Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild-2.6.18
[deliverable/linux.git] / include / linux / security.h
1 /*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * Due to this file being licensed under the GPL there is controversy over
16 * whether this permits you to write a module that #includes this file
17 * without placing your module under the GPL. Please consult a lawyer for
18 * advice before doing this.
19 *
20 */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34
35 struct ctl_table;
36
37 /*
38 * These functions are in security/capability.c and are used
39 * as the default capabilities functions
40 */
41 extern int cap_capable (struct task_struct *tsk, int cap);
42 extern int cap_settime (struct timespec *ts, struct timezone *tz);
43 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
44 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
45 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
46 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_bprm_set_security (struct linux_binprm *bprm);
48 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
49 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
50 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
51 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
52 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
53 extern void cap_task_reparent_to_init (struct task_struct *p);
54 extern int cap_syslog (int type);
55 extern int cap_vm_enough_memory (long pages);
56
57 struct msghdr;
58 struct sk_buff;
59 struct sock;
60 struct sockaddr;
61 struct socket;
62 struct flowi;
63 struct dst_entry;
64 struct xfrm_selector;
65 struct xfrm_policy;
66 struct xfrm_state;
67 struct xfrm_user_sec_ctx;
68
69 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
70 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
71
72 /*
73 * Values used in the task_security_ops calls
74 */
75 /* setuid or setgid, id0 == uid or gid */
76 #define LSM_SETID_ID 1
77
78 /* setreuid or setregid, id0 == real, id1 == eff */
79 #define LSM_SETID_RE 2
80
81 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
82 #define LSM_SETID_RES 4
83
84 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
85 #define LSM_SETID_FS 8
86
87 /* forward declares to avoid warnings */
88 struct nfsctl_arg;
89 struct sched_param;
90 struct swap_info_struct;
91
92 /* bprm_apply_creds unsafe reasons */
93 #define LSM_UNSAFE_SHARE 1
94 #define LSM_UNSAFE_PTRACE 2
95 #define LSM_UNSAFE_PTRACE_CAP 4
96
97 #ifdef CONFIG_SECURITY
98
99 /**
100 * struct security_operations - main security structure
101 *
102 * Security hooks for program execution operations.
103 *
104 * @bprm_alloc_security:
105 * Allocate and attach a security structure to the @bprm->security field.
106 * The security field is initialized to NULL when the bprm structure is
107 * allocated.
108 * @bprm contains the linux_binprm structure to be modified.
109 * Return 0 if operation was successful.
110 * @bprm_free_security:
111 * @bprm contains the linux_binprm structure to be modified.
112 * Deallocate and clear the @bprm->security field.
113 * @bprm_apply_creds:
114 * Compute and set the security attributes of a process being transformed
115 * by an execve operation based on the old attributes (current->security)
116 * and the information saved in @bprm->security by the set_security hook.
117 * Since this hook function (and its caller) are void, this hook can not
118 * return an error. However, it can leave the security attributes of the
119 * process unchanged if an access failure occurs at this point.
120 * bprm_apply_creds is called under task_lock. @unsafe indicates various
121 * reasons why it may be unsafe to change security state.
122 * @bprm contains the linux_binprm structure.
123 * @bprm_post_apply_creds:
124 * Runs after bprm_apply_creds with the task_lock dropped, so that
125 * functions which cannot be called safely under the task_lock can
126 * be used. This hook is a good place to perform state changes on
127 * the process such as closing open file descriptors to which access
128 * is no longer granted if the attributes were changed.
129 * Note that a security module might need to save state between
130 * bprm_apply_creds and bprm_post_apply_creds to store the decision
131 * on whether the process may proceed.
132 * @bprm contains the linux_binprm structure.
133 * @bprm_set_security:
134 * Save security information in the bprm->security field, typically based
135 * on information about the bprm->file, for later use by the apply_creds
136 * hook. This hook may also optionally check permissions (e.g. for
137 * transitions between security domains).
138 * This hook may be called multiple times during a single execve, e.g. for
139 * interpreters. The hook can tell whether it has already been called by
140 * checking to see if @bprm->security is non-NULL. If so, then the hook
141 * may decide either to retain the security information saved earlier or
142 * to replace it.
143 * @bprm contains the linux_binprm structure.
144 * Return 0 if the hook is successful and permission is granted.
145 * @bprm_check_security:
146 * This hook mediates the point when a search for a binary handler will
147 * begin. It allows a check the @bprm->security value which is set in
148 * the preceding set_security call. The primary difference from
149 * set_security is that the argv list and envp list are reliably
150 * available in @bprm. This hook may be called multiple times
151 * during a single execve; and in each pass set_security is called
152 * first.
153 * @bprm contains the linux_binprm structure.
154 * Return 0 if the hook is successful and permission is granted.
155 * @bprm_secureexec:
156 * Return a boolean value (0 or 1) indicating whether a "secure exec"
157 * is required. The flag is passed in the auxiliary table
158 * on the initial stack to the ELF interpreter to indicate whether libc
159 * should enable secure mode.
160 * @bprm contains the linux_binprm structure.
161 *
162 * Security hooks for filesystem operations.
163 *
164 * @sb_alloc_security:
165 * Allocate and attach a security structure to the sb->s_security field.
166 * The s_security field is initialized to NULL when the structure is
167 * allocated.
168 * @sb contains the super_block structure to be modified.
169 * Return 0 if operation was successful.
170 * @sb_free_security:
171 * Deallocate and clear the sb->s_security field.
172 * @sb contains the super_block structure to be modified.
173 * @sb_statfs:
174 * Check permission before obtaining filesystem statistics for the @mnt
175 * mountpoint.
176 * @dentry is a handle on the superblock for the filesystem.
177 * Return 0 if permission is granted.
178 * @sb_mount:
179 * Check permission before an object specified by @dev_name is mounted on
180 * the mount point named by @nd. For an ordinary mount, @dev_name
181 * identifies a device if the file system type requires a device. For a
182 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
183 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
184 * pathname of the object being mounted.
185 * @dev_name contains the name for object being mounted.
186 * @nd contains the nameidata structure for mount point object.
187 * @type contains the filesystem type.
188 * @flags contains the mount flags.
189 * @data contains the filesystem-specific data.
190 * Return 0 if permission is granted.
191 * @sb_copy_data:
192 * Allow mount option data to be copied prior to parsing by the filesystem,
193 * so that the security module can extract security-specific mount
194 * options cleanly (a filesystem may modify the data e.g. with strsep()).
195 * This also allows the original mount data to be stripped of security-
196 * specific options to avoid having to make filesystems aware of them.
197 * @type the type of filesystem being mounted.
198 * @orig the original mount data copied from userspace.
199 * @copy copied data which will be passed to the security module.
200 * Returns 0 if the copy was successful.
201 * @sb_check_sb:
202 * Check permission before the device with superblock @mnt->sb is mounted
203 * on the mount point named by @nd.
204 * @mnt contains the vfsmount for device being mounted.
205 * @nd contains the nameidata object for the mount point.
206 * Return 0 if permission is granted.
207 * @sb_umount:
208 * Check permission before the @mnt file system is unmounted.
209 * @mnt contains the mounted file system.
210 * @flags contains the unmount flags, e.g. MNT_FORCE.
211 * Return 0 if permission is granted.
212 * @sb_umount_close:
213 * Close any files in the @mnt mounted filesystem that are held open by
214 * the security module. This hook is called during an umount operation
215 * prior to checking whether the filesystem is still busy.
216 * @mnt contains the mounted filesystem.
217 * @sb_umount_busy:
218 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
219 * any files that were closed by umount_close. This hook is called during
220 * an umount operation if the umount fails after a call to the
221 * umount_close hook.
222 * @mnt contains the mounted filesystem.
223 * @sb_post_remount:
224 * Update the security module's state when a filesystem is remounted.
225 * This hook is only called if the remount was successful.
226 * @mnt contains the mounted file system.
227 * @flags contains the new filesystem flags.
228 * @data contains the filesystem-specific data.
229 * @sb_post_mountroot:
230 * Update the security module's state when the root filesystem is mounted.
231 * This hook is only called if the mount was successful.
232 * @sb_post_addmount:
233 * Update the security module's state when a filesystem is mounted.
234 * This hook is called any time a mount is successfully grafetd to
235 * the tree.
236 * @mnt contains the mounted filesystem.
237 * @mountpoint_nd contains the nameidata structure for the mount point.
238 * @sb_pivotroot:
239 * Check permission before pivoting the root filesystem.
240 * @old_nd contains the nameidata structure for the new location of the current root (put_old).
241 * @new_nd contains the nameidata structure for the new root (new_root).
242 * Return 0 if permission is granted.
243 * @sb_post_pivotroot:
244 * Update module state after a successful pivot.
245 * @old_nd contains the nameidata structure for the old root.
246 * @new_nd contains the nameidata structure for the new root.
247 *
248 * Security hooks for inode operations.
249 *
250 * @inode_alloc_security:
251 * Allocate and attach a security structure to @inode->i_security. The
252 * i_security field is initialized to NULL when the inode structure is
253 * allocated.
254 * @inode contains the inode structure.
255 * Return 0 if operation was successful.
256 * @inode_free_security:
257 * @inode contains the inode structure.
258 * Deallocate the inode security structure and set @inode->i_security to
259 * NULL.
260 * @inode_init_security:
261 * Obtain the security attribute name suffix and value to set on a newly
262 * created inode and set up the incore security field for the new inode.
263 * This hook is called by the fs code as part of the inode creation
264 * transaction and provides for atomic labeling of the inode, unlike
265 * the post_create/mkdir/... hooks called by the VFS. The hook function
266 * is expected to allocate the name and value via kmalloc, with the caller
267 * being responsible for calling kfree after using them.
268 * If the security module does not use security attributes or does
269 * not wish to put a security attribute on this particular inode,
270 * then it should return -EOPNOTSUPP to skip this processing.
271 * @inode contains the inode structure of the newly created inode.
272 * @dir contains the inode structure of the parent directory.
273 * @name will be set to the allocated name suffix (e.g. selinux).
274 * @value will be set to the allocated attribute value.
275 * @len will be set to the length of the value.
276 * Returns 0 if @name and @value have been successfully set,
277 * -EOPNOTSUPP if no security attribute is needed, or
278 * -ENOMEM on memory allocation failure.
279 * @inode_create:
280 * Check permission to create a regular file.
281 * @dir contains inode structure of the parent of the new file.
282 * @dentry contains the dentry structure for the file to be created.
283 * @mode contains the file mode of the file to be created.
284 * Return 0 if permission is granted.
285 * @inode_link:
286 * Check permission before creating a new hard link to a file.
287 * @old_dentry contains the dentry structure for an existing link to the file.
288 * @dir contains the inode structure of the parent directory of the new link.
289 * @new_dentry contains the dentry structure for the new link.
290 * Return 0 if permission is granted.
291 * @inode_unlink:
292 * Check the permission to remove a hard link to a file.
293 * @dir contains the inode structure of parent directory of the file.
294 * @dentry contains the dentry structure for file to be unlinked.
295 * Return 0 if permission is granted.
296 * @inode_symlink:
297 * Check the permission to create a symbolic link to a file.
298 * @dir contains the inode structure of parent directory of the symbolic link.
299 * @dentry contains the dentry structure of the symbolic link.
300 * @old_name contains the pathname of file.
301 * Return 0 if permission is granted.
302 * @inode_mkdir:
303 * Check permissions to create a new directory in the existing directory
304 * associated with inode strcture @dir.
305 * @dir containst the inode structure of parent of the directory to be created.
306 * @dentry contains the dentry structure of new directory.
307 * @mode contains the mode of new directory.
308 * Return 0 if permission is granted.
309 * @inode_rmdir:
310 * Check the permission to remove a directory.
311 * @dir contains the inode structure of parent of the directory to be removed.
312 * @dentry contains the dentry structure of directory to be removed.
313 * Return 0 if permission is granted.
314 * @inode_mknod:
315 * Check permissions when creating a special file (or a socket or a fifo
316 * file created via the mknod system call). Note that if mknod operation
317 * is being done for a regular file, then the create hook will be called
318 * and not this hook.
319 * @dir contains the inode structure of parent of the new file.
320 * @dentry contains the dentry structure of the new file.
321 * @mode contains the mode of the new file.
322 * @dev contains the the device number.
323 * Return 0 if permission is granted.
324 * @inode_rename:
325 * Check for permission to rename a file or directory.
326 * @old_dir contains the inode structure for parent of the old link.
327 * @old_dentry contains the dentry structure of the old link.
