Linux 4.3-rc2
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41
42 /* A. Checksumming of received packets by device.
43 *
44 * CHECKSUM_NONE:
45 *
46 * Device failed to checksum this packet e.g. due to lack of capabilities.
47 * The packet contains full (though not verified) checksum in packet but
48 * not in skb->csum. Thus, skb->csum is undefined in this case.
49 *
50 * CHECKSUM_UNNECESSARY:
51 *
52 * The hardware you're dealing with doesn't calculate the full checksum
53 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
54 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
55 * if their checksums are okay. skb->csum is still undefined in this case
56 * though. It is a bad option, but, unfortunately, nowadays most vendors do
57 * this. Apparently with the secret goal to sell you new devices, when you
58 * will add new protocol to your host, f.e. IPv6 8)
59 *
60 * CHECKSUM_UNNECESSARY is applicable to following protocols:
61 * TCP: IPv6 and IPv4.
62 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
63 * zero UDP checksum for either IPv4 or IPv6, the networking stack
64 * may perform further validation in this case.
65 * GRE: only if the checksum is present in the header.
66 * SCTP: indicates the CRC in SCTP header has been validated.
67 *
68 * skb->csum_level indicates the number of consecutive checksums found in
69 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
70 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
71 * and a device is able to verify the checksums for UDP (possibly zero),
72 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
73 * two. If the device were only able to verify the UDP checksum and not
74 * GRE, either because it doesn't support GRE checksum of because GRE
75 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
76 * not considered in this case).
77 *
78 * CHECKSUM_COMPLETE:
79 *
80 * This is the most generic way. The device supplied checksum of the _whole_
81 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
82 * hardware doesn't need to parse L3/L4 headers to implement this.
83 *
84 * Note: Even if device supports only some protocols, but is able to produce
85 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 *
87 * CHECKSUM_PARTIAL:
88 *
89 * A checksum is set up to be offloaded to a device as described in the
90 * output description for CHECKSUM_PARTIAL. This may occur on a packet
91 * received directly from another Linux OS, e.g., a virtualized Linux kernel
92 * on the same host, or it may be set in the input path in GRO or remote
93 * checksum offload. For the purposes of checksum verification, the checksum
94 * referred to by skb->csum_start + skb->csum_offset and any preceding
95 * checksums in the packet are considered verified. Any checksums in the
96 * packet that are after the checksum being offloaded are not considered to
97 * be verified.
98 *
99 * B. Checksumming on output.
100 *
101 * CHECKSUM_NONE:
102 *
103 * The skb was already checksummed by the protocol, or a checksum is not
104 * required.
105 *
106 * CHECKSUM_PARTIAL:
107 *
108 * The device is required to checksum the packet as seen by hard_start_xmit()
109 * from skb->csum_start up to the end, and to record/write the checksum at
110 * offset skb->csum_start + skb->csum_offset.
111 *
112 * The device must show its capabilities in dev->features, set up at device
113 * setup time, e.g. netdev_features.h:
114 *
115 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
116 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
117 * IPv4. Sigh. Vendors like this way for an unknown reason.
118 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
119 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
120 * NETIF_F_... - Well, you get the picture.
121 *
122 * CHECKSUM_UNNECESSARY:
123 *
124 * Normally, the device will do per protocol specific checksumming. Protocol
125 * implementations that do not want the NIC to perform the checksum
126 * calculation should use this flag in their outgoing skbs.
127 *
128 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
129 * offload. Correspondingly, the FCoE protocol driver
130 * stack should use CHECKSUM_UNNECESSARY.
