Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[deliverable/linux.git] / include / linux / security.h
1 /*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * Due to this file being licensed under the GPL there is controversy over
16 * whether this permits you to write a module that #includes this file
17 * without placing your module under the GPL. Please consult a lawyer for
18 * advice before doing this.
19 *
20 */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34 #include <linux/xfrm.h>
35 #include <net/flow.h>
36
37 struct ctl_table;
38
39 /*
40 * These functions are in security/capability.c and are used
41 * as the default capabilities functions
42 */
43 extern int cap_capable (struct task_struct *tsk, int cap);
44 extern int cap_settime (struct timespec *ts, struct timezone *tz);
45 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
46 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
48 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
49 extern int cap_bprm_set_security (struct linux_binprm *bprm);
50 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
51 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
52 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
53 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
54 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
55 extern void cap_task_reparent_to_init (struct task_struct *p);
56 extern int cap_syslog (int type);
57 extern int cap_vm_enough_memory (struct mm_struct *mm, long pages);
58
59 struct msghdr;
60 struct sk_buff;
61 struct sock;
62 struct sockaddr;
63 struct socket;
64 struct flowi;
65 struct dst_entry;
66 struct xfrm_selector;
67 struct xfrm_policy;
68 struct xfrm_state;
69 struct xfrm_user_sec_ctx;
70
71 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
72 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
73
74 extern unsigned long mmap_min_addr;
75 /*
76 * Values used in the task_security_ops calls
77 */
78 /* setuid or setgid, id0 == uid or gid */
79 #define LSM_SETID_ID 1
80
81 /* setreuid or setregid, id0 == real, id1 == eff */
82 #define LSM_SETID_RE 2
83
84 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
85 #define LSM_SETID_RES 4
86
87 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
88 #define LSM_SETID_FS 8
89
90 /* forward declares to avoid warnings */
91 struct nfsctl_arg;
92 struct sched_param;
93 struct swap_info_struct;
94 struct request_sock;
95
96 /* bprm_apply_creds unsafe reasons */
97 #define LSM_UNSAFE_SHARE 1
98 #define LSM_UNSAFE_PTRACE 2
99 #define LSM_UNSAFE_PTRACE_CAP 4
100
101 #ifdef CONFIG_SECURITY
102
103 /**
104 * struct security_operations - main security structure
105 *
106 * Security hooks for program execution operations.
107 *
108 * @bprm_alloc_security:
109 * Allocate and attach a security structure to the @bprm->security field.
110 * The security field is initialized to NULL when the bprm structure is
111 * allocated.
112 * @bprm contains the linux_binprm structure to be modified.
113 * Return 0 if operation was successful.
114 * @bprm_free_security:
115 * @bprm contains the linux_binprm structure to be modified.
116 * Deallocate and clear the @bprm->security field.
117 * @bprm_apply_creds:
118 * Compute and set the security attributes of a process being transformed
119 * by an execve operation based on the old attributes (current->security)
120 * and the information saved in @bprm->security by the set_security hook.
121 * Since this hook function (and its caller) are void, this hook can not
122 * return an error. However, it can leave the security attributes of the
123 * process unchanged if an access failure occurs at this point.
124 * bprm_apply_creds is called under task_lock. @unsafe indicates various
125 * reasons why it may be unsafe to change security state.
126 * @bprm contains the linux_binprm structure.
127 * @bprm_post_apply_creds:
128 * Runs after bprm_apply_creds with the task_lock dropped, so that
129 * functions which cannot be called safely under the task_lock can
130 * be used. This hook is a good place to perform state changes on
131 * the process such as closing open file descriptors to which access
132 * is no longer granted if the attributes were changed.
133 * Note that a security module might need to save state between
134 * bprm_apply_creds and bprm_post_apply_creds to store the decision
135 * on whether the process may proceed.
136 * @bprm contains the linux_binprm structure.
137 * @bprm_set_security:
138 * Save security information in the bprm->security field, typically based
139 * on information about the bprm->file, for later use by the apply_creds
140 * hook. This hook may also optionally check permissions (e.g. for
141 * transitions between security domains).
142 * This hook may be called multiple times during a single execve, e.g. for
143 * interpreters. The hook can tell whether it has already been called by
144 * checking to see if @bprm->security is non-NULL. If so, then the hook
145 * may decide either to retain the security information saved earlier or
146 * to replace it.
147 * @bprm contains the linux_binprm structure.
148 * Return 0 if the hook is successful and permission is granted.
149 * @bprm_check_security:
150 * This hook mediates the point when a search for a binary handler will
151 * begin. It allows a check the @bprm->security value which is set in
152 * the preceding set_security call. The primary difference from
153 * set_security is that the argv list and envp list are reliably
154 * available in @bprm. This hook may be called multiple times
155 * during a single execve; and in each pass set_security is called
156 * first.
157 * @bprm contains the linux_binprm structure.
158 * Return 0 if the hook is successful and permission is granted.
159 * @bprm_secureexec:
160 * Return a boolean value (0 or 1) indicating whether a "secure exec"
161 * is required. The flag is passed in the auxiliary table
162 * on the initial stack to the ELF interpreter to indicate whether libc
163 * should enable secure mode.
164 * @bprm contains the linux_binprm structure.
165 *
166 * Security hooks for filesystem operations.
167 *
168 * @sb_alloc_security:
169 * Allocate and attach a security structure to the sb->s_security field.
170 * The s_security field is initialized to NULL when the structure is
171 * allocated.
172 * @sb contains the super_block structure to be modified.
173 * Return 0 if operation was successful.
174 * @sb_free_security:
175 * Deallocate and clear the sb->s_security field.
176 * @sb contains the super_block structure to be modified.
177 * @sb_statfs:
178 * Check permission before obtaining filesystem statistics for the @mnt
179 * mountpoint.
180 * @dentry is a handle on the superblock for the filesystem.
181 * Return 0 if permission is granted.
182 * @sb_mount:
183 * Check permission before an object specified by @dev_name is mounted on
184 * the mount point named by @nd. For an ordinary mount, @dev_name
185 * identifies a device if the file system type requires a device. For a
186 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
187 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
188 * pathname of the object being mounted.
189 * @dev_name contains the name for object being mounted.
190 * @nd contains the nameidata structure for mount point object.
191 * @type contains the filesystem type.
192 * @flags contains the mount flags.
193 * @data contains the filesystem-specific data.
194 * Return 0 if permission is granted.
195 * @sb_copy_data:
196 * Allow mount option data to be copied prior to parsing by the filesystem,
197 * so that the security module can extract security-specific mount
198 * options cleanly (a filesystem may modify the data e.g. with strsep()).
199 * This also allows the original mount data to be stripped of security-
200 * specific options to avoid having to make filesystems aware of them.
201 * @type the type of filesystem being mounted.
202 * @orig the original mount data copied from userspace.
203 * @copy copied data which will be passed to the security module.
204 * Returns 0 if the copy was successful.
205 * @sb_check_sb:
206 * Check permission before the device with superblock @mnt->sb is mounted
207 * on the mount point named by @nd.
208 * @mnt contains the vfsmount for device being mounted.
209 * @nd contains the nameidata object for the mount point.
210 * Return 0 if permission is granted.
211 * @sb_umount:
212 * Check permission before the @mnt file system is unmounted.
213 * @mnt contains the mounted file system.
214 * @flags contains the unmount flags, e.g. MNT_FORCE.
215 * Return 0 if permission is granted.
216 * @sb_umount_close:
217 * Close any files in the @mnt mounted filesystem that are held open by
218 * the security module. This hook is called during an umount operation
219 * prior to checking whether the filesystem is still busy.
220 * @mnt contains the mounted filesystem.
221 * @sb_umount_busy:
222 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
223 * any files that were closed by umount_close. This hook is called during
224 * an umount operation if the umount fails after a call to the
225 * umount_close hook.
226 * @mnt contains the mounted filesystem.
227 * @sb_post_remount:
228 * Update the security module's state when a filesystem is remounted.
229 * This hook is only called if the remount was successful.
230 * @mnt contains the mounted file system.
231 * @flags contains the new filesystem flags.
232 * @data contains the filesystem-specific data.
233 * @sb_post_mountroot:
234 * Update the security module's state when the root filesystem is mounted.
235 * This hook is only called if the mount was successful.
236 * @sb_post_addmount:
237 * Update the security module's state when a filesystem is mounted.
238 * This hook is called any time a mount is successfully grafetd to
239 * the tree.
240 * @mnt contains the mounted filesystem.
241 * @mountpoint_nd contains the nameidata structure for the mount point.
242 * @sb_pivotroot:
243 * Check permission before pivoting the root filesystem.
244 * @old_nd contains the nameidata structure for the new location of the current root (put_old).
245 * @new_nd contains the nameidata structure for the new root (new_root).
246 * Return 0 if permission is granted.
247 * @sb_post_pivotroot:
248 * Update module state after a successful pivot.
249 * @old_nd contains the nameidata structure for the old root.
250 * @new_nd contains the nameidata structure for the new root.
251 *
252 * Security hooks for inode operations.
253 *
254 * @inode_alloc_security:
255 * Allocate and attach a security structure to @inode->i_security. The
256 * i_security field is initialized to NULL when the inode structure is
257 * allocated.
258 * @inode contains the inode structure.
259 * Return 0 if operation was successful.
260 * @inode_free_security:
261 * @inode contains the inode structure.
262 * Deallocate the inode security structure and set @inode->i_security to
263 * NULL.
264 * @inode_init_security:
265 * Obtain the security attribute name suffix and value to set on a newly
266 * created inode and set up the incore security field for the new inode.
267 * This hook is called by the fs code as part of the inode creation
268 * transaction and provides for atomic labeling of the inode, unlike
269 * the post_create/mkdir/... hooks called by the VFS. The hook function
270 * is expected to allocate the name and value via kmalloc, with the caller
271 * being responsible for calling kfree after using them.
272 * If the security module does not use security attributes or does
273 * not wish to put a security attribute on this particular inode,
274 * then it should return -EOPNOTSUPP to skip this processing.
275 * @inode contains the inode structure of the newly created inode.
276 * @dir contains the inode structure of the parent directory.
277 * @name will be set to the allocated name suffix (e.g. selinux).
278 * @value will be set to the allocated attribute value.
279 * @len will be set to the length of the value.
280 * Returns 0 if @name and @value have been successfully set,
281 * -EOPNOTSUPP if no security attribute is needed, or
282 * -ENOMEM on memory allocation failure.
283 * @inode_create:
284 * Check permission to create a regular file.
285 * @dir contains inode structure of the parent of the new file.
286 * @dentry contains the dentry structure for the file to be created.
287 * @mode contains the file mode of the file to be created.
288 * Return 0 if permission is granted.
289 * @inode_link:
290 * Check permission before creating a new hard link to a file.
291 * @old_dentry contains the dentry structure for an existing link to the file.
292 * @dir contains the inode structure of the parent directory of the new link.
293 * @new_dentry contains the dentry structure for the new link.
294 * Return 0 if permission is granted.
295 * @inode_unlink:
296 * Check the permission to remove a hard link to a file.
297 * @dir contains the inode structure of parent directory of the file.
298 * @dentry contains the dentry structure for file to be unlinked.
299 * Return 0 if permission is granted.
300 * @inode_symlink:
301 * Check the permission to create a symbolic link to a file.
302 * @dir contains the inode structure of parent directory of the symbolic link.
303 * @dentry contains the dentry structure of the symbolic link.
304 * @old_name contains the pathname of file.
305 * Return 0 if permission is granted.
306 * @inode_mkdir:
307 * Check permissions to create a new directory in the existing directory
308 * associated with inode strcture @dir.
309 * @dir containst the inode structure of parent of the directory to be created.
310 * @dentry contains the dentry structure of new directory.
311 * @mode contains the mode of new directory.
312 * Return 0 if permission is granted.
313 * @inode_rmdir:
314 * Check the permission to remove a directory.
315 * @dir contains the inode structure of parent of the directory to be removed.
316 * @dentry contains the dentry structure of directory to be removed.
317 * Return 0 if permission is granted.
318 * @inode_mknod:
319 * Check permissions when creating a special file (or a socket or a fifo
320 * file created via the mknod system call). Note that if mknod operation
321 * is being done for a regular file, then the create hook will be called
322 * and not this hook.
323 * @dir contains the inode structure of parent of the new file.
324 * @dentry contains the dentry structure of the new file.
325 * @mode contains the mode of the new file.
326 * @dev contains the device number.
327 * Return 0 if permission is granted.
328 * @inode_rename:
329 * Check for permission to rename a file or directory.
330 * @old_dir contains the inode structure for parent of the old link.
331 * @old_dentry contains the dentry structure of the old link.
332 * @new_dir contains the inode structure for parent of the new link.
333 * @new_dentry contains the dentry structure of the new link.
334 * Return 0 if permission is granted.
335 * @inode_readlink:
336 * Check the permission to read the symbolic link.
337 * @dentry contains the dentry structure for the file link.
338 * Return 0 if permission is granted.
339 * @inode_follow_link:
340 * Check permission to follow a symbolic link when looking up a pathname.
341 * @dentry contains the dentry structure for the link.
342 * @nd contains the nameidata structure for the parent directory.