328 * @new_dir contains the inode structure for parent of the new link.
329 * @new_dentry contains the dentry structure of the new link.
330 * Return 0 if permission is granted.
331 * @inode_readlink:
332 * Check the permission to read the symbolic link.
333 * @dentry contains the dentry structure for the file link.
334 * Return 0 if permission is granted.
335 * @inode_follow_link:
336 * Check permission to follow a symbolic link when looking up a pathname.
337 * @dentry contains the dentry structure for the link.
338 * @nd contains the nameidata structure for the parent directory.
339 * Return 0 if permission is granted.
340 * @inode_permission:
341 * Check permission before accessing an inode. This hook is called by the
342 * existing Linux permission function, so a security module can use it to
343 * provide additional checking for existing Linux permission checks.
344 * Notice that this hook is called when a file is opened (as well as many
345 * other operations), whereas the file_security_ops permission hook is
346 * called when the actual read/write operations are performed.
347 * @inode contains the inode structure to check.
348 * @mask contains the permission mask.
349 * @nd contains the nameidata (may be NULL).
350 * Return 0 if permission is granted.
351 * @inode_setattr:
352 * Check permission before setting file attributes. Note that the kernel
353 * call to notify_change is performed from several locations, whenever
354 * file attributes change (such as when a file is truncated, chown/chmod
355 * operations, transferring disk quotas, etc).
356 * @dentry contains the dentry structure for the file.
357 * @attr is the iattr structure containing the new file attributes.
358 * Return 0 if permission is granted.
359 * @inode_getattr:
360 * Check permission before obtaining file attributes.
361 * @mnt is the vfsmount where the dentry was looked up
362 * @dentry contains the dentry structure for the file.
363 * Return 0 if permission is granted.
364 * @inode_delete:
365 * @inode contains the inode structure for deleted inode.
366 * This hook is called when a deleted inode is released (i.e. an inode
367 * with no hard links has its use count drop to zero). A security module
368 * can use this hook to release any persistent label associated with the
369 * inode.
370 * @inode_setxattr:
371 * Check permission before setting the extended attributes
372 * @value identified by @name for @dentry.
373 * Return 0 if permission is granted.
374 * @inode_post_setxattr:
375 * Update inode security field after successful setxattr operation.
376 * @value identified by @name for @dentry.
377 * @inode_getxattr:
378 * Check permission before obtaining the extended attributes
379 * identified by @name for @dentry.
380 * Return 0 if permission is granted.
381 * @inode_listxattr:
382 * Check permission before obtaining the list of extended attribute
383 * names for @dentry.
384 * Return 0 if permission is granted.
385 * @inode_removexattr:
386 * Check permission before removing the extended attribute
387 * identified by @name for @dentry.
388 * Return 0 if permission is granted.
389 * @inode_getsecurity:
390 * Copy the extended attribute representation of the security label
391 * associated with @name for @inode into @buffer. @buffer may be
392 * NULL to request the size of the buffer required. @size indicates
393 * the size of @buffer in bytes. Note that @name is the remainder
394 * of the attribute name after the security. prefix has been removed.
395 * @err is the return value from the preceding fs getxattr call,
396 * and can be used by the security module to determine whether it
397 * should try and canonicalize the attribute value.
398 * Return number of bytes used/required on success.
399 * @inode_setsecurity:
400 * Set the security label associated with @name for @inode from the
401 * extended attribute value @value. @size indicates the size of the
402 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
403 * Note that @name is the remainder of the attribute name after the
404 * security. prefix has been removed.
405 * Return 0 on success.
406 * @inode_listsecurity:
407 * Copy the extended attribute names for the security labels
408 * associated with @inode into @buffer. The maximum size of @buffer
409 * is specified by @buffer_size. @buffer may be NULL to request
410 * the size of the buffer required.
411 * Returns number of bytes used/required on success.
412 *
413 * Security hooks for file operations
414 *
415 * @file_permission:
416 * Check file permissions before accessing an open file. This hook is
417 * called by various operations that read or write files. A security
418 * module can use this hook to perform additional checking on these
419 * operations, e.g. to revalidate permissions on use to support privilege
420 * bracketing or policy changes. Notice that this hook is used when the
421 * actual read/write operations are performed, whereas the
422 * inode_security_ops hook is called when a file is opened (as well as
423 * many other operations).
424 * Caveat: Although this hook can be used to revalidate permissions for
425 * various system call operations that read or write files, it does not
426 * address the revalidation of permissions for memory-mapped files.
427 * Security modules must handle this separately if they need such
428 * revalidation.
429 * @file contains the file structure being accessed.
430 * @mask contains the requested permissions.
431 * Return 0 if permission is granted.
432 * @file_alloc_security:
433 * Allocate and attach a security structure to the file->f_security field.
434 * The security field is initialized to NULL when the structure is first
435 * created.
436 * @file contains the file structure to secure.
437 * Return 0 if the hook is successful and permission is granted.
438 * @file_free_security:
439 * Deallocate and free any security structures stored in file->f_security.
440 * @file contains the file structure being modified.
441 * @file_ioctl:
442 * @file contains the file structure.
443 * @cmd contains the operation to perform.
444 * @arg contains the operational arguments.
445 * Check permission for an ioctl operation on @file. Note that @arg can
446 * sometimes represents a user space pointer; in other cases, it may be a
447 * simple integer value. When @arg represents a user space pointer, it
448 * should never be used by the security module.
449 * Return 0 if permission is granted.
450 * @file_mmap :
451 * Check permissions for a mmap operation. The @file may be NULL, e.g.
452 * if mapping anonymous memory.
453 * @file contains the file structure for file to map (may be NULL).
454 * @reqprot contains the protection requested by the application.
455 * @prot contains the protection that will be applied by the kernel.
456 * @flags contains the operational flags.
457 * Return 0 if permission is granted.
458 * @file_mprotect:
459 * Check permissions before changing memory access permissions.
460 * @vma contains the memory region to modify.
461 * @reqprot contains the protection requested by the application.
462 * @prot contains the protection that will be applied by the kernel.
463 * Return 0 if permission is granted.
464 * @file_lock:
465 * Check permission before performing file locking operations.
466 * Note: this hook mediates both flock and fcntl style locks.
467 * @file contains the file structure.
468 * @cmd contains the posix-translated lock operation to perform
469 * (e.g. F_RDLCK, F_WRLCK).
470 * Return 0 if permission is granted.
471 * @file_fcntl:
472 * Check permission before allowing the file operation specified by @cmd
473 * from being performed on the file @file. Note that @arg can sometimes
474 * represents a user space pointer; in other cases, it may be a simple
475 * integer value. When @arg represents a user space pointer, it should
476 * never be used by the security module.
477 * @file contains the file structure.
478 * @cmd contains the operation to be performed.
479 * @arg contains the operational arguments.
480 * Return 0 if permission is granted.
481 * @file_set_fowner:
482 * Save owner security information (typically from current->security) in
483 * file->f_security for later use by the send_sigiotask hook.
484 * @file contains the file structure to update.
485 * Return 0 on success.
486 * @file_send_sigiotask:
487 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
488 * process @tsk. Note that this hook is sometimes called from interrupt.
489 * Note that the fown_struct, @fown, is never outside the context of a
490 * struct file, so the file structure (and associated security information)
491 * can always be obtained:
492 * (struct file *)((long)fown - offsetof(struct file,f_owner));
493 * @tsk contains the structure of task receiving signal.
494 * @fown contains the file owner information.
495 * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
496 * Return 0 if permission is granted.
497 * @file_receive:
498 * This hook allows security modules to control the ability of a process
499 * to receive an open file descriptor via socket IPC.
500 * @file contains the file structure being received.
501 * Return 0 if permission is granted.
502 *
503 * Security hooks for task operations.
504 *
505 * @task_create:
506 * Check permission before creating a child process. See the clone(2)
507 * manual page for definitions of the @clone_flags.
508 * @clone_flags contains the flags indicating what should be shared.
509 * Return 0 if permission is granted.
510 * @task_alloc_security:
511 * @p contains the task_struct for child process.
512 * Allocate and attach a security structure to the p->security field. The
513 * security field is initialized to NULL when the task structure is
514 * allocated.
515 * Return 0 if operation was successful.
516 * @task_free_security:
517 * @p contains the task_struct for process.
518 * Deallocate and clear the p->security field.
519 * @task_setuid:
520 * Check permission before setting one or more of the user identity
521 * attributes of the current process. The @flags parameter indicates
522 * which of the set*uid system calls invoked this hook and how to
523 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
524 * definitions at the beginning of this file for the @flags values and
525 * their meanings.
526 * @id0 contains a uid.
527 * @id1 contains a uid.
528 * @id2 contains a uid.
529 * @flags contains one of the LSM_SETID_* values.
530 * Return 0 if permission is granted.
531 * @task_post_setuid:
532 * Update the module's state after setting one or more of the user
533 * identity attributes of the current process. The @flags parameter
534 * indicates which of the set*uid system calls invoked this hook. If
535 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
536 * parameters are not used.
537 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
538 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
539 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
540 * @flags contains one of the LSM_SETID_* values.
541 * Return 0 on success.
542 * @task_setgid:
543 * Check permission before setting one or more of the group identity
544 * attributes of the current process. The @flags parameter indicates
545 * which of the set*gid system calls invoked this hook and how to
546 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
547 * definitions at the beginning of this file for the @flags values and
548 * their meanings.
549 * @id0 contains a gid.
550 * @id1 contains a gid.
551 * @id2 contains a gid.
552 * @flags contains one of the LSM_SETID_* values.
553 * Return 0 if permission is granted.
554 * @task_setpgid:
555 * Check permission before setting the process group identifier of the
556 * process @p to @pgid.
557 * @p contains the task_struct for process being modified.
558 * @pgid contains the new pgid.
559 * Return 0 if permission is granted.
560 * @task_getpgid:
561 * Check permission before getting the process group identifier of the
562 * process @p.
563 * @p contains the task_struct for the process.
564 * Return 0 if permission is granted.
565 * @task_getsid:
566 * Check permission before getting the session identifier of the process
567 * @p.
568 * @p contains the task_struct for the process.
569 * Return 0 if permission is granted.
570 * @task_getsecid:
571 * Retrieve the security identifier of the process @p.
572 * @p contains the task_struct for the process and place is into @secid.
573 * @task_setgroups:
574 * Check permission before setting the supplementary group set of the
575 * current process.
576 * @group_info contains the new group information.
577 * Return 0 if permission is granted.
578 * @task_setnice:
579 * Check permission before setting the nice value of @p to @nice.
580 * @p contains the task_struct of process.
581 * @nice contains the new nice value.
582 * Return 0 if permission is granted.
583 * @task_setioprio
584 * Check permission before setting the ioprio value of @p to @ioprio.
585 * @p contains the task_struct of process.
586 * @ioprio contains the new ioprio value
587 * Return 0 if permission is granted.
588 * @task_getioprio
589 * Check permission before getting the ioprio value of @p.
590 * @p contains the task_struct of process.
591 * Return 0 if permission is granted.
592 * @task_setrlimit:
593 * Check permission before setting the resource limits of the current
594 * process for @resource to @new_rlim. The old resource limit values can
595 * be examined by dereferencing (current->signal->rlim + resource).
596 * @resource contains the resource whose limit is being set.
597 * @new_rlim contains the new limits for @resource.
598 * Return 0 if permission is granted.
599 * @task_setscheduler:
600 * Check permission before setting scheduling policy and/or parameters of
601 * process @p based on @policy and @lp.
602 * @p contains the task_struct for process.
603 * @policy contains the scheduling policy.
604 * @lp contains the scheduling parameters.
605 * Return 0 if permission is granted.
606 * @task_getscheduler:
607 * Check permission before obtaining scheduling information for process
608 * @p.
609 * @p contains the task_struct for process.
610 * Return 0 if permission is granted.
611 * @task_movememory
612 * Check permission before moving memory owned by process @p.
613 * @p contains the task_struct for process.
614 * Return 0 if permission is granted.
615 * @task_kill:
616 * Check permission before sending signal @sig to @p. @info can be NULL,
617 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
618 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
619 * from the kernel and should typically be permitted.
620 * SIGIO signals are handled separately by the send_sigiotask hook in
621 * file_security_ops.
622 * @p contains the task_struct for process.
623 * @info contains the signal information.
624 * @sig contains the signal value.
625 * @secid contains the sid of the process where the signal originated
626 * Return 0 if permission is granted.
627 * @task_wait:
628 * Check permission before allowing a process to reap a child process @p
629 * and collect its status information.
630 * @p contains the task_struct for process.
