632 unsigned int flags
; /* see SIGNAL_* flags below */
635 * PR_SET_CHILD_SUBREAPER marks a process, like a service
636 * manager, to re-parent orphan (double-forking) child processes
637 * to this process instead of 'init'. The service manager is
638 * able to receive SIGCHLD signals and is able to investigate
639 * the process until it calls wait(). All children of this
640 * process will inherit a flag if they should look for a
641 * child_subreaper process at exit.
643 unsigned int is_child_subreaper
:1;
644 unsigned int has_child_subreaper
:1;
646 /* POSIX.1b Interval Timers */
648 struct list_head posix_timers
;
650 /* ITIMER_REAL timer for the process */
651 struct hrtimer real_timer
;
652 struct pid
*leader_pid
;
653 ktime_t it_real_incr
;
656 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
657 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
658 * values are defined to 0 and 1 respectively
660 struct cpu_itimer it
[2];
663 * Thread group totals for process CPU timers.
664 * See thread_group_cputimer(), et al, for details.
666 struct thread_group_cputimer cputimer
;
668 /* Earliest-expiration cache. */
669 struct task_cputime cputime_expires
;
671 struct list_head cpu_timers
[3];
673 struct pid
*tty_old_pgrp
;
675 /* boolean value for session group leader */
678 struct tty_struct
*tty
; /* NULL if no tty */
680 #ifdef CONFIG_SCHED_AUTOGROUP
681 struct autogroup
*autogroup
;
684 * Cumulative resource counters for dead threads in the group,
685 * and for reaped dead child processes forked by this group.
686 * Live threads maintain their own counters and add to these
687 * in __exit_signal, except for the group leader.
689 seqlock_t stats_lock
;
690 cputime_t utime
, stime
, cutime
, cstime
;
693 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
694 struct cputime prev_cputime
;
696 unsigned long nvcsw
, nivcsw
, cnvcsw
, cnivcsw
;
697 unsigned long min_flt
, maj_flt
, cmin_flt
, cmaj_flt
;
698 unsigned long inblock
, oublock
, cinblock
, coublock
;
699 unsigned long maxrss
, cmaxrss
;
700 struct task_io_accounting ioac
;
703 * Cumulative ns of schedule CPU time fo dead threads in the
704 * group, not including a zombie group leader, (This only differs
705 * from jiffies_to_ns(utime + stime) if sched_clock uses something
706 * other than jiffies.)
708 unsigned long long sum_sched_runtime
;
711 * We don't bother to synchronize most readers of this at all,
712 * because there is no reader checking a limit that actually needs
713 * to get both rlim_cur and rlim_max atomically, and either one
714 * alone is a single word that can safely be read normally.
715 * getrlimit/setrlimit use task_lock(current->group_leader) to
716 * protect this instead of the siglock, because they really
717 * have no need to disable irqs.
719 struct rlimit rlim
[RLIM_NLIMITS
];
721 #ifdef CONFIG_BSD_PROCESS_ACCT
722 struct pacct_struct pacct
; /* per-process accounting information */
724 #ifdef CONFIG_TASKSTATS
725 struct taskstats
*stats
;
729 unsigned audit_tty_log_passwd
;
730 struct tty_audit_buf
*tty_audit_buf
;
732 #ifdef CONFIG_CGROUPS
734 * group_rwsem prevents new tasks from entering the threadgroup and
735 * member tasks from exiting,a more specifically, setting of
736 * PF_EXITING. fork and exit paths are protected with this rwsem
737 * using threadgroup_change_begin/end(). Users which require
738 * threadgroup to remain stable should use threadgroup_[un]lock()
739 * which also takes care of exec path. Currently, cgroup is the
742 struct rw_semaphore group_rwsem
;
745 oom_flags_t oom_flags
;
746 short oom_score_adj
; /* OOM kill score adjustment */
747 short oom_score_adj_min
; /* OOM kill score adjustment min value.
748 * Only settable by CAP_SYS_RESOURCE. */
750 struct mutex cred_guard_mutex
; /* guard against foreign influences on
751 * credential calculations
752 * (notably. ptrace) */
756 * Bits in flags field of signal_struct.
758 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
759 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
760 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
761 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
763 * Pending notifications to parent.
765 #define SIGNAL_CLD_STOPPED 0x00000010
766 #define SIGNAL_CLD_CONTINUED 0x00000020
767 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
769 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
771 /* If true, all threads except ->group_exit_task have pending SIGKILL */
772 static inline int signal_group_exit(const struct signal_struct
*sig
)
774 return (sig
->flags
& SIGNAL_GROUP_EXIT
) ||
775 (sig
->group_exit_task
!= NULL
);
779 * Some day this will be a full-fledged user tracking system..
782 atomic_t __count
; /* reference count */
783 atomic_t processes
; /* How many processes does this user have? */
784 atomic_t sigpending
; /* How many pending signals does this user have? */
785 #ifdef CONFIG_INOTIFY_USER
786 atomic_t inotify_watches
; /* How many inotify watches does this user have? */
787 atomic_t inotify_devs
; /* How many inotify devs does this user have opened? */
789 #ifdef CONFIG_FANOTIFY
790 atomic_t fanotify_listeners
;
793 atomic_long_t epoll_watches
; /* The number of file descriptors currently watched */
795 #ifdef CONFIG_POSIX_MQUEUE
796 /* protected by mq_lock */
797 unsigned long mq_bytes
; /* How many bytes can be allocated to mqueue? */
799 unsigned long locked_shm
; /* How many pages of mlocked shm ? */
802 struct key
*uid_keyring
; /* UID specific keyring */
803 struct key
*session_keyring
; /* UID's default session keyring */
806 /* Hash table maintenance information */
807 struct hlist_node uidhash_node
;
810 #ifdef CONFIG_PERF_EVENTS
811 atomic_long_t locked_vm
;
815 extern int uids_sysfs_init(void);
817 extern struct user_struct
*find_user(kuid_t
);
819 extern struct user_struct root_user
;
820 #define INIT_USER (&root_user)
823 struct backing_dev_info
;
824 struct reclaim_state
;
826 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
828 /* cumulative counters */
829 unsigned long pcount
; /* # of times run on this cpu */
830 unsigned long long run_delay
; /* time spent waiting on a runqueue */
833 unsigned long long last_arrival
,/* when we last ran on a cpu */
834 last_queued
; /* when we were last queued to run */
836 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
838 #ifdef CONFIG_TASK_DELAY_ACCT
839 struct task_delay_info
{
841 unsigned int flags
; /* Private per-task flags */
843 /* For each stat XXX, add following, aligned appropriately
845 * struct timespec XXX_start, XXX_end;
849 * Atomicity of updates to XXX_delay, XXX_count protected by
850 * single lock above (split into XXX_lock if contention is an issue).
854 * XXX_count is incremented on every XXX operation, the delay
855 * associated with the operation is added to XXX_delay.
856 * XXX_delay contains the accumulated delay time in nanoseconds.