343 * Return 0 if permission is granted.
344 * @inode_permission:
345 * Check permission before accessing an inode. This hook is called by the
346 * existing Linux permission function, so a security module can use it to
347 * provide additional checking for existing Linux permission checks.
348 * Notice that this hook is called when a file is opened (as well as many
349 * other operations), whereas the file_security_ops permission hook is
350 * called when the actual read/write operations are performed.
351 * @inode contains the inode structure to check.
352 * @mask contains the permission mask.
353 * @nd contains the nameidata (may be NULL).
354 * Return 0 if permission is granted.
355 * @inode_setattr:
356 * Check permission before setting file attributes. Note that the kernel
357 * call to notify_change is performed from several locations, whenever
358 * file attributes change (such as when a file is truncated, chown/chmod
359 * operations, transferring disk quotas, etc).
360 * @dentry contains the dentry structure for the file.
361 * @attr is the iattr structure containing the new file attributes.
362 * Return 0 if permission is granted.
363 * @inode_getattr:
364 * Check permission before obtaining file attributes.
365 * @mnt is the vfsmount where the dentry was looked up
366 * @dentry contains the dentry structure for the file.
367 * Return 0 if permission is granted.
368 * @inode_delete:
369 * @inode contains the inode structure for deleted inode.
370 * This hook is called when a deleted inode is released (i.e. an inode
371 * with no hard links has its use count drop to zero). A security module
372 * can use this hook to release any persistent label associated with the
373 * inode.
374 * @inode_setxattr:
375 * Check permission before setting the extended attributes
376 * @value identified by @name for @dentry.
377 * Return 0 if permission is granted.
378 * @inode_post_setxattr:
379 * Update inode security field after successful setxattr operation.
380 * @value identified by @name for @dentry.
381 * @inode_getxattr:
382 * Check permission before obtaining the extended attributes
383 * identified by @name for @dentry.
384 * Return 0 if permission is granted.
385 * @inode_listxattr:
386 * Check permission before obtaining the list of extended attribute
387 * names for @dentry.
388 * Return 0 if permission is granted.
389 * @inode_removexattr:
390 * Check permission before removing the extended attribute
391 * identified by @name for @dentry.
392 * Return 0 if permission is granted.
393 * @inode_getsecurity:
394 * Copy the extended attribute representation of the security label
395 * associated with @name for @inode into @buffer. @buffer may be
396 * NULL to request the size of the buffer required. @size indicates
397 * the size of @buffer in bytes. Note that @name is the remainder
398 * of the attribute name after the security. prefix has been removed.
399 * @err is the return value from the preceding fs getxattr call,
400 * and can be used by the security module to determine whether it
401 * should try and canonicalize the attribute value.
402 * Return number of bytes used/required on success.
403 * @inode_setsecurity:
404 * Set the security label associated with @name for @inode from the
405 * extended attribute value @value. @size indicates the size of the
406 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
407 * Note that @name is the remainder of the attribute name after the
408 * security. prefix has been removed.
409 * Return 0 on success.
410 * @inode_listsecurity:
411 * Copy the extended attribute names for the security labels
412 * associated with @inode into @buffer. The maximum size of @buffer
413 * is specified by @buffer_size. @buffer may be NULL to request
414 * the size of the buffer required.
415 * Returns number of bytes used/required on success.
416 *
417 * Security hooks for file operations
418 *
419 * @file_permission:
420 * Check file permissions before accessing an open file. This hook is
421 * called by various operations that read or write files. A security
422 * module can use this hook to perform additional checking on these
423 * operations, e.g. to revalidate permissions on use to support privilege
424 * bracketing or policy changes. Notice that this hook is used when the
425 * actual read/write operations are performed, whereas the
426 * inode_security_ops hook is called when a file is opened (as well as
427 * many other operations).
428 * Caveat: Although this hook can be used to revalidate permissions for
429 * various system call operations that read or write files, it does not
430 * address the revalidation of permissions for memory-mapped files.
431 * Security modules must handle this separately if they need such
432 * revalidation.
433 * @file contains the file structure being accessed.
434 * @mask contains the requested permissions.
435 * Return 0 if permission is granted.
436 * @file_alloc_security:
437 * Allocate and attach a security structure to the file->f_security field.
438 * The security field is initialized to NULL when the structure is first
439 * created.
440 * @file contains the file structure to secure.
441 * Return 0 if the hook is successful and permission is granted.
442 * @file_free_security:
443 * Deallocate and free any security structures stored in file->f_security.
444 * @file contains the file structure being modified.
445 * @file_ioctl:
446 * @file contains the file structure.
447 * @cmd contains the operation to perform.
448 * @arg contains the operational arguments.
449 * Check permission for an ioctl operation on @file. Note that @arg can
450 * sometimes represents a user space pointer; in other cases, it may be a
451 * simple integer value. When @arg represents a user space pointer, it
452 * should never be used by the security module.
453 * Return 0 if permission is granted.
454 * @file_mmap :
455 * Check permissions for a mmap operation. The @file may be NULL, e.g.
456 * if mapping anonymous memory.
457 * @file contains the file structure for file to map (may be NULL).
458 * @reqprot contains the protection requested by the application.
459 * @prot contains the protection that will be applied by the kernel.
460 * @flags contains the operational flags.
461 * Return 0 if permission is granted.
462 * @file_mprotect:
463 * Check permissions before changing memory access permissions.
464 * @vma contains the memory region to modify.
465 * @reqprot contains the protection requested by the application.
466 * @prot contains the protection that will be applied by the kernel.
467 * Return 0 if permission is granted.
468 * @file_lock:
469 * Check permission before performing file locking operations.
470 * Note: this hook mediates both flock and fcntl style locks.
471 * @file contains the file structure.
472 * @cmd contains the posix-translated lock operation to perform
473 * (e.g. F_RDLCK, F_WRLCK).
474 * Return 0 if permission is granted.
475 * @file_fcntl:
476 * Check permission before allowing the file operation specified by @cmd
477 * from being performed on the file @file. Note that @arg can sometimes
478 * represents a user space pointer; in other cases, it may be a simple
479 * integer value. When @arg represents a user space pointer, it should
480 * never be used by the security module.
481 * @file contains the file structure.
482 * @cmd contains the operation to be performed.
483 * @arg contains the operational arguments.
484 * Return 0 if permission is granted.
485 * @file_set_fowner:
486 * Save owner security information (typically from current->security) in
487 * file->f_security for later use by the send_sigiotask hook.
488 * @file contains the file structure to update.
489 * Return 0 on success.
490 * @file_send_sigiotask:
491 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
492 * process @tsk. Note that this hook is sometimes called from interrupt.
493 * Note that the fown_struct, @fown, is never outside the context of a
494 * struct file, so the file structure (and associated security information)
495 * can always be obtained:
496 * container_of(fown, struct file, f_owner)
497 * @tsk contains the structure of task receiving signal.
498 * @fown contains the file owner information.
499 * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
500 * Return 0 if permission is granted.
501 * @file_receive:
502 * This hook allows security modules to control the ability of a process
503 * to receive an open file descriptor via socket IPC.
504 * @file contains the file structure being received.
505 * Return 0 if permission is granted.
506 *
507 * Security hooks for task operations.
508 *
509 * @task_create:
510 * Check permission before creating a child process. See the clone(2)
511 * manual page for definitions of the @clone_flags.
512 * @clone_flags contains the flags indicating what should be shared.
513 * Return 0 if permission is granted.
514 * @task_alloc_security:
515 * @p contains the task_struct for child process.
516 * Allocate and attach a security structure to the p->security field. The
517 * security field is initialized to NULL when the task structure is
518 * allocated.
519 * Return 0 if operation was successful.
520 * @task_free_security:
521 * @p contains the task_struct for process.
522 * Deallocate and clear the p->security field.
523 * @task_setuid:
524 * Check permission before setting one or more of the user identity
525 * attributes of the current process. The @flags parameter indicates
526 * which of the set*uid system calls invoked this hook and how to
527 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
528 * definitions at the beginning of this file for the @flags values and
529 * their meanings.
530 * @id0 contains a uid.
531 * @id1 contains a uid.
532 * @id2 contains a uid.
533 * @flags contains one of the LSM_SETID_* values.
534 * Return 0 if permission is granted.
535 * @task_post_setuid:
536 * Update the module's state after setting one or more of the user
537 * identity attributes of the current process. The @flags parameter
538 * indicates which of the set*uid system calls invoked this hook. If
539 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
540 * parameters are not used.
541 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
542 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
543 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
544 * @flags contains one of the LSM_SETID_* values.
545 * Return 0 on success.
546 * @task_setgid:
547 * Check permission before setting one or more of the group identity
548 * attributes of the current process. The @flags parameter indicates
549 * which of the set*gid system calls invoked this hook and how to
550 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
551 * definitions at the beginning of this file for the @flags values and
552 * their meanings.
553 * @id0 contains a gid.
554 * @id1 contains a gid.
555 * @id2 contains a gid.
556 * @flags contains one of the LSM_SETID_* values.
557 * Return 0 if permission is granted.
558 * @task_setpgid:
559 * Check permission before setting the process group identifier of the
560 * process @p to @pgid.
561 * @p contains the task_struct for process being modified.
562 * @pgid contains the new pgid.
563 * Return 0 if permission is granted.
564 * @task_getpgid:
565 * Check permission before getting the process group identifier of the
566 * process @p.
567 * @p contains the task_struct for the process.
568 * Return 0 if permission is granted.
569 * @task_getsid:
570 * Check permission before getting the session identifier of the process
571 * @p.
572 * @p contains the task_struct for the process.
573 * Return 0 if permission is granted.
574 * @task_getsecid:
575 * Retrieve the security identifier of the process @p.
576 * @p contains the task_struct for the process and place is into @secid.
577 * @task_setgroups:
578 * Check permission before setting the supplementary group set of the
579 * current process.
580 * @group_info contains the new group information.
581 * Return 0 if permission is granted.
582 * @task_setnice:
583 * Check permission before setting the nice value of @p to @nice.
584 * @p contains the task_struct of process.
585 * @nice contains the new nice value.
586 * Return 0 if permission is granted.
587 * @task_setioprio
588 * Check permission before setting the ioprio value of @p to @ioprio.
589 * @p contains the task_struct of process.
590 * @ioprio contains the new ioprio value
591 * Return 0 if permission is granted.
592 * @task_getioprio
593 * Check permission before getting the ioprio value of @p.
594 * @p contains the task_struct of process.
595 * Return 0 if permission is granted.
596 * @task_setrlimit:
597 * Check permission before setting the resource limits of the current
598 * process for @resource to @new_rlim. The old resource limit values can
599 * be examined by dereferencing (current->signal->rlim + resource).
600 * @resource contains the resource whose limit is being set.
601 * @new_rlim contains the new limits for @resource.
602 * Return 0 if permission is granted.
603 * @task_setscheduler:
604 * Check permission before setting scheduling policy and/or parameters of
605 * process @p based on @policy and @lp.
606 * @p contains the task_struct for process.
607 * @policy contains the scheduling policy.
608 * @lp contains the scheduling parameters.
609 * Return 0 if permission is granted.
610 * @task_getscheduler:
611 * Check permission before obtaining scheduling information for process
612 * @p.
613 * @p contains the task_struct for process.
614 * Return 0 if permission is granted.
615 * @task_movememory
616 * Check permission before moving memory owned by process @p.
617 * @p contains the task_struct for process.
618 * Return 0 if permission is granted.
619 * @task_kill:
620 * Check permission before sending signal @sig to @p. @info can be NULL,
621 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
622 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
623 * from the kernel and should typically be permitted.
624 * SIGIO signals are handled separately by the send_sigiotask hook in
625 * file_security_ops.
626 * @p contains the task_struct for process.
627 * @info contains the signal information.
628 * @sig contains the signal value.
629 * @secid contains the sid of the process where the signal originated
630 * Return 0 if permission is granted.
631 * @task_wait:
632 * Check permission before allowing a process to reap a child process @p
633 * and collect its status information.
634 * @p contains the task_struct for process.
635 * Return 0 if permission is granted.
636 * @task_prctl:
637 * Check permission before performing a process control operation on the
638 * current process.
639 * @option contains the operation.
640 * @arg2 contains a argument.
641 * @arg3 contains a argument.
642 * @arg4 contains a argument.
643 * @arg5 contains a argument.
644 * Return 0 if permission is granted.
645 * @task_reparent_to_init:
646 * Set the security attributes in @p->security for a kernel thread that
647 * is being reparented to the init task.
648 * @p contains the task_struct for the kernel thread.
649 * @task_to_inode:
650 * Set the security attributes for an inode based on an associated task's
651 * security attributes, e.g. for /proc/pid inodes.
652 * @p contains the task_struct for the task.
653 * @inode contains the inode structure for the inode.
654 *
655 * Security hooks for Netlink messaging.
656 *
657 * @netlink_send:
658 * Save security information for a netlink message so that permission
659 * checking can be performed when the message is processed. The security
660 * information can be saved using the eff_cap field of the
661 * netlink_skb_parms structure. Also may be used to provide fine
662 * grained control over message transmission.