631 * Return 0 if permission is granted.
632 * @task_prctl:
633 * Check permission before performing a process control operation on the
634 * current process.
635 * @option contains the operation.
636 * @arg2 contains a argument.
637 * @arg3 contains a argument.
638 * @arg4 contains a argument.
639 * @arg5 contains a argument.
640 * Return 0 if permission is granted.
641 * @task_reparent_to_init:
642 * Set the security attributes in @p->security for a kernel thread that
643 * is being reparented to the init task.
644 * @p contains the task_struct for the kernel thread.
645 * @task_to_inode:
646 * Set the security attributes for an inode based on an associated task's
647 * security attributes, e.g. for /proc/pid inodes.
648 * @p contains the task_struct for the task.
649 * @inode contains the inode structure for the inode.
650 *
651 * Security hooks for Netlink messaging.
652 *
653 * @netlink_send:
654 * Save security information for a netlink message so that permission
655 * checking can be performed when the message is processed. The security
656 * information can be saved using the eff_cap field of the
657 * netlink_skb_parms structure. Also may be used to provide fine
658 * grained control over message transmission.
659 * @sk associated sock of task sending the message.,
660 * @skb contains the sk_buff structure for the netlink message.
661 * Return 0 if the information was successfully saved and message
662 * is allowed to be transmitted.
663 * @netlink_recv:
664 * Check permission before processing the received netlink message in
665 * @skb.
666 * @skb contains the sk_buff structure for the netlink message.
667 * @cap indicates the capability required
668 * Return 0 if permission is granted.
669 *
670 * Security hooks for Unix domain networking.
671 *
672 * @unix_stream_connect:
673 * Check permissions before establishing a Unix domain stream connection
674 * between @sock and @other.
675 * @sock contains the socket structure.
676 * @other contains the peer socket structure.
677 * Return 0 if permission is granted.
678 * @unix_may_send:
679 * Check permissions before connecting or sending datagrams from @sock to
680 * @other.
681 * @sock contains the socket structure.
682 * @sock contains the peer socket structure.
683 * Return 0 if permission is granted.
684 *
685 * The @unix_stream_connect and @unix_may_send hooks were necessary because
686 * Linux provides an alternative to the conventional file name space for Unix
687 * domain sockets. Whereas binding and connecting to sockets in the file name
688 * space is mediated by the typical file permissions (and caught by the mknod
689 * and permission hooks in inode_security_ops), binding and connecting to
690 * sockets in the abstract name space is completely unmediated. Sufficient
691 * control of Unix domain sockets in the abstract name space isn't possible
692 * using only the socket layer hooks, since we need to know the actual target
693 * socket, which is not looked up until we are inside the af_unix code.
694 *
695 * Security hooks for socket operations.
696 *
697 * @socket_create:
698 * Check permissions prior to creating a new socket.
699 * @family contains the requested protocol family.
700 * @type contains the requested communications type.
701 * @protocol contains the requested protocol.
702 * @kern set to 1 if a kernel socket.
703 * Return 0 if permission is granted.
704 * @socket_post_create:
705 * This hook allows a module to update or allocate a per-socket security
706 * structure. Note that the security field was not added directly to the
707 * socket structure, but rather, the socket security information is stored
708 * in the associated inode. Typically, the inode alloc_security hook will
709 * allocate and and attach security information to
710 * sock->inode->i_security. This hook may be used to update the
711 * sock->inode->i_security field with additional information that wasn't
712 * available when the inode was allocated.
713 * @sock contains the newly created socket structure.
714 * @family contains the requested protocol family.
715 * @type contains the requested communications type.
716 * @protocol contains the requested protocol.
717 * @kern set to 1 if a kernel socket.
718 * @socket_bind:
719 * Check permission before socket protocol layer bind operation is
720 * performed and the socket @sock is bound to the address specified in the
721 * @address parameter.
722 * @sock contains the socket structure.
723 * @address contains the address to bind to.
724 * @addrlen contains the length of address.
725 * Return 0 if permission is granted.
726 * @socket_connect:
727 * Check permission before socket protocol layer connect operation
728 * attempts to connect socket @sock to a remote address, @address.
729 * @sock contains the socket structure.
730 * @address contains the address of remote endpoint.
731 * @addrlen contains the length of address.
732 * Return 0 if permission is granted.
733 * @socket_listen:
734 * Check permission before socket protocol layer listen operation.
735 * @sock contains the socket structure.
736 * @backlog contains the maximum length for the pending connection queue.
737 * Return 0 if permission is granted.
738 * @socket_accept:
739 * Check permission before accepting a new connection. Note that the new
740 * socket, @newsock, has been created and some information copied to it,
741 * but the accept operation has not actually been performed.
742 * @sock contains the listening socket structure.
743 * @newsock contains the newly created server socket for connection.
744 * Return 0 if permission is granted.
745 * @socket_post_accept:
746 * This hook allows a security module to copy security
747 * information into the newly created socket's inode.
748 * @sock contains the listening socket structure.
749 * @newsock contains the newly created server socket for connection.
750 * @socket_sendmsg:
751 * Check permission before transmitting a message to another socket.
752 * @sock contains the socket structure.
753 * @msg contains the message to be transmitted.
754 * @size contains the size of message.
755 * Return 0 if permission is granted.
756 * @socket_recvmsg:
757 * Check permission before receiving a message from a socket.
758 * @sock contains the socket structure.
759 * @msg contains the message structure.
760 * @size contains the size of message structure.
761 * @flags contains the operational flags.
762 * Return 0 if permission is granted.
763 * @socket_getsockname:
764 * Check permission before the local address (name) of the socket object
765 * @sock is retrieved.
766 * @sock contains the socket structure.
767 * Return 0 if permission is granted.
768 * @socket_getpeername:
769 * Check permission before the remote address (name) of a socket object
770 * @sock is retrieved.
771 * @sock contains the socket structure.
772 * Return 0 if permission is granted.
773 * @socket_getsockopt:
774 * Check permissions before retrieving the options associated with socket
775 * @sock.
776 * @sock contains the socket structure.
777 * @level contains the protocol level to retrieve option from.
778 * @optname contains the name of option to retrieve.
779 * Return 0 if permission is granted.
780 * @socket_setsockopt:
781 * Check permissions before setting the options associated with socket
782 * @sock.
783 * @sock contains the socket structure.
784 * @level contains the protocol level to set options for.
785 * @optname contains the name of the option to set.
786 * Return 0 if permission is granted.
787 * @socket_shutdown:
788 * Checks permission before all or part of a connection on the socket
789 * @sock is shut down.
790 * @sock contains the socket structure.
791 * @how contains the flag indicating how future sends and receives are handled.
792 * Return 0 if permission is granted.
793 * @socket_sock_rcv_skb:
794 * Check permissions on incoming network packets. This hook is distinct
795 * from Netfilter's IP input hooks since it is the first time that the
796 * incoming sk_buff @skb has been associated with a particular socket, @sk.
797 * @sk contains the sock (not socket) associated with the incoming sk_buff.
798 * @skb contains the incoming network data.
799 * @socket_getpeersec:
800 * This hook allows the security module to provide peer socket security
801 * state to userspace via getsockopt SO_GETPEERSEC.
802 * @sock is the local socket.
803 * @optval userspace memory where the security state is to be copied.
804 * @optlen userspace int where the module should copy the actual length
805 * of the security state.
806 * @len as input is the maximum length to copy to userspace provided
807 * by the caller.
808 * Return 0 if all is well, otherwise, typical getsockopt return
809 * values.
810 * @sk_alloc_security:
811 * Allocate and attach a security structure to the sk->sk_security field,
812 * which is used to copy security attributes between local stream sockets.
813 * @sk_free_security:
814 * Deallocate security structure.
815 * @sk_getsid:
816 * Retrieve the LSM-specific sid for the sock to enable caching of network
817 * authorizations.
818 *
819 * Security hooks for XFRM operations.
820 *
821 * @xfrm_policy_alloc_security:
822 * @xp contains the xfrm_policy being added to Security Policy Database
823 * used by the XFRM system.
824 * @sec_ctx contains the security context information being provided by
825 * the user-level policy update program (e.g., setkey).
826 * Allocate a security structure to the xp->security field.
827 * The security field is initialized to NULL when the xfrm_policy is
828 * allocated.
829 * Return 0 if operation was successful (memory to allocate, legal context)
830 * @xfrm_policy_clone_security:
831 * @old contains an existing xfrm_policy in the SPD.
832 * @new contains a new xfrm_policy being cloned from old.
833 * Allocate a security structure to the new->security field
834 * that contains the information from the old->security field.
835 * Return 0 if operation was successful (memory to allocate).
836 * @xfrm_policy_free_security:
837 * @xp contains the xfrm_policy
838 * Deallocate xp->security.
839 * @xfrm_policy_delete_security:
840 * @xp contains the xfrm_policy.
841 * Authorize deletion of xp->security.
842 * @xfrm_state_alloc_security:
843 * @x contains the xfrm_state being added to the Security Association
844 * Database by the XFRM system.
845 * @sec_ctx contains the security context information being provided by
846 * the user-level SA generation program (e.g., setkey or racoon).
847 * Allocate a security structure to the x->security field. The
848 * security field is initialized to NULL when the xfrm_state is
849 * allocated.
850 * Return 0 if operation was successful (memory to allocate, legal context).
851 * @xfrm_state_free_security:
852 * @x contains the xfrm_state.
853 * Deallocate x->security.
854 * @xfrm_state_delete_security:
855 * @x contains the xfrm_state.
856 * Authorize deletion of x->security.
857 * @xfrm_policy_lookup:
858 * @xp contains the xfrm_policy for which the access control is being
859 * checked.
860 * @sk_sid contains the sock security label that is used to authorize
861 * access to the policy xp.
862 * @dir contains the direction of the flow (input or output).
863 * Check permission when a sock selects a xfrm_policy for processing
864 * XFRMs on a packet. The hook is called when selecting either a
865 * per-socket policy or a generic xfrm policy.
866 * Return 0 if permission is granted.
867 *
868 * Security hooks affecting all Key Management operations
869 *
870 * @key_alloc:
871 * Permit allocation of a key and assign security data. Note that key does
872 * not have a serial number assigned at this point.
873 * @key points to the key.
874 * @flags is the allocation flags
875 * Return 0 if permission is granted, -ve error otherwise.
876 * @key_free:
877 * Notification of destruction; free security data.
878 * @key points to the key.
879 * No return value.
880 * @key_permission:
881 * See whether a specific operational right is granted to a process on a
882 * key.
883 * @key_ref refers to the key (key pointer + possession attribute bit).
884 * @context points to the process to provide the context against which to
885 * evaluate the security data on the key.
886 * @perm describes the combination of permissions required of this key.
887 * Return 1 if permission granted, 0 if permission denied and -ve it the
888 * normal permissions model should be effected.
889 *
890 * Security hooks affecting all System V IPC operations.
891 *
892 * @ipc_permission:
893 * Check permissions for access to IPC
894 * @ipcp contains the kernel IPC permission structure
895 * @flag contains the desired (requested) permission set
896 * Return 0 if permission is granted.
897 *
898 * Security hooks for individual messages held in System V IPC message queues
899 * @msg_msg_alloc_security:
900 * Allocate and attach a security structure to the msg->security field.
901 * The security field is initialized to NULL when the structure is first
902 * created.
903 * @msg contains the message structure to be modified.
904 * Return 0 if operation was successful and permission is granted.
905 * @msg_msg_free_security:
906 * Deallocate the security structure for this message.
907 * @msg contains the message structure to be modified.
908 *
909 * Security hooks for System V IPC Message Queues
910 *
911 * @msg_queue_alloc_security:
912 * Allocate and attach a security structure to the
913 * msq->q_perm.security field. The security field is initialized to
914 * NULL when the structure is first created.
915 * @msq contains the message queue structure to be modified.
916 * Return 0 if operation was successful and permission is granted.
917 * @msg_queue_free_security:
918 * Deallocate security structure for this message queue.
919 * @msq contains the message queue structure to be modified.
920 * @msg_queue_associate:
921 * Check permission when a message queue is requested through the
922 * msgget system call. This hook is only called when returning the
923 * message queue identifier for an existing message queue, not when a
924 * new message queue is created.
925 * @msq contains the message queue to act upon.
926 * @msqflg contains the operation control flags.
927 * Return 0 if permission is granted.
928 * @msg_queue_msgctl:
929 * Check permission when a message control operation specified by @cmd
930 * is to be performed on the message queue @msq.
931 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
932 * @msq contains the message queue to act upon. May be NULL.