131 *
132 * Any questions? No questions, good. --ANK
133 */
134
135 /* Don't change this without changing skb_csum_unnecessary! */
136 #define CHECKSUM_NONE 0
137 #define CHECKSUM_UNNECESSARY 1
138 #define CHECKSUM_COMPLETE 2
139 #define CHECKSUM_PARTIAL 3
140
141 /* Maximum value in skb->csum_level */
142 #define SKB_MAX_CSUM_LEVEL 3
143
144 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
145 #define SKB_WITH_OVERHEAD(X) \
146 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
147 #define SKB_MAX_ORDER(X, ORDER) \
148 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
149 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
150 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
151
152 /* return minimum truesize of one skb containing X bytes of data */
153 #define SKB_TRUESIZE(X) ((X) + \
154 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
156
157 struct net_device;
158 struct scatterlist;
159 struct pipe_inode_info;
160 struct iov_iter;
161 struct napi_struct;
162
163 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
164 struct nf_conntrack {
165 atomic_t use;
166 };
167 #endif
168
169 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
170 struct nf_bridge_info {
171 atomic_t use;
172 enum {
173 BRNF_PROTO_UNCHANGED,
174 BRNF_PROTO_8021Q,
175 BRNF_PROTO_PPPOE
176 } orig_proto:8;
177 u8 pkt_otherhost:1;
178 u8 in_prerouting:1;
179 u8 bridged_dnat:1;
180 __u16 frag_max_size;
181 struct net_device *physindev;
182 union {
183 /* prerouting: detect dnat in orig/reply direction */
184 __be32 ipv4_daddr;
185 struct in6_addr ipv6_daddr;
186
187 /* after prerouting + nat detected: store original source
188 * mac since neigh resolution overwrites it, only used while
189 * skb is out in neigh layer.
190 */
191 char neigh_header[8];
192
193 /* always valid & non-NULL from FORWARD on, for physdev match */
194 struct net_device *physoutdev;
195 };
196 };
197 #endif
198
199 struct sk_buff_head {
200 /* These two members must be first. */
201 struct sk_buff *next;
202 struct sk_buff *prev;
203
204 __u32 qlen;
205 spinlock_t lock;
206 };
207
208 struct sk_buff;
209
210 /* To allow 64K frame to be packed as single skb without frag_list we
211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
212 * buffers which do not start on a page boundary.
213 *
214 * Since GRO uses frags we allocate at least 16 regardless of page
215 * size.
216 */
217 #if (65536/PAGE_SIZE + 1) < 16
218 #define MAX_SKB_FRAGS 16UL
219 #else
220 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
221 #endif
222
223 typedef struct skb_frag_struct skb_frag_t;
224
225 struct skb_frag_struct {
226 struct {
227 struct page *p;
228 } page;
229 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
230 __u32 page_offset;
231 __u32 size;
232 #else
233 __u16 page_offset;
234 __u16 size;
235 #endif
236 };
237
238 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
239 {
240 return frag->size;
241 }
242
243 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
244 {
245 frag->size = size;
246 }
247
248 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
249 {
250 frag->size += delta;
251 }
252
253 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
254 {
255 frag->size -= delta;
256 }
257
258 #define HAVE_HW_TIME_STAMP
259
260 /**
261 * struct skb_shared_hwtstamps - hardware time stamps
262 * @hwtstamp: hardware time stamp transformed into duration
263 * since arbitrary point in time
264 *
265 * Software time stamps generated by ktime_get_real() are stored in
266 * skb->tstamp.
267 *
268 * hwtstamps can only be compared against other hwtstamps from
269 * the same device.
270 *
271 * This structure is attached to packets as part of the
272 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
273 */
274 struct skb_shared_hwtstamps {
275 ktime_t hwtstamp;
276 };
277
278 /* Definitions for tx_flags in struct skb_shared_info */
279 enum {
280 /* generate hardware time stamp */
281 SKBTX_HW_TSTAMP = 1 << 0,
282
283 /* generate software time stamp when queueing packet to NIC */
284 SKBTX_SW_TSTAMP = 1 << 1,
285
286 /* device driver is going to provide hardware time stamp */
287 SKBTX_IN_PROGRESS = 1 << 2,
288
289 /* device driver supports TX zero-copy buffers */
290 SKBTX_DEV_ZEROCOPY = 1 << 3,
291
292 /* generate wifi status information (where possible) */
293 SKBTX_WIFI_STATUS = 1 << 4,
294
295 /* This indicates at least one fragment might be overwritten
296 * (as in vmsplice(), sendfile() ...)