858 u64 blkio_start
; /* Shared by blkio, swapin */
859 u64 blkio_delay
; /* wait for sync block io completion */
860 u64 swapin_delay
; /* wait for swapin block io completion */
861 u32 blkio_count
; /* total count of the number of sync block */
862 /* io operations performed */
863 u32 swapin_count
; /* total count of the number of swapin block */
864 /* io operations performed */
867 u64 freepages_delay
; /* wait for memory reclaim */
868 u32 freepages_count
; /* total count of memory reclaim */
870 #endif /* CONFIG_TASK_DELAY_ACCT */
872 static inline int sched_info_on(void)
874 #ifdef CONFIG_SCHEDSTATS
876 #elif defined(CONFIG_TASK_DELAY_ACCT)
877 extern int delayacct_on
;
892 * Increase resolution of cpu_capacity calculations
894 #define SCHED_CAPACITY_SHIFT 10
895 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
898 * sched-domains (multiprocessor balancing) declarations:
901 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
902 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
903 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
904 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
905 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
906 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
907 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
908 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
909 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
910 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
911 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
912 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
913 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
914 #define SD_NUMA 0x4000 /* cross-node balancing */
916 #ifdef CONFIG_SCHED_SMT
917 static inline int cpu_smt_flags(void)
919 return SD_SHARE_CPUCAPACITY
| SD_SHARE_PKG_RESOURCES
;
923 #ifdef CONFIG_SCHED_MC
924 static inline int cpu_core_flags(void)
926 return SD_SHARE_PKG_RESOURCES
;
931 static inline int cpu_numa_flags(void)
937 struct sched_domain_attr
{
938 int relax_domain_level
;
941 #define SD_ATTR_INIT (struct sched_domain_attr) { \
942 .relax_domain_level = -1, \
945 extern int sched_domain_level_max
;
949 struct sched_domain
{
950 /* These fields must be setup */
951 struct sched_domain
*parent
; /* top domain must be null terminated */
952 struct sched_domain
*child
; /* bottom domain must be null terminated */
953 struct sched_group
*groups
; /* the balancing groups of the domain */
954 unsigned long min_interval
; /* Minimum balance interval ms */
955 unsigned long max_interval
; /* Maximum balance interval ms */
956 unsigned int busy_factor
; /* less balancing by factor if busy */
957 unsigned int imbalance_pct
; /* No balance until over watermark */
958 unsigned int cache_nice_tries
; /* Leave cache hot tasks for # tries */
959 unsigned int busy_idx
;
960 unsigned int idle_idx
;
961 unsigned int newidle_idx
;
962 unsigned int wake_idx
;
963 unsigned int forkexec_idx
;
964 unsigned int smt_gain
;
966 int nohz_idle
; /* NOHZ IDLE status */
967 int flags
; /* See SD_* */
970 /* Runtime fields. */
971 unsigned long last_balance
; /* init to jiffies. units in jiffies */
972 unsigned int balance_interval
; /* initialise to 1. units in ms. */
973 unsigned int nr_balance_failed
; /* initialise to 0 */
975 /* idle_balance() stats */
976 u64 max_newidle_lb_cost
;
977 unsigned long next_decay_max_lb_cost
;
979 #ifdef CONFIG_SCHEDSTATS
980 /* load_balance() stats */
981 unsigned int lb_count
[CPU_MAX_IDLE_TYPES
];
982 unsigned int lb_failed
[CPU_MAX_IDLE_TYPES
];
983 unsigned int lb_balanced
[CPU_MAX_IDLE_TYPES
];
984 unsigned int lb_imbalance
[CPU_MAX_IDLE_TYPES
];
985 unsigned int lb_gained
[CPU_MAX_IDLE_TYPES
];
986 unsigned int lb_hot_gained
[CPU_MAX_IDLE_TYPES
];
987 unsigned int lb_nobusyg
[CPU_MAX_IDLE_TYPES
];
988 unsigned int lb_nobusyq
[CPU_MAX_IDLE_TYPES
];
990 /* Active load balancing */
991 unsigned int alb_count
;
992 unsigned int alb_failed
;
993 unsigned int alb_pushed
;
995 /* SD_BALANCE_EXEC stats */
996 unsigned int sbe_count
;
997 unsigned int sbe_balanced
;
998 unsigned int sbe_pushed
;
1000 /* SD_BALANCE_FORK stats */
1001 unsigned int sbf_count
;
1002 unsigned int sbf_balanced
;
1003 unsigned int sbf_pushed
;
1005 /* try_to_wake_up() stats */
1006 unsigned int ttwu_wake_remote
;
1007 unsigned int ttwu_move_affine
;
1008 unsigned int ttwu_move_balance
;
1010 #ifdef CONFIG_SCHED_DEBUG
1014 void *private; /* used during construction */
1015 struct rcu_head rcu
; /* used during destruction */
1018 unsigned int span_weight
;
1020 * Span of all CPUs in this domain.
1022 * NOTE: this field is variable length. (Allocated dynamically
1023 * by attaching extra space to the end of the structure,
1024 * depending on how many CPUs the kernel has booted up with)
1026 unsigned long span
[0];
1029 static inline struct cpumask
*sched_domain_span(struct sched_domain
*sd
)
1031 return to_cpumask(sd
->span
);
1034 extern void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1035 struct sched_domain_attr
*dattr_new
);
1037 /* Allocate an array of sched domains, for partition_sched_domains(). */
1038 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
);
1039 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
);
1041 bool cpus_share_cache(int this_cpu
, int that_cpu
);
1043 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
1044 typedef int (*sched_domain_flags_f
)(void);
1046 #define SDTL_OVERLAP 0x01
1049 struct sched_domain
**__percpu sd
;
1050 struct sched_group
**__percpu sg
;
1051 struct sched_group_capacity
**__percpu sgc
;
1054 struct sched_domain_topology_level
{
1055 sched_domain_mask_f mask
;
1056 sched_domain_flags_f sd_flags
;
1059 struct sd_data data
;
1060 #ifdef CONFIG_SCHED_DEBUG
1065 extern struct sched_domain_topology_level
*sched_domain_topology
;
1067 extern void set_sched_topology(struct sched_domain_topology_level
*tl
);
1068 extern void wake_up_if_idle(int cpu
);
1070 #ifdef CONFIG_SCHED_DEBUG
1071 # define SD_INIT_NAME(type) .name = #type
1073 # define SD_INIT_NAME(type)
1076 #else /* CONFIG_SMP */
1078 struct sched_domain_attr
;
1081 partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1082 struct sched_domain_attr
*dattr_new
)
1086 static inline bool cpus_share_cache(int this_cpu
, int that_cpu
)
1091 #endif /* !CONFIG_SMP */
1094 struct io_context
; /* See blkdev.h */
1097 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1098 extern void prefetch_stack(struct task_struct
*t
);
1100 static inline void prefetch_stack(struct task_struct
*t
) { }
1103 struct audit_context
; /* See audit.c */
1105 struct pipe_inode_info
;
1106 struct uts_namespace
;
1108 struct load_weight
{
1109 unsigned long weight
;
1115 * These sums represent an infinite geometric series and so are bound
1116 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1117 * choices of y < 1-2^(-32)*1024.
1119 u32 runnable_avg_sum
, runnable_avg_period
;
1120 u64 last_runnable_update
;
1122 unsigned long load_avg_contrib
;
1125 #ifdef CONFIG_SCHEDSTATS
1126 struct sched_statistics
{
1136 s64 sum_sleep_runtime
;
1143 u64 nr_migrations_cold
;
1144 u64 nr_failed_migrations_affine
;
1145 u64 nr_failed_migrations_running
;
1146 u64 nr_failed_migrations_hot
;
1147 u64 nr_forced_migrations
;
1150 u64 nr_wakeups_sync
;
1151 u64 nr_wakeups_migrate
;
1152 u64 nr_wakeups_local
;
1153 u64 nr_wakeups_remote
;
1154 u64 nr_wakeups_affine
;
1155 u64 nr_wakeups_affine_attempts
;
1156 u64 nr_wakeups_passive
;
1157 u64 nr_wakeups_idle
;
1161 struct sched_entity
{
1162 struct load_weight load
; /* for load-balancing */
1163 struct rb_node run_node
;
1164 struct list_head group_node
;
1168 u64 sum_exec_runtime
;
1170 u64 prev_sum_exec_runtime
;
1174 #ifdef CONFIG_SCHEDSTATS
1175 struct sched_statistics statistics
;
1178 #ifdef CONFIG_FAIR_GROUP_SCHED
1180 struct sched_entity
*parent
;
1181 /* rq on which this entity is (to be) queued: */
1182 struct cfs_rq
*cfs_rq
;
1183 /* rq "owned" by this entity/group: */
1184 struct cfs_rq
*my_q
;
1188 /* Per-entity load-tracking */
1189 struct sched_avg avg
;
1193 struct sched_rt_entity
{
1194 struct list_head run_list
;
1195 unsigned long timeout
;
1196 unsigned long watchdog_stamp
;
1197 unsigned int time_slice
;
1199 struct sched_rt_entity
*back
;
1200 #ifdef CONFIG_RT_GROUP_SCHED
1201 struct sched_rt_entity
*parent
;
1202 /* rq on which this entity is (to be) queued: */
1203 struct rt_rq
*rt_rq
;
1204 /* rq "owned" by this entity/group: */
1209 struct sched_dl_entity
{
1210 struct rb_node rb_node
;
1213 * Original scheduling parameters. Copied here from sched_attr
1214 * during sched_setattr(), they will remain the same until
1215 * the next sched_setattr().
1217 u64 dl_runtime
; /* maximum runtime for each instance */
1218 u64 dl_deadline
; /* relative deadline of each instance */
1219 u64 dl_period
; /* separation of two instances (period) */
1220 u64 dl_bw
; /* dl_runtime / dl_deadline */
1223 * Actual scheduling parameters. Initialized with the values above,
1224 * they are continously updated during task execution. Note that
1225 * the remaining runtime could be < 0 in case we are in overrun.
1227 s64 runtime
; /* remaining runtime for this instance */
1228 u64 deadline
; /* absolute deadline for this instance */
1229 unsigned int flags
; /* specifying the scheduler behaviour */
1234 * @dl_throttled tells if we exhausted the runtime. If so, the
1235 * task has to wait for a replenishment to be performed at the
1236 * next firing of dl_timer.
1238 * @dl_new tells if a new instance arrived. If so we must
1239 * start executing it with full runtime and reset its absolute
1242 * @dl_boosted tells if we are boosted due to DI. If so we are
1243 * outside bandwidth enforcement mechanism (but only until we
1244 * exit the critical section);
1246 * @dl_yielded tells if task gave up the cpu before consuming
1247 * all its available runtime during the last job.
1249 int dl_throttled
, dl_new
, dl_boosted
, dl_yielded
;
1252 * Bandwidth enforcement timer. Each -deadline task has its
1253 * own bandwidth to be enforced, thus we need one timer per task.