933 * @cmd contains the operation to be performed.
934 * Return 0 if permission is granted.
935 * @msg_queue_msgsnd:
936 * Check permission before a message, @msg, is enqueued on the message
937 * queue, @msq.
938 * @msq contains the message queue to send message to.
939 * @msg contains the message to be enqueued.
940 * @msqflg contains operational flags.
941 * Return 0 if permission is granted.
942 * @msg_queue_msgrcv:
943 * Check permission before a message, @msg, is removed from the message
944 * queue, @msq. The @target task structure contains a pointer to the
945 * process that will be receiving the message (not equal to the current
946 * process when inline receives are being performed).
947 * @msq contains the message queue to retrieve message from.
948 * @msg contains the message destination.
949 * @target contains the task structure for recipient process.
950 * @type contains the type of message requested.
951 * @mode contains the operational flags.
952 * Return 0 if permission is granted.
953 *
954 * Security hooks for System V Shared Memory Segments
955 *
956 * @shm_alloc_security:
957 * Allocate and attach a security structure to the shp->shm_perm.security
958 * field. The security field is initialized to NULL when the structure is
959 * first created.
960 * @shp contains the shared memory structure to be modified.
961 * Return 0 if operation was successful and permission is granted.
962 * @shm_free_security:
963 * Deallocate the security struct for this memory segment.
964 * @shp contains the shared memory structure to be modified.
965 * @shm_associate:
966 * Check permission when a shared memory region is requested through the
967 * shmget system call. This hook is only called when returning the shared
968 * memory region identifier for an existing region, not when a new shared
969 * memory region is created.
970 * @shp contains the shared memory structure to be modified.
971 * @shmflg contains the operation control flags.
972 * Return 0 if permission is granted.
973 * @shm_shmctl:
974 * Check permission when a shared memory control operation specified by
975 * @cmd is to be performed on the shared memory region @shp.
976 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
977 * @shp contains shared memory structure to be modified.
978 * @cmd contains the operation to be performed.
979 * Return 0 if permission is granted.
980 * @shm_shmat:
981 * Check permissions prior to allowing the shmat system call to attach the
982 * shared memory segment @shp to the data segment of the calling process.
983 * The attaching address is specified by @shmaddr.
984 * @shp contains the shared memory structure to be modified.
985 * @shmaddr contains the address to attach memory region to.
986 * @shmflg contains the operational flags.
987 * Return 0 if permission is granted.
988 *
989 * Security hooks for System V Semaphores
990 *
991 * @sem_alloc_security:
992 * Allocate and attach a security structure to the sma->sem_perm.security
993 * field. The security field is initialized to NULL when the structure is
994 * first created.
995 * @sma contains the semaphore structure
996 * Return 0 if operation was successful and permission is granted.
997 * @sem_free_security:
998 * deallocate security struct for this semaphore
999 * @sma contains the semaphore structure.
1000 * @sem_associate:
1001 * Check permission when a semaphore is requested through the semget
1002 * system call. This hook is only called when returning the semaphore
1003 * identifier for an existing semaphore, not when a new one must be
1004 * created.
1005 * @sma contains the semaphore structure.
1006 * @semflg contains the operation control flags.
1007 * Return 0 if permission is granted.
1008 * @sem_semctl:
1009 * Check permission when a semaphore operation specified by @cmd is to be
1010 * performed on the semaphore @sma. The @sma may be NULL, e.g. for
1011 * IPC_INFO or SEM_INFO.
1012 * @sma contains the semaphore structure. May be NULL.
1013 * @cmd contains the operation to be performed.
1014 * Return 0 if permission is granted.
1015 * @sem_semop
1016 * Check permissions before performing operations on members of the
1017 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
1018 * may be modified.
1019 * @sma contains the semaphore structure.
1020 * @sops contains the operations to perform.
1021 * @nsops contains the number of operations to perform.
1022 * @alter contains the flag indicating whether changes are to be made.
1023 * Return 0 if permission is granted.
1024 *
1025 * @ptrace:
1026 * Check permission before allowing the @parent process to trace the
1027 * @child process.
1028 * Security modules may also want to perform a process tracing check
1029 * during an execve in the set_security or apply_creds hooks of
1030 * binprm_security_ops if the process is being traced and its security
1031 * attributes would be changed by the execve.
1032 * @parent contains the task_struct structure for parent process.
1033 * @child contains the task_struct structure for child process.
1034 * Return 0 if permission is granted.
1035 * @capget:
1036 * Get the @effective, @inheritable, and @permitted capability sets for
1037 * the @target process. The hook may also perform permission checking to
1038 * determine if the current process is allowed to see the capability sets
1039 * of the @target process.
1040 * @target contains the task_struct structure for target process.
1041 * @effective contains the effective capability set.
1042 * @inheritable contains the inheritable capability set.
1043 * @permitted contains the permitted capability set.
1044 * Return 0 if the capability sets were successfully obtained.
1045 * @capset_check:
1046 * Check permission before setting the @effective, @inheritable, and
1047 * @permitted capability sets for the @target process.
1048 * Caveat: @target is also set to current if a set of processes is
1049 * specified (i.e. all processes other than current and init or a
1050 * particular process group). Hence, the capset_set hook may need to
1051 * revalidate permission to the actual target process.
1052 * @target contains the task_struct structure for target process.
1053 * @effective contains the effective capability set.
1054 * @inheritable contains the inheritable capability set.
1055 * @permitted contains the permitted capability set.
1056 * Return 0 if permission is granted.
1057 * @capset_set:
1058 * Set the @effective, @inheritable, and @permitted capability sets for
1059 * the @target process. Since capset_check cannot always check permission
1060 * to the real @target process, this hook may also perform permission
1061 * checking to determine if the current process is allowed to set the
1062 * capability sets of the @target process. However, this hook has no way
1063 * of returning an error due to the structure of the sys_capset code.
1064 * @target contains the task_struct structure for target process.
1065 * @effective contains the effective capability set.
1066 * @inheritable contains the inheritable capability set.
1067 * @permitted contains the permitted capability set.
1068 * @capable:
1069 * Check whether the @tsk process has the @cap capability.
1070 * @tsk contains the task_struct for the process.
1071 * @cap contains the capability <include/linux/capability.h>.
1072 * Return 0 if the capability is granted for @tsk.
1073 * @acct:
1074 * Check permission before enabling or disabling process accounting. If
1075 * accounting is being enabled, then @file refers to the open file used to
1076 * store accounting records. If accounting is being disabled, then @file
1077 * is NULL.
1078 * @file contains the file structure for the accounting file (may be NULL).
1079 * Return 0 if permission is granted.
1080 * @sysctl:
1081 * Check permission before accessing the @table sysctl variable in the
1082 * manner specified by @op.
1083 * @table contains the ctl_table structure for the sysctl variable.
1084 * @op contains the operation (001 = search, 002 = write, 004 = read).
1085 * Return 0 if permission is granted.
1086 * @syslog:
1087 * Check permission before accessing the kernel message ring or changing
1088 * logging to the console.
1089 * See the syslog(2) manual page for an explanation of the @type values.
1090 * @type contains the type of action.
1091 * Return 0 if permission is granted.
1092 * @settime:
1093 * Check permission to change the system time.
1094 * struct timespec and timezone are defined in include/linux/time.h
1095 * @ts contains new time
1096 * @tz contains new timezone
1097 * Return 0 if permission is granted.
1098 * @vm_enough_memory:
1099 * Check permissions for allocating a new virtual mapping.
1100 * @pages contains the number of pages.
1101 * Return 0 if permission is granted.
1102 *
1103 * @register_security:
1104 * allow module stacking.
1105 * @name contains the name of the security module being stacked.
1106 * @ops contains a pointer to the struct security_operations of the module to stack.
1107 * @unregister_security:
1108 * remove a stacked module.
1109 * @name contains the name of the security module being unstacked.
1110 * @ops contains a pointer to the struct security_operations of the module to unstack.
1111 *
1112 * @secid_to_secctx:
1113 * Convert secid to security context.
1114 * @secid contains the security ID.
1115 * @secdata contains the pointer that stores the converted security context.
1116 *
1117 * @release_secctx:
1118 * Release the security context.
1119 * @secdata contains the security context.
1120 * @seclen contains the length of the security context.
1121 *
1122 * This is the main security structure.
1123 */
1124 struct security_operations {
1125 int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1126 int (*capget) (struct task_struct * target,
1127 kernel_cap_t * effective,
1128 kernel_cap_t * inheritable, kernel_cap_t * permitted);
1129 int (*capset_check) (struct task_struct * target,
1130 kernel_cap_t * effective,
1131 kernel_cap_t * inheritable,
1132 kernel_cap_t * permitted);
1133 void (*capset_set) (struct task_struct * target,
1134 kernel_cap_t * effective,
1135 kernel_cap_t * inheritable,
1136 kernel_cap_t * permitted);
1137 int (*capable) (struct task_struct * tsk, int cap);
1138 int (*acct) (struct file * file);
1139 int (*sysctl) (struct ctl_table * table, int op);
1140 int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1141 int (*quota_on) (struct dentry * dentry);
1142 int (*syslog) (int type);
1143 int (*settime) (struct timespec *ts, struct timezone *tz);
1144 int (*vm_enough_memory) (long pages);
1145
1146 int (*bprm_alloc_security) (struct linux_binprm * bprm);
1147 void (*bprm_free_security) (struct linux_binprm * bprm);
1148 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1149 void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1150 int (*bprm_set_security) (struct linux_binprm * bprm);
1151 int (*bprm_check_security) (struct linux_binprm * bprm);
1152 int (*bprm_secureexec) (struct linux_binprm * bprm);
1153
1154 int (*sb_alloc_security) (struct super_block * sb);
1155 void (*sb_free_security) (struct super_block * sb);
1156 int (*sb_copy_data)(struct file_system_type *type,
1157 void *orig, void *copy);
1158 int (*sb_kern_mount) (struct super_block *sb, void *data);
1159 int (*sb_statfs) (struct dentry *dentry);
1160 int (*sb_mount) (char *dev_name, struct nameidata * nd,
1161 char *type, unsigned long flags, void *data);
1162 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1163 int (*sb_umount) (struct vfsmount * mnt, int flags);
1164 void (*sb_umount_close) (struct vfsmount * mnt);
1165 void (*sb_umount_busy) (struct vfsmount * mnt);
1166 void (*sb_post_remount) (struct vfsmount * mnt,
1167 unsigned long flags, void *data);
1168 void (*sb_post_mountroot) (void);
1169 void (*sb_post_addmount) (struct vfsmount * mnt,
1170 struct nameidata * mountpoint_nd);
1171 int (*sb_pivotroot) (struct nameidata * old_nd,
1172 struct nameidata * new_nd);
1173 void (*sb_post_pivotroot) (struct nameidata * old_nd,
1174 struct nameidata * new_nd);
1175
1176 int (*inode_alloc_security) (struct inode *inode);
1177 void (*inode_free_security) (struct inode *inode);
1178 int (*inode_init_security) (struct inode *inode, struct inode *dir,
1179 char **name, void **value, size_t *len);
1180 int (*inode_create) (struct inode *dir,
1181 struct dentry *dentry, int mode);
1182 int (*inode_link) (struct dentry *old_dentry,
1183 struct inode *dir, struct dentry *new_dentry);
1184 int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1185 int (*inode_symlink) (struct inode *dir,
1186 struct dentry *dentry, const char *old_name);
1187 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1188 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1189 int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1190 int mode, dev_t dev);
1191 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1192 struct inode *new_dir, struct dentry *new_dentry);
1193 int (*inode_readlink) (struct dentry *dentry);
1194 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1195 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1196 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
1197 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1198 void (*inode_delete) (struct inode *inode);
1199 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1200 size_t size, int flags);
1201 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1202 size_t size, int flags);
1203 int (*inode_getxattr) (struct dentry *dentry, char *name);
1204 int (*inode_listxattr) (struct dentry *dentry);
1205 int (*inode_removexattr) (struct dentry *dentry, char *name);
1206 const char *(*inode_xattr_getsuffix) (void);
1207 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1208 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1209 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1210
1211 int (*file_permission) (struct file * file, int mask);
1212 int (*file_alloc_security) (struct file * file);