297 * If we need to compute a TX checksum, we'll need to copy
298 * all frags to avoid possible bad checksum
299 */
300 SKBTX_SHARED_FRAG = 1 << 5,
301
302 /* generate software time stamp when entering packet scheduling */
303 SKBTX_SCHED_TSTAMP = 1 << 6,
304
305 /* generate software timestamp on peer data acknowledgment */
306 SKBTX_ACK_TSTAMP = 1 << 7,
307 };
308
309 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
310 SKBTX_SCHED_TSTAMP | \
311 SKBTX_ACK_TSTAMP)
312 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
313
314 /*
315 * The callback notifies userspace to release buffers when skb DMA is done in
316 * lower device, the skb last reference should be 0 when calling this.
317 * The zerocopy_success argument is true if zero copy transmit occurred,
318 * false on data copy or out of memory error caused by data copy attempt.
319 * The ctx field is used to track device context.
320 * The desc field is used to track userspace buffer index.
321 */
322 struct ubuf_info {
323 void (*callback)(struct ubuf_info *, bool zerocopy_success);
324 void *ctx;
325 unsigned long desc;
326 };
327
328 /* This data is invariant across clones and lives at
329 * the end of the header data, ie. at skb->end.
330 */
331 struct skb_shared_info {
332 unsigned char nr_frags;
333 __u8 tx_flags;
334 unsigned short gso_size;
335 /* Warning: this field is not always filled in (UFO)! */
336 unsigned short gso_segs;
337 unsigned short gso_type;
338 struct sk_buff *frag_list;
339 struct skb_shared_hwtstamps hwtstamps;
340 u32 tskey;
341 __be32 ip6_frag_id;
342
343 /*
344 * Warning : all fields before dataref are cleared in __alloc_skb()
345 */
346 atomic_t dataref;
347
348 /* Intermediate layers must ensure that destructor_arg
349 * remains valid until skb destructor */
350 void * destructor_arg;
351
352 /* must be last field, see pskb_expand_head() */
353 skb_frag_t frags[MAX_SKB_FRAGS];
354 };
355
356 /* We divide dataref into two halves. The higher 16 bits hold references
357 * to the payload part of skb->data. The lower 16 bits hold references to
358 * the entire skb->data. A clone of a headerless skb holds the length of
359 * the header in skb->hdr_len.
360 *
361 * All users must obey the rule that the skb->data reference count must be
362 * greater than or equal to the payload reference count.
363 *
364 * Holding a reference to the payload part means that the user does not
365 * care about modifications to the header part of skb->data.
366 */
367 #define SKB_DATAREF_SHIFT 16
368 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
369
370
371 enum {
372 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
373 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
374 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
375 };
376
377 enum {
378 SKB_GSO_TCPV4 = 1 << 0,
379 SKB_GSO_UDP = 1 << 1,
380
381 /* This indicates the skb is from an untrusted source. */
382 SKB_GSO_DODGY = 1 << 2,
383
384 /* This indicates the tcp segment has CWR set. */
385 SKB_GSO_TCP_ECN = 1 << 3,
386
387 SKB_GSO_TCPV6 = 1 << 4,
388
389 SKB_GSO_FCOE = 1 << 5,
390
391 SKB_GSO_GRE = 1 << 6,
392
393 SKB_GSO_GRE_CSUM = 1 << 7,
394
395 SKB_GSO_IPIP = 1 << 8,
396
397 SKB_GSO_SIT = 1 << 9,
398
399 SKB_GSO_UDP_TUNNEL = 1 << 10,
400
401 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
402
403 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
404 };
405
406 #if BITS_PER_LONG > 32
407 #define NET_SKBUFF_DATA_USES_OFFSET 1
408 #endif
409
410 #ifdef NET_SKBUFF_DATA_USES_OFFSET
411 typedef unsigned int sk_buff_data_t;
412 #else
413 typedef unsigned char *sk_buff_data_t;
414 #endif
415
416 /**
417 * struct skb_mstamp - multi resolution time stamps
418 * @stamp_us: timestamp in us resolution
419 * @stamp_jiffies: timestamp in jiffies
420 */
421 struct skb_mstamp {
422 union {
423 u64 v64;
424 struct {
425 u32 stamp_us;
426 u32 stamp_jiffies;
427 };
428 };
429 };
430
431 /**
432 * skb_mstamp_get - get current timestamp
433 * @cl: place to store timestamps
434 */
435 static inline void skb_mstamp_get(struct skb_mstamp *cl)
436 {
437 u64 val = local_clock();
438
439 do_div(val, NSEC_PER_USEC);
440 cl->stamp_us = (u32)val;
441 cl->stamp_jiffies = (u32)jiffies;
442 }
443
444 /**
445 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
446 * @t1: pointer to newest sample
447 * @t0: pointer to oldest sample
448 */
449 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
450 const struct skb_mstamp *t0)
451 {
452 s32 delta_us = t1->stamp_us - t0->stamp_us;
453 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
454
455 /* If delta_us is negative, this might be because interval is too big,
456 * or local_clock() drift is too big : fallback using jiffies.
