[MLSXFRM]: Add flow labeling
[deliverable/linux.git] / include / linux / security.h
1 /*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * Due to this file being licensed under the GPL there is controversy over
16 * whether this permits you to write a module that #includes this file
17 * without placing your module under the GPL. Please consult a lawyer for
18 * advice before doing this.
19 *
20 */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 #include <linux/xfrm.h>
35 #include <net/flow.h>
36
37 struct ctl_table;
38
39 /*
40 * These functions are in security/capability.c and are used
41 * as the default capabilities functions
42 */
43 extern int cap_capable (struct task_struct *tsk, int cap);
44 extern int cap_settime (struct timespec *ts, struct timezone *tz);
45 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
46 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
48 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
49 extern int cap_bprm_set_security (struct linux_binprm *bprm);
50 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
51 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
52 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
53 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
54 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
55 extern void cap_task_reparent_to_init (struct task_struct *p);
56 extern int cap_syslog (int type);
57 extern int cap_vm_enough_memory (long pages);
58
59 struct msghdr;
60 struct sk_buff;
61 struct sock;
62 struct sockaddr;
63 struct socket;
64 struct flowi;
65 struct dst_entry;
66 struct xfrm_selector;
67 struct xfrm_policy;
68 struct xfrm_state;
69 struct xfrm_user_sec_ctx;
70
71 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
72 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
73
74 /*
75 * Values used in the task_security_ops calls
76 */
77 /* setuid or setgid, id0 == uid or gid */
78 #define LSM_SETID_ID 1
79
80 /* setreuid or setregid, id0 == real, id1 == eff */
81 #define LSM_SETID_RE 2
82
83 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
84 #define LSM_SETID_RES 4
85
86 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
87 #define LSM_SETID_FS 8
88
89 /* forward declares to avoid warnings */
90 struct nfsctl_arg;
91 struct sched_param;
92 struct swap_info_struct;
93
94 /* bprm_apply_creds unsafe reasons */
95 #define LSM_UNSAFE_SHARE 1
96 #define LSM_UNSAFE_PTRACE 2
97 #define LSM_UNSAFE_PTRACE_CAP 4
98
99 #ifdef CONFIG_SECURITY
100
101 /**
102 * struct security_operations - main security structure
103 *
104 * Security hooks for program execution operations.
105 *
106 * @bprm_alloc_security:
107 * Allocate and attach a security structure to the @bprm->security field.
108 * The security field is initialized to NULL when the bprm structure is
109 * allocated.
110 * @bprm contains the linux_binprm structure to be modified.
111 * Return 0 if operation was successful.
112 * @bprm_free_security:
113 * @bprm contains the linux_binprm structure to be modified.
114 * Deallocate and clear the @bprm->security field.
115 * @bprm_apply_creds:
116 * Compute and set the security attributes of a process being transformed
117 * by an execve operation based on the old attributes (current->security)
118 * and the information saved in @bprm->security by the set_security hook.
119 * Since this hook function (and its caller) are void, this hook can not
120 * return an error. However, it can leave the security attributes of the
121 * process unchanged if an access failure occurs at this point.
122 * bprm_apply_creds is called under task_lock. @unsafe indicates various
123 * reasons why it may be unsafe to change security state.
124 * @bprm contains the linux_binprm structure.
125 * @bprm_post_apply_creds:
126 * Runs after bprm_apply_creds with the task_lock dropped, so that
127 * functions which cannot be called safely under the task_lock can
128 * be used. This hook is a good place to perform state changes on
129 * the process such as closing open file descriptors to which access
130 * is no longer granted if the attributes were changed.
131 * Note that a security module might need to save state between
132 * bprm_apply_creds and bprm_post_apply_creds to store the decision
133 * on whether the process may proceed.
134 * @bprm contains the linux_binprm structure.
135 * @bprm_set_security:
136 * Save security information in the bprm->security field, typically based
137 * on information about the bprm->file, for later use by the apply_creds
138 * hook. This hook may also optionally check permissions (e.g. for
139 * transitions between security domains).
140 * This hook may be called multiple times during a single execve, e.g. for
141 * interpreters. The hook can tell whether it has already been called by
142 * checking to see if @bprm->security is non-NULL. If so, then the hook
143 * may decide either to retain the security information saved earlier or
144 * to replace it.
145 * @bprm contains the linux_binprm structure.
146 * Return 0 if the hook is successful and permission is granted.
147 * @bprm_check_security:
148 * This hook mediates the point when a search for a binary handler will
149 * begin. It allows a check the @bprm->security value which is set in
150 * the preceding set_security call. The primary difference from
151 * set_security is that the argv list and envp list are reliably
152 * available in @bprm. This hook may be called multiple times
153 * during a single execve; and in each pass set_security is called
154 * first.
155 * @bprm contains the linux_binprm structure.
156 * Return 0 if the hook is successful and permission is granted.
157 * @bprm_secureexec:
158 * Return a boolean value (0 or 1) indicating whether a "secure exec"
159 * is required. The flag is passed in the auxiliary table
160 * on the initial stack to the ELF interpreter to indicate whether libc
161 * should enable secure mode.
162 * @bprm contains the linux_binprm structure.
163 *
164 * Security hooks for filesystem operations.
165 *
166 * @sb_alloc_security:
167 * Allocate and attach a security structure to the sb->s_security field.
168 * The s_security field is initialized to NULL when the structure is
169 * allocated.
170 * @sb contains the super_block structure to be modified.
171 * Return 0 if operation was successful.
172 * @sb_free_security:
173 * Deallocate and clear the sb->s_security field.
174 * @sb contains the super_block structure to be modified.
175 * @sb_statfs:
176 * Check permission before obtaining filesystem statistics for the @mnt
177 * mountpoint.
178 * @dentry is a handle on the superblock for the filesystem.
179 * Return 0 if permission is granted.
180 * @sb_mount:
181 * Check permission before an object specified by @dev_name is mounted on
182 * the mount point named by @nd. For an ordinary mount, @dev_name
183 * identifies a device if the file system type requires a device. For a
184 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
185 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
186 * pathname of the object being mounted.
187 * @dev_name contains the name for object being mounted.
188 * @nd contains the nameidata structure for mount point object.
189 * @type contains the filesystem type.
190 * @flags contains the mount flags.
191 * @data contains the filesystem-specific data.
192 * Return 0 if permission is granted.
193 * @sb_copy_data:
194 * Allow mount option data to be copied prior to parsing by the filesystem,
195 * so that the security module can extract security-specific mount
196 * options cleanly (a filesystem may modify the data e.g. with strsep()).
197 * This also allows the original mount data to be stripped of security-
198 * specific options to avoid having to make filesystems aware of them.
199 * @type the type of filesystem being mounted.
200 * @orig the original mount data copied from userspace.
201 * @copy copied data which will be passed to the security module.
202 * Returns 0 if the copy was successful.
203 * @sb_check_sb:
204 * Check permission before the device with superblock @mnt->sb is mounted
205 * on the mount point named by @nd.
206 * @mnt contains the vfsmount for device being mounted.
207 * @nd contains the nameidata object for the mount point.
208 * Return 0 if permission is granted.
209 * @sb_umount:
210 * Check permission before the @mnt file system is unmounted.
211 * @mnt contains the mounted file system.
212 * @flags contains the unmount flags, e.g. MNT_FORCE.
213 * Return 0 if permission is granted.
214 * @sb_umount_close:
215 * Close any files in the @mnt mounted filesystem that are held open by
216 * the security module. This hook is called during an umount operation
217 * prior to checking whether the filesystem is still busy.
218 * @mnt contains the mounted filesystem.
219 * @sb_umount_busy:
220 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
221 * any files that were closed by umount_close. This hook is called during
222 * an umount operation if the umount fails after a call to the
223 * umount_close hook.
224 * @mnt contains the mounted filesystem.
225 * @sb_post_remount:
226 * Update the security module's state when a filesystem is remounted.
227 * This hook is only called if the remount was successful.
228 * @mnt contains the mounted file system.
229 * @flags contains the new filesystem flags.
230 * @data contains the filesystem-specific data.
231 * @sb_post_mountroot:
232 * Update the security module's state when the root filesystem is mounted.
233 * This hook is only called if the mount was successful.
234 * @sb_post_addmount:
235 * Update the security module's state when a filesystem is mounted.
236 * This hook is called any time a mount is successfully grafetd to
237 * the tree.
238 * @mnt contains the mounted filesystem.
239 * @mountpoint_nd contains the nameidata structure for the mount point.
240 * @sb_pivotroot:
241 * Check permission before pivoting the root filesystem.
242 * @old_nd contains the nameidata structure for the new location of the current root (put_old).
243 * @new_nd contains the nameidata structure for the new root (new_root).
244 * Return 0 if permission is granted.
245 * @sb_post_pivotroot:
246 * Update module state after a successful pivot.
247 * @old_nd contains the nameidata structure for the old root.
248 * @new_nd contains the nameidata structure for the new root.
249 *
250 * Security hooks for inode operations.
251 *
252 * @inode_alloc_security:
253 * Allocate and attach a security structure to @inode->i_security. The
254 * i_security field is initialized to NULL when the inode structure is
255 * allocated.
256 * @inode contains the inode structure.
257 * Return 0 if operation was successful.
258 * @inode_free_security:
259 * @inode contains the inode structure.
260 * Deallocate the inode security structure and set @inode->i_security to
261 * NULL.
262 * @inode_init_security:
263 * Obtain the security attribute name suffix and value to set on a newly
264 * created inode and set up the incore security field for the new inode.
265 * This hook is called by the fs code as part of the inode creation
266 * transaction and provides for atomic labeling of the inode, unlike
267 * the post_create/mkdir/... hooks called by the VFS. The hook function
268 * is expected to allocate the name and value via kmalloc, with the caller
269 * being responsible for calling kfree after using them.
270 * If the security module does not use security attributes or does
271 * not wish to put a security attribute on this particular inode,
272 * then it should return -EOPNOTSUPP to skip this processing.
273 * @inode contains the inode structure of the newly created inode.
274 * @dir contains the inode structure of the parent directory.
275 * @name will be set to the allocated name suffix (e.g. selinux).
276 * @value will be set to the allocated attribute value.
277 * @len will be set to the length of the value.
278 * Returns 0 if @name and @value have been successfully set,
279 * -EOPNOTSUPP if no security attribute is needed, or
280 * -ENOMEM on memory allocation failure.
281 * @inode_create:
282 * Check permission to create a regular file.
283 * @dir contains inode structure of the parent of the new file.
284 * @dentry contains the dentry structure for the file to be created.
285 * @mode contains the file mode of the file to be created.
286 * Return 0 if permission is granted.
287 * @inode_link:
288 * Check permission before creating a new hard link to a file.
289 * @old_dentry contains the dentry structure for an existing link to the file.
290 * @dir contains the inode structure of the parent directory of the new link.
291 * @new_dentry contains the dentry structure for the new link.
292 * Return 0 if permission is granted.
293 * @inode_unlink:
294 * Check the permission to remove a hard link to a file.
295 * @dir contains the inode structure of parent directory of the file.
296 * @dentry contains the dentry structure for file to be unlinked.
297 * Return 0 if permission is granted.
298 * @inode_symlink:
299 * Check the permission to create a symbolic link to a file.
300 * @dir contains the inode structure of parent directory of the symbolic link.
301 * @dentry contains the dentry structure of the symbolic link.
302 * @old_name contains the pathname of file.
303 * Return 0 if permission is granted.
304 * @inode_mkdir:
305 * Check permissions to create a new directory in the existing directory
306 * associated with inode strcture @dir.
307 * @dir containst the inode structure of parent of the directory to be created.
308 * @dentry contains the dentry structure of new directory.
309 * @mode contains the mode of new directory.
310 * Return 0 if permission is granted.
311 * @inode_rmdir:
312 * Check the permission to remove a directory.
313 * @dir contains the inode structure of parent of the directory to be removed.
314 * @dentry contains the dentry structure of directory to be removed.
315 * Return 0 if permission is granted.
316 * @inode_mknod:
317 * Check permissions when creating a special file (or a socket or a fifo
318 * file created via the mknod system call). Note that if mknod operation
319 * is being done for a regular file, then the create hook will be called
320 * and not this hook.
321 * @dir contains the inode structure of parent of the new file.
322 * @dentry contains the dentry structure of the new file.
323 * @mode contains the mode of the new file.
324 * @dev contains the the device number.
325 * Return 0 if permission is granted.
326 * @inode_rename:
327 * Check for permission to rename a file or directory.
328 * @old_dir contains the inode structure for parent of the old link.
329 * @old_dentry contains the dentry structure of the old link.
330 * @new_dir contains the inode structure for parent of the new link.
331 * @new_dentry contains the dentry structure of the new link.
332 * Return 0 if permission is granted.
333 * @inode_readlink:
334 * Check the permission to read the symbolic link.
335 * @dentry contains the dentry structure for the file link.
336 * Return 0 if permission is granted.