663 * @sk associated sock of task sending the message.,
664 * @skb contains the sk_buff structure for the netlink message.
665 * Return 0 if the information was successfully saved and message
666 * is allowed to be transmitted.
667 * @netlink_recv:
668 * Check permission before processing the received netlink message in
669 * @skb.
670 * @skb contains the sk_buff structure for the netlink message.
671 * @cap indicates the capability required
672 * Return 0 if permission is granted.
673 *
674 * Security hooks for Unix domain networking.
675 *
676 * @unix_stream_connect:
677 * Check permissions before establishing a Unix domain stream connection
678 * between @sock and @other.
679 * @sock contains the socket structure.
680 * @other contains the peer socket structure.
681 * Return 0 if permission is granted.
682 * @unix_may_send:
683 * Check permissions before connecting or sending datagrams from @sock to
684 * @other.
685 * @sock contains the socket structure.
686 * @sock contains the peer socket structure.
687 * Return 0 if permission is granted.
688 *
689 * The @unix_stream_connect and @unix_may_send hooks were necessary because
690 * Linux provides an alternative to the conventional file name space for Unix
691 * domain sockets. Whereas binding and connecting to sockets in the file name
692 * space is mediated by the typical file permissions (and caught by the mknod
693 * and permission hooks in inode_security_ops), binding and connecting to
694 * sockets in the abstract name space is completely unmediated. Sufficient
695 * control of Unix domain sockets in the abstract name space isn't possible
696 * using only the socket layer hooks, since we need to know the actual target
697 * socket, which is not looked up until we are inside the af_unix code.
698 *
699 * Security hooks for socket operations.
700 *
701 * @socket_create:
702 * Check permissions prior to creating a new socket.
703 * @family contains the requested protocol family.
704 * @type contains the requested communications type.
705 * @protocol contains the requested protocol.
706 * @kern set to 1 if a kernel socket.
707 * Return 0 if permission is granted.
708 * @socket_post_create:
709 * This hook allows a module to update or allocate a per-socket security
710 * structure. Note that the security field was not added directly to the
711 * socket structure, but rather, the socket security information is stored
712 * in the associated inode. Typically, the inode alloc_security hook will
713 * allocate and and attach security information to
714 * sock->inode->i_security. This hook may be used to update the
715 * sock->inode->i_security field with additional information that wasn't
716 * available when the inode was allocated.
717 * @sock contains the newly created socket structure.
718 * @family contains the requested protocol family.
719 * @type contains the requested communications type.
720 * @protocol contains the requested protocol.
721 * @kern set to 1 if a kernel socket.
722 * @socket_bind:
723 * Check permission before socket protocol layer bind operation is
724 * performed and the socket @sock is bound to the address specified in the
725 * @address parameter.
726 * @sock contains the socket structure.
727 * @address contains the address to bind to.
728 * @addrlen contains the length of address.
729 * Return 0 if permission is granted.
730 * @socket_connect:
731 * Check permission before socket protocol layer connect operation
732 * attempts to connect socket @sock to a remote address, @address.
733 * @sock contains the socket structure.
734 * @address contains the address of remote endpoint.
735 * @addrlen contains the length of address.
736 * Return 0 if permission is granted.
737 * @socket_listen:
738 * Check permission before socket protocol layer listen operation.
739 * @sock contains the socket structure.
740 * @backlog contains the maximum length for the pending connection queue.
741 * Return 0 if permission is granted.
742 * @socket_accept:
743 * Check permission before accepting a new connection. Note that the new
744 * socket, @newsock, has been created and some information copied to it,
745 * but the accept operation has not actually been performed.
746 * @sock contains the listening socket structure.
747 * @newsock contains the newly created server socket for connection.
748 * Return 0 if permission is granted.
749 * @socket_post_accept:
750 * This hook allows a security module to copy security
751 * information into the newly created socket's inode.
752 * @sock contains the listening socket structure.
753 * @newsock contains the newly created server socket for connection.
754 * @socket_sendmsg:
755 * Check permission before transmitting a message to another socket.
756 * @sock contains the socket structure.
757 * @msg contains the message to be transmitted.
758 * @size contains the size of message.
759 * Return 0 if permission is granted.
760 * @socket_recvmsg:
761 * Check permission before receiving a message from a socket.
762 * @sock contains the socket structure.
763 * @msg contains the message structure.
764 * @size contains the size of message structure.
765 * @flags contains the operational flags.
766 * Return 0 if permission is granted.
767 * @socket_getsockname:
768 * Check permission before the local address (name) of the socket object
769 * @sock is retrieved.
770 * @sock contains the socket structure.
771 * Return 0 if permission is granted.
772 * @socket_getpeername:
773 * Check permission before the remote address (name) of a socket object
774 * @sock is retrieved.
775 * @sock contains the socket structure.
776 * Return 0 if permission is granted.
777 * @socket_getsockopt:
778 * Check permissions before retrieving the options associated with socket
779 * @sock.
780 * @sock contains the socket structure.
781 * @level contains the protocol level to retrieve option from.
782 * @optname contains the name of option to retrieve.
783 * Return 0 if permission is granted.
784 * @socket_setsockopt:
785 * Check permissions before setting the options associated with socket
786 * @sock.
787 * @sock contains the socket structure.
788 * @level contains the protocol level to set options for.
789 * @optname contains the name of the option to set.
790 * Return 0 if permission is granted.
791 * @socket_shutdown:
792 * Checks permission before all or part of a connection on the socket
793 * @sock is shut down.
794 * @sock contains the socket structure.
795 * @how contains the flag indicating how future sends and receives are handled.
796 * Return 0 if permission is granted.
797 * @socket_sock_rcv_skb:
798 * Check permissions on incoming network packets. This hook is distinct
799 * from Netfilter's IP input hooks since it is the first time that the
800 * incoming sk_buff @skb has been associated with a particular socket, @sk.
801 * @sk contains the sock (not socket) associated with the incoming sk_buff.
802 * @skb contains the incoming network data.
803 * @socket_getpeersec:
804 * This hook allows the security module to provide peer socket security
805 * state to userspace via getsockopt SO_GETPEERSEC.
806 * @sock is the local socket.
807 * @optval userspace memory where the security state is to be copied.
808 * @optlen userspace int where the module should copy the actual length
809 * of the security state.
810 * @len as input is the maximum length to copy to userspace provided
811 * by the caller.
812 * Return 0 if all is well, otherwise, typical getsockopt return
813 * values.
814 * @sk_alloc_security:
815 * Allocate and attach a security structure to the sk->sk_security field,
816 * which is used to copy security attributes between local stream sockets.
817 * @sk_free_security:
818 * Deallocate security structure.
819 * @sk_clone_security:
820 * Clone/copy security structure.
821 * @sk_getsecid:
822 * Retrieve the LSM-specific secid for the sock to enable caching of network
823 * authorizations.
824 * @sock_graft:
825 * Sets the socket's isec sid to the sock's sid.
826 * @inet_conn_request:
827 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
828 * @inet_csk_clone:
829 * Sets the new child socket's sid to the openreq sid.
830 * @inet_conn_established:
831 * Sets the connection's peersid to the secmark on skb.
832 * @req_classify_flow:
833 * Sets the flow's sid to the openreq sid.
834 *
835 * Security hooks for XFRM operations.
836 *
837 * @xfrm_policy_alloc_security:
838 * @xp contains the xfrm_policy being added to Security Policy Database
839 * used by the XFRM system.
840 * @sec_ctx contains the security context information being provided by
841 * the user-level policy update program (e.g., setkey).
842 * Allocate a security structure to the xp->security field; the security
843 * field is initialized to NULL when the xfrm_policy is allocated.
844 * Return 0 if operation was successful (memory to allocate, legal context)
845 * @xfrm_policy_clone_security:
846 * @old contains an existing xfrm_policy in the SPD.
847 * @new contains a new xfrm_policy being cloned from old.
848 * Allocate a security structure to the new->security field
849 * that contains the information from the old->security field.
850 * Return 0 if operation was successful (memory to allocate).
851 * @xfrm_policy_free_security:
852 * @xp contains the xfrm_policy
853 * Deallocate xp->security.
854 * @xfrm_policy_delete_security:
855 * @xp contains the xfrm_policy.
856 * Authorize deletion of xp->security.
857 * @xfrm_state_alloc_security:
858 * @x contains the xfrm_state being added to the Security Association
859 * Database by the XFRM system.
860 * @sec_ctx contains the security context information being provided by
861 * the user-level SA generation program (e.g., setkey or racoon).
862 * @secid contains the secid from which to take the mls portion of the context.
863 * Allocate a security structure to the x->security field; the security
864 * field is initialized to NULL when the xfrm_state is allocated. Set the
865 * context to correspond to either sec_ctx or polsec, with the mls portion
866 * taken from secid in the latter case.
867 * Return 0 if operation was successful (memory to allocate, legal context).
868 * @xfrm_state_free_security:
869 * @x contains the xfrm_state.
870 * Deallocate x->security.
871 * @xfrm_state_delete_security:
872 * @x contains the xfrm_state.
873 * Authorize deletion of x->security.
874 * @xfrm_policy_lookup:
875 * @xp contains the xfrm_policy for which the access control is being
876 * checked.
877 * @fl_secid contains the flow security label that is used to authorize
878 * access to the policy xp.
879 * @dir contains the direction of the flow (input or output).
880 * Check permission when a flow selects a xfrm_policy for processing
881 * XFRMs on a packet. The hook is called when selecting either a
882 * per-socket policy or a generic xfrm policy.
883 * Return 0 if permission is granted, -ESRCH otherwise, or -errno
884 * on other errors.
885 * @xfrm_state_pol_flow_match:
886 * @x contains the state to match.
887 * @xp contains the policy to check for a match.
888 * @fl contains the flow to check for a match.
889 * Return 1 if there is a match.
890 * @xfrm_decode_session:
891 * @skb points to skb to decode.
892 * @secid points to the flow key secid to set.
893 * @ckall says if all xfrms used should be checked for same secid.
894 * Return 0 if ckall is zero or all xfrms used have the same secid.
895 *
896 * Security hooks affecting all Key Management operations
897 *
898 * @key_alloc:
899 * Permit allocation of a key and assign security data. Note that key does
900 * not have a serial number assigned at this point.
901 * @key points to the key.
902 * @flags is the allocation flags
903 * Return 0 if permission is granted, -ve error otherwise.
904 * @key_free:
905 * Notification of destruction; free security data.
906 * @key points to the key.
907 * No return value.
908 * @key_permission:
909 * See whether a specific operational right is granted to a process on a
910 * key.
911 * @key_ref refers to the key (key pointer + possession attribute bit).
912 * @context points to the process to provide the context against which to
913 * evaluate the security data on the key.
914 * @perm describes the combination of permissions required of this key.
915 * Return 1 if permission granted, 0 if permission denied and -ve it the
916 * normal permissions model should be effected.
917 *
918 * Security hooks affecting all System V IPC operations.
919 *
920 * @ipc_permission:
921 * Check permissions for access to IPC
922 * @ipcp contains the kernel IPC permission structure
923 * @flag contains the desired (requested) permission set
924 * Return 0 if permission is granted.
925 *
926 * Security hooks for individual messages held in System V IPC message queues
927 * @msg_msg_alloc_security:
928 * Allocate and attach a security structure to the msg->security field.
929 * The security field is initialized to NULL when the structure is first
930 * created.
931 * @msg contains the message structure to be modified.
932 * Return 0 if operation was successful and permission is granted.
933 * @msg_msg_free_security:
934 * Deallocate the security structure for this message.
935 * @msg contains the message structure to be modified.
936 *
937 * Security hooks for System V IPC Message Queues
938 *
939 * @msg_queue_alloc_security:
940 * Allocate and attach a security structure to the
941 * msq->q_perm.security field. The security field is initialized to
942 * NULL when the structure is first created.
943 * @msq contains the message queue structure to be modified.
944 * Return 0 if operation was successful and permission is granted.
945 * @msg_queue_free_security:
946 * Deallocate security structure for this message queue.
947 * @msq contains the message queue structure to be modified.
948 * @msg_queue_associate:
949 * Check permission when a message queue is requested through the
950 * msgget system call. This hook is only called when returning the
951 * message queue identifier for an existing message queue, not when a
952 * new message queue is created.
953 * @msq contains the message queue to act upon.
954 * @msqflg contains the operation control flags.
955 * Return 0 if permission is granted.
956 * @msg_queue_msgctl:
957 * Check permission when a message control operation specified by @cmd
958 * is to be performed on the message queue @msq.
959 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
960 * @msq contains the message queue to act upon. May be NULL.
961 * @cmd contains the operation to be performed.
962 * Return 0 if permission is granted.
963 * @msg_queue_msgsnd:
964 * Check permission before a message, @msg, is enqueued on the message
965 * queue, @msq.
966 * @msq contains the message queue to send message to.
967 * @msg contains the message to be enqueued.
968 * @msqflg contains operational flags.
969 * Return 0 if permission is granted.
970 * @msg_queue_msgrcv:
971 * Check permission before a message, @msg, is removed from the message
972 * queue, @msq. The @target task structure contains a pointer to the
973 * process that will be receiving the message (not equal to the current
974 * process when inline receives are being performed).