457 */
458 if (delta_us <= 0 ||
459 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
460
461 delta_us = jiffies_to_usecs(delta_jiffies);
462
463 return delta_us;
464 }
465
466
467 /**
468 * struct sk_buff - socket buffer
469 * @next: Next buffer in list
470 * @prev: Previous buffer in list
471 * @tstamp: Time we arrived/left
472 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
473 * @sk: Socket we are owned by
474 * @dev: Device we arrived on/are leaving by
475 * @cb: Control buffer. Free for use by every layer. Put private vars here
476 * @_skb_refdst: destination entry (with norefcount bit)
477 * @sp: the security path, used for xfrm
478 * @len: Length of actual data
479 * @data_len: Data length
480 * @mac_len: Length of link layer header
481 * @hdr_len: writable header length of cloned skb
482 * @csum: Checksum (must include start/offset pair)
483 * @csum_start: Offset from skb->head where checksumming should start
484 * @csum_offset: Offset from csum_start where checksum should be stored
485 * @priority: Packet queueing priority
486 * @ignore_df: allow local fragmentation
487 * @cloned: Head may be cloned (check refcnt to be sure)
488 * @ip_summed: Driver fed us an IP checksum
489 * @nohdr: Payload reference only, must not modify header
490 * @nfctinfo: Relationship of this skb to the connection
491 * @pkt_type: Packet class
492 * @fclone: skbuff clone status
493 * @ipvs_property: skbuff is owned by ipvs
494 * @peeked: this packet has been seen already, so stats have been
495 * done for it, don't do them again
496 * @nf_trace: netfilter packet trace flag
497 * @protocol: Packet protocol from driver
498 * @destructor: Destruct function
499 * @nfct: Associated connection, if any
500 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
501 * @skb_iif: ifindex of device we arrived on
502 * @tc_index: Traffic control index
503 * @tc_verd: traffic control verdict
504 * @hash: the packet hash
505 * @queue_mapping: Queue mapping for multiqueue devices
506 * @xmit_more: More SKBs are pending for this queue
507 * @ndisc_nodetype: router type (from link layer)
508 * @ooo_okay: allow the mapping of a socket to a queue to be changed
509 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
510 * ports.
511 * @sw_hash: indicates hash was computed in software stack
512 * @wifi_acked_valid: wifi_acked was set
513 * @wifi_acked: whether frame was acked on wifi or not
514 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
515 * @napi_id: id of the NAPI struct this skb came from
516 * @secmark: security marking
517 * @offload_fwd_mark: fwding offload mark
518 * @mark: Generic packet mark
519 * @vlan_proto: vlan encapsulation protocol
520 * @vlan_tci: vlan tag control information
521 * @inner_protocol: Protocol (encapsulation)
522 * @inner_transport_header: Inner transport layer header (encapsulation)
523 * @inner_network_header: Network layer header (encapsulation)
524 * @inner_mac_header: Link layer header (encapsulation)
525 * @transport_header: Transport layer header
526 * @network_header: Network layer header
527 * @mac_header: Link layer header
528 * @tail: Tail pointer
529 * @end: End pointer
530 * @head: Head of buffer
531 * @data: Data head pointer
532 * @truesize: Buffer size
533 * @users: User count - see {datagram,tcp}.c
534 */
535
536 struct sk_buff {
537 union {
538 struct {
539 /* These two members must be first. */
540 struct sk_buff *next;
541 struct sk_buff *prev;
542
543 union {
544 ktime_t tstamp;
545 struct skb_mstamp skb_mstamp;
546 };
547 };
548 struct rb_node rbnode; /* used in netem & tcp stack */
549 };
550 struct sock *sk;
551 struct net_device *dev;
552
553 /*
554 * This is the control buffer. It is free to use for every
555 * layer. Please put your private variables there. If you
556 * want to keep them across layers you have to do a skb_clone()
557 * first. This is owned by whoever has the skb queued ATM.