337 * @inode_follow_link:
338 * Check permission to follow a symbolic link when looking up a pathname.
339 * @dentry contains the dentry structure for the link.
340 * @nd contains the nameidata structure for the parent directory.
341 * Return 0 if permission is granted.
342 * @inode_permission:
343 * Check permission before accessing an inode. This hook is called by the
344 * existing Linux permission function, so a security module can use it to
345 * provide additional checking for existing Linux permission checks.
346 * Notice that this hook is called when a file is opened (as well as many
347 * other operations), whereas the file_security_ops permission hook is
348 * called when the actual read/write operations are performed.
349 * @inode contains the inode structure to check.
350 * @mask contains the permission mask.
351 * @nd contains the nameidata (may be NULL).
352 * Return 0 if permission is granted.
353 * @inode_setattr:
354 * Check permission before setting file attributes. Note that the kernel
355 * call to notify_change is performed from several locations, whenever
356 * file attributes change (such as when a file is truncated, chown/chmod
357 * operations, transferring disk quotas, etc).
358 * @dentry contains the dentry structure for the file.
359 * @attr is the iattr structure containing the new file attributes.
360 * Return 0 if permission is granted.
361 * @inode_getattr:
362 * Check permission before obtaining file attributes.
363 * @mnt is the vfsmount where the dentry was looked up
364 * @dentry contains the dentry structure for the file.
365 * Return 0 if permission is granted.
366 * @inode_delete:
367 * @inode contains the inode structure for deleted inode.
368 * This hook is called when a deleted inode is released (i.e. an inode
369 * with no hard links has its use count drop to zero). A security module
370 * can use this hook to release any persistent label associated with the
371 * inode.
372 * @inode_setxattr:
373 * Check permission before setting the extended attributes
374 * @value identified by @name for @dentry.
375 * Return 0 if permission is granted.
376 * @inode_post_setxattr:
377 * Update inode security field after successful setxattr operation.
378 * @value identified by @name for @dentry.
379 * @inode_getxattr:
380 * Check permission before obtaining the extended attributes
381 * identified by @name for @dentry.
382 * Return 0 if permission is granted.
383 * @inode_listxattr:
384 * Check permission before obtaining the list of extended attribute
385 * names for @dentry.
386 * Return 0 if permission is granted.
387 * @inode_removexattr:
388 * Check permission before removing the extended attribute
389 * identified by @name for @dentry.
390 * Return 0 if permission is granted.
391 * @inode_getsecurity:
392 * Copy the extended attribute representation of the security label
393 * associated with @name for @inode into @buffer. @buffer may be
394 * NULL to request the size of the buffer required. @size indicates
395 * the size of @buffer in bytes. Note that @name is the remainder
396 * of the attribute name after the security. prefix has been removed.
397 * @err is the return value from the preceding fs getxattr call,
398 * and can be used by the security module to determine whether it
399 * should try and canonicalize the attribute value.
400 * Return number of bytes used/required on success.
401 * @inode_setsecurity:
402 * Set the security label associated with @name for @inode from the
403 * extended attribute value @value. @size indicates the size of the
404 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
405 * Note that @name is the remainder of the attribute name after the
406 * security. prefix has been removed.
407 * Return 0 on success.
408 * @inode_listsecurity:
409 * Copy the extended attribute names for the security labels
410 * associated with @inode into @buffer. The maximum size of @buffer
411 * is specified by @buffer_size. @buffer may be NULL to request
412 * the size of the buffer required.
413 * Returns number of bytes used/required on success.
414 *
415 * Security hooks for file operations
416 *
417 * @file_permission:
418 * Check file permissions before accessing an open file. This hook is
419 * called by various operations that read or write files. A security
420 * module can use this hook to perform additional checking on these
421 * operations, e.g. to revalidate permissions on use to support privilege
422 * bracketing or policy changes. Notice that this hook is used when the
423 * actual read/write operations are performed, whereas the
424 * inode_security_ops hook is called when a file is opened (as well as
425 * many other operations).
426 * Caveat: Although this hook can be used to revalidate permissions for
427 * various system call operations that read or write files, it does not
428 * address the revalidation of permissions for memory-mapped files.
429 * Security modules must handle this separately if they need such
430 * revalidation.
431 * @file contains the file structure being accessed.
432 * @mask contains the requested permissions.
433 * Return 0 if permission is granted.
434 * @file_alloc_security:
435 * Allocate and attach a security structure to the file->f_security field.
436 * The security field is initialized to NULL when the structure is first
437 * created.
438 * @file contains the file structure to secure.
439 * Return 0 if the hook is successful and permission is granted.
440 * @file_free_security:
441 * Deallocate and free any security structures stored in file->f_security.
442 * @file contains the file structure being modified.
443 * @file_ioctl:
444 * @file contains the file structure.
445 * @cmd contains the operation to perform.
446 * @arg contains the operational arguments.
447 * Check permission for an ioctl operation on @file. Note that @arg can
448 * sometimes represents a user space pointer; in other cases, it may be a
449 * simple integer value. When @arg represents a user space pointer, it
450 * should never be used by the security module.
451 * Return 0 if permission is granted.
452 * @file_mmap :
453 * Check permissions for a mmap operation. The @file may be NULL, e.g.
454 * if mapping anonymous memory.
455 * @file contains the file structure for file to map (may be NULL).
456 * @reqprot contains the protection requested by the application.
457 * @prot contains the protection that will be applied by the kernel.
458 * @flags contains the operational flags.
459 * Return 0 if permission is granted.
460 * @file_mprotect:
461 * Check permissions before changing memory access permissions.
462 * @vma contains the memory region to modify.
463 * @reqprot contains the protection requested by the application.
464 * @prot contains the protection that will be applied by the kernel.
465 * Return 0 if permission is granted.
466 * @file_lock:
467 * Check permission before performing file locking operations.
468 * Note: this hook mediates both flock and fcntl style locks.
469 * @file contains the file structure.
470 * @cmd contains the posix-translated lock operation to perform
471 * (e.g. F_RDLCK, F_WRLCK).
472 * Return 0 if permission is granted.
473 * @file_fcntl:
474 * Check permission before allowing the file operation specified by @cmd
475 * from being performed on the file @file. Note that @arg can sometimes
476 * represents a user space pointer; in other cases, it may be a simple
477 * integer value. When @arg represents a user space pointer, it should
478 * never be used by the security module.
479 * @file contains the file structure.
480 * @cmd contains the operation to be performed.
481 * @arg contains the operational arguments.
482 * Return 0 if permission is granted.
483 * @file_set_fowner:
484 * Save owner security information (typically from current->security) in
485 * file->f_security for later use by the send_sigiotask hook.
486 * @file contains the file structure to update.
487 * Return 0 on success.
488 * @file_send_sigiotask:
489 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
490 * process @tsk. Note that this hook is sometimes called from interrupt.
491 * Note that the fown_struct, @fown, is never outside the context of a
492 * struct file, so the file structure (and associated security information)
493 * can always be obtained:
494 * (struct file *)((long)fown - offsetof(struct file,f_owner));
495 * @tsk contains the structure of task receiving signal.
496 * @fown contains the file owner information.
497 * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
498 * Return 0 if permission is granted.
499 * @file_receive:
500 * This hook allows security modules to control the ability of a process
501 * to receive an open file descriptor via socket IPC.
502 * @file contains the file structure being received.
503 * Return 0 if permission is granted.
504 *
505 * Security hooks for task operations.
506 *
507 * @task_create:
508 * Check permission before creating a child process. See the clone(2)
509 * manual page for definitions of the @clone_flags.
510 * @clone_flags contains the flags indicating what should be shared.
511 * Return 0 if permission is granted.
512 * @task_alloc_security:
513 * @p contains the task_struct for child process.
514 * Allocate and attach a security structure to the p->security field. The
515 * security field is initialized to NULL when the task structure is
516 * allocated.
517 * Return 0 if operation was successful.
518 * @task_free_security:
519 * @p contains the task_struct for process.
520 * Deallocate and clear the p->security field.
521 * @task_setuid:
522 * Check permission before setting one or more of the user identity
523 * attributes of the current process. The @flags parameter indicates
524 * which of the set*uid system calls invoked this hook and how to
525 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
526 * definitions at the beginning of this file for the @flags values and
527 * their meanings.
528 * @id0 contains a uid.
529 * @id1 contains a uid.
530 * @id2 contains a uid.
531 * @flags contains one of the LSM_SETID_* values.
532 * Return 0 if permission is granted.
533 * @task_post_setuid:
534 * Update the module's state after setting one or more of the user
535 * identity attributes of the current process. The @flags parameter
536 * indicates which of the set*uid system calls invoked this hook. If
537 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
538 * parameters are not used.
539 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
540 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
541 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
542 * @flags contains one of the LSM_SETID_* values.
543 * Return 0 on success.
544 * @task_setgid:
545 * Check permission before setting one or more of the group identity
546 * attributes of the current process. The @flags parameter indicates
547 * which of the set*gid system calls invoked this hook and how to
548 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
549 * definitions at the beginning of this file for the @flags values and
550 * their meanings.
551 * @id0 contains a gid.
552 * @id1 contains a gid.
553 * @id2 contains a gid.
554 * @flags contains one of the LSM_SETID_* values.
555 * Return 0 if permission is granted.
556 * @task_setpgid:
557 * Check permission before setting the process group identifier of the
558 * process @p to @pgid.
559 * @p contains the task_struct for process being modified.
560 * @pgid contains the new pgid.
561 * Return 0 if permission is granted.
562 * @task_getpgid:
563 * Check permission before getting the process group identifier of the
564 * process @p.
565 * @p contains the task_struct for the process.
566 * Return 0 if permission is granted.
567 * @task_getsid:
568 * Check permission before getting the session identifier of the process
569 * @p.
570 * @p contains the task_struct for the process.
571 * Return 0 if permission is granted.
572 * @task_getsecid:
573 * Retrieve the security identifier of the process @p.
574 * @p contains the task_struct for the process and place is into @secid.
575 * @task_setgroups:
576 * Check permission before setting the supplementary group set of the
577 * current process.
578 * @group_info contains the new group information.
579 * Return 0 if permission is granted.
580 * @task_setnice:
581 * Check permission before setting the nice value of @p to @nice.
582 * @p contains the task_struct of process.
583 * @nice contains the new nice value.
584 * Return 0 if permission is granted.
585 * @task_setioprio
586 * Check permission before setting the ioprio value of @p to @ioprio.
587 * @p contains the task_struct of process.
588 * @ioprio contains the new ioprio value
589 * Return 0 if permission is granted.
590 * @task_getioprio
591 * Check permission before getting the ioprio value of @p.
592 * @p contains the task_struct of process.
593 * Return 0 if permission is granted.
594 * @task_setrlimit:
595 * Check permission before setting the resource limits of the current
596 * process for @resource to @new_rlim. The old resource limit values can
597 * be examined by dereferencing (current->signal->rlim + resource).
598 * @resource contains the resource whose limit is being set.
599 * @new_rlim contains the new limits for @resource.
600 * Return 0 if permission is granted.
601 * @task_setscheduler:
602 * Check permission before setting scheduling policy and/or parameters of
603 * process @p based on @policy and @lp.
604 * @p contains the task_struct for process.
605 * @policy contains the scheduling policy.
606 * @lp contains the scheduling parameters.
607 * Return 0 if permission is granted.
608 * @task_getscheduler:
609 * Check permission before obtaining scheduling information for process
610 * @p.
611 * @p contains the task_struct for process.
612 * Return 0 if permission is granted.
613 * @task_movememory
614 * Check permission before moving memory owned by process @p.
615 * @p contains the task_struct for process.
616 * Return 0 if permission is granted.
617 * @task_kill:
618 * Check permission before sending signal @sig to @p. @info can be NULL,
619 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
620 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
621 * from the kernel and should typically be permitted.
622 * SIGIO signals are handled separately by the send_sigiotask hook in
623 * file_security_ops.
624 * @p contains the task_struct for process.
625 * @info contains the signal information.
626 * @sig contains the signal value.
627 * @secid contains the sid of the process where the signal originated
628 * Return 0 if permission is granted.
629 * @task_wait:
630 * Check permission before allowing a process to reap a child process @p
631 * and collect its status information.
632 * @p contains the task_struct for process.
633 * Return 0 if permission is granted.
634 * @task_prctl:
635 * Check permission before performing a process control operation on the
636 * current process.
637 * @option contains the operation.
638 * @arg2 contains a argument.
639 * @arg3 contains a argument.
640 * @arg4 contains a argument.
641 * @arg5 contains a argument.
642 * Return 0 if permission is granted.
643 * @task_reparent_to_init:
644 * Set the security attributes in @p->security for a kernel thread that
645 * is being reparented to the init task.
646 * @p contains the task_struct for the kernel thread.
647 * @task_to_inode:
648 * Set the security attributes for an inode based on an associated task's
649 * security attributes, e.g. for /proc/pid inodes.
650 * @p contains the task_struct for the task.