1213 void (*file_free_security) (struct file * file);
1214 int (*file_ioctl) (struct file * file, unsigned int cmd,
1215 unsigned long arg);
1216 int (*file_mmap) (struct file * file,
1217 unsigned long reqprot,
1218 unsigned long prot, unsigned long flags);
1219 int (*file_mprotect) (struct vm_area_struct * vma,
1220 unsigned long reqprot,
1221 unsigned long prot);
1222 int (*file_lock) (struct file * file, unsigned int cmd);
1223 int (*file_fcntl) (struct file * file, unsigned int cmd,
1224 unsigned long arg);
1225 int (*file_set_fowner) (struct file * file);
1226 int (*file_send_sigiotask) (struct task_struct * tsk,
1227 struct fown_struct * fown, int sig);
1228 int (*file_receive) (struct file * file);
1229
1230 int (*task_create) (unsigned long clone_flags);
1231 int (*task_alloc_security) (struct task_struct * p);
1232 void (*task_free_security) (struct task_struct * p);
1233 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1234 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1235 uid_t old_euid, uid_t old_suid, int flags);
1236 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1237 int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1238 int (*task_getpgid) (struct task_struct * p);
1239 int (*task_getsid) (struct task_struct * p);
1240 void (*task_getsecid) (struct task_struct * p, u32 * secid);
1241 int (*task_setgroups) (struct group_info *group_info);
1242 int (*task_setnice) (struct task_struct * p, int nice);
1243 int (*task_setioprio) (struct task_struct * p, int ioprio);
1244 int (*task_getioprio) (struct task_struct * p);
1245 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1246 int (*task_setscheduler) (struct task_struct * p, int policy,
1247 struct sched_param * lp);
1248 int (*task_getscheduler) (struct task_struct * p);
1249 int (*task_movememory) (struct task_struct * p);
1250 int (*task_kill) (struct task_struct * p,
1251 struct siginfo * info, int sig, u32 secid);
1252 int (*task_wait) (struct task_struct * p);
1253 int (*task_prctl) (int option, unsigned long arg2,
1254 unsigned long arg3, unsigned long arg4,
1255 unsigned long arg5);
1256 void (*task_reparent_to_init) (struct task_struct * p);
1257 void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1258
1259 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1260
1261 int (*msg_msg_alloc_security) (struct msg_msg * msg);
1262 void (*msg_msg_free_security) (struct msg_msg * msg);
1263
1264 int (*msg_queue_alloc_security) (struct msg_queue * msq);
1265 void (*msg_queue_free_security) (struct msg_queue * msq);
1266 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1267 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1268 int (*msg_queue_msgsnd) (struct msg_queue * msq,
1269 struct msg_msg * msg, int msqflg);
1270 int (*msg_queue_msgrcv) (struct msg_queue * msq,
1271 struct msg_msg * msg,
1272 struct task_struct * target,
1273 long type, int mode);
1274
1275 int (*shm_alloc_security) (struct shmid_kernel * shp);
1276 void (*shm_free_security) (struct shmid_kernel * shp);
1277 int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1278 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1279 int (*shm_shmat) (struct shmid_kernel * shp,
1280 char __user *shmaddr, int shmflg);
1281
1282 int (*sem_alloc_security) (struct sem_array * sma);
1283 void (*sem_free_security) (struct sem_array * sma);
1284 int (*sem_associate) (struct sem_array * sma, int semflg);
1285 int (*sem_semctl) (struct sem_array * sma, int cmd);
1286 int (*sem_semop) (struct sem_array * sma,
1287 struct sembuf * sops, unsigned nsops, int alter);
1288
1289 int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1290 int (*netlink_recv) (struct sk_buff * skb, int cap);
1291
1292 /* allow module stacking */
1293 int (*register_security) (const char *name,
1294 struct security_operations *ops);
1295 int (*unregister_security) (const char *name,
1296 struct security_operations *ops);
1297
1298 void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1299
1300 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1301 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1302 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
1303 void (*release_secctx)(char *secdata, u32 seclen);
1304
1305 #ifdef CONFIG_SECURITY_NETWORK
1306 int (*unix_stream_connect) (struct socket * sock,
1307 struct socket * other, struct sock * newsk);
1308 int (*unix_may_send) (struct socket * sock, struct socket * other);
1309
1310 int (*socket_create) (int family, int type, int protocol, int kern);
1311 void (*socket_post_create) (struct socket * sock, int family,
1312 int type, int protocol, int kern);
1313 int (*socket_bind) (struct socket * sock,
1314 struct sockaddr * address, int addrlen);
1315 int (*socket_connect) (struct socket * sock,
1316 struct sockaddr * address, int addrlen);
1317 int (*socket_listen) (struct socket * sock, int backlog);
1318 int (*socket_accept) (struct socket * sock, struct socket * newsock);
1319 void (*socket_post_accept) (struct socket * sock,
1320 struct socket * newsock);
1321 int (*socket_sendmsg) (struct socket * sock,
1322 struct msghdr * msg, int size);
1323 int (*socket_recvmsg) (struct socket * sock,
1324 struct msghdr * msg, int size, int flags);
1325 int (*socket_getsockname) (struct socket * sock);
1326 int (*socket_getpeername) (struct socket * sock);
1327 int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1328 int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1329 int (*socket_shutdown) (struct socket * sock, int how);
1330 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1331 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1332 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1333 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1334 void (*sk_free_security) (struct sock *sk);
1335 unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir);
1336 #endif /* CONFIG_SECURITY_NETWORK */
1337
1338 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1339 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx);
1340 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1341 void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1342 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1343 int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
1344 void (*xfrm_state_free_security) (struct xfrm_state *x);
1345 int (*xfrm_state_delete_security) (struct xfrm_state *x);
1346 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir);
1347 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1348
1349 /* key management security hooks */
1350 #ifdef CONFIG_KEYS
1351 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1352 void (*key_free)(struct key *key);
1353 int (*key_permission)(key_ref_t key_ref,
1354 struct task_struct *context,
1355 key_perm_t perm);
1356
1357 #endif /* CONFIG_KEYS */
1358
1359 };
1360
1361 /* global variables */
1362 extern struct security_operations *security_ops;
1363
1364 /* inline stuff */
1365 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1366 {
1367 return security_ops->ptrace (parent, child);
1368 }
1369
1370 static inline int security_capget (struct task_struct *target,
1371 kernel_cap_t *effective,
1372 kernel_cap_t *inheritable,
1373 kernel_cap_t *permitted)
1374 {
1375 return security_ops->capget (target, effective, inheritable, permitted);
1376 }
1377
1378 static inline int security_capset_check (struct task_struct *target,
1379 kernel_cap_t *effective,
1380 kernel_cap_t *inheritable,
1381 kernel_cap_t *permitted)
1382 {
1383 return security_ops->capset_check (target, effective, inheritable, permitted);
1384 }
1385
1386 static inline void security_capset_set (struct task_struct *target,
1387 kernel_cap_t *effective,
1388 kernel_cap_t *inheritable,
1389 kernel_cap_t *permitted)
1390 {
1391 security_ops->capset_set (target, effective, inheritable, permitted);
1392 }
1393
1394 static inline int security_capable(struct task_struct *tsk, int cap)
1395 {
1396 return security_ops->capable(tsk, cap);
1397 }
1398
1399 static inline int security_acct (struct file *file)
1400 {
1401 return security_ops->acct (file);
1402 }
1403
1404 static inline int security_sysctl(struct ctl_table *table, int op)
1405 {
1406 return security_ops->sysctl(table, op);
1407 }
1408
1409 static inline int security_quotactl (int cmds, int type, int id,
1410 struct super_block *sb)
1411 {
1412 return security_ops->quotactl (cmds, type, id, sb);
1413 }
1414
1415 static inline int security_quota_on (struct dentry * dentry)
1416 {
1417 return security_ops->quota_on (dentry);
1418 }
1419
1420 static inline int security_syslog(int type)
1421 {
1422 return security_ops->syslog(type);
1423 }
1424
1425 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1426 {
1427 return security_ops->settime(ts, tz);
1428 }
1429
1430
1431 static inline int security_vm_enough_memory(long pages)
1432 {
1433 return security_ops->vm_enough_memory(pages);
1434 }
1435
1436 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1437 {
1438 return security_ops->bprm_alloc_security (bprm);
1439 }
1440 static inline void security_bprm_free (struct linux_binprm *bprm)
1441 {
1442 security_ops->bprm_free_security (bprm);
1443 }
1444 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1445 {
1446 security_ops->bprm_apply_creds (bprm, unsafe);
1447 }
1448 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1449 {
1450 security_ops->bprm_post_apply_creds (bprm);
1451 }
1452 static inline int security_bprm_set (struct linux_binprm *bprm)
1453 {
1454 return security_ops->bprm_set_security (bprm);
1455 }
1456
1457 static inline int security_bprm_check (struct linux_binprm *bprm)
1458 {
1459 return security_ops->bprm_check_security (bprm);
1460 }
1461
1462 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1463 {
1464 return security_ops->bprm_secureexec (bprm);
1465 }
1466
1467 static inline int security_sb_alloc (struct super_block *sb)
1468 {
1469 return security_ops->sb_alloc_security (sb);
1470 }
1471
1472 static inline void security_sb_free (struct super_block *sb)
1473 {
1474 security_ops->sb_free_security (sb);
1475 }
1476
1477 static inline int security_sb_copy_data (struct file_system_type *type,
1478 void *orig, void *copy)
1479 {
1480 return security_ops->sb_copy_data (type, orig, copy);
1481 }
1482
1483 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1484 {
1485 return security_ops->sb_kern_mount (sb, data);
1486 }
1487
1488 static inline int security_sb_statfs (struct dentry *dentry)
1489 {
1490 return security_ops->sb_statfs (dentry);
1491 }
1492
1493 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1494 char *type, unsigned long flags,
1495 void *data)
1496 {
1497 return security_ops->sb_mount (dev_name, nd, type, flags, data);
1498 }
1499
1500 static inline int security_sb_check_sb (struct vfsmount *mnt,
1501 struct nameidata *nd)
1502 {
1503 return security_ops->sb_check_sb (mnt, nd);
1504 }
1505
1506 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1507 {
1508 return security_ops->sb_umount (mnt, flags);
1509 }
1510
1511 static inline void security_sb_umount_close (struct vfsmount *mnt)
1512 {
1513 security_ops->sb_umount_close (mnt);
1514 }
1515
1516 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1517 {
1518 security_ops->sb_umount_busy (mnt);
1519 }
1520
1521 static inline void security_sb_post_remount (struct vfsmount *mnt,
1522 unsigned long flags, void *data)
1523 {
1524 security_ops->sb_post_remount (mnt, flags, data);
1525 }
1526
1527 static inline void security_sb_post_mountroot (void)
1528 {
1529 security_ops->sb_post_mountroot ();
1530 }
1531
1532 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1533 struct nameidata *mountpoint_nd)
1534 {
1535 security_ops->sb_post_addmount (mnt, mountpoint_nd);
1536 }
1537
1538 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1539 struct nameidata *new_nd)
1540 {
1541 return security_ops->sb_pivotroot (old_nd, new_nd);
1542 }
1543
1544 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1545 struct nameidata *new_nd)
1546 {
1547 security_ops->sb_post_pivotroot (old_nd, new_nd);
1548 }
1549
1550 static inline int security_inode_alloc (struct inode *inode)
1551 {
1552 return security_ops->inode_alloc_security (inode);
1553 }
1554
1555 static inline void security_inode_free (struct inode *inode)
1556 {
1557 security_ops->inode_free_security (inode);
1558 }
1559
1560 static inline int security_inode_init_security (struct inode *inode,
1561 struct inode *dir,
1562 char **name,
1563 void **value,
1564 size_t *len)
1565 {
1566 if (unlikely (IS_PRIVATE (inode)))
1567 return -EOPNOTSUPP;
1568 return security_ops->inode_init_security (inode, dir, name, value, len);
1569 }
1570
1571 static inline int security_inode_create (struct inode *dir,
1572 struct dentry *dentry,
1573 int mode)
1574 {
1575 if (unlikely (IS_PRIVATE (dir)))
1576 return 0;
1577 return security_ops->inode_create (dir, dentry, mode);
1578 }
1579
1580 static inline int security_inode_link (struct dentry *old_dentry,
1581 struct inode *dir,
1582 struct dentry *new_dentry)
1583 {
1584 if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1585 return 0;
1586 return security_ops->inode_link (old_dentry, dir, new_dentry);
1587 }
1588
1589 static inline int security_inode_unlink (struct inode *dir,
1590 struct dentry *dentry)
1591 {
1592 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1593 return 0;
1594 return security_ops->inode_unlink (dir, dentry);
1595 }
1596
1597 static inline int security_inode_symlink (struct inode *dir,
1598 struct dentry *dentry,
1599 const char *old_name)
1600 {
1601 if (unlikely (IS_PRIVATE (dir)))
1602 return 0;
1603 return security_ops->inode_symlink (dir, dentry, old_name);
1604 }
1605
1606 static inline int security_inode_mkdir (struct inode *dir,
1607 struct dentry *dentry,
1608 int mode)
1609 {
1610 if (unlikely (IS_PRIVATE (dir)))
1611 return 0;
1612 return security_ops->inode_mkdir (dir, dentry, mode);
1613 }
1614
1615 static inline int security_inode_rmdir (struct inode *dir,
1616 struct dentry *dentry)