558 */
559 char cb[48] __aligned(8);
560
561 unsigned long _skb_refdst;
562 void (*destructor)(struct sk_buff *skb);
563 #ifdef CONFIG_XFRM
564 struct sec_path *sp;
565 #endif
566 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
567 struct nf_conntrack *nfct;
568 #endif
569 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
570 struct nf_bridge_info *nf_bridge;
571 #endif
572 unsigned int len,
573 data_len;
574 __u16 mac_len,
575 hdr_len;
576
577 /* Following fields are _not_ copied in __copy_skb_header()
578 * Note that queue_mapping is here mostly to fill a hole.
579 */
580 kmemcheck_bitfield_begin(flags1);
581 __u16 queue_mapping;
582 __u8 cloned:1,
583 nohdr:1,
584 fclone:2,
585 peeked:1,
586 head_frag:1,
587 xmit_more:1;
588 /* one bit hole */
589 kmemcheck_bitfield_end(flags1);
590
591 /* fields enclosed in headers_start/headers_end are copied
592 * using a single memcpy() in __copy_skb_header()
593 */
594 /* private: */
595 __u32 headers_start[0];
596 /* public: */
597
598 /* if you move pkt_type around you also must adapt those constants */
599 #ifdef __BIG_ENDIAN_BITFIELD
600 #define PKT_TYPE_MAX (7 << 5)
601 #else
602 #define PKT_TYPE_MAX 7
603 #endif
604 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
605
606 __u8 __pkt_type_offset[0];
607 __u8 pkt_type:3;
608 __u8 pfmemalloc:1;
609 __u8 ignore_df:1;
610 __u8 nfctinfo:3;
611
612 __u8 nf_trace:1;
613 __u8 ip_summed:2;
614 __u8 ooo_okay:1;
615 __u8 l4_hash:1;
616 __u8 sw_hash:1;
617 __u8 wifi_acked_valid:1;
618 __u8 wifi_acked:1;
619
620 __u8 no_fcs:1;
621 /* Indicates the inner headers are valid in the skbuff. */
622 __u8 encapsulation:1;
623 __u8 encap_hdr_csum:1;
624 __u8 csum_valid:1;
625 __u8 csum_complete_sw:1;
626 __u8 csum_level:2;
627 __u8 csum_bad:1;
628
629 #ifdef CONFIG_IPV6_NDISC_NODETYPE
630 __u8 ndisc_nodetype:2;
631 #endif
632 __u8 ipvs_property:1;
633 __u8 inner_protocol_type:1;
634 __u8 remcsum_offload:1;
635 /* 3 or 5 bit hole */
636
637 #ifdef CONFIG_NET_SCHED
638 __u16 tc_index; /* traffic control index */
639 #ifdef CONFIG_NET_CLS_ACT
640 __u16 tc_verd; /* traffic control verdict */
641 #endif
642 #endif
643
644 union {
645 __wsum csum;
646 struct {
647 __u16 csum_start;
648 __u16 csum_offset;
649 };
650 };
651 __u32 priority;
652 int skb_iif;
653 __u32 hash;
654 __be16 vlan_proto;
655 __u16 vlan_tci;
656 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
657 union {
658 unsigned int napi_id;
659 unsigned int sender_cpu;
660 };
661 #endif
662 union {
663 #ifdef CONFIG_NETWORK_SECMARK
664 __u32 secmark;
665 #endif
666 #ifdef CONFIG_NET_SWITCHDEV
667 __u32 offload_fwd_mark;
668 #endif
669 };
670
671 union {
672 __u32 mark;
673 __u32 reserved_tailroom;
674 };
675
676 union {
677 __be16 inner_protocol;
678 __u8 inner_ipproto;
679 };
680
681 __u16 inner_transport_header;
682 __u16 inner_network_header;
683 __u16 inner_mac_header;
684
685 __be16 protocol;
686 __u16 transport_header;
687 __u16 network_header;
688 __u16 mac_header;
689
690 /* private: */
691 __u32 headers_end[0];
692 /* public: */
693
694 /* These elements must be at the end, see alloc_skb() for details. */
695 sk_buff_data_t tail;
696 sk_buff_data_t end;
697 unsigned char *head,
698 *data;
699 unsigned int truesize;
700 atomic_t users;
701 };
702
703 #ifdef __KERNEL__
704 /*
705 * Handling routines are only of interest to the kernel
706 */
707 #include <linux/slab.h>
708
709
710 #define SKB_ALLOC_FCLONE 0x01
711 #define SKB_ALLOC_RX 0x02