651 * @inode contains the inode structure for the inode.
652 *
653 * Security hooks for Netlink messaging.
654 *
655 * @netlink_send:
656 * Save security information for a netlink message so that permission
657 * checking can be performed when the message is processed. The security
658 * information can be saved using the eff_cap field of the
659 * netlink_skb_parms structure. Also may be used to provide fine
660 * grained control over message transmission.
661 * @sk associated sock of task sending the message.,
662 * @skb contains the sk_buff structure for the netlink message.
663 * Return 0 if the information was successfully saved and message
664 * is allowed to be transmitted.
665 * @netlink_recv:
666 * Check permission before processing the received netlink message in
667 * @skb.
668 * @skb contains the sk_buff structure for the netlink message.
669 * @cap indicates the capability required
670 * Return 0 if permission is granted.
671 *
672 * Security hooks for Unix domain networking.
673 *
674 * @unix_stream_connect:
675 * Check permissions before establishing a Unix domain stream connection
676 * between @sock and @other.
677 * @sock contains the socket structure.
678 * @other contains the peer socket structure.
679 * Return 0 if permission is granted.
680 * @unix_may_send:
681 * Check permissions before connecting or sending datagrams from @sock to
682 * @other.
683 * @sock contains the socket structure.
684 * @sock contains the peer socket structure.
685 * Return 0 if permission is granted.
686 *
687 * The @unix_stream_connect and @unix_may_send hooks were necessary because
688 * Linux provides an alternative to the conventional file name space for Unix
689 * domain sockets. Whereas binding and connecting to sockets in the file name
690 * space is mediated by the typical file permissions (and caught by the mknod
691 * and permission hooks in inode_security_ops), binding and connecting to
692 * sockets in the abstract name space is completely unmediated. Sufficient
693 * control of Unix domain sockets in the abstract name space isn't possible
694 * using only the socket layer hooks, since we need to know the actual target
695 * socket, which is not looked up until we are inside the af_unix code.
696 *
697 * Security hooks for socket operations.
698 *
699 * @socket_create:
700 * Check permissions prior to creating a new socket.
701 * @family contains the requested protocol family.
702 * @type contains the requested communications type.
703 * @protocol contains the requested protocol.
704 * @kern set to 1 if a kernel socket.
705 * Return 0 if permission is granted.
706 * @socket_post_create:
707 * This hook allows a module to update or allocate a per-socket security
708 * structure. Note that the security field was not added directly to the
709 * socket structure, but rather, the socket security information is stored
710 * in the associated inode. Typically, the inode alloc_security hook will
711 * allocate and and attach security information to
712 * sock->inode->i_security. This hook may be used to update the
713 * sock->inode->i_security field with additional information that wasn't
714 * available when the inode was allocated.
715 * @sock contains the newly created socket structure.
716 * @family contains the requested protocol family.
717 * @type contains the requested communications type.
718 * @protocol contains the requested protocol.
719 * @kern set to 1 if a kernel socket.
720 * @socket_bind:
721 * Check permission before socket protocol layer bind operation is
722 * performed and the socket @sock is bound to the address specified in the
723 * @address parameter.
724 * @sock contains the socket structure.
725 * @address contains the address to bind to.
726 * @addrlen contains the length of address.
727 * Return 0 if permission is granted.
728 * @socket_connect:
729 * Check permission before socket protocol layer connect operation
730 * attempts to connect socket @sock to a remote address, @address.
731 * @sock contains the socket structure.
732 * @address contains the address of remote endpoint.
733 * @addrlen contains the length of address.
734 * Return 0 if permission is granted.
735 * @socket_listen:
736 * Check permission before socket protocol layer listen operation.
737 * @sock contains the socket structure.
738 * @backlog contains the maximum length for the pending connection queue.
739 * Return 0 if permission is granted.
740 * @socket_accept:
741 * Check permission before accepting a new connection. Note that the new
742 * socket, @newsock, has been created and some information copied to it,
743 * but the accept operation has not actually been performed.
744 * @sock contains the listening socket structure.
745 * @newsock contains the newly created server socket for connection.
746 * Return 0 if permission is granted.
747 * @socket_post_accept:
748 * This hook allows a security module to copy security
749 * information into the newly created socket's inode.
750 * @sock contains the listening socket structure.
751 * @newsock contains the newly created server socket for connection.
752 * @socket_sendmsg:
753 * Check permission before transmitting a message to another socket.
754 * @sock contains the socket structure.
755 * @msg contains the message to be transmitted.
756 * @size contains the size of message.
757 * Return 0 if permission is granted.
758 * @socket_recvmsg:
759 * Check permission before receiving a message from a socket.
760 * @sock contains the socket structure.
761 * @msg contains the message structure.
762 * @size contains the size of message structure.
763 * @flags contains the operational flags.
764 * Return 0 if permission is granted.
765 * @socket_getsockname:
766 * Check permission before the local address (name) of the socket object
767 * @sock is retrieved.
768 * @sock contains the socket structure.
769 * Return 0 if permission is granted.
770 * @socket_getpeername:
771 * Check permission before the remote address (name) of a socket object
772 * @sock is retrieved.
773 * @sock contains the socket structure.
774 * Return 0 if permission is granted.
775 * @socket_getsockopt:
776 * Check permissions before retrieving the options associated with socket
777 * @sock.
778 * @sock contains the socket structure.
779 * @level contains the protocol level to retrieve option from.
780 * @optname contains the name of option to retrieve.
781 * Return 0 if permission is granted.
782 * @socket_setsockopt:
783 * Check permissions before setting the options associated with socket
784 * @sock.
785 * @sock contains the socket structure.
786 * @level contains the protocol level to set options for.
787 * @optname contains the name of the option to set.
788 * Return 0 if permission is granted.
789 * @socket_shutdown:
790 * Checks permission before all or part of a connection on the socket
791 * @sock is shut down.
792 * @sock contains the socket structure.
793 * @how contains the flag indicating how future sends and receives are handled.
794 * Return 0 if permission is granted.
795 * @socket_sock_rcv_skb:
796 * Check permissions on incoming network packets. This hook is distinct
797 * from Netfilter's IP input hooks since it is the first time that the
798 * incoming sk_buff @skb has been associated with a particular socket, @sk.
799 * @sk contains the sock (not socket) associated with the incoming sk_buff.
800 * @skb contains the incoming network data.
801 * @socket_getpeersec:
802 * This hook allows the security module to provide peer socket security
803 * state to userspace via getsockopt SO_GETPEERSEC.
804 * @sock is the local socket.
805 * @optval userspace memory where the security state is to be copied.
806 * @optlen userspace int where the module should copy the actual length
807 * of the security state.
808 * @len as input is the maximum length to copy to userspace provided
809 * by the caller.
810 * Return 0 if all is well, otherwise, typical getsockopt return
811 * values.
812 * @sk_alloc_security:
813 * Allocate and attach a security structure to the sk->sk_security field,
814 * which is used to copy security attributes between local stream sockets.
815 * @sk_free_security:
816 * Deallocate security structure.
817 * @sk_clone_security:
818 * Clone/copy security structure.
819 * @sk_getsecid:
820 * Retrieve the LSM-specific secid for the sock to enable caching of network
821 * authorizations.
822 *
823 * Security hooks for XFRM operations.
824 *
825 * @xfrm_policy_alloc_security:
826 * @xp contains the xfrm_policy being added to Security Policy Database
827 * used by the XFRM system.
828 * @sec_ctx contains the security context information being provided by
829 * the user-level policy update program (e.g., setkey).
830 * Allocate a security structure to the xp->security field; the security
831 * field is initialized to NULL when the xfrm_policy is allocated.
832 * Return 0 if operation was successful (memory to allocate, legal context)
833 * @xfrm_policy_clone_security:
834 * @old contains an existing xfrm_policy in the SPD.
835 * @new contains a new xfrm_policy being cloned from old.
836 * Allocate a security structure to the new->security field
837 * that contains the information from the old->security field.
838 * Return 0 if operation was successful (memory to allocate).
839 * @xfrm_policy_free_security:
840 * @xp contains the xfrm_policy
841 * Deallocate xp->security.
842 * @xfrm_policy_delete_security:
843 * @xp contains the xfrm_policy.
844 * Authorize deletion of xp->security.
845 * @xfrm_state_alloc_security:
846 * @x contains the xfrm_state being added to the Security Association
847 * Database by the XFRM system.
848 * @sec_ctx contains the security context information being provided by
849 * the user-level SA generation program (e.g., setkey or racoon).
850 * @polsec contains the security context information associated with a xfrm
851 * policy rule from which to take the base context. polsec must be NULL
852 * when sec_ctx is specified.
853 * @secid contains the secid from which to take the mls portion of the context.
854 * Allocate a security structure to the x->security field; the security
855 * field is initialized to NULL when the xfrm_state is allocated. Set the
856 * context to correspond to either sec_ctx or polsec, with the mls portion
857 * taken from secid in the latter case.
858 * Return 0 if operation was successful (memory to allocate, legal context).
859 * @xfrm_state_free_security:
860 * @x contains the xfrm_state.
861 * Deallocate x->security.
862 * @xfrm_state_delete_security:
863 * @x contains the xfrm_state.
864 * Authorize deletion of x->security.
865 * @xfrm_policy_lookup:
866 * @xp contains the xfrm_policy for which the access control is being
867 * checked.
868 * @fl_secid contains the flow security label that is used to authorize
869 * access to the policy xp.
870 * @dir contains the direction of the flow (input or output).
871 * Check permission when a flow selects a xfrm_policy for processing
872 * XFRMs on a packet. The hook is called when selecting either a
873 * per-socket policy or a generic xfrm policy.
874 * Return 0 if permission is granted.
875 * @xfrm_state_pol_flow_match:
876 * @x contains the state to match.
877 * @xp contains the policy to check for a match.
878 * @fl contains the flow to check for a match.
879 * Return 1 if there is a match.
880 * @xfrm_flow_state_match:
881 * @fl contains the flow key to match.
882 * @xfrm points to the xfrm_state to match.
883 * Return 1 if there is a match.
884 * @xfrm_decode_session:
885 * @skb points to skb to decode.
886 * @secid points to the flow key secid to set.
887 * @ckall says if all xfrms used should be checked for same secid.
888 * Return 0 if ckall is zero or all xfrms used have the same secid.
889 *
890 * Security hooks affecting all Key Management operations
891 *
892 * @key_alloc:
893 * Permit allocation of a key and assign security data. Note that key does
894 * not have a serial number assigned at this point.
895 * @key points to the key.
896 * @flags is the allocation flags
897 * Return 0 if permission is granted, -ve error otherwise.
898 * @key_free:
899 * Notification of destruction; free security data.
900 * @key points to the key.
901 * No return value.
902 * @key_permission:
903 * See whether a specific operational right is granted to a process on a
904 * key.
905 * @key_ref refers to the key (key pointer + possession attribute bit).
906 * @context points to the process to provide the context against which to
907 * evaluate the security data on the key.
908 * @perm describes the combination of permissions required of this key.
909 * Return 1 if permission granted, 0 if permission denied and -ve it the
910 * normal permissions model should be effected.
911 *
912 * Security hooks affecting all System V IPC operations.
913 *
914 * @ipc_permission:
915 * Check permissions for access to IPC
916 * @ipcp contains the kernel IPC permission structure
917 * @flag contains the desired (requested) permission set
918 * Return 0 if permission is granted.
919 *
920 * Security hooks for individual messages held in System V IPC message queues
921 * @msg_msg_alloc_security:
922 * Allocate and attach a security structure to the msg->security field.
923 * The security field is initialized to NULL when the structure is first
924 * created.
925 * @msg contains the message structure to be modified.
926 * Return 0 if operation was successful and permission is granted.
927 * @msg_msg_free_security:
928 * Deallocate the security structure for this message.
929 * @msg contains the message structure to be modified.
930 *
931 * Security hooks for System V IPC Message Queues
932 *
933 * @msg_queue_alloc_security:
934 * Allocate and attach a security structure to the
935 * msq->q_perm.security field. The security field is initialized to
936 * NULL when the structure is first created.
937 * @msq contains the message queue structure to be modified.
938 * Return 0 if operation was successful and permission is granted.
939 * @msg_queue_free_security:
940 * Deallocate security structure for this message queue.
941 * @msq contains the message queue structure to be modified.
942 * @msg_queue_associate:
943 * Check permission when a message queue is requested through the
944 * msgget system call. This hook is only called when returning the
945 * message queue identifier for an existing message queue, not when a
946 * new message queue is created.
947 * @msq contains the message queue to act upon.
948 * @msqflg contains the operation control flags.
949 * Return 0 if permission is granted.
950 * @msg_queue_msgctl:
951 * Check permission when a message control operation specified by @cmd
952 * is to be performed on the message queue @msq.
953 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
954 * @msq contains the message queue to act upon. May be NULL.
955 * @cmd contains the operation to be performed.
956 * Return 0 if permission is granted.