1255 struct hrtimer dl_timer
;
1267 enum perf_event_task_context
{
1268 perf_invalid_context
= -1,
1269 perf_hw_context
= 0,
1271 perf_nr_task_contexts
,
1274 struct task_struct
{
1275 volatile long state
; /* -1 unrunnable, 0 runnable, >0 stopped */
1278 unsigned int flags
; /* per process flags, defined below */
1279 unsigned int ptrace
;
1282 struct llist_node wake_entry
;
1284 struct task_struct
*last_wakee
;
1285 unsigned long wakee_flips
;
1286 unsigned long wakee_flip_decay_ts
;
1292 int prio
, static_prio
, normal_prio
;
1293 unsigned int rt_priority
;
1294 const struct sched_class
*sched_class
;
1295 struct sched_entity se
;
1296 struct sched_rt_entity rt
;
1297 #ifdef CONFIG_CGROUP_SCHED
1298 struct task_group
*sched_task_group
;
1300 struct sched_dl_entity dl
;
1302 #ifdef CONFIG_PREEMPT_NOTIFIERS
1303 /* list of struct preempt_notifier: */
1304 struct hlist_head preempt_notifiers
;
1307 #ifdef CONFIG_BLK_DEV_IO_TRACE
1308 unsigned int btrace_seq
;
1311 unsigned int policy
;
1312 int nr_cpus_allowed
;
1313 cpumask_t cpus_allowed
;
1315 #ifdef CONFIG_PREEMPT_RCU
1316 int rcu_read_lock_nesting
;
1317 union rcu_special rcu_read_unlock_special
;
1318 struct list_head rcu_node_entry
;
1319 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1320 #ifdef CONFIG_PREEMPT_RCU
1321 struct rcu_node
*rcu_blocked_node
;
1322 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1323 #ifdef CONFIG_TASKS_RCU
1324 unsigned long rcu_tasks_nvcsw
;
1325 bool rcu_tasks_holdout
;
1326 struct list_head rcu_tasks_holdout_list
;
1327 int rcu_tasks_idle_cpu
;
1328 #endif /* #ifdef CONFIG_TASKS_RCU */
1330 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1331 struct sched_info sched_info
;
1334 struct list_head tasks
;
1336 struct plist_node pushable_tasks
;
1337 struct rb_node pushable_dl_tasks
;
1340 struct mm_struct
*mm
, *active_mm
;
1341 #ifdef CONFIG_COMPAT_BRK
1342 unsigned brk_randomized
:1;
1344 /* per-thread vma caching */
1345 u32 vmacache_seqnum
;
1346 struct vm_area_struct
*vmacache
[VMACACHE_SIZE
];
1347 #if defined(SPLIT_RSS_COUNTING)
1348 struct task_rss_stat rss_stat
;
1352 int exit_code
, exit_signal
;
1353 int pdeath_signal
; /* The signal sent when the parent dies */
1354 unsigned int jobctl
; /* JOBCTL_*, siglock protected */
1356 /* Used for emulating ABI behavior of previous Linux versions */
1357 unsigned int personality
;
1359 unsigned in_execve
:1; /* Tell the LSMs that the process is doing an
1361 unsigned in_iowait
:1;
1363 /* Revert to default priority/policy when forking */
1364 unsigned sched_reset_on_fork
:1;
1365 unsigned sched_contributes_to_load
:1;
1367 #ifdef CONFIG_MEMCG_KMEM
1368 unsigned memcg_kmem_skip_account
:1;
1371 unsigned long atomic_flags
; /* Flags needing atomic access. */
1373 struct restart_block restart_block
;
1378 #ifdef CONFIG_CC_STACKPROTECTOR
1379 /* Canary value for the -fstack-protector gcc feature */
1380 unsigned long stack_canary
;
1383 * pointers to (original) parent process, youngest child, younger sibling,
1384 * older sibling, respectively. (p->father can be replaced with
1385 * p->real_parent->pid)
1387 struct task_struct __rcu
*real_parent
; /* real parent process */
1388 struct task_struct __rcu
*parent
; /* recipient of SIGCHLD, wait4() reports */
1390 * children/sibling forms the list of my natural children
1392 struct list_head children
; /* list of my children */
1393 struct list_head sibling
; /* linkage in my parent's children list */
1394 struct task_struct
*group_leader
; /* threadgroup leader */
1397 * ptraced is the list of tasks this task is using ptrace on.
1398 * This includes both natural children and PTRACE_ATTACH targets.
1399 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1401 struct list_head ptraced
;
1402 struct list_head ptrace_entry
;
1404 /* PID/PID hash table linkage. */
1405 struct pid_link pids
[PIDTYPE_MAX
];
1406 struct list_head thread_group
;
1407 struct list_head thread_node
;
1409 struct completion
*vfork_done
; /* for vfork() */
1410 int __user
*set_child_tid
; /* CLONE_CHILD_SETTID */
1411 int __user
*clear_child_tid
; /* CLONE_CHILD_CLEARTID */
1413 cputime_t utime
, stime
, utimescaled
, stimescaled
;
1415 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1416 struct cputime prev_cputime
;
1418 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1419 seqlock_t vtime_seqlock
;
1420 unsigned long long vtime_snap
;
1425 } vtime_snap_whence
;
1427 unsigned long nvcsw
, nivcsw
; /* context switch counts */
1428 u64 start_time
; /* monotonic time in nsec */
1429 u64 real_start_time
; /* boot based time in nsec */
1430 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1431 unsigned long min_flt
, maj_flt
;
1433 struct task_cputime cputime_expires
;
1434 struct list_head cpu_timers
[3];
1436 /* process credentials */
1437 const struct cred __rcu
*real_cred
; /* objective and real subjective task
1438 * credentials (COW) */
1439 const struct cred __rcu
*cred
; /* effective (overridable) subjective task
1440 * credentials (COW) */
1441 char comm
[TASK_COMM_LEN
]; /* executable name excluding path
1442 - access with [gs]et_task_comm (which lock
1443 it with task_lock())
1444 - initialized normally by setup_new_exec */
1445 /* file system info */
1446 int link_count
, total_link_count
;
1447 #ifdef CONFIG_SYSVIPC
1449 struct sysv_sem sysvsem
;
1450 struct sysv_shm sysvshm
;
1452 #ifdef CONFIG_DETECT_HUNG_TASK
1453 /* hung task detection */
1454 unsigned long last_switch_count
;
1456 /* CPU-specific state of this task */
1457 struct thread_struct thread
;
1458 /* filesystem information */
1459 struct fs_struct
*fs
;
1460 /* open file information */
1461 struct files_struct
*files
;
1463 struct nsproxy
*nsproxy
;
1464 /* signal handlers */
1465 struct signal_struct
*signal
;
1466 struct sighand_struct
*sighand
;
1468 sigset_t blocked
, real_blocked
;
1469 sigset_t saved_sigmask
; /* restored if set_restore_sigmask() was used */
1470 struct sigpending pending
;
1472 unsigned long sas_ss_sp
;
1474 int (*notifier
)(void *priv
);
1475 void *notifier_data
;
1476 sigset_t
*notifier_mask
;
1477 struct callback_head
*task_works
;
1479 struct audit_context
*audit_context
;
1480 #ifdef CONFIG_AUDITSYSCALL
1482 unsigned int sessionid
;
1484 struct seccomp seccomp
;
1486 /* Thread group tracking */
1489 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1491 spinlock_t alloc_lock
;
1493 /* Protection of the PI data structures: */
1494 raw_spinlock_t pi_lock
;
1496 #ifdef CONFIG_RT_MUTEXES
1497 /* PI waiters blocked on a rt_mutex held by this task */
1498 struct rb_root pi_waiters
;
1499 struct rb_node
*pi_waiters_leftmost
;
1500 /* Deadlock detection and priority inheritance handling */
1501 struct rt_mutex_waiter
*pi_blocked_on
;
1504 #ifdef CONFIG_DEBUG_MUTEXES
1505 /* mutex deadlock detection */
1506 struct mutex_waiter
*blocked_on
;
1508 #ifdef CONFIG_TRACE_IRQFLAGS
1509 unsigned int irq_events
;
1510 unsigned long hardirq_enable_ip
;
1511 unsigned long hardirq_disable_ip
;
1512 unsigned int hardirq_enable_event
;
1513 unsigned int hardirq_disable_event
;
1514 int hardirqs_enabled
;
1515 int hardirq_context
;
1516 unsigned long softirq_disable_ip
;
1517 unsigned long softirq_enable_ip
;
1518 unsigned int softirq_disable_event
;
1519 unsigned int softirq_enable_event
;
1520 int softirqs_enabled
;
1521 int softirq_context
;
1523 #ifdef CONFIG_LOCKDEP
1524 # define MAX_LOCK_DEPTH 48UL
1527 unsigned int lockdep_recursion
;
1528 struct held_lock held_locks
[MAX_LOCK_DEPTH
];
1529 gfp_t lockdep_reclaim_gfp
;
1532 /* journalling filesystem info */
1535 /* stacked block device info */
1536 struct bio_list
*bio_list
;
1539 /* stack plugging */
1540 struct blk_plug
*plug
;
1544 struct reclaim_state
*reclaim_state
;
1546 struct backing_dev_info
*backing_dev_info
;
1548 struct io_context
*io_context
;
1550 unsigned long ptrace_message
;
1551 siginfo_t
*last_siginfo
; /* For ptrace use. */
1552 struct task_io_accounting ioac
;
1553 #if defined(CONFIG_TASK_XACCT)
1554 u64 acct_rss_mem1
; /* accumulated rss usage */
1555 u64 acct_vm_mem1
; /* accumulated virtual memory usage */
1556 cputime_t acct_timexpd
; /* stime + utime since last update */
1558 #ifdef CONFIG_CPUSETS
1559 nodemask_t mems_allowed
; /* Protected by alloc_lock */
1560 seqcount_t mems_allowed_seq
; /* Seqence no to catch updates */
1561 int cpuset_mem_spread_rotor
;
1562 int cpuset_slab_spread_rotor
;
1564 #ifdef CONFIG_CGROUPS
1565 /* Control Group info protected by css_set_lock */
1566 struct css_set __rcu
*cgroups
;
1567 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1568 struct list_head cg_list
;
1571 struct robust_list_head __user
*robust_list
;
1572 #ifdef CONFIG_COMPAT
1573 struct compat_robust_list_head __user
*compat_robust_list
;
1575 struct list_head pi_state_list
;
1576 struct futex_pi_state
*pi_state_cache
;
1578 #ifdef CONFIG_PERF_EVENTS
1579 struct perf_event_context
*perf_event_ctxp
[perf_nr_task_contexts
];
1580 struct mutex perf_event_mutex
;
1581 struct list_head perf_event_list
;
1583 #ifdef CONFIG_DEBUG_PREEMPT
1584 unsigned long preempt_disable_ip
;
1587 struct mempolicy
*mempolicy
; /* Protected by alloc_lock */
1589 short pref_node_fork
;
1591 #ifdef CONFIG_NUMA_BALANCING
1593 unsigned int numa_scan_period
;
1594 unsigned int numa_scan_period_max
;
1595 int numa_preferred_nid
;
1596 unsigned long numa_migrate_retry
;
1597 u64 node_stamp
; /* migration stamp */
1598 u64 last_task_numa_placement
;
1599 u64 last_sum_exec_runtime
;
1600 struct callback_head numa_work
;
1602 struct list_head numa_entry
;
1603 struct numa_group
*numa_group
;
1606 * numa_faults is an array split into four regions:
1607 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1608 * in this precise order.