712 #define SKB_ALLOC_NAPI 0x04
713
714 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
715 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
716 {
717 return unlikely(skb->pfmemalloc);
718 }
719
720 /*
721 * skb might have a dst pointer attached, refcounted or not.
722 * _skb_refdst low order bit is set if refcount was _not_ taken
723 */
724 #define SKB_DST_NOREF 1UL
725 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
726
727 /**
728 * skb_dst - returns skb dst_entry
729 * @skb: buffer
730 *
731 * Returns skb dst_entry, regardless of reference taken or not.
732 */
733 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
734 {
735 /* If refdst was not refcounted, check we still are in a
736 * rcu_read_lock section
737 */
738 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
739 !rcu_read_lock_held() &&
740 !rcu_read_lock_bh_held());
741 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
742 }
743
744 /**
745 * skb_dst_set - sets skb dst
746 * @skb: buffer
747 * @dst: dst entry
748 *
749 * Sets skb dst, assuming a reference was taken on dst and should
750 * be released by skb_dst_drop()
751 */
752 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
753 {
754 skb->_skb_refdst = (unsigned long)dst;
755 }
756
757 /**
758 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
759 * @skb: buffer
760 * @dst: dst entry
761 *
762 * Sets skb dst, assuming a reference was not taken on dst.
763 * If dst entry is cached, we do not take reference and dst_release
764 * will be avoided by refdst_drop. If dst entry is not cached, we take
765 * reference, so that last dst_release can destroy the dst immediately.
766 */
767 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
768 {
769 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
770 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
771 }
772
773 /**
774 * skb_dst_is_noref - Test if skb dst isn't refcounted
775 * @skb: buffer
776 */
777 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
778 {
779 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
780 }
781
782 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
783 {
784 return (struct rtable *)skb_dst(skb);
785 }
786
787 void kfree_skb(struct sk_buff *skb);
788 void kfree_skb_list(struct sk_buff *segs);
789 void skb_tx_error(struct sk_buff *skb);
790 void consume_skb(struct sk_buff *skb);
791 void __kfree_skb(struct sk_buff *skb);
792 extern struct kmem_cache *skbuff_head_cache;
793
794 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
795 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
796 bool *fragstolen, int *delta_truesize);
797
798 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
799 int node);
800 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
801 struct sk_buff *build_skb(void *data, unsigned int frag_size);
802 static inline struct sk_buff *alloc_skb(unsigned int size,
803 gfp_t priority)
804 {
805 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
806 }
807
808 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
809 unsigned long data_len,
810 int max_page_order,
811 int *errcode,
812 gfp_t gfp_mask);
813
814 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
815 struct sk_buff_fclones {
816 struct sk_buff skb1;
817
818 struct sk_buff skb2;
819
820 atomic_t fclone_ref;
821 };
822
823 /**
824 * skb_fclone_busy - check if fclone is busy
825 * @skb: buffer
826 *
827 * Returns true is skb is a fast clone, and its clone is not freed.