957 * @msg_queue_msgsnd:
958 * Check permission before a message, @msg, is enqueued on the message
959 * queue, @msq.
960 * @msq contains the message queue to send message to.
961 * @msg contains the message to be enqueued.
962 * @msqflg contains operational flags.
963 * Return 0 if permission is granted.
964 * @msg_queue_msgrcv:
965 * Check permission before a message, @msg, is removed from the message
966 * queue, @msq. The @target task structure contains a pointer to the
967 * process that will be receiving the message (not equal to the current
968 * process when inline receives are being performed).
969 * @msq contains the message queue to retrieve message from.
970 * @msg contains the message destination.
971 * @target contains the task structure for recipient process.
972 * @type contains the type of message requested.
973 * @mode contains the operational flags.
974 * Return 0 if permission is granted.
975 *
976 * Security hooks for System V Shared Memory Segments
977 *
978 * @shm_alloc_security:
979 * Allocate and attach a security structure to the shp->shm_perm.security
980 * field. The security field is initialized to NULL when the structure is
981 * first created.
982 * @shp contains the shared memory structure to be modified.
983 * Return 0 if operation was successful and permission is granted.
984 * @shm_free_security:
985 * Deallocate the security struct for this memory segment.
986 * @shp contains the shared memory structure to be modified.
987 * @shm_associate:
988 * Check permission when a shared memory region is requested through the
989 * shmget system call. This hook is only called when returning the shared
990 * memory region identifier for an existing region, not when a new shared
991 * memory region is created.
992 * @shp contains the shared memory structure to be modified.
993 * @shmflg contains the operation control flags.
994 * Return 0 if permission is granted.
995 * @shm_shmctl:
996 * Check permission when a shared memory control operation specified by
997 * @cmd is to be performed on the shared memory region @shp.
998 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
999 * @shp contains shared memory structure to be modified.
1000 * @cmd contains the operation to be performed.
1001 * Return 0 if permission is granted.
1002 * @shm_shmat:
1003 * Check permissions prior to allowing the shmat system call to attach the
1004 * shared memory segment @shp to the data segment of the calling process.
1005 * The attaching address is specified by @shmaddr.
1006 * @shp contains the shared memory structure to be modified.
1007 * @shmaddr contains the address to attach memory region to.
1008 * @shmflg contains the operational flags.
1009 * Return 0 if permission is granted.
1010 *
1011 * Security hooks for System V Semaphores
1012 *
1013 * @sem_alloc_security:
1014 * Allocate and attach a security structure to the sma->sem_perm.security
1015 * field. The security field is initialized to NULL when the structure is
1016 * first created.
1017 * @sma contains the semaphore structure
1018 * Return 0 if operation was successful and permission is granted.
1019 * @sem_free_security:
1020 * deallocate security struct for this semaphore
1021 * @sma contains the semaphore structure.
1022 * @sem_associate:
1023 * Check permission when a semaphore is requested through the semget
1024 * system call. This hook is only called when returning the semaphore
1025 * identifier for an existing semaphore, not when a new one must be
1026 * created.
1027 * @sma contains the semaphore structure.
1028 * @semflg contains the operation control flags.
1029 * Return 0 if permission is granted.
1030 * @sem_semctl:
1031 * Check permission when a semaphore operation specified by @cmd is to be
1032 * performed on the semaphore @sma. The @sma may be NULL, e.g. for
1033 * IPC_INFO or SEM_INFO.
1034 * @sma contains the semaphore structure. May be NULL.
1035 * @cmd contains the operation to be performed.
1036 * Return 0 if permission is granted.
1037 * @sem_semop
1038 * Check permissions before performing operations on members of the
1039 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
1040 * may be modified.
1041 * @sma contains the semaphore structure.
1042 * @sops contains the operations to perform.
1043 * @nsops contains the number of operations to perform.
1044 * @alter contains the flag indicating whether changes are to be made.
1045 * Return 0 if permission is granted.
1046 *
1047 * @ptrace:
1048 * Check permission before allowing the @parent process to trace the
1049 * @child process.
1050 * Security modules may also want to perform a process tracing check
1051 * during an execve in the set_security or apply_creds hooks of
1052 * binprm_security_ops if the process is being traced and its security
1053 * attributes would be changed by the execve.
1054 * @parent contains the task_struct structure for parent process.
1055 * @child contains the task_struct structure for child process.
1056 * Return 0 if permission is granted.
1057 * @capget:
1058 * Get the @effective, @inheritable, and @permitted capability sets for
1059 * the @target process. The hook may also perform permission checking to
1060 * determine if the current process is allowed to see the capability sets
1061 * of the @target process.
1062 * @target contains the task_struct structure for target process.
1063 * @effective contains the effective capability set.
1064 * @inheritable contains the inheritable capability set.
1065 * @permitted contains the permitted capability set.
1066 * Return 0 if the capability sets were successfully obtained.
1067 * @capset_check:
1068 * Check permission before setting the @effective, @inheritable, and
1069 * @permitted capability sets for the @target process.
1070 * Caveat: @target is also set to current if a set of processes is
1071 * specified (i.e. all processes other than current and init or a
1072 * particular process group). Hence, the capset_set hook may need to
1073 * revalidate permission to the actual target process.
1074 * @target contains the task_struct structure for target process.
1075 * @effective contains the effective capability set.
1076 * @inheritable contains the inheritable capability set.
1077 * @permitted contains the permitted capability set.
1078 * Return 0 if permission is granted.
1079 * @capset_set:
1080 * Set the @effective, @inheritable, and @permitted capability sets for
1081 * the @target process. Since capset_check cannot always check permission
1082 * to the real @target process, this hook may also perform permission
1083 * checking to determine if the current process is allowed to set the
1084 * capability sets of the @target process. However, this hook has no way
1085 * of returning an error due to the structure of the sys_capset code.
1086 * @target contains the task_struct structure for target process.
1087 * @effective contains the effective capability set.
1088 * @inheritable contains the inheritable capability set.
1089 * @permitted contains the permitted capability set.
1090 * @capable:
1091 * Check whether the @tsk process has the @cap capability.
1092 * @tsk contains the task_struct for the process.
1093 * @cap contains the capability <include/linux/capability.h>.
1094 * Return 0 if the capability is granted for @tsk.
1095 * @acct:
1096 * Check permission before enabling or disabling process accounting. If
1097 * accounting is being enabled, then @file refers to the open file used to
1098 * store accounting records. If accounting is being disabled, then @file
1099 * is NULL.
1100 * @file contains the file structure for the accounting file (may be NULL).
1101 * Return 0 if permission is granted.
1102 * @sysctl:
1103 * Check permission before accessing the @table sysctl variable in the
1104 * manner specified by @op.
1105 * @table contains the ctl_table structure for the sysctl variable.
1106 * @op contains the operation (001 = search, 002 = write, 004 = read).
1107 * Return 0 if permission is granted.
1108 * @syslog:
1109 * Check permission before accessing the kernel message ring or changing
1110 * logging to the console.
1111 * See the syslog(2) manual page for an explanation of the @type values.
1112 * @type contains the type of action.
1113 * Return 0 if permission is granted.
1114 * @settime:
1115 * Check permission to change the system time.
1116 * struct timespec and timezone are defined in include/linux/time.h
1117 * @ts contains new time
1118 * @tz contains new timezone
1119 * Return 0 if permission is granted.
1120 * @vm_enough_memory:
1121 * Check permissions for allocating a new virtual mapping.
1122 * @pages contains the number of pages.
1123 * Return 0 if permission is granted.
1124 *
1125 * @register_security:
1126 * allow module stacking.
1127 * @name contains the name of the security module being stacked.
1128 * @ops contains a pointer to the struct security_operations of the module to stack.
1129 * @unregister_security:
1130 * remove a stacked module.
1131 * @name contains the name of the security module being unstacked.
1132 * @ops contains a pointer to the struct security_operations of the module to unstack.
1133 *
1134 * @secid_to_secctx:
1135 * Convert secid to security context.
1136 * @secid contains the security ID.
1137 * @secdata contains the pointer that stores the converted security context.
1138 *
1139 * @release_secctx:
1140 * Release the security context.
1141 * @secdata contains the security context.
1142 * @seclen contains the length of the security context.
1143 *
1144 * This is the main security structure.
1145 */
1146 struct security_operations {
1147 int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1148 int (*capget) (struct task_struct * target,
1149 kernel_cap_t * effective,
1150 kernel_cap_t * inheritable, kernel_cap_t * permitted);
1151 int (*capset_check) (struct task_struct * target,
1152 kernel_cap_t * effective,
1153 kernel_cap_t * inheritable,
1154 kernel_cap_t * permitted);
1155 void (*capset_set) (struct task_struct * target,
1156 kernel_cap_t * effective,
1157 kernel_cap_t * inheritable,
1158 kernel_cap_t * permitted);
1159 int (*capable) (struct task_struct * tsk, int cap);
1160 int (*acct) (struct file * file);
1161 int (*sysctl) (struct ctl_table * table, int op);
1162 int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1163 int (*quota_on) (struct dentry * dentry);
1164 int (*syslog) (int type);
1165 int (*settime) (struct timespec *ts, struct timezone *tz);
1166 int (*vm_enough_memory) (long pages);
1167
1168 int (*bprm_alloc_security) (struct linux_binprm * bprm);
1169 void (*bprm_free_security) (struct linux_binprm * bprm);
1170 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1171 void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1172 int (*bprm_set_security) (struct linux_binprm * bprm);
1173 int (*bprm_check_security) (struct linux_binprm * bprm);
1174 int (*bprm_secureexec) (struct linux_binprm * bprm);
1175
1176 int (*sb_alloc_security) (struct super_block * sb);
1177 void (*sb_free_security) (struct super_block * sb);
1178 int (*sb_copy_data)(struct file_system_type *type,
1179 void *orig, void *copy);
1180 int (*sb_kern_mount) (struct super_block *sb, void *data);
1181 int (*sb_statfs) (struct dentry *dentry);
1182 int (*sb_mount) (char *dev_name, struct nameidata * nd,
1183 char *type, unsigned long flags, void *data);
1184 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1185 int (*sb_umount) (struct vfsmount * mnt, int flags);
1186 void (*sb_umount_close) (struct vfsmount * mnt);
1187 void (*sb_umount_busy) (struct vfsmount * mnt);
1188 void (*sb_post_remount) (struct vfsmount * mnt,
1189 unsigned long flags, void *data);
1190 void (*sb_post_mountroot) (void);
1191 void (*sb_post_addmount) (struct vfsmount * mnt,
1192 struct nameidata * mountpoint_nd);
1193 int (*sb_pivotroot) (struct nameidata * old_nd,
1194 struct nameidata * new_nd);
1195 void (*sb_post_pivotroot) (struct nameidata * old_nd,
1196 struct nameidata * new_nd);
1197
1198 int (*inode_alloc_security) (struct inode *inode);
1199 void (*inode_free_security) (struct inode *inode);
1200 int (*inode_init_security) (struct inode *inode, struct inode *dir,
1201 char **name, void **value, size_t *len);
1202 int (*inode_create) (struct inode *dir,
1203 struct dentry *dentry, int mode);
1204 int (*inode_link) (struct dentry *old_dentry,
1205 struct inode *dir, struct dentry *new_dentry);
1206 int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1207 int (*inode_symlink) (struct inode *dir,
1208 struct dentry *dentry, const char *old_name);
1209 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1210 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1211 int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1212 int mode, dev_t dev);
1213 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1214 struct inode *new_dir, struct dentry *new_dentry);
1215 int (*inode_readlink) (struct dentry *dentry);
1216 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1217 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1218 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
1219 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1220 void (*inode_delete) (struct inode *inode);
1221 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1222 size_t size, int flags);
1223 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1224 size_t size, int flags);
1225 int (*inode_getxattr) (struct dentry *dentry, char *name);
1226 int (*inode_listxattr) (struct dentry *dentry);
1227 int (*inode_removexattr) (struct dentry *dentry, char *name);
1228 const char *(*inode_xattr_getsuffix) (void);
1229 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1230 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1231 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1232
1233 int (*file_permission) (struct file * file, int mask);
1234 int (*file_alloc_security) (struct file * file);
1235 void (*file_free_security) (struct file * file);
1236 int (*file_ioctl) (struct file * file, unsigned int cmd,
1237 unsigned long arg);
1238 int (*file_mmap) (struct file * file,
1239 unsigned long reqprot,