1617 {
1618 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1619 return 0;
1620 return security_ops->inode_rmdir (dir, dentry);
1621 }
1622
1623 static inline int security_inode_mknod (struct inode *dir,
1624 struct dentry *dentry,
1625 int mode, dev_t dev)
1626 {
1627 if (unlikely (IS_PRIVATE (dir)))
1628 return 0;
1629 return security_ops->inode_mknod (dir, dentry, mode, dev);
1630 }
1631
1632 static inline int security_inode_rename (struct inode *old_dir,
1633 struct dentry *old_dentry,
1634 struct inode *new_dir,
1635 struct dentry *new_dentry)
1636 {
1637 if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1638 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1639 return 0;
1640 return security_ops->inode_rename (old_dir, old_dentry,
1641 new_dir, new_dentry);
1642 }
1643
1644 static inline int security_inode_readlink (struct dentry *dentry)
1645 {
1646 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1647 return 0;
1648 return security_ops->inode_readlink (dentry);
1649 }
1650
1651 static inline int security_inode_follow_link (struct dentry *dentry,
1652 struct nameidata *nd)
1653 {
1654 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1655 return 0;
1656 return security_ops->inode_follow_link (dentry, nd);
1657 }
1658
1659 static inline int security_inode_permission (struct inode *inode, int mask,
1660 struct nameidata *nd)
1661 {
1662 if (unlikely (IS_PRIVATE (inode)))
1663 return 0;
1664 return security_ops->inode_permission (inode, mask, nd);
1665 }
1666
1667 static inline int security_inode_setattr (struct dentry *dentry,
1668 struct iattr *attr)
1669 {
1670 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1671 return 0;
1672 return security_ops->inode_setattr (dentry, attr);
1673 }
1674
1675 static inline int security_inode_getattr (struct vfsmount *mnt,
1676 struct dentry *dentry)
1677 {
1678 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1679 return 0;
1680 return security_ops->inode_getattr (mnt, dentry);
1681 }
1682
1683 static inline void security_inode_delete (struct inode *inode)
1684 {
1685 if (unlikely (IS_PRIVATE (inode)))
1686 return;
1687 security_ops->inode_delete (inode);
1688 }
1689
1690 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1691 void *value, size_t size, int flags)
1692 {
1693 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1694 return 0;
1695 return security_ops->inode_setxattr (dentry, name, value, size, flags);
1696 }
1697
1698 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1699 void *value, size_t size, int flags)
1700 {
1701 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1702 return;
1703 security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1704 }
1705
1706 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1707 {
1708 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1709 return 0;
1710 return security_ops->inode_getxattr (dentry, name);
1711 }
1712
1713 static inline int security_inode_listxattr (struct dentry *dentry)
1714 {
1715 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1716 return 0;
1717 return security_ops->inode_listxattr (dentry);
1718 }
1719
1720 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1721 {
1722 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1723 return 0;
1724 return security_ops->inode_removexattr (dentry, name);
1725 }
1726
1727 static inline const char *security_inode_xattr_getsuffix(void)
1728 {
1729 return security_ops->inode_xattr_getsuffix();
1730 }
1731
1732 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1733 {
1734 if (unlikely (IS_PRIVATE (inode)))
1735 return 0;
1736 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1737 }
1738
1739 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1740 {
1741 if (unlikely (IS_PRIVATE (inode)))
1742 return 0;
1743 return security_ops->inode_setsecurity(inode, name, value, size, flags);
1744 }
1745
1746 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1747 {
1748 if (unlikely (IS_PRIVATE (inode)))
1749 return 0;
1750 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1751 }
1752
1753 static inline int security_file_permission (struct file *file, int mask)
1754 {
1755 return security_ops->file_permission (file, mask);
1756 }
1757
1758 static inline int security_file_alloc (struct file *file)
1759 {
1760 return security_ops->file_alloc_security (file);
1761 }
1762
1763 static inline void security_file_free (struct file *file)
1764 {
1765 security_ops->file_free_security (file);
1766 }
1767
1768 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1769 unsigned long arg)
1770 {
1771 return security_ops->file_ioctl (file, cmd, arg);
1772 }
1773
1774 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1775 unsigned long prot,
1776 unsigned long flags)
1777 {
1778 return security_ops->file_mmap (file, reqprot, prot, flags);
1779 }
1780
1781 static inline int security_file_mprotect (struct vm_area_struct *vma,
1782 unsigned long reqprot,
1783 unsigned long prot)
1784 {
1785 return security_ops->file_mprotect (vma, reqprot, prot);
1786 }
1787
1788 static inline int security_file_lock (struct file *file, unsigned int cmd)
1789 {
1790 return security_ops->file_lock (file, cmd);
1791 }
1792
1793 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1794 unsigned long arg)
1795 {
1796 return security_ops->file_fcntl (file, cmd, arg);
1797 }
1798
1799 static inline int security_file_set_fowner (struct file *file)
1800 {
1801 return security_ops->file_set_fowner (file);
1802 }
1803
1804 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1805 struct fown_struct *fown,
1806 int sig)
1807 {
1808 return security_ops->file_send_sigiotask (tsk, fown, sig);
1809 }
1810
1811 static inline int security_file_receive (struct file *file)
1812 {
1813 return security_ops->file_receive (file);
1814 }
1815
1816 static inline int security_task_create (unsigned long clone_flags)
1817 {
1818 return security_ops->task_create (clone_flags);
1819 }
1820
1821 static inline int security_task_alloc (struct task_struct *p)
1822 {
1823 return security_ops->task_alloc_security (p);
1824 }
1825
1826 static inline void security_task_free (struct task_struct *p)
1827 {
1828 security_ops->task_free_security (p);
1829 }
1830
1831 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1832 int flags)
1833 {
1834 return security_ops->task_setuid (id0, id1, id2, flags);
1835 }
1836
1837 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1838 uid_t old_suid, int flags)
1839 {
1840 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1841 }
1842
1843 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1844 int flags)
1845 {
1846 return security_ops->task_setgid (id0, id1, id2, flags);
1847 }
1848
1849 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1850 {
1851 return security_ops->task_setpgid (p, pgid);
1852 }
1853
1854 static inline int security_task_getpgid (struct task_struct *p)
1855 {
1856 return security_ops->task_getpgid (p);
1857 }
1858
1859 static inline int security_task_getsid (struct task_struct *p)
1860 {
1861 return security_ops->task_getsid (p);
1862 }
1863
1864 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1865 {
1866 security_ops->task_getsecid (p, secid);
1867 }
1868
1869 static inline int security_task_setgroups (struct group_info *group_info)
1870 {
1871 return security_ops->task_setgroups (group_info);
1872 }
1873
1874 static inline int security_task_setnice (struct task_struct *p, int nice)
1875 {
1876 return security_ops->task_setnice (p, nice);
1877 }
1878
1879 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1880 {
1881 return security_ops->task_setioprio (p, ioprio);
1882 }
1883
1884 static inline int security_task_getioprio (struct task_struct *p)
1885 {
1886 return security_ops->task_getioprio (p);
1887 }
1888
1889 static inline int security_task_setrlimit (unsigned int resource,
1890 struct rlimit *new_rlim)
1891 {
1892 return security_ops->task_setrlimit (resource, new_rlim);
1893 }
1894
1895 static inline int security_task_setscheduler (struct task_struct *p,
1896 int policy,
1897 struct sched_param *lp)
1898 {
1899 return security_ops->task_setscheduler (p, policy, lp);
1900 }
1901
1902 static inline int security_task_getscheduler (struct task_struct *p)
1903 {
1904 return security_ops->task_getscheduler (p);
1905 }
1906
1907 static inline int security_task_movememory (struct task_struct *p)
1908 {
1909 return security_ops->task_movememory (p);
1910 }
1911
1912 static inline int security_task_kill (struct task_struct *p,
1913 struct siginfo *info, int sig,
1914 u32 secid)
1915 {
1916 return security_ops->task_kill (p, info, sig, secid);
1917 }
1918
1919 static inline int security_task_wait (struct task_struct *p)
1920 {
1921 return security_ops->task_wait (p);
1922 }
1923
1924 static inline int security_task_prctl (int option, unsigned long arg2,
1925 unsigned long arg3,
1926 unsigned long arg4,
1927 unsigned long arg5)
1928 {
1929 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1930 }
1931
1932 static inline void security_task_reparent_to_init (struct task_struct *p)
1933 {
1934 security_ops->task_reparent_to_init (p);
1935 }
1936
1937 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1938 {
1939 security_ops->task_to_inode(p, inode);
1940 }
1941
1942 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1943 short flag)
1944 {
1945 return security_ops->ipc_permission (ipcp, flag);
1946 }
1947
1948 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1949 {
1950 return security_ops->msg_msg_alloc_security (msg);
1951 }
1952
1953 static inline void security_msg_msg_free (struct msg_msg * msg)
1954 {
1955 security_ops->msg_msg_free_security(msg);
1956 }
1957
1958 static inline int security_msg_queue_alloc (struct msg_queue *msq)
1959 {
1960 return security_ops->msg_queue_alloc_security (msq);
1961 }
1962
1963 static inline void security_msg_queue_free (struct msg_queue *msq)
1964 {
1965 security_ops->msg_queue_free_security (msq);
1966 }
1967
1968 static inline int security_msg_queue_associate (struct msg_queue * msq,
1969 int msqflg)
1970 {
1971 return security_ops->msg_queue_associate (msq, msqflg);
1972 }
1973
1974 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
1975 {
1976 return security_ops->msg_queue_msgctl (msq, cmd);
1977 }
1978
1979 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
1980 struct msg_msg * msg, int msqflg)
1981 {
1982 return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
1983 }
1984
1985 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
1986 struct msg_msg * msg,
1987 struct task_struct * target,
1988 long type, int mode)
1989 {
1990 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
1991 }
1992
1993 static inline int security_shm_alloc (struct shmid_kernel *shp)
1994 {
1995 return security_ops->shm_alloc_security (shp);
1996 }
1997
1998 static inline void security_shm_free (struct shmid_kernel *shp)
1999 {
2000 security_ops->shm_free_security (shp);
2001 }
2002
2003 static inline int security_shm_associate (struct shmid_kernel * shp,
2004 int shmflg)
2005 {
2006 return security_ops->shm_associate(shp, shmflg);
2007 }
2008
2009 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2010 {
2011 return security_ops->shm_shmctl (shp, cmd);
2012 }
2013
2014 static inline int security_shm_shmat (struct shmid_kernel * shp,
2015 char __user *shmaddr, int shmflg)
2016 {
2017 return security_ops->shm_shmat(shp, shmaddr, shmflg);
2018 }
2019
2020 static inline int security_sem_alloc (struct sem_array *sma)
2021 {
2022 return security_ops->sem_alloc_security (sma);
2023 }
2024
2025 static inline void security_sem_free (struct sem_array *sma)
2026 {
2027 security_ops->sem_free_security (sma);
2028 }
2029
2030 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2031 {
2032 return security_ops->sem_associate (sma, semflg);
2033 }
2034
2035 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2036 {
2037 return security_ops->sem_semctl(sma, cmd);
2038 }
2039
2040 static inline int security_sem_semop (struct sem_array * sma,
2041 struct sembuf * sops, unsigned nsops,
2042 int alter)
2043 {
2044 return security_ops->sem_semop(sma, sops, nsops, alter);
2045 }
2046
2047 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2048 {
2049 if (unlikely (inode && IS_PRIVATE (inode)))
2050 return;
2051 security_ops->d_instantiate (dentry, inode);
2052 }
2053
2054 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2055 {
2056 return security_ops->getprocattr(p, name, value, size);
2057 }
2058
2059 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2060 {
2061 return security_ops->setprocattr(p, name, value, size);
2062 }
2063
2064 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2065 {
2066 return security_ops->netlink_send(sk, skb);
2067 }
2068
2069 static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2070 {
2071 return security_ops->netlink_recv(skb, cap);
2072 }
2073
2074 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2075 {
2076 return security_ops->secid_to_secctx(secid, secdata, seclen);
2077 }
2078
2079 static inline void security_release_secctx(char *secdata, u32 seclen)
2080 {
2081 return security_ops->release_secctx(secdata, seclen);
2082 }
2083
2084 /* prototypes */
2085 extern int security_init (void);
2086 extern int register_security (struct security_operations *ops);
2087 extern int unregister_security (struct security_operations *ops);
2088 extern int mod_reg_security (const char *name, struct security_operations *ops);
2089 extern int mod_unreg_security (const char *name, struct security_operations *ops);
2090 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2091 struct dentry *parent, void *data,
2092 struct file_operations *fops);
2093 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2094 extern void securityfs_remove(struct dentry *dentry);
2095
2096
2097 #else /* CONFIG_SECURITY */
2098
2099 /*
2100 * This is the default capabilities functionality. Most of these functions
2101 * are just stubbed out, but a few must call the proper capable code.