975 * @msq contains the message queue to retrieve message from.
976 * @msg contains the message destination.
977 * @target contains the task structure for recipient process.
978 * @type contains the type of message requested.
979 * @mode contains the operational flags.
980 * Return 0 if permission is granted.
981 *
982 * Security hooks for System V Shared Memory Segments
983 *
984 * @shm_alloc_security:
985 * Allocate and attach a security structure to the shp->shm_perm.security
986 * field. The security field is initialized to NULL when the structure is
987 * first created.
988 * @shp contains the shared memory structure to be modified.
989 * Return 0 if operation was successful and permission is granted.
990 * @shm_free_security:
991 * Deallocate the security struct for this memory segment.
992 * @shp contains the shared memory structure to be modified.
993 * @shm_associate:
994 * Check permission when a shared memory region is requested through the
995 * shmget system call. This hook is only called when returning the shared
996 * memory region identifier for an existing region, not when a new shared
997 * memory region is created.
998 * @shp contains the shared memory structure to be modified.
999 * @shmflg contains the operation control flags.
1000 * Return 0 if permission is granted.
1001 * @shm_shmctl:
1002 * Check permission when a shared memory control operation specified by
1003 * @cmd is to be performed on the shared memory region @shp.
1004 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1005 * @shp contains shared memory structure to be modified.
1006 * @cmd contains the operation to be performed.
1007 * Return 0 if permission is granted.
1008 * @shm_shmat:
1009 * Check permissions prior to allowing the shmat system call to attach the
1010 * shared memory segment @shp to the data segment of the calling process.
1011 * The attaching address is specified by @shmaddr.
1012 * @shp contains the shared memory structure to be modified.
1013 * @shmaddr contains the address to attach memory region to.
1014 * @shmflg contains the operational flags.
1015 * Return 0 if permission is granted.
1016 *
1017 * Security hooks for System V Semaphores
1018 *
1019 * @sem_alloc_security:
1020 * Allocate and attach a security structure to the sma->sem_perm.security
1021 * field. The security field is initialized to NULL when the structure is
1022 * first created.
1023 * @sma contains the semaphore structure
1024 * Return 0 if operation was successful and permission is granted.
1025 * @sem_free_security:
1026 * deallocate security struct for this semaphore
1027 * @sma contains the semaphore structure.
1028 * @sem_associate:
1029 * Check permission when a semaphore is requested through the semget
1030 * system call. This hook is only called when returning the semaphore
1031 * identifier for an existing semaphore, not when a new one must be
1032 * created.
1033 * @sma contains the semaphore structure.
1034 * @semflg contains the operation control flags.
1035 * Return 0 if permission is granted.
1036 * @sem_semctl:
1037 * Check permission when a semaphore operation specified by @cmd is to be
1038 * performed on the semaphore @sma. The @sma may be NULL, e.g. for
1039 * IPC_INFO or SEM_INFO.
1040 * @sma contains the semaphore structure. May be NULL.
1041 * @cmd contains the operation to be performed.
1042 * Return 0 if permission is granted.
1043 * @sem_semop
1044 * Check permissions before performing operations on members of the
1045 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
1046 * may be modified.
1047 * @sma contains the semaphore structure.
1048 * @sops contains the operations to perform.
1049 * @nsops contains the number of operations to perform.
1050 * @alter contains the flag indicating whether changes are to be made.
1051 * Return 0 if permission is granted.
1052 *
1053 * @ptrace:
1054 * Check permission before allowing the @parent process to trace the
1055 * @child process.
1056 * Security modules may also want to perform a process tracing check
1057 * during an execve in the set_security or apply_creds hooks of
1058 * binprm_security_ops if the process is being traced and its security
1059 * attributes would be changed by the execve.
1060 * @parent contains the task_struct structure for parent process.
1061 * @child contains the task_struct structure for child process.
1062 * Return 0 if permission is granted.
1063 * @capget:
1064 * Get the @effective, @inheritable, and @permitted capability sets for
1065 * the @target process. The hook may also perform permission checking to
1066 * determine if the current process is allowed to see the capability sets
1067 * of the @target process.
1068 * @target contains the task_struct structure for target process.
1069 * @effective contains the effective capability set.
1070 * @inheritable contains the inheritable capability set.
1071 * @permitted contains the permitted capability set.
1072 * Return 0 if the capability sets were successfully obtained.
1073 * @capset_check:
1074 * Check permission before setting the @effective, @inheritable, and
1075 * @permitted capability sets for the @target process.
1076 * Caveat: @target is also set to current if a set of processes is
1077 * specified (i.e. all processes other than current and init or a
1078 * particular process group). Hence, the capset_set hook may need to
1079 * revalidate permission to the actual target process.
1080 * @target contains the task_struct structure for target process.
1081 * @effective contains the effective capability set.
1082 * @inheritable contains the inheritable capability set.
1083 * @permitted contains the permitted capability set.
1084 * Return 0 if permission is granted.
1085 * @capset_set:
1086 * Set the @effective, @inheritable, and @permitted capability sets for
1087 * the @target process. Since capset_check cannot always check permission
1088 * to the real @target process, this hook may also perform permission
1089 * checking to determine if the current process is allowed to set the
1090 * capability sets of the @target process. However, this hook has no way
1091 * of returning an error due to the structure of the sys_capset code.
1092 * @target contains the task_struct structure for target process.
1093 * @effective contains the effective capability set.
1094 * @inheritable contains the inheritable capability set.
1095 * @permitted contains the permitted capability set.
1096 * @capable:
1097 * Check whether the @tsk process has the @cap capability.
1098 * @tsk contains the task_struct for the process.
1099 * @cap contains the capability <include/linux/capability.h>.
1100 * Return 0 if the capability is granted for @tsk.
1101 * @acct:
1102 * Check permission before enabling or disabling process accounting. If
1103 * accounting is being enabled, then @file refers to the open file used to
1104 * store accounting records. If accounting is being disabled, then @file
1105 * is NULL.
1106 * @file contains the file structure for the accounting file (may be NULL).
1107 * Return 0 if permission is granted.
1108 * @sysctl:
1109 * Check permission before accessing the @table sysctl variable in the
1110 * manner specified by @op.
1111 * @table contains the ctl_table structure for the sysctl variable.
1112 * @op contains the operation (001 = search, 002 = write, 004 = read).
1113 * Return 0 if permission is granted.
1114 * @syslog:
1115 * Check permission before accessing the kernel message ring or changing
1116 * logging to the console.
1117 * See the syslog(2) manual page for an explanation of the @type values.
1118 * @type contains the type of action.
1119 * Return 0 if permission is granted.
1120 * @settime:
1121 * Check permission to change the system time.
1122 * struct timespec and timezone are defined in include/linux/time.h
1123 * @ts contains new time
1124 * @tz contains new timezone
1125 * Return 0 if permission is granted.
1126 * @vm_enough_memory:
1127 * Check permissions for allocating a new virtual mapping.
1128 * @mm contains the mm struct it is being added to.
1129 * @pages contains the number of pages.
1130 * Return 0 if permission is granted.
1131 *
1132 * @register_security:
1133 * allow module stacking.
1134 * @name contains the name of the security module being stacked.
1135 * @ops contains a pointer to the struct security_operations of the module to stack.
1136 * @unregister_security:
1137 * remove a stacked module.
1138 * @name contains the name of the security module being unstacked.
1139 * @ops contains a pointer to the struct security_operations of the module to unstack.
1140 *
1141 * @secid_to_secctx:
1142 * Convert secid to security context.
1143 * @secid contains the security ID.
1144 * @secdata contains the pointer that stores the converted security context.
1145 *
1146 * @release_secctx:
1147 * Release the security context.
1148 * @secdata contains the security context.
1149 * @seclen contains the length of the security context.
1150 *
1151 * This is the main security structure.
1152 */
1153 struct security_operations {
1154 int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1155 int (*capget) (struct task_struct * target,
1156 kernel_cap_t * effective,
1157 kernel_cap_t * inheritable, kernel_cap_t * permitted);
1158 int (*capset_check) (struct task_struct * target,
1159 kernel_cap_t * effective,
1160 kernel_cap_t * inheritable,
1161 kernel_cap_t * permitted);
1162 void (*capset_set) (struct task_struct * target,
1163 kernel_cap_t * effective,
1164 kernel_cap_t * inheritable,
1165 kernel_cap_t * permitted);
1166 int (*capable) (struct task_struct * tsk, int cap);
1167 int (*acct) (struct file * file);
1168 int (*sysctl) (struct ctl_table * table, int op);
1169 int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1170 int (*quota_on) (struct dentry * dentry);
1171 int (*syslog) (int type);
1172 int (*settime) (struct timespec *ts, struct timezone *tz);
1173 int (*vm_enough_memory) (struct mm_struct *mm, long pages);
1174
1175 int (*bprm_alloc_security) (struct linux_binprm * bprm);
1176 void (*bprm_free_security) (struct linux_binprm * bprm);
1177 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1178 void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1179 int (*bprm_set_security) (struct linux_binprm * bprm);
1180 int (*bprm_check_security) (struct linux_binprm * bprm);
1181 int (*bprm_secureexec) (struct linux_binprm * bprm);
1182
1183 int (*sb_alloc_security) (struct super_block * sb);
1184 void (*sb_free_security) (struct super_block * sb);
1185 int (*sb_copy_data)(struct file_system_type *type,
1186 void *orig, void *copy);
1187 int (*sb_kern_mount) (struct super_block *sb, void *data);
1188 int (*sb_statfs) (struct dentry *dentry);
1189 int (*sb_mount) (char *dev_name, struct nameidata * nd,
1190 char *type, unsigned long flags, void *data);
1191 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1192 int (*sb_umount) (struct vfsmount * mnt, int flags);
1193 void (*sb_umount_close) (struct vfsmount * mnt);
1194 void (*sb_umount_busy) (struct vfsmount * mnt);
1195 void (*sb_post_remount) (struct vfsmount * mnt,
1196 unsigned long flags, void *data);
1197 void (*sb_post_mountroot) (void);
1198 void (*sb_post_addmount) (struct vfsmount * mnt,
1199 struct nameidata * mountpoint_nd);
1200 int (*sb_pivotroot) (struct nameidata * old_nd,
1201 struct nameidata * new_nd);
1202 void (*sb_post_pivotroot) (struct nameidata * old_nd,
1203 struct nameidata * new_nd);
1204
1205 int (*inode_alloc_security) (struct inode *inode);
1206 void (*inode_free_security) (struct inode *inode);
1207 int (*inode_init_security) (struct inode *inode, struct inode *dir,
1208 char **name, void **value, size_t *len);
1209 int (*inode_create) (struct inode *dir,
1210 struct dentry *dentry, int mode);
1211 int (*inode_link) (struct dentry *old_dentry,
1212 struct inode *dir, struct dentry *new_dentry);
1213 int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1214 int (*inode_symlink) (struct inode *dir,
1215 struct dentry *dentry, const char *old_name);
1216 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1217 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1218 int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1219 int mode, dev_t dev);
1220 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1221 struct inode *new_dir, struct dentry *new_dentry);
1222 int (*inode_readlink) (struct dentry *dentry);
1223 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1224 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1225 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
1226 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1227 void (*inode_delete) (struct inode *inode);
1228 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1229 size_t size, int flags);
1230 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1231 size_t size, int flags);
1232 int (*inode_getxattr) (struct dentry *dentry, char *name);
1233 int (*inode_listxattr) (struct dentry *dentry);
1234 int (*inode_removexattr) (struct dentry *dentry, char *name);
1235 const char *(*inode_xattr_getsuffix) (void);
1236 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1237 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1238 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1239
1240 int (*file_permission) (struct file * file, int mask);
1241 int (*file_alloc_security) (struct file * file);
1242 void (*file_free_security) (struct file * file);
1243 int (*file_ioctl) (struct file * file, unsigned int cmd,
1244 unsigned long arg);
1245 int (*file_mmap) (struct file * file,
1246 unsigned long reqprot, unsigned long prot,
1247 unsigned long flags, unsigned long addr,
1248 unsigned long addr_only);
1249 int (*file_mprotect) (struct vm_area_struct * vma,
1250 unsigned long reqprot,
1251 unsigned long prot);
1252 int (*file_lock) (struct file * file, unsigned int cmd);
1253 int (*file_fcntl) (struct file * file, unsigned int cmd,
1254 unsigned long arg);
1255 int (*file_set_fowner) (struct file * file);
1256 int (*file_send_sigiotask) (struct task_struct * tsk,
1257 struct fown_struct * fown, int sig);
1258 int (*file_receive) (struct file * file);