1610 * faults_memory: Exponential decaying average of faults on a per-node
1611 * basis. Scheduling placement decisions are made based on these
1612 * counts. The values remain static for the duration of a PTE scan.
1613 * faults_cpu: Track the nodes the process was running on when a NUMA
1614 * hinting fault was incurred.
1615 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1616 * during the current scan window. When the scan completes, the counts
1617 * in faults_memory and faults_cpu decay and these values are copied.
1619 unsigned long *numa_faults
;
1620 unsigned long total_numa_faults
;
1623 * numa_faults_locality tracks if faults recorded during the last
1624 * scan window were remote/local. The task scan period is adapted
1625 * based on the locality of the faults with different weights
1626 * depending on whether they were shared or private faults
1628 unsigned long numa_faults_locality
[2];
1630 unsigned long numa_pages_migrated
;
1631 #endif /* CONFIG_NUMA_BALANCING */
1633 struct rcu_head rcu
;
1636 * cache last used pipe for splice
1638 struct pipe_inode_info
*splice_pipe
;
1640 struct page_frag task_frag
;
1642 #ifdef CONFIG_TASK_DELAY_ACCT
1643 struct task_delay_info
*delays
;
1645 #ifdef CONFIG_FAULT_INJECTION
1649 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1650 * balance_dirty_pages() for some dirty throttling pause
1653 int nr_dirtied_pause
;
1654 unsigned long dirty_paused_when
; /* start of a write-and-pause period */
1656 #ifdef CONFIG_LATENCYTOP
1657 int latency_record_count
;
1658 struct latency_record latency_record
[LT_SAVECOUNT
];
1661 * time slack values; these are used to round up poll() and
1662 * select() etc timeout values. These are in nanoseconds.
1664 unsigned long timer_slack_ns
;
1665 unsigned long default_timer_slack_ns
;
1668 unsigned int kasan_depth
;
1670 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1671 /* Index of current stored address in ret_stack */
1673 /* Stack of return addresses for return function tracing */
1674 struct ftrace_ret_stack
*ret_stack
;
1675 /* time stamp for last schedule */
1676 unsigned long long ftrace_timestamp
;
1678 * Number of functions that haven't been traced
1679 * because of depth overrun.
1681 atomic_t trace_overrun
;
1682 /* Pause for the tracing */
1683 atomic_t tracing_graph_pause
;
1685 #ifdef CONFIG_TRACING
1686 /* state flags for use by tracers */
1687 unsigned long trace
;
1688 /* bitmask and counter of trace recursion */
1689 unsigned long trace_recursion
;
1690 #endif /* CONFIG_TRACING */
1692 struct memcg_oom_info
{
1693 struct mem_cgroup
*memcg
;
1696 unsigned int may_oom
:1;
1699 #ifdef CONFIG_UPROBES
1700 struct uprobe_task
*utask
;
1702 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1703 unsigned int sequential_io
;
1704 unsigned int sequential_io_avg
;
1706 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1707 unsigned long task_state_change
;
1711 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1712 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1714 #define TNF_MIGRATED 0x01
1715 #define TNF_NO_GROUP 0x02
1716 #define TNF_SHARED 0x04
1717 #define TNF_FAULT_LOCAL 0x08
1719 #ifdef CONFIG_NUMA_BALANCING
1720 extern void task_numa_fault(int last_node
, int node
, int pages
, int flags
);
1721 extern pid_t
task_numa_group_id(struct task_struct
*p
);
1722 extern void set_numabalancing_state(bool enabled
);
1723 extern void task_numa_free(struct task_struct
*p
);
1724 extern bool should_numa_migrate_memory(struct task_struct
*p
, struct page
*page
,
1725 int src_nid
, int dst_cpu
);
1727 static inline void task_numa_fault(int last_node
, int node
, int pages
,
1731 static inline pid_t
task_numa_group_id(struct task_struct
*p
)
1735 static inline void set_numabalancing_state(bool enabled
)
1738 static inline void task_numa_free(struct task_struct
*p
)
1741 static inline bool should_numa_migrate_memory(struct task_struct
*p
,
1742 struct page
*page
, int src_nid
, int dst_cpu
)
1748 static inline struct pid
*task_pid(struct task_struct
*task
)
1750 return task
->pids
[PIDTYPE_PID
].pid
;
1753 static inline struct pid
*task_tgid(struct task_struct
*task
)
1755 return task
->group_leader
->pids
[PIDTYPE_PID
].pid
;
1759 * Without tasklist or rcu lock it is not safe to dereference
1760 * the result of task_pgrp/task_session even if task == current,
1761 * we can race with another thread doing sys_setsid/sys_setpgid.
1763 static inline struct pid
*task_pgrp(struct task_struct
*task
)
1765 return task
->group_leader
->pids
[PIDTYPE_PGID
].pid
;
1768 static inline struct pid
*task_session(struct task_struct
*task
)
1770 return task
->group_leader
->pids
[PIDTYPE_SID
].pid
;
1773 struct pid_namespace
;
1776 * the helpers to get the task's different pids as they are seen
1777 * from various namespaces
1779 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1780 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1782 * task_xid_nr_ns() : id seen from the ns specified;
1784 * set_task_vxid() : assigns a virtual id to a task;
1786 * see also pid_nr() etc in include/linux/pid.h
1788 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
1789 struct pid_namespace
*ns
);
1791 static inline pid_t
task_pid_nr(struct task_struct
*tsk
)
1796 static inline pid_t
task_pid_nr_ns(struct task_struct
*tsk
,
1797 struct pid_namespace
*ns
)
1799 return __task_pid_nr_ns(tsk
, PIDTYPE_PID
, ns
);
1802 static inline pid_t
task_pid_vnr(struct task_struct
*tsk
)
1804 return __task_pid_nr_ns(tsk
, PIDTYPE_PID
, NULL
);
1808 static inline pid_t
task_tgid_nr(struct task_struct
*tsk
)
1813 pid_t
task_tgid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
);
1815 static inline pid_t
task_tgid_vnr(struct task_struct
*tsk
)
1817 return pid_vnr(task_tgid(tsk
));
1821 static inline int pid_alive(const struct task_struct
*p
);
1822 static inline pid_t
task_ppid_nr_ns(const struct task_struct
*tsk
, struct pid_namespace
*ns
)
1828 pid
= task_tgid_nr_ns(rcu_dereference(tsk
->real_parent
), ns
);
1834 static inline pid_t
task_ppid_nr(const struct task_struct
*tsk
)
1836 return task_ppid_nr_ns(tsk
, &init_pid_ns
);
1839 static inline pid_t
task_pgrp_nr_ns(struct task_struct
*tsk
,
1840 struct pid_namespace
*ns
)
1842 return __task_pid_nr_ns(tsk
, PIDTYPE_PGID
, ns
);
1845 static inline pid_t
task_pgrp_vnr(struct task_struct
*tsk
)
1847 return __task_pid_nr_ns(tsk
, PIDTYPE_PGID
, NULL
);
1851 static inline pid_t
task_session_nr_ns(struct task_struct
*tsk
,
1852 struct pid_namespace
*ns
)
1854 return __task_pid_nr_ns(tsk
, PIDTYPE_SID
, ns
);
1857 static inline pid_t
task_session_vnr(struct task_struct
*tsk
)
1859 return __task_pid_nr_ns(tsk
, PIDTYPE_SID
, NULL
);
1862 /* obsolete, do not use */
1863 static inline pid_t
task_pgrp_nr(struct task_struct
*tsk
)
1865 return task_pgrp_nr_ns(tsk
, &init_pid_ns
);
1869 * pid_alive - check that a task structure is not stale
1870 * @p: Task structure to be checked.