828 * Some drivers call skb_orphan() in their ndo_start_xmit(),
829 * so we also check that this didnt happen.
830 */
831 static inline bool skb_fclone_busy(const struct sock *sk,
832 const struct sk_buff *skb)
833 {
834 const struct sk_buff_fclones *fclones;
835
836 fclones = container_of(skb, struct sk_buff_fclones, skb1);
837
838 return skb->fclone == SKB_FCLONE_ORIG &&
839 atomic_read(&fclones->fclone_ref) > 1 &&
840 fclones->skb2.sk == sk;
841 }
842
843 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
844 gfp_t priority)
845 {
846 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
847 }
848
849 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
850 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
851 {
852 return __alloc_skb_head(priority, -1);
853 }
854
855 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
856 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
857 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
858 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
859 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
860 gfp_t gfp_mask, bool fclone);
861 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
862 gfp_t gfp_mask)
863 {
864 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
865 }
866
867 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
868 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
869 unsigned int headroom);
870 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
871 int newtailroom, gfp_t priority);
872 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
873 int offset, int len);
874 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
875 int len);
876 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
877 int skb_pad(struct sk_buff *skb, int pad);
878 #define dev_kfree_skb(a) consume_skb(a)
879
880 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
881 int getfrag(void *from, char *to, int offset,
882 int len, int odd, struct sk_buff *skb),
883 void *from, int length);
884
885 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
886 int offset, size_t size);
887
888 struct skb_seq_state {
889 __u32 lower_offset;
890 __u32 upper_offset;
891 __u32 frag_idx;
892 __u32 stepped_offset;
893 struct sk_buff *root_skb;
894 struct sk_buff *cur_skb;
895 __u8 *frag_data;
896 };
897
898 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
899 unsigned int to, struct skb_seq_state *st);
900 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
901 struct skb_seq_state *st);
902 void skb_abort_seq_read(struct skb_seq_state *st);
903
904 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
905 unsigned int to, struct ts_config *config);
906
907 /*
908 * Packet hash types specify the type of hash in skb_set_hash.
909 *
910 * Hash types refer to the protocol layer addresses which are used to
911 * construct a packet's hash. The hashes are used to differentiate or identify
912 * flows of the protocol layer for the hash type. Hash types are either
913 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
914 *
915 * Properties of hashes:
916 *
917 * 1) Two packets in different flows have different hash values
918 * 2) Two packets in the same flow should have the same hash value
919 *
920 * A hash at a higher layer is considered to be more specific. A driver should
921 * set the most specific hash possible.
922 *
923 * A driver cannot indicate a more specific hash than the layer at which a hash
924 * was computed. For instance an L3 hash cannot be set as an L4 hash.
925 *
926 * A driver may indicate a hash level which is less specific than the
927 * actual layer the hash was computed on. For instance, a hash computed
928 * at L4 may be considered an L3 hash. This should only be done if the
929 * driver can't unambiguously determine that the HW computed the hash at
930 * the higher layer. Note that the "should" in the second property above
931 * permits this.