1259
1260 int (*task_create) (unsigned long clone_flags);
1261 int (*task_alloc_security) (struct task_struct * p);
1262 void (*task_free_security) (struct task_struct * p);
1263 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1264 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1265 uid_t old_euid, uid_t old_suid, int flags);
1266 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1267 int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1268 int (*task_getpgid) (struct task_struct * p);
1269 int (*task_getsid) (struct task_struct * p);
1270 void (*task_getsecid) (struct task_struct * p, u32 * secid);
1271 int (*task_setgroups) (struct group_info *group_info);
1272 int (*task_setnice) (struct task_struct * p, int nice);
1273 int (*task_setioprio) (struct task_struct * p, int ioprio);
1274 int (*task_getioprio) (struct task_struct * p);
1275 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1276 int (*task_setscheduler) (struct task_struct * p, int policy,
1277 struct sched_param * lp);
1278 int (*task_getscheduler) (struct task_struct * p);
1279 int (*task_movememory) (struct task_struct * p);
1280 int (*task_kill) (struct task_struct * p,
1281 struct siginfo * info, int sig, u32 secid);
1282 int (*task_wait) (struct task_struct * p);
1283 int (*task_prctl) (int option, unsigned long arg2,
1284 unsigned long arg3, unsigned long arg4,
1285 unsigned long arg5);
1286 void (*task_reparent_to_init) (struct task_struct * p);
1287 void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1288
1289 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1290
1291 int (*msg_msg_alloc_security) (struct msg_msg * msg);
1292 void (*msg_msg_free_security) (struct msg_msg * msg);
1293
1294 int (*msg_queue_alloc_security) (struct msg_queue * msq);
1295 void (*msg_queue_free_security) (struct msg_queue * msq);
1296 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1297 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1298 int (*msg_queue_msgsnd) (struct msg_queue * msq,
1299 struct msg_msg * msg, int msqflg);
1300 int (*msg_queue_msgrcv) (struct msg_queue * msq,
1301 struct msg_msg * msg,
1302 struct task_struct * target,
1303 long type, int mode);
1304
1305 int (*shm_alloc_security) (struct shmid_kernel * shp);
1306 void (*shm_free_security) (struct shmid_kernel * shp);
1307 int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1308 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1309 int (*shm_shmat) (struct shmid_kernel * shp,
1310 char __user *shmaddr, int shmflg);
1311
1312 int (*sem_alloc_security) (struct sem_array * sma);
1313 void (*sem_free_security) (struct sem_array * sma);
1314 int (*sem_associate) (struct sem_array * sma, int semflg);
1315 int (*sem_semctl) (struct sem_array * sma, int cmd);
1316 int (*sem_semop) (struct sem_array * sma,
1317 struct sembuf * sops, unsigned nsops, int alter);
1318
1319 int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1320 int (*netlink_recv) (struct sk_buff * skb, int cap);
1321
1322 /* allow module stacking */
1323 int (*register_security) (const char *name,
1324 struct security_operations *ops);
1325 int (*unregister_security) (const char *name,
1326 struct security_operations *ops);
1327
1328 void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1329
1330 int (*getprocattr)(struct task_struct *p, char *name, char **value);
1331 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1332 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
1333 void (*release_secctx)(char *secdata, u32 seclen);
1334
1335 #ifdef CONFIG_SECURITY_NETWORK
1336 int (*unix_stream_connect) (struct socket * sock,
1337 struct socket * other, struct sock * newsk);
1338 int (*unix_may_send) (struct socket * sock, struct socket * other);
1339
1340 int (*socket_create) (int family, int type, int protocol, int kern);
1341 int (*socket_post_create) (struct socket * sock, int family,
1342 int type, int protocol, int kern);
1343 int (*socket_bind) (struct socket * sock,
1344 struct sockaddr * address, int addrlen);
1345 int (*socket_connect) (struct socket * sock,
1346 struct sockaddr * address, int addrlen);
1347 int (*socket_listen) (struct socket * sock, int backlog);
1348 int (*socket_accept) (struct socket * sock, struct socket * newsock);
1349 void (*socket_post_accept) (struct socket * sock,
1350 struct socket * newsock);
1351 int (*socket_sendmsg) (struct socket * sock,
1352 struct msghdr * msg, int size);
1353 int (*socket_recvmsg) (struct socket * sock,
1354 struct msghdr * msg, int size, int flags);
1355 int (*socket_getsockname) (struct socket * sock);
1356 int (*socket_getpeername) (struct socket * sock);
1357 int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1358 int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1359 int (*socket_shutdown) (struct socket * sock, int how);
1360 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1361 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1362 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1363 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1364 void (*sk_free_security) (struct sock *sk);
1365 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1366 void (*sk_getsecid) (struct sock *sk, u32 *secid);
1367 void (*sock_graft)(struct sock* sk, struct socket *parent);
1368 int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb,
1369 struct request_sock *req);
1370 void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req);
1371 void (*inet_conn_established)(struct sock *sk, struct sk_buff *skb);
1372 void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl);
1373 #endif /* CONFIG_SECURITY_NETWORK */
1374
1375 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1376 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp,
1377 struct xfrm_user_sec_ctx *sec_ctx);
1378 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1379 void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1380 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1381 int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1382 struct xfrm_user_sec_ctx *sec_ctx,
1383 u32 secid);
1384 void (*xfrm_state_free_security) (struct xfrm_state *x);
1385 int (*xfrm_state_delete_security) (struct xfrm_state *x);
1386 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir);
1387 int (*xfrm_state_pol_flow_match)(struct xfrm_state *x,
1388 struct xfrm_policy *xp, struct flowi *fl);
1389 int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall);
1390 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1391
1392 /* key management security hooks */
1393 #ifdef CONFIG_KEYS
1394 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1395 void (*key_free)(struct key *key);
1396 int (*key_permission)(key_ref_t key_ref,
1397 struct task_struct *context,
1398 key_perm_t perm);
1399
1400 #endif /* CONFIG_KEYS */
1401
1402 };
1403
1404 /* global variables */
1405 extern struct security_operations *security_ops;
1406
1407 /* inline stuff */
1408 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1409 {
1410 return security_ops->ptrace (parent, child);
1411 }
1412
1413 static inline int security_capget (struct task_struct *target,
1414 kernel_cap_t *effective,
1415 kernel_cap_t *inheritable,
1416 kernel_cap_t *permitted)
1417 {
1418 return security_ops->capget (target, effective, inheritable, permitted);
1419 }
1420
1421 static inline int security_capset_check (struct task_struct *target,
1422 kernel_cap_t *effective,
1423 kernel_cap_t *inheritable,
1424 kernel_cap_t *permitted)
1425 {
1426 return security_ops->capset_check (target, effective, inheritable, permitted);
1427 }
1428
1429 static inline void security_capset_set (struct task_struct *target,
1430 kernel_cap_t *effective,
1431 kernel_cap_t *inheritable,
1432 kernel_cap_t *permitted)
1433 {
1434 security_ops->capset_set (target, effective, inheritable, permitted);
1435 }
1436
1437 static inline int security_capable(struct task_struct *tsk, int cap)
1438 {
1439 return security_ops->capable(tsk, cap);
1440 }
1441
1442 static inline int security_acct (struct file *file)
1443 {
1444 return security_ops->acct (file);
1445 }
1446
1447 static inline int security_sysctl(struct ctl_table *table, int op)
1448 {
1449 return security_ops->sysctl(table, op);
1450 }
1451
1452 static inline int security_quotactl (int cmds, int type, int id,
1453 struct super_block *sb)
1454 {
1455 return security_ops->quotactl (cmds, type, id, sb);
1456 }
1457
1458 static inline int security_quota_on (struct dentry * dentry)
1459 {
1460 return security_ops->quota_on (dentry);
1461 }
1462
1463 static inline int security_syslog(int type)
1464 {
1465 return security_ops->syslog(type);
1466 }
1467
1468 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1469 {
1470 return security_ops->settime(ts, tz);
1471 }
1472
1473 static inline int security_vm_enough_memory(long pages)
1474 {
1475 return security_ops->vm_enough_memory(current->mm, pages);
1476 }
1477
1478 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1479 {
1480 return security_ops->vm_enough_memory(mm, pages);
1481 }
1482
1483 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1484 {
1485 return security_ops->bprm_alloc_security (bprm);
1486 }
1487 static inline void security_bprm_free (struct linux_binprm *bprm)
1488 {
1489 security_ops->bprm_free_security (bprm);
1490 }
1491 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1492 {
1493 security_ops->bprm_apply_creds (bprm, unsafe);
1494 }
1495 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1496 {
1497 security_ops->bprm_post_apply_creds (bprm);
1498 }
1499 static inline int security_bprm_set (struct linux_binprm *bprm)
1500 {
1501 return security_ops->bprm_set_security (bprm);
1502 }
1503
1504 static inline int security_bprm_check (struct linux_binprm *bprm)
1505 {
1506 return security_ops->bprm_check_security (bprm);
1507 }
1508
1509 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1510 {
1511 return security_ops->bprm_secureexec (bprm);
1512 }
1513
1514 static inline int security_sb_alloc (struct super_block *sb)
1515 {
1516 return security_ops->sb_alloc_security (sb);
1517 }
1518
1519 static inline void security_sb_free (struct super_block *sb)
1520 {
1521 security_ops->sb_free_security (sb);
1522 }
1523
1524 static inline int security_sb_copy_data (struct file_system_type *type,
1525 void *orig, void *copy)
1526 {
1527 return security_ops->sb_copy_data (type, orig, copy);
1528 }
1529
1530 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1531 {
1532 return security_ops->sb_kern_mount (sb, data);
1533 }
1534
1535 static inline int security_sb_statfs (struct dentry *dentry)
1536 {
1537 return security_ops->sb_statfs (dentry);
1538 }
1539
1540 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1541 char *type, unsigned long flags,
1542 void *data)
1543 {
1544 return security_ops->sb_mount (dev_name, nd, type, flags, data);
1545 }
1546
1547 static inline int security_sb_check_sb (struct vfsmount *mnt,
1548 struct nameidata *nd)
1549 {
1550 return security_ops->sb_check_sb (mnt, nd);
1551 }
1552
1553 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1554 {
1555 return security_ops->sb_umount (mnt, flags);
1556 }
1557
1558 static inline void security_sb_umount_close (struct vfsmount *mnt)
1559 {
1560 security_ops->sb_umount_close (mnt);
1561 }
1562
1563 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1564 {
1565 security_ops->sb_umount_busy (mnt);
1566 }
1567
1568 static inline void security_sb_post_remount (struct vfsmount *mnt,
1569 unsigned long flags, void *data)
1570 {
1571 security_ops->sb_post_remount (mnt, flags, data);
1572 }
1573
1574 static inline void security_sb_post_mountroot (void)
1575 {
1576 security_ops->sb_post_mountroot ();
1577 }
1578
1579 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1580 struct nameidata *mountpoint_nd)
1581 {
1582 security_ops->sb_post_addmount (mnt, mountpoint_nd);
1583 }
1584
1585 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1586 struct nameidata *new_nd)
1587 {
1588 return security_ops->sb_pivotroot (old_nd, new_nd);
1589 }
1590
1591 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1592 struct nameidata *new_nd)
1593 {
1594 security_ops->sb_post_pivotroot (old_nd, new_nd);
1595 }
1596
1597 static inline int security_inode_alloc (struct inode *inode)
1598 {
1599 inode->i_security = NULL;
1600 return security_ops->inode_alloc_security (inode);
1601 }
1602
1603 static inline void security_inode_free (struct inode *inode)
1604 {
1605 security_ops->inode_free_security (inode);
1606 }
1607
1608 static inline int security_inode_init_security (struct inode *inode,
1609 struct inode *dir,
1610 char **name,
1611 void **value,
1612 size_t *len)
1613 {
1614 if (unlikely (IS_PRIVATE (inode)))
1615 return -EOPNOTSUPP;
1616 return security_ops->inode_init_security (inode, dir, name, value, len);
1617 }
1618
1619 static inline int security_inode_create (struct inode *dir,
1620 struct dentry *dentry,
1621 int mode)
1622 {
1623 if (unlikely (IS_PRIVATE (dir)))
1624 return 0;
1625 return security_ops->inode_create (dir, dentry, mode);
1626 }
1627
1628 static inline int security_inode_link (struct dentry *old_dentry,
1629 struct inode *dir,
1630 struct dentry *new_dentry)
1631 {
1632 if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1633 return 0;
1634 return security_ops->inode_link (old_dentry, dir, new_dentry);
1635 }
1636
1637 static inline int security_inode_unlink (struct inode *dir,
1638 struct dentry *dentry)
1639 {
1640 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1641 return 0;
1642 return security_ops->inode_unlink (dir, dentry);
1643 }
1644
1645 static inline int security_inode_symlink (struct inode *dir,
1646 struct dentry *dentry,
1647 const char *old_name)
1648 {
1649 if (unlikely (IS_PRIVATE (dir)))
1650 return 0;
1651 return security_ops->inode_symlink (dir, dentry, old_name);
1652 }
1653
1654 static inline int security_inode_mkdir (struct inode *dir,
1655 struct dentry *dentry,
1656 int mode)
1657 {
1658 if (unlikely (IS_PRIVATE (dir)))
1659 return 0;
1660 return security_ops->inode_mkdir (dir, dentry, mode);
1661 }
1662