2102 */
2103
2104 static inline int security_init(void)
2105 {
2106 return 0;
2107 }
2108
2109 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2110 {
2111 return cap_ptrace (parent, child);
2112 }
2113
2114 static inline int security_capget (struct task_struct *target,
2115 kernel_cap_t *effective,
2116 kernel_cap_t *inheritable,
2117 kernel_cap_t *permitted)
2118 {
2119 return cap_capget (target, effective, inheritable, permitted);
2120 }
2121
2122 static inline int security_capset_check (struct task_struct *target,
2123 kernel_cap_t *effective,
2124 kernel_cap_t *inheritable,
2125 kernel_cap_t *permitted)
2126 {
2127 return cap_capset_check (target, effective, inheritable, permitted);
2128 }
2129
2130 static inline void security_capset_set (struct task_struct *target,
2131 kernel_cap_t *effective,
2132 kernel_cap_t *inheritable,
2133 kernel_cap_t *permitted)
2134 {
2135 cap_capset_set (target, effective, inheritable, permitted);
2136 }
2137
2138 static inline int security_capable(struct task_struct *tsk, int cap)
2139 {
2140 return cap_capable(tsk, cap);
2141 }
2142
2143 static inline int security_acct (struct file *file)
2144 {
2145 return 0;
2146 }
2147
2148 static inline int security_sysctl(struct ctl_table *table, int op)
2149 {
2150 return 0;
2151 }
2152
2153 static inline int security_quotactl (int cmds, int type, int id,
2154 struct super_block * sb)
2155 {
2156 return 0;
2157 }
2158
2159 static inline int security_quota_on (struct dentry * dentry)
2160 {
2161 return 0;
2162 }
2163
2164 static inline int security_syslog(int type)
2165 {
2166 return cap_syslog(type);
2167 }
2168
2169 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2170 {
2171 return cap_settime(ts, tz);
2172 }
2173
2174 static inline int security_vm_enough_memory(long pages)
2175 {
2176 return cap_vm_enough_memory(pages);
2177 }
2178
2179 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2180 {
2181 return 0;
2182 }
2183
2184 static inline void security_bprm_free (struct linux_binprm *bprm)
2185 { }
2186
2187 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2188 {
2189 cap_bprm_apply_creds (bprm, unsafe);
2190 }
2191
2192 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2193 {
2194 return;
2195 }
2196
2197 static inline int security_bprm_set (struct linux_binprm *bprm)
2198 {
2199 return cap_bprm_set_security (bprm);
2200 }
2201
2202 static inline int security_bprm_check (struct linux_binprm *bprm)
2203 {
2204 return 0;
2205 }
2206
2207 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2208 {
2209 return cap_bprm_secureexec(bprm);
2210 }
2211
2212 static inline int security_sb_alloc (struct super_block *sb)
2213 {
2214 return 0;
2215 }
2216
2217 static inline void security_sb_free (struct super_block *sb)
2218 { }
2219
2220 static inline int security_sb_copy_data (struct file_system_type *type,
2221 void *orig, void *copy)
2222 {
2223 return 0;
2224 }
2225
2226 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2227 {
2228 return 0;
2229 }
2230
2231 static inline int security_sb_statfs (struct dentry *dentry)
2232 {
2233 return 0;
2234 }
2235
2236 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2237 char *type, unsigned long flags,
2238 void *data)
2239 {
2240 return 0;
2241 }
2242
2243 static inline int security_sb_check_sb (struct vfsmount *mnt,
2244 struct nameidata *nd)
2245 {
2246 return 0;
2247 }
2248
2249 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2250 {
2251 return 0;
2252 }
2253
2254 static inline void security_sb_umount_close (struct vfsmount *mnt)
2255 { }
2256
2257 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2258 { }
2259
2260 static inline void security_sb_post_remount (struct vfsmount *mnt,
2261 unsigned long flags, void *data)
2262 { }
2263
2264 static inline void security_sb_post_mountroot (void)
2265 { }
2266
2267 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2268 struct nameidata *mountpoint_nd)
2269 { }
2270
2271 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2272 struct nameidata *new_nd)
2273 {
2274 return 0;
2275 }
2276
2277 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2278 struct nameidata *new_nd)
2279 { }
2280
2281 static inline int security_inode_alloc (struct inode *inode)
2282 {
2283 return 0;
2284 }
2285
2286 static inline void security_inode_free (struct inode *inode)
2287 { }
2288
2289 static inline int security_inode_init_security (struct inode *inode,
2290 struct inode *dir,
2291 char **name,
2292 void **value,
2293 size_t *len)
2294 {
2295 return -EOPNOTSUPP;
2296 }
2297
2298 static inline int security_inode_create (struct inode *dir,
2299 struct dentry *dentry,
2300 int mode)
2301 {
2302 return 0;
2303 }
2304
2305 static inline int security_inode_link (struct dentry *old_dentry,
2306 struct inode *dir,
2307 struct dentry *new_dentry)
2308 {
2309 return 0;
2310 }
2311
2312 static inline int security_inode_unlink (struct inode *dir,
2313 struct dentry *dentry)
2314 {
2315 return 0;
2316 }
2317
2318 static inline int security_inode_symlink (struct inode *dir,
2319 struct dentry *dentry,
2320 const char *old_name)
2321 {
2322 return 0;
2323 }
2324
2325 static inline int security_inode_mkdir (struct inode *dir,
2326 struct dentry *dentry,
2327 int mode)
2328 {
2329 return 0;
2330 }
2331
2332 static inline int security_inode_rmdir (struct inode *dir,
2333 struct dentry *dentry)
2334 {
2335 return 0;
2336 }
2337
2338 static inline int security_inode_mknod (struct inode *dir,
2339 struct dentry *dentry,
2340 int mode, dev_t dev)
2341 {
2342 return 0;
2343 }
2344
2345 static inline int security_inode_rename (struct inode *old_dir,
2346 struct dentry *old_dentry,
2347 struct inode *new_dir,
2348 struct dentry *new_dentry)
2349 {
2350 return 0;
2351 }
2352
2353 static inline int security_inode_readlink (struct dentry *dentry)
2354 {
2355 return 0;
2356 }
2357
2358 static inline int security_inode_follow_link (struct dentry *dentry,
2359 struct nameidata *nd)
2360 {
2361 return 0;
2362 }
2363
2364 static inline int security_inode_permission (struct inode *inode, int mask,
2365 struct nameidata *nd)
2366 {
2367 return 0;
2368 }
2369
2370 static inline int security_inode_setattr (struct dentry *dentry,
2371 struct iattr *attr)
2372 {
2373 return 0;
2374 }
2375
2376 static inline int security_inode_getattr (struct vfsmount *mnt,
2377 struct dentry *dentry)
2378 {
2379 return 0;
2380 }
2381
2382 static inline void security_inode_delete (struct inode *inode)
2383 { }
2384
2385 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2386 void *value, size_t size, int flags)
2387 {
2388 return cap_inode_setxattr(dentry, name, value, size, flags);
2389 }
2390
2391 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2392 void *value, size_t size, int flags)
2393 { }
2394
2395 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2396 {
2397 return 0;
2398 }
2399
2400 static inline int security_inode_listxattr (struct dentry *dentry)
2401 {
2402 return 0;
2403 }
2404
2405 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2406 {
2407 return cap_inode_removexattr(dentry, name);
2408 }
2409
2410 static inline const char *security_inode_xattr_getsuffix (void)
2411 {
2412 return NULL ;
2413 }
2414
2415 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2416 {
2417 return -EOPNOTSUPP;
2418 }
2419
2420 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2421 {
2422 return -EOPNOTSUPP;
2423 }
2424
2425 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2426 {
2427 return 0;
2428 }
2429
2430 static inline int security_file_permission (struct file *file, int mask)
2431 {
2432 return 0;
2433 }
2434
2435 static inline int security_file_alloc (struct file *file)
2436 {
2437 return 0;
2438 }
2439
2440 static inline void security_file_free (struct file *file)
2441 { }
2442
2443 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2444 unsigned long arg)
2445 {
2446 return 0;
2447 }
2448
2449 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2450 unsigned long prot,
2451 unsigned long flags)
2452 {
2453 return 0;
2454 }
2455
2456 static inline int security_file_mprotect (struct vm_area_struct *vma,
2457 unsigned long reqprot,
2458 unsigned long prot)
2459 {
2460 return 0;
2461 }
2462
2463 static inline int security_file_lock (struct file *file, unsigned int cmd)
2464 {
2465 return 0;
2466 }
2467
2468 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2469 unsigned long arg)
2470 {
2471 return 0;
2472 }
2473
2474 static inline int security_file_set_fowner (struct file *file)
2475 {
2476 return 0;
2477 }
2478
2479 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2480 struct fown_struct *fown,
2481 int sig)
2482 {
2483 return 0;
2484 }
2485
2486 static inline int security_file_receive (struct file *file)
2487 {
2488 return 0;
2489 }
2490
2491 static inline int security_task_create (unsigned long clone_flags)
2492 {
2493 return 0;
2494 }
2495
2496 static inline int security_task_alloc (struct task_struct *p)
2497 {
2498 return 0;
2499 }
2500
2501 static inline void security_task_free (struct task_struct *p)
2502 { }
2503
2504 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2505 int flags)
2506 {
2507 return 0;
2508 }
2509
2510 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2511 uid_t old_suid, int flags)
2512 {
2513 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2514 }
2515
2516 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2517 int flags)
2518 {
2519 return 0;
2520 }
2521
2522 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2523 {
2524 return 0;
2525 }
2526
2527 static inline int security_task_getpgid (struct task_struct *p)
2528 {
2529 return 0;
2530 }
2531
2532 static inline int security_task_getsid (struct task_struct *p)
2533 {
2534 return 0;
2535 }
2536
2537 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2538 { }
2539
2540 static inline int security_task_setgroups (struct group_info *group_info)
2541 {
2542 return 0;
2543 }
2544
2545 static inline int security_task_setnice (struct task_struct *p, int nice)
2546 {
2547 return 0;
2548 }
2549
2550 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2551 {
2552 return 0;
2553 }
2554
2555 static inline int security_task_getioprio (struct task_struct *p)
2556 {
2557 return 0;
2558 }
2559
2560 static inline int security_task_setrlimit (unsigned int resource,
2561 struct rlimit *new_rlim)
2562 {
2563 return 0;
2564 }
2565
2566 static inline int security_task_setscheduler (struct task_struct *p,
2567 int policy,
2568 struct sched_param *lp)
2569 {
2570 return 0;
2571 }
2572
2573 static inline int security_task_getscheduler (struct task_struct *p)
2574 {
2575 return 0;
2576 }
2577
2578 static inline int security_task_movememory (struct task_struct *p)
2579 {
2580 return 0;
2581 }
2582
2583 static inline int security_task_kill (struct task_struct *p,
2584 struct siginfo *info, int sig,
2585 u32 secid)
2586 {
2587 return 0;
2588 }
2589
2590 static inline int security_task_wait (struct task_struct *p)
2591 {
2592 return 0;
2593 }
2594
2595 static inline int security_task_prctl (int option, unsigned long arg2,
2596 unsigned long arg3,
2597 unsigned long arg4,
2598 unsigned long arg5)
2599 {
2600 return 0;
2601 }
2602
2603 static inline void security_task_reparent_to_init (struct task_struct *p)
2604 {
2605 cap_task_reparent_to_init (p);
2606 }
2607
2608 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2609 { }
2610
2611 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2612 short flag)
2613 {
2614 return 0;
2615 }
2616
2617 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2618 {
2619 return 0;
2620 }
2621
2622 static inline void security_msg_msg_free (struct msg_msg * msg)
2623 { }
2624
2625 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2626 {
2627 return 0;
2628 }
2629
2630 static inline void security_msg_queue_free (struct msg_queue *msq)
2631 { }
2632
2633 static inline int security_msg_queue_associate (struct msg_queue * msq,
2634 int msqflg)
2635 {
2636 return 0;
2637 }
2638
2639 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2640 {
2641 return 0;
2642 }
2643
2644 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2645 struct msg_msg * msg, int msqflg)
2646 {
2647 return 0;
2648 }
2649