1240 unsigned long prot, unsigned long flags);
1241 int (*file_mprotect) (struct vm_area_struct * vma,
1242 unsigned long reqprot,
1243 unsigned long prot);
1244 int (*file_lock) (struct file * file, unsigned int cmd);
1245 int (*file_fcntl) (struct file * file, unsigned int cmd,
1246 unsigned long arg);
1247 int (*file_set_fowner) (struct file * file);
1248 int (*file_send_sigiotask) (struct task_struct * tsk,
1249 struct fown_struct * fown, int sig);
1250 int (*file_receive) (struct file * file);
1251
1252 int (*task_create) (unsigned long clone_flags);
1253 int (*task_alloc_security) (struct task_struct * p);
1254 void (*task_free_security) (struct task_struct * p);
1255 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1256 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1257 uid_t old_euid, uid_t old_suid, int flags);
1258 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1259 int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1260 int (*task_getpgid) (struct task_struct * p);
1261 int (*task_getsid) (struct task_struct * p);
1262 void (*task_getsecid) (struct task_struct * p, u32 * secid);
1263 int (*task_setgroups) (struct group_info *group_info);
1264 int (*task_setnice) (struct task_struct * p, int nice);
1265 int (*task_setioprio) (struct task_struct * p, int ioprio);
1266 int (*task_getioprio) (struct task_struct * p);
1267 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1268 int (*task_setscheduler) (struct task_struct * p, int policy,
1269 struct sched_param * lp);
1270 int (*task_getscheduler) (struct task_struct * p);
1271 int (*task_movememory) (struct task_struct * p);
1272 int (*task_kill) (struct task_struct * p,
1273 struct siginfo * info, int sig, u32 secid);
1274 int (*task_wait) (struct task_struct * p);
1275 int (*task_prctl) (int option, unsigned long arg2,
1276 unsigned long arg3, unsigned long arg4,
1277 unsigned long arg5);
1278 void (*task_reparent_to_init) (struct task_struct * p);
1279 void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1280
1281 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1282
1283 int (*msg_msg_alloc_security) (struct msg_msg * msg);
1284 void (*msg_msg_free_security) (struct msg_msg * msg);
1285
1286 int (*msg_queue_alloc_security) (struct msg_queue * msq);
1287 void (*msg_queue_free_security) (struct msg_queue * msq);
1288 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1289 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1290 int (*msg_queue_msgsnd) (struct msg_queue * msq,
1291 struct msg_msg * msg, int msqflg);
1292 int (*msg_queue_msgrcv) (struct msg_queue * msq,
1293 struct msg_msg * msg,
1294 struct task_struct * target,
1295 long type, int mode);
1296
1297 int (*shm_alloc_security) (struct shmid_kernel * shp);
1298 void (*shm_free_security) (struct shmid_kernel * shp);
1299 int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1300 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1301 int (*shm_shmat) (struct shmid_kernel * shp,
1302 char __user *shmaddr, int shmflg);
1303
1304 int (*sem_alloc_security) (struct sem_array * sma);
1305 void (*sem_free_security) (struct sem_array * sma);
1306 int (*sem_associate) (struct sem_array * sma, int semflg);
1307 int (*sem_semctl) (struct sem_array * sma, int cmd);
1308 int (*sem_semop) (struct sem_array * sma,
1309 struct sembuf * sops, unsigned nsops, int alter);
1310
1311 int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1312 int (*netlink_recv) (struct sk_buff * skb, int cap);
1313
1314 /* allow module stacking */
1315 int (*register_security) (const char *name,
1316 struct security_operations *ops);
1317 int (*unregister_security) (const char *name,
1318 struct security_operations *ops);
1319
1320 void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1321
1322 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1323 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1324 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
1325 void (*release_secctx)(char *secdata, u32 seclen);
1326
1327 #ifdef CONFIG_SECURITY_NETWORK
1328 int (*unix_stream_connect) (struct socket * sock,
1329 struct socket * other, struct sock * newsk);
1330 int (*unix_may_send) (struct socket * sock, struct socket * other);
1331
1332 int (*socket_create) (int family, int type, int protocol, int kern);
1333 void (*socket_post_create) (struct socket * sock, int family,
1334 int type, int protocol, int kern);
1335 int (*socket_bind) (struct socket * sock,
1336 struct sockaddr * address, int addrlen);
1337 int (*socket_connect) (struct socket * sock,
1338 struct sockaddr * address, int addrlen);
1339 int (*socket_listen) (struct socket * sock, int backlog);
1340 int (*socket_accept) (struct socket * sock, struct socket * newsock);
1341 void (*socket_post_accept) (struct socket * sock,
1342 struct socket * newsock);
1343 int (*socket_sendmsg) (struct socket * sock,
1344 struct msghdr * msg, int size);
1345 int (*socket_recvmsg) (struct socket * sock,
1346 struct msghdr * msg, int size, int flags);
1347 int (*socket_getsockname) (struct socket * sock);
1348 int (*socket_getpeername) (struct socket * sock);
1349 int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1350 int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1351 int (*socket_shutdown) (struct socket * sock, int how);
1352 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1353 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1354 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1355 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1356 void (*sk_free_security) (struct sock *sk);
1357 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1358 void (*sk_getsecid) (struct sock *sk, u32 *secid);
1359 #endif /* CONFIG_SECURITY_NETWORK */
1360
1361 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1362 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx);
1363 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1364 void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1365 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1366 int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1367 struct xfrm_user_sec_ctx *sec_ctx, struct xfrm_sec_ctx *polsec,
1368 u32 secid);
1369 void (*xfrm_state_free_security) (struct xfrm_state *x);
1370 int (*xfrm_state_delete_security) (struct xfrm_state *x);
1371 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir);
1372 int (*xfrm_state_pol_flow_match)(struct xfrm_state *x,
1373 struct xfrm_policy *xp, struct flowi *fl);
1374 int (*xfrm_flow_state_match)(struct flowi *fl, struct xfrm_state *xfrm);
1375 int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall);
1376 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1377
1378 /* key management security hooks */
1379 #ifdef CONFIG_KEYS
1380 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1381 void (*key_free)(struct key *key);
1382 int (*key_permission)(key_ref_t key_ref,
1383 struct task_struct *context,
1384 key_perm_t perm);
1385
1386 #endif /* CONFIG_KEYS */
1387
1388 };
1389
1390 /* global variables */
1391 extern struct security_operations *security_ops;
1392
1393 /* inline stuff */
1394 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1395 {
1396 return security_ops->ptrace (parent, child);
1397 }
1398
1399 static inline int security_capget (struct task_struct *target,
1400 kernel_cap_t *effective,
1401 kernel_cap_t *inheritable,
1402 kernel_cap_t *permitted)
1403 {
1404 return security_ops->capget (target, effective, inheritable, permitted);
1405 }
1406
1407 static inline int security_capset_check (struct task_struct *target,
1408 kernel_cap_t *effective,
1409 kernel_cap_t *inheritable,
1410 kernel_cap_t *permitted)
1411 {
1412 return security_ops->capset_check (target, effective, inheritable, permitted);
1413 }
1414
1415 static inline void security_capset_set (struct task_struct *target,
1416 kernel_cap_t *effective,
1417 kernel_cap_t *inheritable,
1418 kernel_cap_t *permitted)
1419 {
1420 security_ops->capset_set (target, effective, inheritable, permitted);
1421 }
1422
1423 static inline int security_capable(struct task_struct *tsk, int cap)
1424 {
1425 return security_ops->capable(tsk, cap);
1426 }
1427
1428 static inline int security_acct (struct file *file)
1429 {
1430 return security_ops->acct (file);
1431 }
1432
1433 static inline int security_sysctl(struct ctl_table *table, int op)
1434 {
1435 return security_ops->sysctl(table, op);
1436 }
1437
1438 static inline int security_quotactl (int cmds, int type, int id,
1439 struct super_block *sb)
1440 {
1441 return security_ops->quotactl (cmds, type, id, sb);
1442 }
1443
1444 static inline int security_quota_on (struct dentry * dentry)
1445 {
1446 return security_ops->quota_on (dentry);
1447 }
1448
1449 static inline int security_syslog(int type)
1450 {
1451 return security_ops->syslog(type);
1452 }
1453
1454 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1455 {
1456 return security_ops->settime(ts, tz);
1457 }
1458
1459
1460 static inline int security_vm_enough_memory(long pages)
1461 {
1462 return security_ops->vm_enough_memory(pages);
1463 }
1464
1465 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1466 {
1467 return security_ops->bprm_alloc_security (bprm);
1468 }
1469 static inline void security_bprm_free (struct linux_binprm *bprm)
1470 {
1471 security_ops->bprm_free_security (bprm);
1472 }
1473 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1474 {
1475 security_ops->bprm_apply_creds (bprm, unsafe);
1476 }
1477 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1478 {
1479 security_ops->bprm_post_apply_creds (bprm);
1480 }
1481 static inline int security_bprm_set (struct linux_binprm *bprm)
1482 {
1483 return security_ops->bprm_set_security (bprm);
1484 }
1485
1486 static inline int security_bprm_check (struct linux_binprm *bprm)
1487 {
1488 return security_ops->bprm_check_security (bprm);
1489 }
1490
1491 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1492 {
1493 return security_ops->bprm_secureexec (bprm);
1494 }
1495
1496 static inline int security_sb_alloc (struct super_block *sb)
1497 {
1498 return security_ops->sb_alloc_security (sb);
1499 }
1500
1501 static inline void security_sb_free (struct super_block *sb)
1502 {
1503 security_ops->sb_free_security (sb);
1504 }
1505
1506 static inline int security_sb_copy_data (struct file_system_type *type,
1507 void *orig, void *copy)
1508 {
1509 return security_ops->sb_copy_data (type, orig, copy);
1510 }
1511
1512 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1513 {
1514 return security_ops->sb_kern_mount (sb, data);
1515 }
1516
1517 static inline int security_sb_statfs (struct dentry *dentry)
1518 {
1519 return security_ops->sb_statfs (dentry);
1520 }
1521
1522 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1523 char *type, unsigned long flags,
1524 void *data)
1525 {
1526 return security_ops->sb_mount (dev_name, nd, type, flags, data);
1527 }
1528
1529 static inline int security_sb_check_sb (struct vfsmount *mnt,
1530 struct nameidata *nd)
1531 {
1532 return security_ops->sb_check_sb (mnt, nd);
1533 }
1534
1535 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1536 {
1537 return security_ops->sb_umount (mnt, flags);
1538 }
1539
1540 static inline void security_sb_umount_close (struct vfsmount *mnt)
1541 {
1542 security_ops->sb_umount_close (mnt);
1543 }
1544
1545 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1546 {
1547 security_ops->sb_umount_busy (mnt);
1548 }
1549
1550 static inline void security_sb_post_remount (struct vfsmount *mnt,
1551 unsigned long flags, void *data)
1552 {
1553 security_ops->sb_post_remount (mnt, flags, data);
1554 }
1555
1556 static inline void security_sb_post_mountroot (void)
1557 {
1558 security_ops->sb_post_mountroot ();
1559 }
1560
1561 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1562 struct nameidata *mountpoint_nd)
1563 {
1564 security_ops->sb_post_addmount (mnt, mountpoint_nd);
1565 }
1566
1567 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1568 struct nameidata *new_nd)
1569 {
1570 return security_ops->sb_pivotroot (old_nd, new_nd);
1571 }
1572
1573 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1574 struct nameidata *new_nd)
1575 {
1576 security_ops->sb_post_pivotroot (old_nd, new_nd);
1577 }
1578
1579 static inline int security_inode_alloc (struct inode *inode)
1580 {
1581 return security_ops->inode_alloc_security (inode);
1582 }
1583
1584 static inline void security_inode_free (struct inode *inode)
1585 {
1586 security_ops->inode_free_security (inode);
1587 }
1588
1589 static inline int security_inode_init_security (struct inode *inode,
1590 struct inode *dir,
1591 char **name,
1592 void **value,
1593 size_t *len)
1594 {
1595 if (unlikely (IS_PRIVATE (inode)))
1596 return -EOPNOTSUPP;
1597 return security_ops->inode_init_security (inode, dir, name, value, len);
1598 }
1599
1600 static inline int security_inode_create (struct inode *dir,
1601 struct dentry *dentry,
1602 int mode)
1603 {
1604 if (unlikely (IS_PRIVATE (dir)))
1605 return 0;
1606 return security_ops->inode_create (dir, dentry, mode);
1607 }
1608
1609 static inline int security_inode_link (struct dentry *old_dentry,
1610 struct inode *dir,
1611 struct dentry *new_dentry)
1612 {
1613 if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1614 return 0;
1615 return security_ops->inode_link (old_dentry, dir, new_dentry);
1616 }
1617
1618 static inline int security_inode_unlink (struct inode *dir,
1619 struct dentry *dentry)
1620 {
1621 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1622 return 0;
1623 return security_ops->inode_unlink (dir, dentry);
1624 }
1625
1626 static inline int security_inode_symlink (struct inode *dir,
1627 struct dentry *dentry,
1628 const char *old_name)
1629 {
1630 if (unlikely (IS_PRIVATE (dir)))
1631 return 0;
1632 return security_ops->inode_symlink (dir, dentry, old_name);
1633 }
1634
1635 static inline int security_inode_mkdir (struct inode *dir,
1636 struct dentry *dentry,
1637 int mode)
1638 {
1639 if (unlikely (IS_PRIVATE (dir)))
1640 return 0;
1641 return security_ops->inode_mkdir (dir, dentry, mode);