1663 static inline int security_inode_rmdir (struct inode *dir,
1664 struct dentry *dentry)
1665 {
1666 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1667 return 0;
1668 return security_ops->inode_rmdir (dir, dentry);
1669 }
1670
1671 static inline int security_inode_mknod (struct inode *dir,
1672 struct dentry *dentry,
1673 int mode, dev_t dev)
1674 {
1675 if (unlikely (IS_PRIVATE (dir)))
1676 return 0;
1677 return security_ops->inode_mknod (dir, dentry, mode, dev);
1678 }
1679
1680 static inline int security_inode_rename (struct inode *old_dir,
1681 struct dentry *old_dentry,
1682 struct inode *new_dir,
1683 struct dentry *new_dentry)
1684 {
1685 if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1686 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1687 return 0;
1688 return security_ops->inode_rename (old_dir, old_dentry,
1689 new_dir, new_dentry);
1690 }
1691
1692 static inline int security_inode_readlink (struct dentry *dentry)
1693 {
1694 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1695 return 0;
1696 return security_ops->inode_readlink (dentry);
1697 }
1698
1699 static inline int security_inode_follow_link (struct dentry *dentry,
1700 struct nameidata *nd)
1701 {
1702 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1703 return 0;
1704 return security_ops->inode_follow_link (dentry, nd);
1705 }
1706
1707 static inline int security_inode_permission (struct inode *inode, int mask,
1708 struct nameidata *nd)
1709 {
1710 if (unlikely (IS_PRIVATE (inode)))
1711 return 0;
1712 return security_ops->inode_permission (inode, mask, nd);
1713 }
1714
1715 static inline int security_inode_setattr (struct dentry *dentry,
1716 struct iattr *attr)
1717 {
1718 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1719 return 0;
1720 return security_ops->inode_setattr (dentry, attr);
1721 }
1722
1723 static inline int security_inode_getattr (struct vfsmount *mnt,
1724 struct dentry *dentry)
1725 {
1726 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1727 return 0;
1728 return security_ops->inode_getattr (mnt, dentry);
1729 }
1730
1731 static inline void security_inode_delete (struct inode *inode)
1732 {
1733 if (unlikely (IS_PRIVATE (inode)))
1734 return;
1735 security_ops->inode_delete (inode);
1736 }
1737
1738 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1739 void *value, size_t size, int flags)
1740 {
1741 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1742 return 0;
1743 return security_ops->inode_setxattr (dentry, name, value, size, flags);
1744 }
1745
1746 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1747 void *value, size_t size, int flags)
1748 {
1749 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1750 return;
1751 security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1752 }
1753
1754 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1755 {
1756 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1757 return 0;
1758 return security_ops->inode_getxattr (dentry, name);
1759 }
1760
1761 static inline int security_inode_listxattr (struct dentry *dentry)
1762 {
1763 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1764 return 0;
1765 return security_ops->inode_listxattr (dentry);
1766 }
1767
1768 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1769 {
1770 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1771 return 0;
1772 return security_ops->inode_removexattr (dentry, name);
1773 }
1774
1775 static inline const char *security_inode_xattr_getsuffix(void)
1776 {
1777 return security_ops->inode_xattr_getsuffix();
1778 }
1779
1780 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1781 {
1782 if (unlikely (IS_PRIVATE (inode)))
1783 return 0;
1784 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1785 }
1786
1787 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1788 {
1789 if (unlikely (IS_PRIVATE (inode)))
1790 return 0;
1791 return security_ops->inode_setsecurity(inode, name, value, size, flags);
1792 }
1793
1794 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1795 {
1796 if (unlikely (IS_PRIVATE (inode)))
1797 return 0;
1798 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1799 }
1800
1801 static inline int security_file_permission (struct file *file, int mask)
1802 {
1803 return security_ops->file_permission (file, mask);
1804 }
1805
1806 static inline int security_file_alloc (struct file *file)
1807 {
1808 return security_ops->file_alloc_security (file);
1809 }
1810
1811 static inline void security_file_free (struct file *file)
1812 {
1813 security_ops->file_free_security (file);
1814 }
1815
1816 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1817 unsigned long arg)
1818 {
1819 return security_ops->file_ioctl (file, cmd, arg);
1820 }
1821
1822 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1823 unsigned long prot,
1824 unsigned long flags,
1825 unsigned long addr,
1826 unsigned long addr_only)
1827 {
1828 return security_ops->file_mmap (file, reqprot, prot, flags, addr,
1829 addr_only);
1830 }
1831
1832 static inline int security_file_mprotect (struct vm_area_struct *vma,
1833 unsigned long reqprot,
1834 unsigned long prot)
1835 {
1836 return security_ops->file_mprotect (vma, reqprot, prot);
1837 }
1838
1839 static inline int security_file_lock (struct file *file, unsigned int cmd)
1840 {
1841 return security_ops->file_lock (file, cmd);
1842 }
1843
1844 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1845 unsigned long arg)
1846 {
1847 return security_ops->file_fcntl (file, cmd, arg);
1848 }
1849
1850 static inline int security_file_set_fowner (struct file *file)
1851 {
1852 return security_ops->file_set_fowner (file);
1853 }
1854
1855 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1856 struct fown_struct *fown,
1857 int sig)
1858 {
1859 return security_ops->file_send_sigiotask (tsk, fown, sig);
1860 }
1861
1862 static inline int security_file_receive (struct file *file)
1863 {
1864 return security_ops->file_receive (file);
1865 }
1866
1867 static inline int security_task_create (unsigned long clone_flags)
1868 {
1869 return security_ops->task_create (clone_flags);
1870 }
1871
1872 static inline int security_task_alloc (struct task_struct *p)
1873 {
1874 return security_ops->task_alloc_security (p);
1875 }
1876
1877 static inline void security_task_free (struct task_struct *p)
1878 {
1879 security_ops->task_free_security (p);
1880 }
1881
1882 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1883 int flags)
1884 {
1885 return security_ops->task_setuid (id0, id1, id2, flags);
1886 }
1887
1888 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1889 uid_t old_suid, int flags)
1890 {
1891 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1892 }
1893
1894 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1895 int flags)
1896 {
1897 return security_ops->task_setgid (id0, id1, id2, flags);
1898 }
1899
1900 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1901 {
1902 return security_ops->task_setpgid (p, pgid);
1903 }
1904
1905 static inline int security_task_getpgid (struct task_struct *p)
1906 {
1907 return security_ops->task_getpgid (p);
1908 }
1909
1910 static inline int security_task_getsid (struct task_struct *p)
1911 {
1912 return security_ops->task_getsid (p);
1913 }
1914
1915 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1916 {
1917 security_ops->task_getsecid (p, secid);
1918 }
1919
1920 static inline int security_task_setgroups (struct group_info *group_info)
1921 {
1922 return security_ops->task_setgroups (group_info);
1923 }
1924
1925 static inline int security_task_setnice (struct task_struct *p, int nice)
1926 {
1927 return security_ops->task_setnice (p, nice);
1928 }
1929
1930 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1931 {
1932 return security_ops->task_setioprio (p, ioprio);
1933 }
1934
1935 static inline int security_task_getioprio (struct task_struct *p)
1936 {
1937 return security_ops->task_getioprio (p);
1938 }
1939
1940 static inline int security_task_setrlimit (unsigned int resource,
1941 struct rlimit *new_rlim)
1942 {
1943 return security_ops->task_setrlimit (resource, new_rlim);
1944 }
1945
1946 static inline int security_task_setscheduler (struct task_struct *p,
1947 int policy,
1948 struct sched_param *lp)
1949 {
1950 return security_ops->task_setscheduler (p, policy, lp);
1951 }
1952
1953 static inline int security_task_getscheduler (struct task_struct *p)
1954 {
1955 return security_ops->task_getscheduler (p);
1956 }
1957
1958 static inline int security_task_movememory (struct task_struct *p)
1959 {
1960 return security_ops->task_movememory (p);
1961 }
1962
1963 static inline int security_task_kill (struct task_struct *p,
1964 struct siginfo *info, int sig,
1965 u32 secid)
1966 {
1967 return security_ops->task_kill (p, info, sig, secid);
1968 }
1969
1970 static inline int security_task_wait (struct task_struct *p)
1971 {
1972 return security_ops->task_wait (p);
1973 }
1974
1975 static inline int security_task_prctl (int option, unsigned long arg2,
1976 unsigned long arg3,
1977 unsigned long arg4,
1978 unsigned long arg5)
1979 {
1980 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1981 }
1982
1983 static inline void security_task_reparent_to_init (struct task_struct *p)
1984 {
1985 security_ops->task_reparent_to_init (p);
1986 }
1987
1988 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1989 {
1990 security_ops->task_to_inode(p, inode);
1991 }
1992
1993 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1994 short flag)
1995 {
1996 return security_ops->ipc_permission (ipcp, flag);
1997 }
1998
1999 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2000 {
2001 return security_ops->msg_msg_alloc_security (msg);
2002 }
2003
2004 static inline void security_msg_msg_free (struct msg_msg * msg)
2005 {
2006 security_ops->msg_msg_free_security(msg);
2007 }
2008
2009 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2010 {
2011 return security_ops->msg_queue_alloc_security (msq);
2012 }
2013
2014 static inline void security_msg_queue_free (struct msg_queue *msq)
2015 {
2016 security_ops->msg_queue_free_security (msq);
2017 }
2018
2019 static inline int security_msg_queue_associate (struct msg_queue * msq,
2020 int msqflg)
2021 {
2022 return security_ops->msg_queue_associate (msq, msqflg);
2023 }
2024
2025 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2026 {
2027 return security_ops->msg_queue_msgctl (msq, cmd);
2028 }
2029
2030 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2031 struct msg_msg * msg, int msqflg)
2032 {
2033 return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
2034 }
2035
2036 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2037 struct msg_msg * msg,
2038 struct task_struct * target,
2039 long type, int mode)
2040 {
2041 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
2042 }
2043
2044 static inline int security_shm_alloc (struct shmid_kernel *shp)
2045 {
2046 return security_ops->shm_alloc_security (shp);
2047 }
2048
2049 static inline void security_shm_free (struct shmid_kernel *shp)
2050 {
2051 security_ops->shm_free_security (shp);
2052 }
2053
2054 static inline int security_shm_associate (struct shmid_kernel * shp,
2055 int shmflg)
2056 {
2057 return security_ops->shm_associate(shp, shmflg);
2058 }
2059
2060 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2061 {
2062 return security_ops->shm_shmctl (shp, cmd);
2063 }
2064
2065 static inline int security_shm_shmat (struct shmid_kernel * shp,
2066 char __user *shmaddr, int shmflg)
2067 {
2068 return security_ops->shm_shmat(shp, shmaddr, shmflg);
2069 }
2070
2071 static inline int security_sem_alloc (struct sem_array *sma)
2072 {
2073 return security_ops->sem_alloc_security (sma);
2074 }
2075
2076 static inline void security_sem_free (struct sem_array *sma)
2077 {
2078 security_ops->sem_free_security (sma);
2079 }
2080
2081 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2082 {
2083 return security_ops->sem_associate (sma, semflg);
2084 }
2085
2086 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2087 {
2088 return security_ops->sem_semctl(sma, cmd);
2089 }
2090
2091 static inline int security_sem_semop (struct sem_array * sma,
2092 struct sembuf * sops, unsigned nsops,
2093 int alter)
2094 {
2095 return security_ops->sem_semop(sma, sops, nsops, alter);
2096 }
2097
2098 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2099 {
2100 if (unlikely (inode && IS_PRIVATE (inode)))
2101 return;
2102 security_ops->d_instantiate (dentry, inode);
2103 }
2104
2105 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2106 {
2107 return security_ops->getprocattr(p, name, value);
2108 }
2109
2110 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2111 {
2112 return security_ops->setprocattr(p, name, value, size);
2113 }
2114
2115 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2116 {
2117 return security_ops->netlink_send(sk, skb);
2118 }
2119
2120 static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2121 {
2122 return security_ops->netlink_recv(skb, cap);
2123 }
2124
2125 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2126 {
2127 return security_ops->secid_to_secctx(secid, secdata, seclen);
2128 }
2129
2130 static inline void security_release_secctx(char *secdata, u32 seclen)
2131 {
2132 return security_ops->release_secctx(secdata, seclen);
2133 }
2134
2135 /* prototypes */
2136 extern int security_init (void);
2137 extern int register_security (struct security_operations *ops);
2138 extern int unregister_security (struct security_operations *ops);
2139 extern int mod_reg_security (const char *name, struct security_operations *ops);
2140 extern int mod_unreg_security (const char *name, struct security_operations *ops);
2141 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2142 struct dentry *parent, void *data,
2143 const struct file_operations *fops);
2144 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2145 extern void securityfs_remove(struct dentry *dentry);
2146
2147
2148 #else /* CONFIG_SECURITY */
2149
2150 /*
2151 * This is the default capabilities functionality. Most of these functions
2152 * are just stubbed out, but a few must call the proper capable code.