1872 * Test if a process is not yet dead (at most zombie state)
1873 * If pid_alive fails, then pointers within the task structure
1874 * can be stale and must not be dereferenced.
1876 * Return: 1 if the process is alive. 0 otherwise.
1878 static inline int pid_alive(const struct task_struct
*p
)
1880 return p
->pids
[PIDTYPE_PID
].pid
!= NULL
;
1884 * is_global_init - check if a task structure is init
1885 * @tsk: Task structure to be checked.
1887 * Check if a task structure is the first user space task the kernel created.
1889 * Return: 1 if the task structure is init. 0 otherwise.
1891 static inline int is_global_init(struct task_struct
*tsk
)
1893 return tsk
->pid
== 1;
1896 extern struct pid
*cad_pid
;
1898 extern void free_task(struct task_struct
*tsk
);
1899 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1901 extern void __put_task_struct(struct task_struct
*t
);
1903 static inline void put_task_struct(struct task_struct
*t
)
1905 if (atomic_dec_and_test(&t
->usage
))
1906 __put_task_struct(t
);
1909 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1910 extern void task_cputime(struct task_struct
*t
,
1911 cputime_t
*utime
, cputime_t
*stime
);
1912 extern void task_cputime_scaled(struct task_struct
*t
,
1913 cputime_t
*utimescaled
, cputime_t
*stimescaled
);
1914 extern cputime_t
task_gtime(struct task_struct
*t
);
1916 static inline void task_cputime(struct task_struct
*t
,
1917 cputime_t
*utime
, cputime_t
*stime
)
1925 static inline void task_cputime_scaled(struct task_struct
*t
,
1926 cputime_t
*utimescaled
,
1927 cputime_t
*stimescaled
)
1930 *utimescaled
= t
->utimescaled
;
1932 *stimescaled
= t
->stimescaled
;
1935 static inline cputime_t
task_gtime(struct task_struct
*t
)
1940 extern void task_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
);
1941 extern void thread_group_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
);
1946 #define PF_EXITING 0x00000004 /* getting shut down */
1947 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1948 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1949 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1950 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1951 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1952 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1953 #define PF_DUMPCORE 0x00000200 /* dumped core */
1954 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1955 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1956 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1957 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1958 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1959 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1960 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1961 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1962 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1963 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1964 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1965 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1966 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1967 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1968 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1969 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1970 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1971 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1972 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1975 * Only the _current_ task can read/write to tsk->flags, but other
1976 * tasks can access tsk->flags in readonly mode for example
1977 * with tsk_used_math (like during threaded core dumping).
1978 * There is however an exception to this rule during ptrace
1979 * or during fork: the ptracer task is allowed to write to the
1980 * child->flags of its traced child (same goes for fork, the parent
1981 * can write to the child->flags), because we're guaranteed the
1982 * child is not running and in turn not changing child->flags
1983 * at the same time the parent does it.
1985 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1986 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1987 #define clear_used_math() clear_stopped_child_used_math(current)
1988 #define set_used_math() set_stopped_child_used_math(current)
1989 #define conditional_stopped_child_used_math(condition, child) \
1990 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1991 #define conditional_used_math(condition) \
1992 conditional_stopped_child_used_math(condition, current)
1993 #define copy_to_stopped_child_used_math(child) \
1994 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1995 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1996 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1997 #define used_math() tsk_used_math(current)
1999 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2000 * __GFP_FS is also cleared as it implies __GFP_IO.
2002 static inline gfp_t
memalloc_noio_flags(gfp_t flags
)
2004 if (unlikely(current
->flags
& PF_MEMALLOC_NOIO
))
2005 flags
&= ~(__GFP_IO
| __GFP_FS
);
2009 static inline unsigned int memalloc_noio_save(void)
2011 unsigned int flags
= current
->flags
& PF_MEMALLOC_NOIO
;
2012 current
->flags
|= PF_MEMALLOC_NOIO
;
2016 static inline void memalloc_noio_restore(unsigned int flags
)
2018 current
->flags
= (current
->flags
& ~PF_MEMALLOC_NOIO
) | flags
;
2021 /* Per-process atomic flags. */
2022 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2023 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2024 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2027 #define TASK_PFA_TEST(name, func) \
2028 static inline bool task_##func(struct task_struct *p) \
2029 { return test_bit(PFA_##name, &p->atomic_flags); }
2030 #define TASK_PFA_SET(name, func) \
2031 static inline void task_set_##func(struct task_struct *p) \
2032 { set_bit(PFA_##name, &p->atomic_flags); }
2033 #define TASK_PFA_CLEAR(name, func) \
2034 static inline void task_clear_##func(struct task_struct *p) \
2035 { clear_bit(PFA_##name, &p->atomic_flags); }
2037 TASK_PFA_TEST(NO_NEW_PRIVS
, no_new_privs
)
2038 TASK_PFA_SET(NO_NEW_PRIVS
, no_new_privs
)
2040 TASK_PFA_TEST(SPREAD_PAGE
, spread_page
)
2041 TASK_PFA_SET(SPREAD_PAGE
, spread_page
)
2042 TASK_PFA_CLEAR(SPREAD_PAGE
, spread_page
)
2044 TASK_PFA_TEST(SPREAD_SLAB
, spread_slab
)
2045 TASK_PFA_SET(SPREAD_SLAB
, spread_slab
)
2046 TASK_PFA_CLEAR(SPREAD_SLAB
, spread_slab
)
2049 * task->jobctl flags
2051 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2053 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2054 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2055 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2056 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2057 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2058 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2059 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2061 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
2062 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
2063 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
2064 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
2065 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
2066 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
2067 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
2069 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2070 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2072 extern bool task_set_jobctl_pending(struct task_struct
*task
,
2074 extern void task_clear_jobctl_trapping(struct task_struct
*task
);
2075 extern void task_clear_jobctl_pending(struct task_struct
*task
,
2078 static inline void rcu_copy_process(struct task_struct
*p
)
2080 #ifdef CONFIG_PREEMPT_RCU
2081 p
->rcu_read_lock_nesting
= 0;
2082 p
->rcu_read_unlock_special
.s
= 0;
2083 p
->rcu_blocked_node
= NULL
;
2084 INIT_LIST_HEAD(&p
->rcu_node_entry
);
2085 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2086 #ifdef CONFIG_TASKS_RCU
2087 p
->rcu_tasks_holdout
= false;
2088 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
2089 p
->rcu_tasks_idle_cpu
= -1;
2090 #endif /* #ifdef CONFIG_TASKS_RCU */
2093 static inline void tsk_restore_flags(struct task_struct
*task
,
2094 unsigned long orig_flags
, unsigned long flags
)
2096 task
->flags
&= ~flags
;
2097 task
->flags
|= orig_flags
& flags
;
2100 extern int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
2101 const struct cpumask
*trial
);
2102 extern int task_can_attach(struct task_struct
*p
,
2103 const struct cpumask
*cs_cpus_allowed
);
2105 extern void do_set_cpus_allowed(struct task_struct
*p
,
2106 const struct cpumask
*new_mask
);
2108 extern int set_cpus_allowed_ptr(struct task_struct
*p
,
2109 const struct cpumask
*new_mask
);
2111 static inline void do_set_cpus_allowed(struct task_struct
*p
,
2112 const struct cpumask
*new_mask
)
2115 static inline int set_cpus_allowed_ptr(struct task_struct
*p
,
2116 const struct cpumask
*new_mask
)
2118 if (!cpumask_test_cpu(0, new_mask
))
2124 #ifdef CONFIG_NO_HZ_COMMON
2125 void calc_load_enter_idle(void);
2126 void calc_load_exit_idle(void);
2128 static inline void calc_load_enter_idle(void) { }
2129 static inline void calc_load_exit_idle(void) { }
2130 #endif /* CONFIG_NO_HZ_COMMON */
2132 #ifndef CONFIG_CPUMASK_OFFSTACK
2133 static inline int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
2135 return set_cpus_allowed_ptr(p
, &new_mask
);
2140 * Do not use outside of architecture code which knows its limitations.
2142 * sched_clock() has no promise of monotonicity or bounded drift between
2143 * CPUs, use (which you should not) requires disabling IRQs.
2145 * Please use one of the three interfaces below.
2147 extern unsigned long long notrace
sched_clock(void);
2149 * See the comment in kernel/sched/clock.c
2151 extern u64
cpu_clock(int cpu
);
2152 extern u64
local_clock(void);
2153 extern u64
running_clock(void);
2154 extern u64
sched_clock_cpu(int cpu
);
2157 extern void sched_clock_init(void);
2159 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2160 static inline void sched_clock_tick(void)
2164 static inline void sched_clock_idle_sleep_event(void)
2168 static inline void sched_clock_idle_wakeup_event(u64 delta_ns
)
2173 * Architectures can set this to 1 if they have specified
2174 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2175 * but then during bootup it turns out that sched_clock()
2176 * is reliable after all:
2178 extern int sched_clock_stable(void);
2179 extern void set_sched_clock_stable(void);
2180 extern void clear_sched_clock_stable(void);
2182 extern void sched_clock_tick(void);
2183 extern void sched_clock_idle_sleep_event(void);
2184 extern void sched_clock_idle_wakeup_event(u64 delta_ns
);
2187 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2189 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2190 * The reason for this explicit opt-in is not to have perf penalty with
2191 * slow sched_clocks.