1642 }
1643
1644 static inline int security_inode_rmdir (struct inode *dir,
1645 struct dentry *dentry)
1646 {
1647 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1648 return 0;
1649 return security_ops->inode_rmdir (dir, dentry);
1650 }
1651
1652 static inline int security_inode_mknod (struct inode *dir,
1653 struct dentry *dentry,
1654 int mode, dev_t dev)
1655 {
1656 if (unlikely (IS_PRIVATE (dir)))
1657 return 0;
1658 return security_ops->inode_mknod (dir, dentry, mode, dev);
1659 }
1660
1661 static inline int security_inode_rename (struct inode *old_dir,
1662 struct dentry *old_dentry,
1663 struct inode *new_dir,
1664 struct dentry *new_dentry)
1665 {
1666 if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1667 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1668 return 0;
1669 return security_ops->inode_rename (old_dir, old_dentry,
1670 new_dir, new_dentry);
1671 }
1672
1673 static inline int security_inode_readlink (struct dentry *dentry)
1674 {
1675 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1676 return 0;
1677 return security_ops->inode_readlink (dentry);
1678 }
1679
1680 static inline int security_inode_follow_link (struct dentry *dentry,
1681 struct nameidata *nd)
1682 {
1683 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1684 return 0;
1685 return security_ops->inode_follow_link (dentry, nd);
1686 }
1687
1688 static inline int security_inode_permission (struct inode *inode, int mask,
1689 struct nameidata *nd)
1690 {
1691 if (unlikely (IS_PRIVATE (inode)))
1692 return 0;
1693 return security_ops->inode_permission (inode, mask, nd);
1694 }
1695
1696 static inline int security_inode_setattr (struct dentry *dentry,
1697 struct iattr *attr)
1698 {
1699 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1700 return 0;
1701 return security_ops->inode_setattr (dentry, attr);
1702 }
1703
1704 static inline int security_inode_getattr (struct vfsmount *mnt,
1705 struct dentry *dentry)
1706 {
1707 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1708 return 0;
1709 return security_ops->inode_getattr (mnt, dentry);
1710 }
1711
1712 static inline void security_inode_delete (struct inode *inode)
1713 {
1714 if (unlikely (IS_PRIVATE (inode)))
1715 return;
1716 security_ops->inode_delete (inode);
1717 }
1718
1719 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1720 void *value, size_t size, int flags)
1721 {
1722 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1723 return 0;
1724 return security_ops->inode_setxattr (dentry, name, value, size, flags);
1725 }
1726
1727 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1728 void *value, size_t size, int flags)
1729 {
1730 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1731 return;
1732 security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1733 }
1734
1735 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1736 {
1737 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1738 return 0;
1739 return security_ops->inode_getxattr (dentry, name);
1740 }
1741
1742 static inline int security_inode_listxattr (struct dentry *dentry)
1743 {
1744 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1745 return 0;
1746 return security_ops->inode_listxattr (dentry);
1747 }
1748
1749 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1750 {
1751 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1752 return 0;
1753 return security_ops->inode_removexattr (dentry, name);
1754 }
1755
1756 static inline const char *security_inode_xattr_getsuffix(void)
1757 {
1758 return security_ops->inode_xattr_getsuffix();
1759 }
1760
1761 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1762 {
1763 if (unlikely (IS_PRIVATE (inode)))
1764 return 0;
1765 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1766 }
1767
1768 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1769 {
1770 if (unlikely (IS_PRIVATE (inode)))
1771 return 0;
1772 return security_ops->inode_setsecurity(inode, name, value, size, flags);
1773 }
1774
1775 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1776 {
1777 if (unlikely (IS_PRIVATE (inode)))
1778 return 0;
1779 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1780 }
1781
1782 static inline int security_file_permission (struct file *file, int mask)
1783 {
1784 return security_ops->file_permission (file, mask);
1785 }
1786
1787 static inline int security_file_alloc (struct file *file)
1788 {
1789 return security_ops->file_alloc_security (file);
1790 }
1791
1792 static inline void security_file_free (struct file *file)
1793 {
1794 security_ops->file_free_security (file);
1795 }
1796
1797 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1798 unsigned long arg)
1799 {
1800 return security_ops->file_ioctl (file, cmd, arg);
1801 }
1802
1803 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1804 unsigned long prot,
1805 unsigned long flags)
1806 {
1807 return security_ops->file_mmap (file, reqprot, prot, flags);
1808 }
1809
1810 static inline int security_file_mprotect (struct vm_area_struct *vma,
1811 unsigned long reqprot,
1812 unsigned long prot)
1813 {
1814 return security_ops->file_mprotect (vma, reqprot, prot);
1815 }
1816
1817 static inline int security_file_lock (struct file *file, unsigned int cmd)
1818 {
1819 return security_ops->file_lock (file, cmd);
1820 }
1821
1822 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1823 unsigned long arg)
1824 {
1825 return security_ops->file_fcntl (file, cmd, arg);
1826 }
1827
1828 static inline int security_file_set_fowner (struct file *file)
1829 {
1830 return security_ops->file_set_fowner (file);
1831 }
1832
1833 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1834 struct fown_struct *fown,
1835 int sig)
1836 {
1837 return security_ops->file_send_sigiotask (tsk, fown, sig);
1838 }
1839
1840 static inline int security_file_receive (struct file *file)
1841 {
1842 return security_ops->file_receive (file);
1843 }
1844
1845 static inline int security_task_create (unsigned long clone_flags)
1846 {
1847 return security_ops->task_create (clone_flags);
1848 }
1849
1850 static inline int security_task_alloc (struct task_struct *p)
1851 {
1852 return security_ops->task_alloc_security (p);
1853 }
1854
1855 static inline void security_task_free (struct task_struct *p)
1856 {
1857 security_ops->task_free_security (p);
1858 }
1859
1860 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1861 int flags)
1862 {
1863 return security_ops->task_setuid (id0, id1, id2, flags);
1864 }
1865
1866 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1867 uid_t old_suid, int flags)
1868 {
1869 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1870 }
1871
1872 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1873 int flags)
1874 {
1875 return security_ops->task_setgid (id0, id1, id2, flags);
1876 }
1877
1878 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1879 {
1880 return security_ops->task_setpgid (p, pgid);
1881 }
1882
1883 static inline int security_task_getpgid (struct task_struct *p)
1884 {
1885 return security_ops->task_getpgid (p);
1886 }
1887
1888 static inline int security_task_getsid (struct task_struct *p)
1889 {
1890 return security_ops->task_getsid (p);
1891 }
1892
1893 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1894 {
1895 security_ops->task_getsecid (p, secid);
1896 }
1897
1898 static inline int security_task_setgroups (struct group_info *group_info)
1899 {
1900 return security_ops->task_setgroups (group_info);
1901 }
1902
1903 static inline int security_task_setnice (struct task_struct *p, int nice)
1904 {
1905 return security_ops->task_setnice (p, nice);
1906 }
1907
1908 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1909 {
1910 return security_ops->task_setioprio (p, ioprio);
1911 }
1912
1913 static inline int security_task_getioprio (struct task_struct *p)
1914 {
1915 return security_ops->task_getioprio (p);
1916 }
1917
1918 static inline int security_task_setrlimit (unsigned int resource,
1919 struct rlimit *new_rlim)
1920 {
1921 return security_ops->task_setrlimit (resource, new_rlim);
1922 }
1923
1924 static inline int security_task_setscheduler (struct task_struct *p,
1925 int policy,
1926 struct sched_param *lp)
1927 {
1928 return security_ops->task_setscheduler (p, policy, lp);
1929 }
1930
1931 static inline int security_task_getscheduler (struct task_struct *p)
1932 {
1933 return security_ops->task_getscheduler (p);
1934 }
1935
1936 static inline int security_task_movememory (struct task_struct *p)
1937 {
1938 return security_ops->task_movememory (p);
1939 }
1940
1941 static inline int security_task_kill (struct task_struct *p,
1942 struct siginfo *info, int sig,
1943 u32 secid)
1944 {
1945 return security_ops->task_kill (p, info, sig, secid);
1946 }
1947
1948 static inline int security_task_wait (struct task_struct *p)
1949 {
1950 return security_ops->task_wait (p);
1951 }
1952
1953 static inline int security_task_prctl (int option, unsigned long arg2,
1954 unsigned long arg3,
1955 unsigned long arg4,
1956 unsigned long arg5)
1957 {
1958 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1959 }
1960
1961 static inline void security_task_reparent_to_init (struct task_struct *p)
1962 {
1963 security_ops->task_reparent_to_init (p);
1964 }
1965
1966 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1967 {
1968 security_ops->task_to_inode(p, inode);
1969 }
1970
1971 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1972 short flag)
1973 {
1974 return security_ops->ipc_permission (ipcp, flag);
1975 }
1976
1977 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1978 {
1979 return security_ops->msg_msg_alloc_security (msg);
1980 }
1981
1982 static inline void security_msg_msg_free (struct msg_msg * msg)
1983 {
1984 security_ops->msg_msg_free_security(msg);
1985 }
1986
1987 static inline int security_msg_queue_alloc (struct msg_queue *msq)
1988 {
1989 return security_ops->msg_queue_alloc_security (msq);
1990 }
1991
1992 static inline void security_msg_queue_free (struct msg_queue *msq)
1993 {
1994 security_ops->msg_queue_free_security (msq);
1995 }
1996
1997 static inline int security_msg_queue_associate (struct msg_queue * msq,
1998 int msqflg)
1999 {
2000 return security_ops->msg_queue_associate (msq, msqflg);
2001 }
2002
2003 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2004 {
2005 return security_ops->msg_queue_msgctl (msq, cmd);
2006 }
2007
2008 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2009 struct msg_msg * msg, int msqflg)
2010 {
2011 return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
2012 }
2013
2014 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2015 struct msg_msg * msg,
2016 struct task_struct * target,
2017 long type, int mode)
2018 {
2019 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
2020 }
2021
2022 static inline int security_shm_alloc (struct shmid_kernel *shp)
2023 {
2024 return security_ops->shm_alloc_security (shp);
2025 }
2026
2027 static inline void security_shm_free (struct shmid_kernel *shp)
2028 {
2029 security_ops->shm_free_security (shp);
2030 }
2031
2032 static inline int security_shm_associate (struct shmid_kernel * shp,
2033 int shmflg)
2034 {
2035 return security_ops->shm_associate(shp, shmflg);
2036 }
2037
2038 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2039 {
2040 return security_ops->shm_shmctl (shp, cmd);
2041 }
2042
2043 static inline int security_shm_shmat (struct shmid_kernel * shp,
2044 char __user *shmaddr, int shmflg)
2045 {
2046 return security_ops->shm_shmat(shp, shmaddr, shmflg);
2047 }
2048
2049 static inline int security_sem_alloc (struct sem_array *sma)
2050 {
2051 return security_ops->sem_alloc_security (sma);
2052 }
2053
2054 static inline void security_sem_free (struct sem_array *sma)
2055 {
2056 security_ops->sem_free_security (sma);
2057 }
2058
2059 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2060 {
2061 return security_ops->sem_associate (sma, semflg);
2062 }
2063
2064 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2065 {
2066 return security_ops->sem_semctl(sma, cmd);
2067 }
2068
2069 static inline int security_sem_semop (struct sem_array * sma,
2070 struct sembuf * sops, unsigned nsops,
2071 int alter)
2072 {
2073 return security_ops->sem_semop(sma, sops, nsops, alter);
2074 }
2075
2076 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2077 {
2078 if (unlikely (inode && IS_PRIVATE (inode)))
2079 return;
2080 security_ops->d_instantiate (dentry, inode);
2081 }
2082
2083 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2084 {
2085 return security_ops->getprocattr(p, name, value, size);
2086 }
2087
2088 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2089 {
2090 return security_ops->setprocattr(p, name, value, size);
2091 }
2092
2093 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2094 {
2095 return security_ops->netlink_send(sk, skb);
2096 }
2097
2098 static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2099 {
2100 return security_ops->netlink_recv(skb, cap);
2101 }
2102
2103 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2104 {
2105 return security_ops->secid_to_secctx(secid, secdata, seclen);
2106 }
2107
2108 static inline void security_release_secctx(char *secdata, u32 seclen)
2109 {
2110 return security_ops->release_secctx(secdata, seclen);
2111 }
2112
2113 /* prototypes */
2114 extern int security_init (void);
2115 extern int register_security (struct security_operations *ops);
2116 extern int unregister_security (struct security_operations *ops);
2117 extern int mod_reg_security (const char *name, struct security_operations *ops);
2118 extern int mod_unreg_security (const char *name, struct security_operations *ops);
2119 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2120 struct dentry *parent, void *data,
2121 struct file_operations *fops);
2122 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2123 extern void securityfs_remove(struct dentry *dentry);
2124
2125
2126 #else /* CONFIG_SECURITY */
2127
2128 /*
2129 * This is the default capabilities functionality. Most of these functions
2130 * are just stubbed out, but a few must call the proper capable code.