2153 */
2154
2155 static inline int security_init(void)
2156 {
2157 return 0;
2158 }
2159
2160 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2161 {
2162 return cap_ptrace (parent, child);
2163 }
2164
2165 static inline int security_capget (struct task_struct *target,
2166 kernel_cap_t *effective,
2167 kernel_cap_t *inheritable,
2168 kernel_cap_t *permitted)
2169 {
2170 return cap_capget (target, effective, inheritable, permitted);
2171 }
2172
2173 static inline int security_capset_check (struct task_struct *target,
2174 kernel_cap_t *effective,
2175 kernel_cap_t *inheritable,
2176 kernel_cap_t *permitted)
2177 {
2178 return cap_capset_check (target, effective, inheritable, permitted);
2179 }
2180
2181 static inline void security_capset_set (struct task_struct *target,
2182 kernel_cap_t *effective,
2183 kernel_cap_t *inheritable,
2184 kernel_cap_t *permitted)
2185 {
2186 cap_capset_set (target, effective, inheritable, permitted);
2187 }
2188
2189 static inline int security_capable(struct task_struct *tsk, int cap)
2190 {
2191 return cap_capable(tsk, cap);
2192 }
2193
2194 static inline int security_acct (struct file *file)
2195 {
2196 return 0;
2197 }
2198
2199 static inline int security_sysctl(struct ctl_table *table, int op)
2200 {
2201 return 0;
2202 }
2203
2204 static inline int security_quotactl (int cmds, int type, int id,
2205 struct super_block * sb)
2206 {
2207 return 0;
2208 }
2209
2210 static inline int security_quota_on (struct dentry * dentry)
2211 {
2212 return 0;
2213 }
2214
2215 static inline int security_syslog(int type)
2216 {
2217 return cap_syslog(type);
2218 }
2219
2220 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2221 {
2222 return cap_settime(ts, tz);
2223 }
2224
2225 static inline int security_vm_enough_memory(long pages)
2226 {
2227 return cap_vm_enough_memory(current->mm, pages);
2228 }
2229
2230 static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
2231 {
2232 return cap_vm_enough_memory(mm, pages);
2233 }
2234
2235 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2236 {
2237 return 0;
2238 }
2239
2240 static inline void security_bprm_free (struct linux_binprm *bprm)
2241 { }
2242
2243 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2244 {
2245 cap_bprm_apply_creds (bprm, unsafe);
2246 }
2247
2248 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2249 {
2250 return;
2251 }
2252
2253 static inline int security_bprm_set (struct linux_binprm *bprm)
2254 {
2255 return cap_bprm_set_security (bprm);
2256 }
2257
2258 static inline int security_bprm_check (struct linux_binprm *bprm)
2259 {
2260 return 0;
2261 }
2262
2263 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2264 {
2265 return cap_bprm_secureexec(bprm);
2266 }
2267
2268 static inline int security_sb_alloc (struct super_block *sb)
2269 {
2270 return 0;
2271 }
2272
2273 static inline void security_sb_free (struct super_block *sb)
2274 { }
2275
2276 static inline int security_sb_copy_data (struct file_system_type *type,
2277 void *orig, void *copy)
2278 {
2279 return 0;
2280 }
2281
2282 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2283 {
2284 return 0;
2285 }
2286
2287 static inline int security_sb_statfs (struct dentry *dentry)
2288 {
2289 return 0;
2290 }
2291
2292 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2293 char *type, unsigned long flags,
2294 void *data)
2295 {
2296 return 0;
2297 }
2298
2299 static inline int security_sb_check_sb (struct vfsmount *mnt,
2300 struct nameidata *nd)
2301 {
2302 return 0;
2303 }
2304
2305 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2306 {
2307 return 0;
2308 }
2309
2310 static inline void security_sb_umount_close (struct vfsmount *mnt)
2311 { }
2312
2313 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2314 { }
2315
2316 static inline void security_sb_post_remount (struct vfsmount *mnt,
2317 unsigned long flags, void *data)
2318 { }
2319
2320 static inline void security_sb_post_mountroot (void)
2321 { }
2322
2323 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2324 struct nameidata *mountpoint_nd)
2325 { }
2326
2327 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2328 struct nameidata *new_nd)
2329 {
2330 return 0;
2331 }
2332
2333 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2334 struct nameidata *new_nd)
2335 { }
2336
2337 static inline int security_inode_alloc (struct inode *inode)
2338 {
2339 return 0;
2340 }
2341
2342 static inline void security_inode_free (struct inode *inode)
2343 { }
2344
2345 static inline int security_inode_init_security (struct inode *inode,
2346 struct inode *dir,
2347 char **name,
2348 void **value,
2349 size_t *len)
2350 {
2351 return -EOPNOTSUPP;
2352 }
2353
2354 static inline int security_inode_create (struct inode *dir,
2355 struct dentry *dentry,
2356 int mode)
2357 {
2358 return 0;
2359 }
2360
2361 static inline int security_inode_link (struct dentry *old_dentry,
2362 struct inode *dir,
2363 struct dentry *new_dentry)
2364 {
2365 return 0;
2366 }
2367
2368 static inline int security_inode_unlink (struct inode *dir,
2369 struct dentry *dentry)
2370 {
2371 return 0;
2372 }
2373
2374 static inline int security_inode_symlink (struct inode *dir,
2375 struct dentry *dentry,
2376 const char *old_name)
2377 {
2378 return 0;
2379 }
2380
2381 static inline int security_inode_mkdir (struct inode *dir,
2382 struct dentry *dentry,
2383 int mode)
2384 {
2385 return 0;
2386 }
2387
2388 static inline int security_inode_rmdir (struct inode *dir,
2389 struct dentry *dentry)
2390 {
2391 return 0;
2392 }
2393
2394 static inline int security_inode_mknod (struct inode *dir,
2395 struct dentry *dentry,
2396 int mode, dev_t dev)
2397 {
2398 return 0;
2399 }
2400
2401 static inline int security_inode_rename (struct inode *old_dir,
2402 struct dentry *old_dentry,
2403 struct inode *new_dir,
2404 struct dentry *new_dentry)
2405 {
2406 return 0;
2407 }
2408
2409 static inline int security_inode_readlink (struct dentry *dentry)
2410 {
2411 return 0;
2412 }
2413
2414 static inline int security_inode_follow_link (struct dentry *dentry,
2415 struct nameidata *nd)
2416 {
2417 return 0;
2418 }
2419
2420 static inline int security_inode_permission (struct inode *inode, int mask,
2421 struct nameidata *nd)
2422 {
2423 return 0;
2424 }
2425
2426 static inline int security_inode_setattr (struct dentry *dentry,
2427 struct iattr *attr)
2428 {
2429 return 0;
2430 }
2431
2432 static inline int security_inode_getattr (struct vfsmount *mnt,
2433 struct dentry *dentry)
2434 {
2435 return 0;
2436 }
2437
2438 static inline void security_inode_delete (struct inode *inode)
2439 { }
2440
2441 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2442 void *value, size_t size, int flags)
2443 {
2444 return cap_inode_setxattr(dentry, name, value, size, flags);
2445 }
2446
2447 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2448 void *value, size_t size, int flags)
2449 { }
2450
2451 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2452 {
2453 return 0;
2454 }
2455
2456 static inline int security_inode_listxattr (struct dentry *dentry)
2457 {
2458 return 0;
2459 }
2460
2461 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2462 {
2463 return cap_inode_removexattr(dentry, name);
2464 }
2465
2466 static inline const char *security_inode_xattr_getsuffix (void)
2467 {
2468 return NULL ;
2469 }
2470
2471 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2472 {
2473 return -EOPNOTSUPP;
2474 }
2475
2476 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2477 {
2478 return -EOPNOTSUPP;
2479 }
2480
2481 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2482 {
2483 return 0;
2484 }
2485
2486 static inline int security_file_permission (struct file *file, int mask)
2487 {
2488 return 0;
2489 }
2490
2491 static inline int security_file_alloc (struct file *file)
2492 {
2493 return 0;
2494 }
2495
2496 static inline void security_file_free (struct file *file)
2497 { }
2498
2499 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2500 unsigned long arg)
2501 {
2502 return 0;
2503 }
2504
2505 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2506 unsigned long prot,
2507 unsigned long flags,
2508 unsigned long addr,
2509 unsigned long addr_only)
2510 {
2511 return 0;
2512 }
2513
2514 static inline int security_file_mprotect (struct vm_area_struct *vma,
2515 unsigned long reqprot,
2516 unsigned long prot)
2517 {
2518 return 0;
2519 }
2520
2521 static inline int security_file_lock (struct file *file, unsigned int cmd)
2522 {
2523 return 0;
2524 }
2525
2526 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2527 unsigned long arg)
2528 {
2529 return 0;
2530 }
2531
2532 static inline int security_file_set_fowner (struct file *file)
2533 {
2534 return 0;
2535 }
2536
2537 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2538 struct fown_struct *fown,
2539 int sig)
2540 {
2541 return 0;
2542 }
2543
2544 static inline int security_file_receive (struct file *file)
2545 {
2546 return 0;
2547 }
2548
2549 static inline int security_task_create (unsigned long clone_flags)
2550 {
2551 return 0;
2552 }
2553
2554 static inline int security_task_alloc (struct task_struct *p)
2555 {
2556 return 0;
2557 }
2558
2559 static inline void security_task_free (struct task_struct *p)
2560 { }
2561
2562 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2563 int flags)
2564 {
2565 return 0;
2566 }
2567
2568 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2569 uid_t old_suid, int flags)
2570 {
2571 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2572 }
2573
2574 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2575 int flags)
2576 {
2577 return 0;
2578 }
2579
2580 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2581 {
2582 return 0;
2583 }
2584
2585 static inline int security_task_getpgid (struct task_struct *p)
2586 {
2587 return 0;
2588 }
2589
2590 static inline int security_task_getsid (struct task_struct *p)
2591 {
2592 return 0;
2593 }
2594
2595 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2596 { }
2597
2598 static inline int security_task_setgroups (struct group_info *group_info)
2599 {
2600 return 0;
2601 }
2602
2603 static inline int security_task_setnice (struct task_struct *p, int nice)
2604 {
2605 return 0;
2606 }
2607
2608 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2609 {
2610 return 0;
2611 }
2612
2613 static inline int security_task_getioprio (struct task_struct *p)
2614 {
2615 return 0;
2616 }
2617
2618 static inline int security_task_setrlimit (unsigned int resource,
2619 struct rlimit *new_rlim)
2620 {
2621 return 0;
2622 }
2623
2624 static inline int security_task_setscheduler (struct task_struct *p,
2625 int policy,
2626 struct sched_param *lp)
2627 {
2628 return 0;
2629 }
2630
2631 static inline int security_task_getscheduler (struct task_struct *p)
2632 {
2633 return 0;
2634 }
2635
2636 static inline int security_task_movememory (struct task_struct *p)
2637 {
2638 return 0;
2639 }
2640
2641 static inline int security_task_kill (struct task_struct *p,
2642 struct siginfo *info, int sig,
2643 u32 secid)
2644 {
2645 return 0;
2646 }
2647
2648 static inline int security_task_wait (struct task_struct *p)
2649 {
2650 return 0;
2651 }
2652
2653 static inline int security_task_prctl (int option, unsigned long arg2,
2654 unsigned long arg3,
2655 unsigned long arg4,
2656 unsigned long arg5)
2657 {
2658 return 0;
2659 }
2660
2661 static inline void security_task_reparent_to_init (struct task_struct *p)
2662 {
2663 cap_task_reparent_to_init (p);
2664 }
2665
2666 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2667 { }
2668
2669 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2670 short flag)
2671 {
2672 return 0;
2673 }
2674
2675 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2676 {
2677 return 0;
2678 }
2679
2680 static inline void security_msg_msg_free (struct msg_msg * msg)
2681 { }
2682
2683 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2684 {
2685 return 0;
2686 }
2687
2688 static inline void security_msg_queue_free (struct msg_queue *msq)
2689 { }
2690
2691 static inline int security_msg_queue_associate (struct msg_queue * msq,
2692 int msqflg)
2693 {
2694 return 0;
2695 }
2696
2697 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2698 {
2699 return 0;
2700 }
2701
2702 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2703 struct msg_msg * msg, int msqflg)
2704 {
2705 return 0;
2706 }
2707
2708 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2709 struct msg_msg * msg,
2710 struct task_struct * target,
2711 long type, int mode)
2712 {
2713 return 0;
2714 }
2715
2716 static inline int security_shm_alloc (struct shmid_kernel *shp)
2717 {
2718 return 0;
2719 }
2720
2721 static inline void security_shm_free (struct shmid_kernel *shp)
2722 { }
2723
2724 static inline int security_shm_associate (struct shmid_kernel * shp,
2725 int shmflg)
2726 {
2727 return 0;
2728 }
2729
2730 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2731 {
2732 return 0;
2733 }
2734
2735 static inline int security_shm_shmat (struct shmid_kernel * shp,
2736 char __user *shmaddr, int shmflg)
2737 {
2738 return 0;
2739 }
2740
2741 static inline int security_sem_alloc (struct sem_array *sma)
2742 {
2743 return 0;
2744 }
2745
2746 static inline void security_sem_free (struct sem_array *sma)
2747 { }
2748
2749 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2750 {
2751 return 0;
2752 }
2753
2754 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2755 {
2756 return 0;
2757 }
2758
2759 static inline int security_sem_semop (struct sem_array * sma,
2760 struct sembuf * sops, unsigned nsops,
2761 int alter)
2762 {
2763 return 0;
2764 }
2765
2766 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2767 { }
2768
2769 static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2770 {