2650 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2651 struct msg_msg * msg,
2652 struct task_struct * target,
2653 long type, int mode)
2654 {
2655 return 0;
2656 }
2657
2658 static inline int security_shm_alloc (struct shmid_kernel *shp)
2659 {
2660 return 0;
2661 }
2662
2663 static inline void security_shm_free (struct shmid_kernel *shp)
2664 { }
2665
2666 static inline int security_shm_associate (struct shmid_kernel * shp,
2667 int shmflg)
2668 {
2669 return 0;
2670 }
2671
2672 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2673 {
2674 return 0;
2675 }
2676
2677 static inline int security_shm_shmat (struct shmid_kernel * shp,
2678 char __user *shmaddr, int shmflg)
2679 {
2680 return 0;
2681 }
2682
2683 static inline int security_sem_alloc (struct sem_array *sma)
2684 {
2685 return 0;
2686 }
2687
2688 static inline void security_sem_free (struct sem_array *sma)
2689 { }
2690
2691 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2692 {
2693 return 0;
2694 }
2695
2696 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2697 {
2698 return 0;
2699 }
2700
2701 static inline int security_sem_semop (struct sem_array * sma,
2702 struct sembuf * sops, unsigned nsops,
2703 int alter)
2704 {
2705 return 0;
2706 }
2707
2708 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2709 { }
2710
2711 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2712 {
2713 return -EINVAL;
2714 }
2715
2716 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2717 {
2718 return -EINVAL;
2719 }
2720
2721 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2722 {
2723 return cap_netlink_send (sk, skb);
2724 }
2725
2726 static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2727 {
2728 return cap_netlink_recv (skb, cap);
2729 }
2730
2731 static inline struct dentry *securityfs_create_dir(const char *name,
2732 struct dentry *parent)
2733 {
2734 return ERR_PTR(-ENODEV);
2735 }
2736
2737 static inline struct dentry *securityfs_create_file(const char *name,
2738 mode_t mode,
2739 struct dentry *parent,
2740 void *data,
2741 struct file_operations *fops)
2742 {
2743 return ERR_PTR(-ENODEV);
2744 }
2745
2746 static inline void securityfs_remove(struct dentry *dentry)
2747 {
2748 }
2749
2750 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2751 {
2752 return -EOPNOTSUPP;
2753 }
2754
2755 static inline void security_release_secctx(char *secdata, u32 seclen)
2756 {
2757 }
2758 #endif /* CONFIG_SECURITY */
2759
2760 #ifdef CONFIG_SECURITY_NETWORK
2761 static inline int security_unix_stream_connect(struct socket * sock,
2762 struct socket * other,
2763 struct sock * newsk)
2764 {
2765 return security_ops->unix_stream_connect(sock, other, newsk);
2766 }
2767
2768
2769 static inline int security_unix_may_send(struct socket * sock,
2770 struct socket * other)
2771 {
2772 return security_ops->unix_may_send(sock, other);
2773 }
2774
2775 static inline int security_socket_create (int family, int type,
2776 int protocol, int kern)
2777 {
2778 return security_ops->socket_create(family, type, protocol, kern);
2779 }
2780
2781 static inline void security_socket_post_create(struct socket * sock,
2782 int family,
2783 int type,
2784 int protocol, int kern)
2785 {
2786 security_ops->socket_post_create(sock, family, type,
2787 protocol, kern);
2788 }
2789
2790 static inline int security_socket_bind(struct socket * sock,
2791 struct sockaddr * address,
2792 int addrlen)
2793 {
2794 return security_ops->socket_bind(sock, address, addrlen);
2795 }
2796
2797 static inline int security_socket_connect(struct socket * sock,
2798 struct sockaddr * address,
2799 int addrlen)
2800 {
2801 return security_ops->socket_connect(sock, address, addrlen);
2802 }
2803
2804 static inline int security_socket_listen(struct socket * sock, int backlog)
2805 {
2806 return security_ops->socket_listen(sock, backlog);
2807 }
2808
2809 static inline int security_socket_accept(struct socket * sock,
2810 struct socket * newsock)
2811 {
2812 return security_ops->socket_accept(sock, newsock);
2813 }
2814
2815 static inline void security_socket_post_accept(struct socket * sock,
2816 struct socket * newsock)
2817 {
2818 security_ops->socket_post_accept(sock, newsock);
2819 }
2820
2821 static inline int security_socket_sendmsg(struct socket * sock,
2822 struct msghdr * msg, int size)
2823 {
2824 return security_ops->socket_sendmsg(sock, msg, size);
2825 }
2826
2827 static inline int security_socket_recvmsg(struct socket * sock,
2828 struct msghdr * msg, int size,
2829 int flags)
2830 {
2831 return security_ops->socket_recvmsg(sock, msg, size, flags);
2832 }
2833
2834 static inline int security_socket_getsockname(struct socket * sock)
2835 {
2836 return security_ops->socket_getsockname(sock);
2837 }
2838
2839 static inline int security_socket_getpeername(struct socket * sock)
2840 {
2841 return security_ops->socket_getpeername(sock);
2842 }
2843
2844 static inline int security_socket_getsockopt(struct socket * sock,
2845 int level, int optname)
2846 {
2847 return security_ops->socket_getsockopt(sock, level, optname);
2848 }
2849
2850 static inline int security_socket_setsockopt(struct socket * sock,
2851 int level, int optname)
2852 {
2853 return security_ops->socket_setsockopt(sock, level, optname);
2854 }
2855
2856 static inline int security_socket_shutdown(struct socket * sock, int how)
2857 {
2858 return security_ops->socket_shutdown(sock, how);
2859 }
2860
2861 static inline int security_sock_rcv_skb (struct sock * sk,
2862 struct sk_buff * skb)
2863 {
2864 return security_ops->socket_sock_rcv_skb (sk, skb);
2865 }
2866
2867 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2868 int __user *optlen, unsigned len)
2869 {
2870 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2871 }
2872
2873 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2874 {
2875 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
2876 }
2877
2878 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2879 {
2880 return security_ops->sk_alloc_security(sk, family, priority);
2881 }
2882
2883 static inline void security_sk_free(struct sock *sk)
2884 {
2885 return security_ops->sk_free_security(sk);
2886 }
2887
2888 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2889 {
2890 return security_ops->sk_getsid(sk, fl, dir);
2891 }
2892 #else /* CONFIG_SECURITY_NETWORK */
2893 static inline int security_unix_stream_connect(struct socket * sock,
2894 struct socket * other,
2895 struct sock * newsk)
2896 {
2897 return 0;
2898 }
2899
2900 static inline int security_unix_may_send(struct socket * sock,
2901 struct socket * other)
2902 {
2903 return 0;
2904 }
2905
2906 static inline int security_socket_create (int family, int type,
2907 int protocol, int kern)
2908 {
2909 return 0;
2910 }
2911
2912 static inline void security_socket_post_create(struct socket * sock,
2913 int family,
2914 int type,
2915 int protocol, int kern)
2916 {
2917 }
2918
2919 static inline int security_socket_bind(struct socket * sock,
2920 struct sockaddr * address,
2921 int addrlen)
2922 {
2923 return 0;
2924 }
2925
2926 static inline int security_socket_connect(struct socket * sock,
2927 struct sockaddr * address,
2928 int addrlen)
2929 {
2930 return 0;
2931 }
2932
2933 static inline int security_socket_listen(struct socket * sock, int backlog)
2934 {
2935 return 0;
2936 }
2937
2938 static inline int security_socket_accept(struct socket * sock,
2939 struct socket * newsock)
2940 {
2941 return 0;
2942 }
2943
2944 static inline void security_socket_post_accept(struct socket * sock,
2945 struct socket * newsock)
2946 {
2947 }
2948
2949 static inline int security_socket_sendmsg(struct socket * sock,
2950 struct msghdr * msg, int size)
2951 {
2952 return 0;
2953 }
2954
2955 static inline int security_socket_recvmsg(struct socket * sock,
2956 struct msghdr * msg, int size,
2957 int flags)
2958 {
2959 return 0;
2960 }
2961
2962 static inline int security_socket_getsockname(struct socket * sock)
2963 {
2964 return 0;
2965 }
2966
2967 static inline int security_socket_getpeername(struct socket * sock)
2968 {
2969 return 0;
2970 }
2971
2972 static inline int security_socket_getsockopt(struct socket * sock,
2973 int level, int optname)
2974 {
2975 return 0;
2976 }
2977
2978 static inline int security_socket_setsockopt(struct socket * sock,
2979 int level, int optname)
2980 {
2981 return 0;
2982 }
2983
2984 static inline int security_socket_shutdown(struct socket * sock, int how)
2985 {
2986 return 0;
2987 }
2988 static inline int security_sock_rcv_skb (struct sock * sk,
2989 struct sk_buff * skb)
2990 {
2991 return 0;
2992 }
2993
2994 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2995 int __user *optlen, unsigned len)
2996 {
2997 return -ENOPROTOOPT;
2998 }
2999
3000 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3001 {
3002 return -ENOPROTOOPT;
3003 }
3004
3005 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
3006 {
3007 return 0;
3008 }
3009
3010 static inline void security_sk_free(struct sock *sk)
3011 {
3012 }
3013
3014 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
3015 {
3016 return 0;
3017 }
3018 #endif /* CONFIG_SECURITY_NETWORK */
3019
3020 #ifdef CONFIG_SECURITY_NETWORK_XFRM
3021 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3022 {
3023 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
3024 }
3025
3026 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3027 {
3028 return security_ops->xfrm_policy_clone_security(old, new);
3029 }
3030
3031 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3032 {
3033 security_ops->xfrm_policy_free_security(xp);
3034 }
3035
3036 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3037 {
3038 return security_ops->xfrm_policy_delete_security(xp);
3039 }
3040
3041 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
3042 {
3043 return security_ops->xfrm_state_alloc_security(x, sec_ctx);
3044 }
3045
3046 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3047 {
3048 return security_ops->xfrm_state_delete_security(x);
3049 }
3050
3051 static inline void security_xfrm_state_free(struct xfrm_state *x)
3052 {
3053 security_ops->xfrm_state_free_security(x);
3054 }
3055
3056 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
3057 {
3058 return security_ops->xfrm_policy_lookup(xp, sk_sid, dir);
3059 }
3060 #else /* CONFIG_SECURITY_NETWORK_XFRM */
3061 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3062 {
3063 return 0;
3064 }
3065
3066 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3067 {
3068 return 0;
3069 }
3070
3071 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3072 {
3073 }
3074
3075 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3076 {
3077 return 0;
3078 }
3079
3080 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
3081 {
3082 return 0;
3083 }
3084
3085 static inline void security_xfrm_state_free(struct xfrm_state *x)
3086 {
3087 }
3088
3089 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3090 {
3091 return 0;
3092 }
3093
3094 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
3095 {
3096 return 0;
3097 }
3098 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
3099
3100 #ifdef CONFIG_KEYS
3101 #ifdef CONFIG_SECURITY
3102 static inline int security_key_alloc(struct key *key,
3103 struct task_struct *tsk,
3104 unsigned long flags)
3105 {
3106 return security_ops->key_alloc(key, tsk, flags);
3107 }
3108
3109 static inline void security_key_free(struct key *key)
3110 {
3111 security_ops->key_free(key);
3112 }
3113
3114 static inline int security_key_permission(key_ref_t key_ref,
3115 struct task_struct *context,
3116 key_perm_t perm)
3117 {
3118 return security_ops->key_permission(key_ref, context, perm);
3119 }
3120
3121 #else
3122
3123 static inline int security_key_alloc(struct key *key,
3124 struct task_struct *tsk,
3125 unsigned long flags)
3126 {
3127 return 0;
3128 }
3129
3130 static inline void security_key_free(struct key *key)
3131 {
3132 }
3133
3134 static inline int security_key_permission(key_ref_t key_ref,
3135 struct task_struct *context,
3136 key_perm_t perm)
3137 {
3138 return 0;
3139 }
3140
3141 #endif
3142 #endif /* CONFIG_KEYS */
3143
3144 #endif /* ! __LINUX_SECURITY_H */
3145
This page took 0.095298 seconds and 6 git commands to generate.