2131 */
2132
2133 static inline int security_init(void)
2134 {
2135 return 0;
2136 }
2137
2138 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2139 {
2140 return cap_ptrace (parent, child);
2141 }
2142
2143 static inline int security_capget (struct task_struct *target,
2144 kernel_cap_t *effective,
2145 kernel_cap_t *inheritable,
2146 kernel_cap_t *permitted)
2147 {
2148 return cap_capget (target, effective, inheritable, permitted);
2149 }
2150
2151 static inline int security_capset_check (struct task_struct *target,
2152 kernel_cap_t *effective,
2153 kernel_cap_t *inheritable,
2154 kernel_cap_t *permitted)
2155 {
2156 return cap_capset_check (target, effective, inheritable, permitted);
2157 }
2158
2159 static inline void security_capset_set (struct task_struct *target,
2160 kernel_cap_t *effective,
2161 kernel_cap_t *inheritable,
2162 kernel_cap_t *permitted)
2163 {
2164 cap_capset_set (target, effective, inheritable, permitted);
2165 }
2166
2167 static inline int security_capable(struct task_struct *tsk, int cap)
2168 {
2169 return cap_capable(tsk, cap);
2170 }
2171
2172 static inline int security_acct (struct file *file)
2173 {
2174 return 0;
2175 }
2176
2177 static inline int security_sysctl(struct ctl_table *table, int op)
2178 {
2179 return 0;
2180 }
2181
2182 static inline int security_quotactl (int cmds, int type, int id,
2183 struct super_block * sb)
2184 {
2185 return 0;
2186 }
2187
2188 static inline int security_quota_on (struct dentry * dentry)
2189 {
2190 return 0;
2191 }
2192
2193 static inline int security_syslog(int type)
2194 {
2195 return cap_syslog(type);
2196 }
2197
2198 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2199 {
2200 return cap_settime(ts, tz);
2201 }
2202
2203 static inline int security_vm_enough_memory(long pages)
2204 {
2205 return cap_vm_enough_memory(pages);
2206 }
2207
2208 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2209 {
2210 return 0;
2211 }
2212
2213 static inline void security_bprm_free (struct linux_binprm *bprm)
2214 { }
2215
2216 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2217 {
2218 cap_bprm_apply_creds (bprm, unsafe);
2219 }
2220
2221 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2222 {
2223 return;
2224 }
2225
2226 static inline int security_bprm_set (struct linux_binprm *bprm)
2227 {
2228 return cap_bprm_set_security (bprm);
2229 }
2230
2231 static inline int security_bprm_check (struct linux_binprm *bprm)
2232 {
2233 return 0;
2234 }
2235
2236 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2237 {
2238 return cap_bprm_secureexec(bprm);
2239 }
2240
2241 static inline int security_sb_alloc (struct super_block *sb)
2242 {
2243 return 0;
2244 }
2245
2246 static inline void security_sb_free (struct super_block *sb)
2247 { }
2248
2249 static inline int security_sb_copy_data (struct file_system_type *type,
2250 void *orig, void *copy)
2251 {
2252 return 0;
2253 }
2254
2255 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2256 {
2257 return 0;
2258 }
2259
2260 static inline int security_sb_statfs (struct dentry *dentry)
2261 {
2262 return 0;
2263 }
2264
2265 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2266 char *type, unsigned long flags,
2267 void *data)
2268 {
2269 return 0;
2270 }
2271
2272 static inline int security_sb_check_sb (struct vfsmount *mnt,
2273 struct nameidata *nd)
2274 {
2275 return 0;
2276 }
2277
2278 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2279 {
2280 return 0;
2281 }
2282
2283 static inline void security_sb_umount_close (struct vfsmount *mnt)
2284 { }
2285
2286 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2287 { }
2288
2289 static inline void security_sb_post_remount (struct vfsmount *mnt,
2290 unsigned long flags, void *data)
2291 { }
2292
2293 static inline void security_sb_post_mountroot (void)
2294 { }
2295
2296 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2297 struct nameidata *mountpoint_nd)
2298 { }
2299
2300 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2301 struct nameidata *new_nd)
2302 {
2303 return 0;
2304 }
2305
2306 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2307 struct nameidata *new_nd)
2308 { }
2309
2310 static inline int security_inode_alloc (struct inode *inode)
2311 {
2312 return 0;
2313 }
2314
2315 static inline void security_inode_free (struct inode *inode)
2316 { }
2317
2318 static inline int security_inode_init_security (struct inode *inode,
2319 struct inode *dir,
2320 char **name,
2321 void **value,
2322 size_t *len)
2323 {
2324 return -EOPNOTSUPP;
2325 }
2326
2327 static inline int security_inode_create (struct inode *dir,
2328 struct dentry *dentry,
2329 int mode)
2330 {
2331 return 0;
2332 }
2333
2334 static inline int security_inode_link (struct dentry *old_dentry,
2335 struct inode *dir,
2336 struct dentry *new_dentry)
2337 {
2338 return 0;
2339 }
2340
2341 static inline int security_inode_unlink (struct inode *dir,
2342 struct dentry *dentry)
2343 {
2344 return 0;
2345 }
2346
2347 static inline int security_inode_symlink (struct inode *dir,
2348 struct dentry *dentry,
2349 const char *old_name)
2350 {
2351 return 0;
2352 }
2353
2354 static inline int security_inode_mkdir (struct inode *dir,
2355 struct dentry *dentry,
2356 int mode)
2357 {
2358 return 0;
2359 }
2360
2361 static inline int security_inode_rmdir (struct inode *dir,
2362 struct dentry *dentry)
2363 {
2364 return 0;
2365 }
2366
2367 static inline int security_inode_mknod (struct inode *dir,
2368 struct dentry *dentry,
2369 int mode, dev_t dev)
2370 {
2371 return 0;
2372 }
2373
2374 static inline int security_inode_rename (struct inode *old_dir,
2375 struct dentry *old_dentry,
2376 struct inode *new_dir,
2377 struct dentry *new_dentry)
2378 {
2379 return 0;
2380 }
2381
2382 static inline int security_inode_readlink (struct dentry *dentry)
2383 {
2384 return 0;
2385 }
2386
2387 static inline int security_inode_follow_link (struct dentry *dentry,
2388 struct nameidata *nd)
2389 {
2390 return 0;
2391 }
2392
2393 static inline int security_inode_permission (struct inode *inode, int mask,
2394 struct nameidata *nd)
2395 {
2396 return 0;
2397 }
2398
2399 static inline int security_inode_setattr (struct dentry *dentry,
2400 struct iattr *attr)
2401 {
2402 return 0;
2403 }
2404
2405 static inline int security_inode_getattr (struct vfsmount *mnt,
2406 struct dentry *dentry)
2407 {
2408 return 0;
2409 }
2410
2411 static inline void security_inode_delete (struct inode *inode)
2412 { }
2413
2414 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2415 void *value, size_t size, int flags)
2416 {
2417 return cap_inode_setxattr(dentry, name, value, size, flags);
2418 }
2419
2420 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2421 void *value, size_t size, int flags)
2422 { }
2423
2424 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2425 {
2426 return 0;
2427 }
2428
2429 static inline int security_inode_listxattr (struct dentry *dentry)
2430 {
2431 return 0;
2432 }
2433
2434 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2435 {
2436 return cap_inode_removexattr(dentry, name);
2437 }
2438
2439 static inline const char *security_inode_xattr_getsuffix (void)
2440 {
2441 return NULL ;
2442 }
2443
2444 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2445 {
2446 return -EOPNOTSUPP;
2447 }
2448
2449 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2450 {
2451 return -EOPNOTSUPP;
2452 }
2453
2454 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2455 {
2456 return 0;
2457 }
2458
2459 static inline int security_file_permission (struct file *file, int mask)
2460 {
2461 return 0;
2462 }
2463
2464 static inline int security_file_alloc (struct file *file)
2465 {
2466 return 0;
2467 }
2468
2469 static inline void security_file_free (struct file *file)
2470 { }
2471
2472 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2473 unsigned long arg)
2474 {
2475 return 0;
2476 }
2477
2478 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2479 unsigned long prot,
2480 unsigned long flags)
2481 {
2482 return 0;
2483 }
2484
2485 static inline int security_file_mprotect (struct vm_area_struct *vma,
2486 unsigned long reqprot,
2487 unsigned long prot)
2488 {
2489 return 0;
2490 }
2491
2492 static inline int security_file_lock (struct file *file, unsigned int cmd)
2493 {
2494 return 0;
2495 }
2496
2497 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2498 unsigned long arg)
2499 {
2500 return 0;
2501 }
2502
2503 static inline int security_file_set_fowner (struct file *file)
2504 {
2505 return 0;
2506 }
2507
2508 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2509 struct fown_struct *fown,
2510 int sig)
2511 {
2512 return 0;
2513 }
2514
2515 static inline int security_file_receive (struct file *file)
2516 {
2517 return 0;
2518 }
2519
2520 static inline int security_task_create (unsigned long clone_flags)
2521 {
2522 return 0;
2523 }
2524
2525 static inline int security_task_alloc (struct task_struct *p)
2526 {
2527 return 0;
2528 }
2529
2530 static inline void security_task_free (struct task_struct *p)
2531 { }
2532
2533 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2534 int flags)
2535 {
2536 return 0;
2537 }
2538
2539 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2540 uid_t old_suid, int flags)
2541 {
2542 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2543 }
2544
2545 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2546 int flags)
2547 {
2548 return 0;
2549 }
2550
2551 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2552 {
2553 return 0;
2554 }
2555
2556 static inline int security_task_getpgid (struct task_struct *p)
2557 {
2558 return 0;
2559 }
2560
2561 static inline int security_task_getsid (struct task_struct *p)
2562 {
2563 return 0;
2564 }
2565
2566 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2567 { }
2568
2569 static inline int security_task_setgroups (struct group_info *group_info)
2570 {
2571 return 0;
2572 }
2573
2574 static inline int security_task_setnice (struct task_struct *p, int nice)
2575 {
2576 return 0;
2577 }
2578
2579 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2580 {
2581 return 0;
2582 }
2583
2584 static inline int security_task_getioprio (struct task_struct *p)
2585 {
2586 return 0;
2587 }
2588
2589 static inline int security_task_setrlimit (unsigned int resource,
2590 struct rlimit *new_rlim)
2591 {
2592 return 0;
2593 }
2594
2595 static inline int security_task_setscheduler (struct task_struct *p,
2596 int policy,
2597 struct sched_param *lp)
2598 {
2599 return 0;
2600 }
2601
2602 static inline int security_task_getscheduler (struct task_struct *p)
2603 {
2604 return 0;
2605 }
2606
2607 static inline int security_task_movememory (struct task_struct *p)
2608 {
2609 return 0;
2610 }
2611
2612 static inline int security_task_kill (struct task_struct *p,
2613 struct siginfo *info, int sig,
2614 u32 secid)
2615 {
2616 return 0;
2617 }
2618
2619 static inline int security_task_wait (struct task_struct *p)
2620 {
2621 return 0;
2622 }
2623
2624 static inline int security_task_prctl (int option, unsigned long arg2,
2625 unsigned long arg3,
2626 unsigned long arg4,
2627 unsigned long arg5)
2628 {
2629 return 0;
2630 }
2631
2632 static inline void security_task_reparent_to_init (struct task_struct *p)
2633 {
2634 cap_task_reparent_to_init (p);
2635 }
2636
2637 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2638 { }
2639
2640 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2641 short flag)
2642 {
2643 return 0;
2644 }
2645
2646 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2647 {
2648 return 0;
2649 }
2650
2651 static inline void security_msg_msg_free (struct msg_msg * msg)
2652 { }
2653
2654 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2655 {
2656 return 0;
2657 }
2658
2659 static inline void security_msg_queue_free (struct msg_queue *msq)
2660 { }
2661
2662 static inline int security_msg_queue_associate (struct msg_queue * msq,
2663 int msqflg)
2664 {
2665 return 0;
2666 }
2667
2668 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2669 {
2670 return 0;
2671 }
2672
2673 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2674 struct msg_msg * msg, int msqflg)
2675 {
2676 return 0;
2677 }
2678
2679 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2680 struct msg_msg * msg,
2681 struct task_struct * target,
2682 long type, int mode)
2683 {
2684 return 0;
2685 }
2686
2687 static inline int security_shm_alloc (struct shmid_kernel *shp)
2688 {
2689 return 0;
2690 }
2691
2692 static inline void security_shm_free (struct shmid_kernel *shp)
2693 { }
2694
2695 static inline int security_shm_associate (struct shmid_kernel * shp,
2696 int shmflg)
2697 {
2698 return 0;
2699 }
2700
2701 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2702 {
2703 return 0;
2704 }
2705
2706 static inline int security_shm_shmat (struct shmid_kernel * shp,
2707 char __user *shmaddr, int shmflg)
2708 {
2709 return 0;
2710 }
2711
2712 static inline int security_sem_alloc (struct sem_array *sma)
2713 {
2714 return 0;
2715 }
2716
2717 static inline void security_sem_free (struct sem_array *sma)