2771 return -EINVAL;
2772 }
2773
2774 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2775 {
2776 return -EINVAL;
2777 }
2778
2779 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2780 {
2781 return cap_netlink_send (sk, skb);
2782 }
2783
2784 static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2785 {
2786 return cap_netlink_recv (skb, cap);
2787 }
2788
2789 static inline struct dentry *securityfs_create_dir(const char *name,
2790 struct dentry *parent)
2791 {
2792 return ERR_PTR(-ENODEV);
2793 }
2794
2795 static inline struct dentry *securityfs_create_file(const char *name,
2796 mode_t mode,
2797 struct dentry *parent,
2798 void *data,
2799 struct file_operations *fops)
2800 {
2801 return ERR_PTR(-ENODEV);
2802 }
2803
2804 static inline void securityfs_remove(struct dentry *dentry)
2805 {
2806 }
2807
2808 static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2809 {
2810 return -EOPNOTSUPP;
2811 }
2812
2813 static inline void security_release_secctx(char *secdata, u32 seclen)
2814 {
2815 }
2816 #endif /* CONFIG_SECURITY */
2817
2818 #ifdef CONFIG_SECURITY_NETWORK
2819 static inline int security_unix_stream_connect(struct socket * sock,
2820 struct socket * other,
2821 struct sock * newsk)
2822 {
2823 return security_ops->unix_stream_connect(sock, other, newsk);
2824 }
2825
2826
2827 static inline int security_unix_may_send(struct socket * sock,
2828 struct socket * other)
2829 {
2830 return security_ops->unix_may_send(sock, other);
2831 }
2832
2833 static inline int security_socket_create (int family, int type,
2834 int protocol, int kern)
2835 {
2836 return security_ops->socket_create(family, type, protocol, kern);
2837 }
2838
2839 static inline int security_socket_post_create(struct socket * sock,
2840 int family,
2841 int type,
2842 int protocol, int kern)
2843 {
2844 return security_ops->socket_post_create(sock, family, type,
2845 protocol, kern);
2846 }
2847
2848 static inline int security_socket_bind(struct socket * sock,
2849 struct sockaddr * address,
2850 int addrlen)
2851 {
2852 return security_ops->socket_bind(sock, address, addrlen);
2853 }
2854
2855 static inline int security_socket_connect(struct socket * sock,
2856 struct sockaddr * address,
2857 int addrlen)
2858 {
2859 return security_ops->socket_connect(sock, address, addrlen);
2860 }
2861
2862 static inline int security_socket_listen(struct socket * sock, int backlog)
2863 {
2864 return security_ops->socket_listen(sock, backlog);
2865 }
2866
2867 static inline int security_socket_accept(struct socket * sock,
2868 struct socket * newsock)
2869 {
2870 return security_ops->socket_accept(sock, newsock);
2871 }
2872
2873 static inline void security_socket_post_accept(struct socket * sock,
2874 struct socket * newsock)
2875 {
2876 security_ops->socket_post_accept(sock, newsock);
2877 }
2878
2879 static inline int security_socket_sendmsg(struct socket * sock,
2880 struct msghdr * msg, int size)
2881 {
2882 return security_ops->socket_sendmsg(sock, msg, size);
2883 }
2884
2885 static inline int security_socket_recvmsg(struct socket * sock,
2886 struct msghdr * msg, int size,
2887 int flags)
2888 {
2889 return security_ops->socket_recvmsg(sock, msg, size, flags);
2890 }
2891
2892 static inline int security_socket_getsockname(struct socket * sock)
2893 {
2894 return security_ops->socket_getsockname(sock);
2895 }
2896
2897 static inline int security_socket_getpeername(struct socket * sock)
2898 {
2899 return security_ops->socket_getpeername(sock);
2900 }
2901
2902 static inline int security_socket_getsockopt(struct socket * sock,
2903 int level, int optname)
2904 {
2905 return security_ops->socket_getsockopt(sock, level, optname);
2906 }
2907
2908 static inline int security_socket_setsockopt(struct socket * sock,
2909 int level, int optname)
2910 {
2911 return security_ops->socket_setsockopt(sock, level, optname);
2912 }
2913
2914 static inline int security_socket_shutdown(struct socket * sock, int how)
2915 {
2916 return security_ops->socket_shutdown(sock, how);
2917 }
2918
2919 static inline int security_sock_rcv_skb (struct sock * sk,
2920 struct sk_buff * skb)
2921 {
2922 return security_ops->socket_sock_rcv_skb (sk, skb);
2923 }
2924
2925 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2926 int __user *optlen, unsigned len)
2927 {
2928 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2929 }
2930
2931 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2932 {
2933 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
2934 }
2935
2936 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2937 {
2938 return security_ops->sk_alloc_security(sk, family, priority);
2939 }
2940
2941 static inline void security_sk_free(struct sock *sk)
2942 {
2943 return security_ops->sk_free_security(sk);
2944 }
2945
2946 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2947 {
2948 return security_ops->sk_clone_security(sk, newsk);
2949 }
2950
2951 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2952 {
2953 security_ops->sk_getsecid(sk, &fl->secid);
2954 }
2955
2956 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2957 {
2958 security_ops->req_classify_flow(req, fl);
2959 }
2960
2961 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
2962 {
2963 security_ops->sock_graft(sk, parent);
2964 }
2965
2966 static inline int security_inet_conn_request(struct sock *sk,
2967 struct sk_buff *skb, struct request_sock *req)
2968 {
2969 return security_ops->inet_conn_request(sk, skb, req);
2970 }
2971
2972 static inline void security_inet_csk_clone(struct sock *newsk,
2973 const struct request_sock *req)
2974 {
2975 security_ops->inet_csk_clone(newsk, req);
2976 }
2977
2978 static inline void security_inet_conn_established(struct sock *sk,
2979 struct sk_buff *skb)
2980 {
2981 security_ops->inet_conn_established(sk, skb);
2982 }
2983 #else /* CONFIG_SECURITY_NETWORK */
2984 static inline int security_unix_stream_connect(struct socket * sock,
2985 struct socket * other,
2986 struct sock * newsk)
2987 {
2988 return 0;
2989 }
2990
2991 static inline int security_unix_may_send(struct socket * sock,
2992 struct socket * other)
2993 {
2994 return 0;
2995 }
2996
2997 static inline int security_socket_create (int family, int type,
2998 int protocol, int kern)
2999 {
3000 return 0;
3001 }
3002
3003 static inline int security_socket_post_create(struct socket * sock,
3004 int family,
3005 int type,
3006 int protocol, int kern)
3007 {
3008 return 0;
3009 }
3010
3011 static inline int security_socket_bind(struct socket * sock,
3012 struct sockaddr * address,
3013 int addrlen)
3014 {
3015 return 0;
3016 }
3017
3018 static inline int security_socket_connect(struct socket * sock,
3019 struct sockaddr * address,
3020 int addrlen)
3021 {
3022 return 0;
3023 }
3024
3025 static inline int security_socket_listen(struct socket * sock, int backlog)
3026 {
3027 return 0;
3028 }
3029
3030 static inline int security_socket_accept(struct socket * sock,
3031 struct socket * newsock)
3032 {
3033 return 0;
3034 }
3035
3036 static inline void security_socket_post_accept(struct socket * sock,
3037 struct socket * newsock)
3038 {
3039 }
3040
3041 static inline int security_socket_sendmsg(struct socket * sock,
3042 struct msghdr * msg, int size)
3043 {
3044 return 0;
3045 }
3046
3047 static inline int security_socket_recvmsg(struct socket * sock,
3048 struct msghdr * msg, int size,
3049 int flags)
3050 {
3051 return 0;
3052 }
3053
3054 static inline int security_socket_getsockname(struct socket * sock)
3055 {
3056 return 0;
3057 }
3058
3059 static inline int security_socket_getpeername(struct socket * sock)
3060 {
3061 return 0;
3062 }
3063
3064 static inline int security_socket_getsockopt(struct socket * sock,
3065 int level, int optname)
3066 {
3067 return 0;
3068 }
3069
3070 static inline int security_socket_setsockopt(struct socket * sock,
3071 int level, int optname)
3072 {
3073 return 0;
3074 }
3075
3076 static inline int security_socket_shutdown(struct socket * sock, int how)
3077 {
3078 return 0;
3079 }
3080 static inline int security_sock_rcv_skb (struct sock * sk,
3081 struct sk_buff * skb)
3082 {
3083 return 0;
3084 }
3085
3086 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3087 int __user *optlen, unsigned len)
3088 {
3089 return -ENOPROTOOPT;
3090 }
3091
3092 static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3093 {
3094 return -ENOPROTOOPT;
3095 }
3096
3097 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
3098 {
3099 return 0;
3100 }
3101
3102 static inline void security_sk_free(struct sock *sk)
3103 {
3104 }
3105
3106 static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
3107 {
3108 }
3109
3110 static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
3111 {
3112 }
3113
3114 static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
3115 {
3116 }
3117
3118 static inline void security_sock_graft(struct sock* sk, struct socket *parent)
3119 {
3120 }
3121
3122 static inline int security_inet_conn_request(struct sock *sk,
3123 struct sk_buff *skb, struct request_sock *req)
3124 {
3125 return 0;
3126 }
3127
3128 static inline void security_inet_csk_clone(struct sock *newsk,
3129 const struct request_sock *req)
3130 {
3131 }
3132
3133 static inline void security_inet_conn_established(struct sock *sk,
3134 struct sk_buff *skb)
3135 {
3136 }
3137 #endif /* CONFIG_SECURITY_NETWORK */
3138
3139 #ifdef CONFIG_SECURITY_NETWORK_XFRM
3140 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3141 {
3142 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
3143 }
3144
3145 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3146 {
3147 return security_ops->xfrm_policy_clone_security(old, new);
3148 }
3149
3150 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3151 {
3152 security_ops->xfrm_policy_free_security(xp);
3153 }
3154
3155 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3156 {
3157 return security_ops->xfrm_policy_delete_security(xp);
3158 }
3159
3160 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3161 struct xfrm_user_sec_ctx *sec_ctx)
3162 {
3163 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
3164 }
3165
3166 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3167 struct xfrm_sec_ctx *polsec, u32 secid)
3168 {
3169 if (!polsec)
3170 return 0;
3171 /*
3172 * We want the context to be taken from secid which is usually
3173 * from the sock.
3174 */
3175 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
3176 }
3177
3178 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3179 {
3180 return security_ops->xfrm_state_delete_security(x);
3181 }
3182
3183 static inline void security_xfrm_state_free(struct xfrm_state *x)
3184 {
3185 security_ops->xfrm_state_free_security(x);
3186 }
3187
3188 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3189 {
3190 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
3191 }
3192
3193 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3194 struct xfrm_policy *xp, struct flowi *fl)
3195 {
3196 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
3197 }
3198
3199 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3200 {
3201 return security_ops->xfrm_decode_session(skb, secid, 1);
3202 }
3203
3204 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3205 {
3206 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
3207
3208 BUG_ON(rc);
3209 }
3210 #else /* CONFIG_SECURITY_NETWORK_XFRM */
3211 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3212 {
3213 return 0;
3214 }
3215
3216 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3217 {
3218 return 0;
3219 }
3220
3221 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3222 {
3223 }
3224
3225 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3226 {
3227 return 0;
3228 }
3229
3230 static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3231 struct xfrm_user_sec_ctx *sec_ctx)
3232 {
3233 return 0;
3234 }
3235
3236 static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3237 struct xfrm_sec_ctx *polsec, u32 secid)
3238 {
3239 return 0;
3240 }
3241
3242 static inline void security_xfrm_state_free(struct xfrm_state *x)
3243 {
3244 }
3245
3246 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3247 {
3248 return 0;
3249 }
3250
3251 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3252 {
3253 return 0;
3254 }
3255
3256 static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3257 struct xfrm_policy *xp, struct flowi *fl)
3258 {
3259 return 1;
3260 }
3261
3262 static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3263 {
3264 return 0;
3265 }
3266
3267 static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3268 {
3269 }
3270
3271 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
3272
3273 #ifdef CONFIG_KEYS
3274 #ifdef CONFIG_SECURITY
3275 static inline int security_key_alloc(struct key *key,
3276 struct task_struct *tsk,
3277 unsigned long flags)
3278 {
3279 return security_ops->key_alloc(key, tsk, flags);
3280 }
3281
3282 static inline void security_key_free(struct key *key)
3283 {
3284 security_ops->key_free(key);
3285 }
3286
3287 static inline int security_key_permission(key_ref_t key_ref,
3288 struct task_struct *context,
3289 key_perm_t perm)
3290 {
3291 return security_ops->key_permission(key_ref, context, perm);
3292 }
3293
3294 #else
3295
3296 static inline int security_key_alloc(struct key *key,
3297 struct task_struct *tsk,
3298 unsigned long flags)
3299 {
3300 return 0;
3301 }
3302
3303 static inline void security_key_free(struct key *key)
3304 {
3305 }
3306
3307 static inline int security_key_permission(key_ref_t key_ref,
3308 struct task_struct *context,
3309 key_perm_t perm)
3310 {
3311 return 0;
3312 }
3313
3314 #endif
3315 #endif /* CONFIG_KEYS */
3316
3317 #endif /* ! __LINUX_SECURITY_H */
3318
This page took 0.104809 seconds and 6 git commands to generate.