2193 extern void enable_sched_clock_irqtime(void);
2194 extern void disable_sched_clock_irqtime(void);
2196 static inline void enable_sched_clock_irqtime(void) {}
2197 static inline void disable_sched_clock_irqtime(void) {}
2200 extern unsigned long long
2201 task_sched_runtime(struct task_struct
*task
);
2203 /* sched_exec is called by processes performing an exec */
2205 extern void sched_exec(void);
2207 #define sched_exec() {}
2210 extern void sched_clock_idle_sleep_event(void);
2211 extern void sched_clock_idle_wakeup_event(u64 delta_ns
);
2213 #ifdef CONFIG_HOTPLUG_CPU
2214 extern void idle_task_exit(void);
2216 static inline void idle_task_exit(void) {}
2219 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2220 extern void wake_up_nohz_cpu(int cpu
);
2222 static inline void wake_up_nohz_cpu(int cpu
) { }
2225 #ifdef CONFIG_NO_HZ_FULL
2226 extern bool sched_can_stop_tick(void);
2227 extern u64
scheduler_tick_max_deferment(void);
2229 static inline bool sched_can_stop_tick(void) { return false; }
2232 #ifdef CONFIG_SCHED_AUTOGROUP
2233 extern void sched_autogroup_create_attach(struct task_struct
*p
);
2234 extern void sched_autogroup_detach(struct task_struct
*p
);
2235 extern void sched_autogroup_fork(struct signal_struct
*sig
);
2236 extern void sched_autogroup_exit(struct signal_struct
*sig
);
2237 #ifdef CONFIG_PROC_FS
2238 extern void proc_sched_autogroup_show_task(struct task_struct
*p
, struct seq_file
*m
);
2239 extern int proc_sched_autogroup_set_nice(struct task_struct
*p
, int nice
);
2242 static inline void sched_autogroup_create_attach(struct task_struct
*p
) { }
2243 static inline void sched_autogroup_detach(struct task_struct
*p
) { }
2244 static inline void sched_autogroup_fork(struct signal_struct
*sig
) { }
2245 static inline void sched_autogroup_exit(struct signal_struct
*sig
) { }
2248 extern int yield_to(struct task_struct
*p
, bool preempt
);
2249 extern void set_user_nice(struct task_struct
*p
, long nice
);
2250 extern int task_prio(const struct task_struct
*p
);
2252 * task_nice - return the nice value of a given task.
2253 * @p: the task in question.
2255 * Return: The nice value [ -20 ... 0 ... 19 ].
2257 static inline int task_nice(const struct task_struct
*p
)
2259 return PRIO_TO_NICE((p
)->static_prio
);
2261 extern int can_nice(const struct task_struct
*p
, const int nice
);
2262 extern int task_curr(const struct task_struct
*p
);
2263 extern int idle_cpu(int cpu
);
2264 extern int sched_setscheduler(struct task_struct
*, int,
2265 const struct sched_param
*);
2266 extern int sched_setscheduler_nocheck(struct task_struct
*, int,
2267 const struct sched_param
*);
2268 extern int sched_setattr(struct task_struct
*,
2269 const struct sched_attr
*);
2270 extern struct task_struct
*idle_task(int cpu
);
2272 * is_idle_task - is the specified task an idle task?
2273 * @p: the task in question.
2275 * Return: 1 if @p is an idle task. 0 otherwise.
2277 static inline bool is_idle_task(const struct task_struct
*p
)
2281 extern struct task_struct
*curr_task(int cpu
);
2282 extern void set_curr_task(int cpu
, struct task_struct
*p
);
2287 * The default (Linux) execution domain.
2289 extern struct exec_domain default_exec_domain
;
2291 union thread_union
{
2292 struct thread_info thread_info
;
2293 unsigned long stack
[THREAD_SIZE
/sizeof(long)];
2296 #ifndef __HAVE_ARCH_KSTACK_END
2297 static inline int kstack_end(void *addr
)
2299 /* Reliable end of stack detection:
2300 * Some APM bios versions misalign the stack
2302 return !(((unsigned long)addr
+sizeof(void*)-1) & (THREAD_SIZE
-sizeof(void*)));
2306 extern union thread_union init_thread_union
;
2307 extern struct task_struct init_task
;
2309 extern struct mm_struct init_mm
;
2311 extern struct pid_namespace init_pid_ns
;
2314 * find a task by one of its numerical ids
2316 * find_task_by_pid_ns():
2317 * finds a task by its pid in the specified namespace
2318 * find_task_by_vpid():
2319 * finds a task by its virtual pid
2321 * see also find_vpid() etc in include/linux/pid.h
2324 extern struct task_struct
*find_task_by_vpid(pid_t nr
);
2325 extern struct task_struct
*find_task_by_pid_ns(pid_t nr
,
2326 struct pid_namespace
*ns
);
2328 /* per-UID process charging. */
2329 extern struct user_struct
* alloc_uid(kuid_t
);
2330 static inline struct user_struct
*get_uid(struct user_struct
*u
)
2332 atomic_inc(&u
->__count
);
2335 extern void free_uid(struct user_struct
*);
2337 #include <asm/current.h>
2339 extern void xtime_update(unsigned long ticks
);
2341 extern int wake_up_state(struct task_struct
*tsk
, unsigned int state
);
2342 extern int wake_up_process(struct task_struct
*tsk
);
2343 extern void wake_up_new_task(struct task_struct
*tsk
);
2345 extern void kick_process(struct task_struct
*tsk
);
2347 static inline void kick_process(struct task_struct
*tsk
) { }
2349 extern int sched_fork(unsigned long clone_flags
, struct task_struct
*p
);
2350 extern void sched_dead(struct task_struct
*p
);
2352 extern void proc_caches_init(void);
2353 extern void flush_signals(struct task_struct
*);
2354 extern void __flush_signals(struct task_struct
*);
2355 extern void ignore_signals(struct task_struct
*);
2356 extern void flush_signal_handlers(struct task_struct
*, int force_default
);
2357 extern int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
);
2359 static inline int dequeue_signal_lock(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
)
2361 unsigned long flags
;
2364 spin_lock_irqsave(&tsk
->sighand
->siglock
, flags
);
2365 ret
= dequeue_signal(tsk
, mask
, info
);
2366 spin_unlock_irqrestore(&tsk
->sighand
->siglock
, flags
);
2371 extern void block_all_signals(int (*notifier
)(void *priv
), void *priv
,
2373 extern void unblock_all_signals(void);
2374 extern void release_task(struct task_struct
* p
);
2375 extern int send_sig_info(int, struct siginfo
*, struct task_struct
*);
2376 extern int force_sigsegv(int, struct task_struct
*);
2377 extern int force_sig_info(int, struct siginfo
*, struct task_struct
*);
2378 extern int __kill_pgrp_info(int sig
, struct siginfo
*info
, struct pid
*pgrp
);
2379 extern int kill_pid_info(int sig
, struct siginfo
*info
, struct pid
*pid
);
2380 extern int kill_pid_info_as_cred(int, struct siginfo
*, struct pid
*,
2381 const struct cred
*, u32
);
2382 extern int kill_pgrp(struct pid
*pid
, int sig
, int priv
);
2383 extern int kill_pid(struct pid
*pid
, int sig
, int priv
);
2384 extern int kill_proc_info(int, struct siginfo
*, pid_t
);
2385 extern __must_check
bool do_notify_parent(struct task_struct
*, int);
2386 extern void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
);
2387 extern void force_sig(int, struct task_struct
*);
2388 extern int send_sig(int, struct task_struct
*, int);
2389 extern int zap_other_threads(struct task_struct
*p
);
2390 extern struct sigqueue
*sigqueue_alloc(void);
2391 extern void sigqueue_free(struct sigqueue
*);
2392 extern int send_sigqueue(struct sigqueue
*, struct task_struct
*, int group
);
2393 extern int do_sigaction(int, struct k_sigaction
*, struct k_sigaction
*);
2395 static inline void restore_saved_sigmask(void)
2397 if (test_and_clear_restore_sigmask())
2398 __set_current_blocked(¤t
->saved_sigmask
);
2401 static inline sigset_t
*sigmask_to_save(void)
2403 sigset_t
*res
= ¤t
->blocked
;
2404 if (unlikely(test_restore_sigmask()))
2405 res
= ¤t
->saved_sigmask
;
2409 static inline int kill_cad_pid(int sig
, int priv
)
2411 return kill_pid(cad_pid
, sig
, priv
);
2414 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2415 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2416 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2417 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2420 * True if we are on the alternate signal stack.