2718 { }
2719
2720 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2721 {
2722 return 0;
2723 }
2724
2725 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2726 {
2727 return 0;
2728 }
2729
2730 static inline int security_sem_semop (struct sem_array * sma,
2731 struct sembuf * sops, unsigned nsops,
2732 int alter)
2733 {
2734 return 0;
2735 }
2736
2737 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2738 { }
2739
2740 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2741 {
2742 return -EINVAL;
2743 }
2744
2745 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2746 {
2747 return -EINVAL;
2748 }
2749
2750 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2751 {
2752 return cap_netlink_send (sk, skb);
2753 }
2754
2755 static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2756 {
2757 return cap_netlink_recv (skb, cap);
2758 }
2759
2760 static inline struct dentry *securityfs_create_dir(const char *name,
2761 struct dentry *parent)
2762 {
2763 return ERR_PTR(-ENODEV);
2764 }
2765
2766 static inline struct dentry *securityfs_create_file(const char *name,
2767 mode_t mode,
2768 struct dentry *parent,
2769 void *data,
2770 struct file_operations *fops)
2771 {
2772 return ERR_PTR(-ENODEV);
2773 }
2774
2775 static inline void securityfs_remove(struct dentry *dentry)
2776 {
2777 }
2778
2779 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2780 {
2781 return -EOPNOTSUPP;
2782 }
2783
2784 static inline void security_release_secctx(char *secdata, u32 seclen)
2785 {
2786 }
2787 #endif /* CONFIG_SECURITY */
2788
2789 #ifdef CONFIG_SECURITY_NETWORK
2790 static inline int security_unix_stream_connect(struct socket * sock,
2791 struct socket * other,
2792 struct sock * newsk)
2793 {
2794 return security_ops->unix_stream_connect(sock, other, newsk);
2795 }
2796
2797
2798 static inline int security_unix_may_send(struct socket * sock,
2799 struct socket * other)
2800 {
2801 return security_ops->unix_may_send(sock, other);
2802 }
2803
2804 static inline int security_socket_create (int family, int type,
2805 int protocol, int kern)
2806 {
2807 return security_ops->socket_create(family, type, protocol, kern);
2808 }
2809
2810 static inline void security_socket_post_create(struct socket * sock,
2811 int family,
2812 int type,
2813 int protocol, int kern)
2814 {
2815 security_ops->socket_post_create(sock, family, type,
2816 protocol, kern);
2817 }
2818
2819 static inline int security_socket_bind(struct socket * sock,
2820 struct sockaddr * address,
2821 int addrlen)
2822 {
2823 return security_ops->socket_bind(sock, address, addrlen);
2824 }
2825
2826 static inline int security_socket_connect(struct socket * sock,
2827 struct sockaddr * address,
2828 int addrlen)
2829 {
2830 return security_ops->socket_connect(sock, address, addrlen);
2831 }
2832
2833 static inline int security_socket_listen(struct socket * sock, int backlog)
2834 {
2835 return security_ops->socket_listen(sock, backlog);
2836 }
2837
2838 static inline int security_socket_accept(struct socket * sock,
2839 struct socket * newsock)
2840 {
2841 return security_ops->socket_accept(sock, newsock);
2842 }
2843
2844 static inline void security_socket_post_accept(struct socket * sock,
2845 struct socket * newsock)
2846 {
2847 security_ops->socket_post_accept(sock, newsock);
2848 }
2849
2850 static inline int security_socket_sendmsg(struct socket * sock,
2851 struct msghdr * msg, int size)
2852 {
2853 return security_ops->socket_sendmsg(sock, msg, size);
2854 }
2855
2856 static inline int security_socket_recvmsg(struct socket * sock,
2857 struct msghdr * msg, int size,
2858 int flags)
2859 {
2860 return security_ops->socket_recvmsg(sock, msg, size, flags);
2861 }
2862
2863 static inline int security_socket_getsockname(struct socket * sock)
2864 {
2865 return security_ops->socket_getsockname(sock);
2866 }
2867
2868 static inline int security_socket_getpeername(struct socket * sock)
2869 {
2870 return security_ops->socket_getpeername(sock);
2871 }
2872
2873 static inline int security_socket_getsockopt(struct socket * sock,
2874 int level, int optname)
2875 {
2876 return security_ops->socket_getsockopt(sock, level, optname);
2877 }
2878
2879 static inline int security_socket_setsockopt(struct socket * sock,
2880 int level, int optname)
2881 {
2882 return security_ops->socket_setsockopt(sock, level, optname);
2883 }
2884
2885 static inline int security_socket_shutdown(struct socket * sock, int how)
2886 {
2887 return security_ops->socket_shutdown(sock, how);
2888 }
2889
2890 static inline int security_sock_rcv_skb (struct sock * sk,
2891 struct sk_buff * skb)
2892 {
2893 return security_ops->socket_sock_rcv_skb (sk, skb);
2894 }
2895
2896 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2897 int __user *optlen, unsigned len)
2898 {
2899 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2900 }
2901
2902 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2903 {
2904 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
2905 }
2906
2907 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2908 {
2909 return security_ops->sk_alloc_security(sk, family, priority);
2910 }
2911
2912 static inline void security_sk_free(struct sock *sk)
2913 {
2914 return security_ops->sk_free_security(sk);
2915 }
2916
2917 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2918 {
2919 return security_ops->sk_clone_security(sk, newsk);
2920 }
2921
2922 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2923 {
2924 security_ops->sk_getsecid(sk, &fl->secid);
2925 }
2926 #else /* CONFIG_SECURITY_NETWORK */
2927 static inline int security_unix_stream_connect(struct socket * sock,
2928 struct socket * other,
2929 struct sock * newsk)
2930 {
2931 return 0;
2932 }
2933
2934 static inline int security_unix_may_send(struct socket * sock,
2935 struct socket * other)
2936 {
2937 return 0;
2938 }
2939
2940 static inline int security_socket_create (int family, int type,
2941 int protocol, int kern)
2942 {
2943 return 0;
2944 }
2945
2946 static inline void security_socket_post_create(struct socket * sock,
2947 int family,
2948 int type,
2949 int protocol, int kern)
2950 {
2951 }
2952
2953 static inline int security_socket_bind(struct socket * sock,
2954 struct sockaddr * address,
2955 int addrlen)
2956 {
2957 return 0;
2958 }
2959
2960 static inline int security_socket_connect(struct socket * sock,
2961 struct sockaddr * address,
2962 int addrlen)
2963 {
2964 return 0;
2965 }
2966
2967 static inline int security_socket_listen(struct socket * sock, int backlog)
2968 {
2969 return 0;
2970 }
2971
2972 static inline int security_socket_accept(struct socket * sock,
2973 struct socket * newsock)
2974 {
2975 return 0;
2976 }
2977
2978 static inline void security_socket_post_accept(struct socket * sock,
2979 struct socket * newsock)
2980 {
2981 }
2982
2983 static inline int security_socket_sendmsg(struct socket * sock,
2984 struct msghdr * msg, int size)
2985 {
2986 return 0;
2987 }
2988
2989 static inline int security_socket_recvmsg(struct socket * sock,
2990 struct msghdr * msg, int size,
2991 int flags)
2992 {
2993 return 0;
2994 }
2995
2996 static inline int security_socket_getsockname(struct socket * sock)
2997 {
2998 return 0;
2999 }
3000
3001 static inline int security_socket_getpeername(struct socket * sock)
3002 {
3003 return 0;
3004 }
3005
3006 static inline int security_socket_getsockopt(struct socket * sock,
3007 int level, int optname)
3008 {
3009 return 0;
3010 }
3011
3012 static inline int security_socket_setsockopt(struct socket * sock,
3013 int level, int optname)
3014 {
3015 return 0;
3016 }
3017
3018 static inline int security_socket_shutdown(struct socket * sock, int how)
3019 {
3020 return 0;
3021 }
3022 static inline int security_sock_rcv_skb (struct sock * sk,
3023 struct sk_buff * skb)
3024 {
3025 return 0;
3026 }
3027
3028 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3029 int __user *optlen, unsigned len)
3030 {
3031 return -ENOPROTOOPT;
3032 }
3033
3034 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3035 {
3036 return -ENOPROTOOPT;
3037 }
3038
3039 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
3040 {
3041 return 0;
3042 }
3043
3044 static inline void security_sk_free(struct sock *sk)
3045 {
3046 }
3047
3048 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
3049 {
3050 }
3051
3052 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
3053 {
3054 }
3055 #endif /* CONFIG_SECURITY_NETWORK */
3056
3057 #ifdef CONFIG_SECURITY_NETWORK_XFRM
3058 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3059 {
3060 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
3061 }
3062
3063 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3064 {
3065 return security_ops->xfrm_policy_clone_security(old, new);
3066 }
3067
3068 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3069 {
3070 security_ops->xfrm_policy_free_security(xp);
3071 }
3072
3073 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3074 {
3075 return security_ops->xfrm_policy_delete_security(xp);
3076 }
3077
3078 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3079 struct xfrm_user_sec_ctx *sec_ctx)
3080 {
3081 return security_ops->xfrm_state_alloc_security(x, sec_ctx, NULL, 0);
3082 }
3083
3084 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3085 struct xfrm_sec_ctx *polsec, u32 secid)
3086 {
3087 if (!polsec)
3088 return 0;
3089 return security_ops->xfrm_state_alloc_security(x, NULL, polsec, secid);
3090 }
3091
3092 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3093 {
3094 return security_ops->xfrm_state_delete_security(x);
3095 }
3096
3097 static inline void security_xfrm_state_free(struct xfrm_state *x)
3098 {
3099 security_ops->xfrm_state_free_security(x);
3100 }
3101
3102 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3103 {
3104 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
3105 }
3106
3107 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3108 struct xfrm_policy *xp, struct flowi *fl)
3109 {
3110 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
3111 }
3112
3113 static inline int security_xfrm_flow_state_match(struct flowi *fl, struct xfrm_state *xfrm)
3114 {
3115 return security_ops->xfrm_flow_state_match(fl, xfrm);
3116 }
3117
3118 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3119 {
3120 return security_ops->xfrm_decode_session(skb, secid, 1);
3121 }
3122
3123 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3124 {
3125 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
3126
3127 BUG_ON(rc);
3128 }
3129 #else /* CONFIG_SECURITY_NETWORK_XFRM */
3130 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3131 {
3132 return 0;
3133 }
3134
3135 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3136 {
3137 return 0;
3138 }
3139
3140 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3141 {
3142 }
3143
3144 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3145 {
3146 return 0;
3147 }
3148
3149 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3150 struct xfrm_user_sec_ctx *sec_ctx)
3151 {
3152 return 0;
3153 }
3154
3155 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3156 struct xfrm_sec_ctx *polsec, u32 secid)
3157 {
3158 return 0;
3159 }
3160
3161 static inline void security_xfrm_state_free(struct xfrm_state *x)
3162 {
3163 }
3164
3165 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3166 {
3167 return 0;
3168 }
3169
3170 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3171 {
3172 return 0;
3173 }
3174
3175 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3176 struct xfrm_policy *xp, struct flowi *fl)
3177 {
3178 return 1;
3179 }
3180
3181 static inline int security_xfrm_flow_state_match(struct flowi *fl,
3182 struct xfrm_state *xfrm)
3183 {
3184 return 1;
3185 }
3186
3187 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3188 {
3189 return 0;
3190 }
3191
3192 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3193 {
3194 }
3195
3196 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
3197
3198 #ifdef CONFIG_KEYS
3199 #ifdef CONFIG_SECURITY
3200 static inline int security_key_alloc(struct key *key,
3201 struct task_struct *tsk,
3202 unsigned long flags)
3203 {
3204 return security_ops->key_alloc(key, tsk, flags);
3205 }
3206
3207 static inline void security_key_free(struct key *key)
3208 {
3209 security_ops->key_free(key);
3210 }
3211
3212 static inline int security_key_permission(key_ref_t key_ref,
3213 struct task_struct *context,
3214 key_perm_t perm)
3215 {
3216 return security_ops->key_permission(key_ref, context, perm);
3217 }
3218
3219 #else
3220
3221 static inline int security_key_alloc(struct key *key,
3222 struct task_struct *tsk,
3223 unsigned long flags)
3224 {
3225 return 0;
3226 }
3227
3228 static inline void security_key_free(struct key *key)
3229 {
3230 }
3231
3232 static inline int security_key_permission(key_ref_t key_ref,
3233 struct task_struct *context,
3234 key_perm_t perm)
3235 {
3236 return 0;
3237 }
3238
3239 #endif
3240 #endif /* CONFIG_KEYS */
3241
3242 #endif /* ! __LINUX_SECURITY_H */
3243
This page took 0.175661 seconds and 6 git commands to generate.