2422 static inline int on_sig_stack(unsigned long sp
)
2424 #ifdef CONFIG_STACK_GROWSUP
2425 return sp
>= current
->sas_ss_sp
&&
2426 sp
- current
->sas_ss_sp
< current
->sas_ss_size
;
2428 return sp
> current
->sas_ss_sp
&&
2429 sp
- current
->sas_ss_sp
<= current
->sas_ss_size
;
2433 static inline int sas_ss_flags(unsigned long sp
)
2435 if (!current
->sas_ss_size
)
2438 return on_sig_stack(sp
) ? SS_ONSTACK
: 0;
2441 static inline unsigned long sigsp(unsigned long sp
, struct ksignal
*ksig
)
2443 if (unlikely((ksig
->ka
.sa
.sa_flags
& SA_ONSTACK
)) && ! sas_ss_flags(sp
))
2444 #ifdef CONFIG_STACK_GROWSUP
2445 return current
->sas_ss_sp
;
2447 return current
->sas_ss_sp
+ current
->sas_ss_size
;
2453 * Routines for handling mm_structs
2455 extern struct mm_struct
* mm_alloc(void);
2457 /* mmdrop drops the mm and the page tables */
2458 extern void __mmdrop(struct mm_struct
*);
2459 static inline void mmdrop(struct mm_struct
* mm
)
2461 if (unlikely(atomic_dec_and_test(&mm
->mm_count
)))
2465 /* mmput gets rid of the mappings and all user-space */
2466 extern void mmput(struct mm_struct
*);
2467 /* Grab a reference to a task's mm, if it is not already going away */
2468 extern struct mm_struct
*get_task_mm(struct task_struct
*task
);
2470 * Grab a reference to a task's mm, if it is not already going away
2471 * and ptrace_may_access with the mode parameter passed to it
2474 extern struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
);
2475 /* Remove the current tasks stale references to the old mm_struct */
2476 extern void mm_release(struct task_struct
*, struct mm_struct
*);
2478 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2479 struct task_struct
*);
2480 extern void flush_thread(void);
2481 extern void exit_thread(void);
2483 extern void exit_files(struct task_struct
*);
2484 extern void __cleanup_sighand(struct sighand_struct
*);
2486 extern void exit_itimers(struct signal_struct
*);
2487 extern void flush_itimer_signals(void);
2489 extern void do_group_exit(int);
2491 extern int do_execve(struct filename
*,
2492 const char __user
* const __user
*,
2493 const char __user
* const __user
*);
2494 extern int do_execveat(int, struct filename
*,
2495 const char __user
* const __user
*,
2496 const char __user
* const __user
*,
2498 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user
*, int __user
*);
2499 struct task_struct
*fork_idle(int);
2500 extern pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
);
2502 extern void __set_task_comm(struct task_struct
*tsk
, const char *from
, bool exec
);
2503 static inline void set_task_comm(struct task_struct
*tsk
, const char *from
)
2505 __set_task_comm(tsk
, from
, false);
2507 extern char *get_task_comm(char *to
, struct task_struct
*tsk
);
2510 void scheduler_ipi(void);
2511 extern unsigned long wait_task_inactive(struct task_struct
*, long match_state
);
2513 static inline void scheduler_ipi(void) { }
2514 static inline unsigned long wait_task_inactive(struct task_struct
*p
,
2521 #define next_task(p) \
2522 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2524 #define for_each_process(p) \
2525 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2527 extern bool current_is_single_threaded(void);
2530 * Careful: do_each_thread/while_each_thread is a double loop so
2531 * 'break' will not work as expected - use goto instead.
2533 #define do_each_thread(g, t) \
2534 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2536 #define while_each_thread(g, t) \
2537 while ((t = next_thread(t)) != g)
2539 #define __for_each_thread(signal, t) \
2540 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2542 #define for_each_thread(p, t) \
2543 __for_each_thread((p)->signal, t)
2545 /* Careful: this is a double loop, 'break' won't work as expected. */
2546 #define for_each_process_thread(p, t) \
2547 for_each_process(p) for_each_thread(p, t)
2549 static inline int get_nr_threads(struct task_struct
*tsk
)
2551 return tsk
->signal
->nr_threads
;
2554 static inline bool thread_group_leader(struct task_struct
*p
)
2556 return p
->exit_signal
>= 0;
2559 /* Do to the insanities of de_thread it is possible for a process
2560 * to have the pid of the thread group leader without actually being
2561 * the thread group leader. For iteration through the pids in proc
2562 * all we care about is that we have a task with the appropriate
2563 * pid, we don't actually care if we have the right task.
2565 static inline bool has_group_leader_pid(struct task_struct
*p
)
2567 return task_pid(p
) == p
->signal
->leader_pid
;
2571 bool same_thread_group(struct task_struct
*p1
, struct task_struct
*p2
)
2573 return p1
->signal
== p2
->signal
;
2576 static inline struct task_struct
*next_thread(const struct task_struct
*p
)
2578 return list_entry_rcu(p
->thread_group
.next
,
2579 struct task_struct
, thread_group
);
2582 static inline int thread_group_empty(struct task_struct
*p
)
2584 return list_empty(&p
->thread_group
);
2587 #define delay_group_leader(p) \
2588 (thread_group_leader(p) && !thread_group_empty(p))
2591 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2592 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2593 * pins the final release of task.io_context. Also protects ->cpuset and
2594 * ->cgroup.subsys[]. And ->vfork_done.
2596 * Nests both inside and outside of read_lock(&tasklist_lock).
2597 * It must not be nested with write_lock_irq(&tasklist_lock),
2598 * neither inside nor outside.
2600 static inline void task_lock(struct task_struct
*p
)
2602 spin_lock(&p
->alloc_lock
);
2605 static inline void task_unlock(struct task_struct
*p
)
2607 spin_unlock(&p
->alloc_lock
);
2610 extern struct sighand_struct
*__lock_task_sighand(struct task_struct
*tsk
,
2611 unsigned long *flags
);
2613 static inline struct sighand_struct
*lock_task_sighand(struct task_struct
*tsk
,
2614 unsigned long *flags
)
2616 struct sighand_struct
*ret
;
2618 ret
= __lock_task_sighand(tsk
, flags
);
2619 (void)__cond_lock(&tsk
->sighand
->siglock
, ret
);
2623 static inline void unlock_task_sighand(struct task_struct
*tsk
,
2624 unsigned long *flags
)
2626 spin_unlock_irqrestore(&tsk
->sighand
->siglock
, *flags
);
2629 #ifdef CONFIG_CGROUPS
2630 static inline void threadgroup_change_begin(struct task_struct
*tsk
)
2632 down_read(&tsk
->signal
->group_rwsem
);
2634 static inline void threadgroup_change_end(struct task_struct
*tsk
)
2636 up_read(&tsk
->signal
->group_rwsem
);
2640 * threadgroup_lock - lock threadgroup
2641 * @tsk: member task of the threadgroup to lock
2643 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2644 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2645 * change ->group_leader/pid. This is useful for cases where the threadgroup
2646 * needs to stay stable across blockable operations.
2648 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2649 * synchronization. While held, no new task will be added to threadgroup
2650 * and no existing live task will have its PF_EXITING set.
2652 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2653 * sub-thread becomes a new leader.
2655 static inline void threadgroup_lock(struct task_struct
*tsk
)
2657 down_write(&tsk
->signal
->group_rwsem
);
2661 * threadgroup_unlock - unlock threadgroup
2662 * @tsk: member task of the threadgroup to unlock
2664 * Reverse threadgroup_lock().
2666 static inline void threadgroup_unlock(struct task_struct
*tsk
)
2668 up_write(&tsk
->signal
->group_rwsem
);
2671 static inline void threadgroup_change_begin(struct task_struct
*tsk
) {}
2672 static inline void threadgroup_change_end(struct task_struct
*tsk
) {}
2673 static inline void threadgroup_lock(struct task_struct
*tsk
) {}
2674 static inline void threadgroup_unlock(struct task_struct
*tsk
) {}
2677 #ifndef __HAVE_THREAD_FUNCTIONS
2679 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2680 #define task_stack_page(task) ((task)->stack)
2682 static inline void setup_thread_stack(struct task_struct
*p
, struct task_struct
*org
)
2684 *task_thread_info(p
) = *task_thread_info(org
);
2685 task_thread_info(p
)->task
= p
;
2689 * Return the address of the last usable long on the stack.
2691 * When the stack grows down, this is just above the thread
2692 * info struct. Going any lower will corrupt the threadinfo.
2694 * When the stack grows up, this is the highest address.
2695 * Beyond that position, we corrupt data on the next page.
2697 static inline unsigned long *end_of_stack(struct task_struct
*p
)
2699 #ifdef CONFIG_STACK_GROWSUP
2700 return (unsigned long *)((unsigned long)task_thread_info(p
) + THREAD_SIZE
) - 1;
2702 return (unsigned long *)(task_thread_info(p
) + 1);
2707 #define task_stack_end_corrupted(task) \
2708 (*(end_of_stack(task)) != STACK_END_MAGIC)
2710 static inline int object_is_on_stack(void *obj
)
2712 void *stack
= task_stack_page(current
);
2714 return (obj
>= stack
) && (obj
< (stack
+ THREAD_SIZE
));
2717 extern void thread_info_cache_init(void);
2719 #ifdef CONFIG_DEBUG_STACK_USAGE
2720 static inline unsigned long stack_not_used(struct task_struct
*p
)
2722 unsigned long *n
= end_of_stack(p
);
2724 do { /* Skip over canary */
2728 return (unsigned long)n
- (unsigned long)end_of_stack(p
);
2731 extern void set_task_stack_end_magic(struct task_struct
*tsk
);
2733 /* set thread flags in other task's structures
2734 * - see asm/thread_info.h for TIF_xxxx flags available
2736 static inline void set_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2738 set_ti_thread_flag(task_thread_info(tsk
), flag
);
2741 static inline void clear_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2743 clear_ti_thread_flag(task_thread_info(tsk
), flag
);
2746 static inline int test_and_set_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2748 return test_and_set_ti_thread_flag(task_thread_info(tsk
), flag
);
2751 static inline int test_and_clear_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2753 return test_and_clear_ti_thread_flag(task_thread_info(tsk
), flag
);
2756 static inline int test_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2758 return test_ti_thread_flag(task_thread_info(tsk
), flag
);
2761 static inline void set_tsk_need_resched(struct task_struct
*tsk
)
2763 set_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
);
2766 static inline void clear_tsk_need_resched(struct task_struct
*tsk
)
2768 clear_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
);
2771 static inline int test_tsk_need_resched(struct task_struct
*tsk
)
2773 return unlikely(test_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
));
2776 static inline int restart_syscall(void)
2778 set_tsk_thread_flag(current
, TIF_SIGPENDING
);
2779 return -ERESTARTNOINTR
;
2782 static inline int signal_pending(struct task_struct
*p
)
2784 return unlikely(test_tsk_thread_flag(p
,TIF_SIGPENDING
));
2787 static inline int __fatal_signal_pending(struct task_struct
*p
)
2789 return unlikely(sigismember(&p
->pending
.signal
, SIGKILL
));
2792 static inline int fatal_signal_pending(struct task_struct
*p
)
2794 return signal_pending(p
) && __fatal_signal_pending(p
);
2797 static inline int signal_pending_state(long state
, struct task_struct
*p
)
2799 if (!(state
& (TASK_INTERRUPTIBLE
| TASK_WAKEKILL
)))
2801 if (!signal_pending(p
))
2804 return (state
& TASK_INTERRUPTIBLE
) || __fatal_signal_pending(p
);
2808 * cond_resched() and cond_resched_lock(): latency reduction via
2809 * explicit rescheduling in places that are safe. The return
2810 * value indicates whether a reschedule was done in fact.
2811 * cond_resched_lock() will drop the spinlock before scheduling,
2812 * cond_resched_softirq() will enable bhs before scheduling.
2814 extern int _cond_resched(void);
2816 #define cond_resched() ({ \
2817 ___might_sleep(__FILE__, __LINE__, 0); \
2821 extern int __cond_resched_lock(spinlock_t
*lock
);
2823 #ifdef CONFIG_PREEMPT_COUNT
2824 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2826 #define PREEMPT_LOCK_OFFSET 0
2829 #define cond_resched_lock(lock) ({ \
2830 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2831 __cond_resched_lock(lock); \
2834 extern int __cond_resched_softirq(void);
2836 #define cond_resched_softirq() ({ \
2837 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2838 __cond_resched_softirq(); \
2841 static inline void cond_resched_rcu(void)
2843 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2851 * Does a critical section need to be broken due to another
2852 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2853 * but a general need for low latency)
2855 static inline int spin_needbreak(spinlock_t
*lock
)
2857 #ifdef CONFIG_PREEMPT
2858 return spin_is_contended(lock
);
2865 * Idle thread specific functions to determine the need_resched
2868 #ifdef TIF_POLLING_NRFLAG
2869 static inline int tsk_is_polling(struct task_struct
*p
)
2871 return test_tsk_thread_flag(p
, TIF_POLLING_NRFLAG
);
2874 static inline void __current_set_polling(void)
2876 set_thread_flag(TIF_POLLING_NRFLAG
);
2879 static inline bool __must_check
current_set_polling_and_test(void)
2881 __current_set_polling();
2884 * Polling state must be visible before we test NEED_RESCHED,
2885 * paired by resched_curr()
2887 smp_mb__after_atomic();
2889 return unlikely(tif_need_resched());
2892 static inline void __current_clr_polling(void)
2894 clear_thread_flag(TIF_POLLING_NRFLAG
);
2897 static inline bool __must_check
current_clr_polling_and_test(void)
2899 __current_clr_polling();
2902 * Polling state must be visible before we test NEED_RESCHED,
2903 * paired by resched_curr()
2905 smp_mb__after_atomic();
2907 return unlikely(tif_need_resched());
2911 static inline int tsk_is_polling(struct task_struct
*p
) { return 0; }
2912 static inline void __current_set_polling(void) { }
2913 static inline void __current_clr_polling(void) { }
2915 static inline bool __must_check
current_set_polling_and_test(void)
2917 return unlikely(tif_need_resched());
2919 static inline bool __must_check
current_clr_polling_and_test(void)
2921 return unlikely(tif_need_resched());
2925 static inline void current_clr_polling(void)
2927 __current_clr_polling();
2930 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2931 * Once the bit is cleared, we'll get IPIs with every new
2932 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2935 smp_mb(); /* paired with resched_curr() */
2937 preempt_fold_need_resched();
2940 static __always_inline
bool need_resched(void)
2942 return unlikely(tif_need_resched());
2946 * Thread group CPU time accounting.
2948 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
);
2949 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
);
2951 static inline void thread_group_cputime_init(struct signal_struct
*sig
)
2953 raw_spin_lock_init(&sig
->cputimer
.lock
);
2957 * Reevaluate whether the task has signals pending delivery.
2958 * Wake the task if so.
2959 * This is required every time the blocked sigset_t changes.
2960 * callers must hold sighand->siglock.
2962 extern void recalc_sigpending_and_wake(struct task_struct
*t
);
2963 extern void recalc_sigpending(void);
2965 extern void signal_wake_up_state(struct task_struct
*t
, unsigned int state
);
2967 static inline void signal_wake_up(struct task_struct
*t
, bool resume
)
2969 signal_wake_up_state(t
, resume
? TASK_WAKEKILL
: 0);
2971 static inline void ptrace_signal_wake_up(struct task_struct
*t
, bool resume
)
2973 signal_wake_up_state(t
, resume
? __TASK_TRACED
: 0);
2977 * Wrappers for p->thread_info->cpu access. No-op on UP.
2981 static inline unsigned int task_cpu(const struct task_struct
*p
)
2983 return task_thread_info(p
)->cpu
;
2986 static inline int task_node(const struct task_struct
*p
)
2988 return cpu_to_node(task_cpu(p
));
2991 extern void set_task_cpu(struct task_struct
*p
, unsigned int cpu
);
2995 static inline unsigned int task_cpu(const struct task_struct
*p
)
3000 static inline void set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
3004 #endif /* CONFIG_SMP */
3006 extern long sched_setaffinity(pid_t pid
, const struct cpumask
*new_mask
);
3007 extern long sched_getaffinity(pid_t pid
, struct cpumask
*mask
);
3009 #ifdef CONFIG_CGROUP_SCHED
3010 extern struct task_group root_task_group
;
3011 #endif /* CONFIG_CGROUP_SCHED */
3013 extern int task_can_switch_user(struct user_struct
*up
,
3014 struct task_struct
*tsk
);
3016 #ifdef CONFIG_TASK_XACCT
3017 static inline void add_rchar(struct task_struct
*tsk
, ssize_t amt
)
3019 tsk
->ioac
.rchar
+= amt
;
3022 static inline void add_wchar(struct task_struct
*tsk
, ssize_t amt
)
3024 tsk
->ioac
.wchar
+= amt
;
3027 static inline void inc_syscr(struct task_struct
*tsk
)
3032 static inline void inc_syscw(struct task_struct
*tsk
)
3037 static inline void add_rchar(struct task_struct
*tsk
, ssize_t amt
)
3041 static inline void add_wchar(struct task_struct
*tsk
, ssize_t amt
)
3045 static inline void inc_syscr(struct task_struct
*tsk
)
3049 static inline void inc_syscw(struct task_struct
*tsk
)
3054 #ifndef TASK_SIZE_OF
3055 #define TASK_SIZE_OF(tsk) TASK_SIZE
3059 extern void mm_update_next_owner(struct mm_struct
*mm
);
3061 static inline void mm_update_next_owner(struct mm_struct
*mm
)
3064 #endif /* CONFIG_MEMCG */
3066 static inline unsigned long task_rlimit(const struct task_struct
*tsk
,
3069 return ACCESS_ONCE(tsk
->signal
->rlim
[limit
].rlim_cur
);
3072 static inline unsigned long task_rlimit_max(const struct task_struct
*tsk
,
3075 return ACCESS_ONCE(tsk
->signal
->rlim
[limit
].rlim_max
);
3078 static inline unsigned long rlimit(unsigned int limit
)
3080 return task_rlimit(current
, limit
);
3083 static inline unsigned long rlimit_max(unsigned int limit
)
3085 return task_rlimit_max(current
, limit
);