932 */
933 enum pkt_hash_types {
934 PKT_HASH_TYPE_NONE, /* Undefined type */
935 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
936 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
937 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
938 };
939
940 static inline void skb_clear_hash(struct sk_buff *skb)
941 {
942 skb->hash = 0;
943 skb->sw_hash = 0;
944 skb->l4_hash = 0;
945 }
946
947 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
948 {
949 if (!skb->l4_hash)
950 skb_clear_hash(skb);
951 }
952
953 static inline void
954 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
955 {
956 skb->l4_hash = is_l4;
957 skb->sw_hash = is_sw;
958 skb->hash = hash;
959 }
960
961 static inline void
962 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
963 {
964 /* Used by drivers to set hash from HW */
965 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
966 }
967
968 static inline void
969 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
970 {
971 __skb_set_hash(skb, hash, true, is_l4);
972 }
973
974 void __skb_get_hash(struct sk_buff *skb);
975 u32 skb_get_poff(const struct sk_buff *skb);
976 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
977 const struct flow_keys *keys, int hlen);
978 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
979 void *data, int hlen_proto);
980
981 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
982 int thoff, u8 ip_proto)
983 {
984 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
985 }
986
987 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
988 const struct flow_dissector_key *key,
989 unsigned int key_count);
990
991 bool __skb_flow_dissect(const struct sk_buff *skb,
992 struct flow_dissector *flow_dissector,
993 void *target_container,
994 void *data, __be16 proto, int nhoff, int hlen,
995 unsigned int flags);
996
997 static inline bool skb_flow_dissect(const struct sk_buff *skb,
998 struct flow_dissector *flow_dissector,
999 void *target_container, unsigned int flags)
1000 {
1001 return __skb_flow_dissect(skb, flow_dissector, target_container,
1002 NULL, 0, 0, 0, flags);
1003 }
1004
1005 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1006 struct flow_keys *flow,
1007 unsigned int flags)
1008 {
1009 memset(flow, 0, sizeof(*flow));
1010 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1011 NULL, 0, 0, 0, flags);
1012 }
1013
1014 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1015 void *data, __be16 proto,
1016 int nhoff, int hlen,
1017 unsigned int flags)
1018 {
1019 memset(flow, 0, sizeof(*flow));
1020 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1021 data, proto, nhoff, hlen, flags);
1022 }
1023
1024 static inline __u32 skb_get_hash(struct sk_buff *skb)
1025 {
1026 if (!skb->l4_hash && !skb->sw_hash)
1027 __skb_get_hash(skb);
1028
1029 return skb->hash;
1030 }
1031
1032 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1033
1034 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1035 {
1036 if (!skb->l4_hash && !skb->sw_hash) {
1037 struct flow_keys keys;
1038 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1039
1040 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1041 }
1042
1043 return skb->hash;
1044 }
1045
1046 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1047
1048 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1049 {
1050 if (!skb->l4_hash && !skb->sw_hash) {
1051 struct flow_keys keys;
1052 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1053
1054 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1055 }
1056
1057 return skb->hash;
1058 }
1059
1060 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1061
1062 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1063 {
1064 return skb->hash;
1065 }
1066
1067 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1068 {
1069 to->hash = from->hash;
1070 to->sw_hash = from->sw_hash;
1071 to->l4_hash = from->l4_hash;
1072 };
1073
1074 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1075 {
1076 #ifdef CONFIG_XPS
1077 skb->sender_cpu = 0;
1078 #endif
1079 }
1080
1081 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1082 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1083 {
1084 return skb->head + skb->end;
1085 }
1086
1087 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1088 {
1089 return skb->end;
1090 }
1091 #else
1092 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1093 {
1094 return skb->end;
1095 }
1096
1097 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1098 {
1099 return skb->end - skb->head;
1100 }
1101 #endif
1102
1103 /* Internal */
1104 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1105
1106 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1107 {
1108 return &skb_shinfo(skb)->hwtstamps;
1109 }
1110
1111 /**
1112 * skb_queue_empty - check if a queue is empty
1113 * @list: queue head
1114 *
1115 * Returns true if the queue is empty, false otherwise.
1116 */
1117 static inline int skb_queue_empty(const struct sk_buff_head *list)
1118 {
1119 return list->next == (const struct sk_buff *) list;
1120 }
1121
1122 /**
1123 * skb_queue_is_last - check if skb is the last entry in the queue
1124 * @list: queue head
1125 * @skb: buffer
1126 *
1127 * Returns true if @skb is the last buffer on the list.
1128 */
1129 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1130 const struct sk_buff *skb)
1131 {
1132 return skb->next == (const struct sk_buff *) list;
1133 }
1134
1135 /**
1136 * skb_queue_is_first - check if skb is the first entry in the queue
1137 * @list: queue head
1138 * @skb: buffer
1139 *
1140 * Returns true if @skb is the first buffer on the list.
1141 */
1142 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1143 const struct sk_buff *skb)
1144 {
1145 return skb->prev == (const struct sk_buff *) list;
1146 }
1147
1148 /**
1149 * skb_queue_next - return the next packet in the queue
1150 * @list: queue head
1151 * @skb: current buffer
1152 *
1153 * Return the next packet in @list after @skb. It is only valid to
1154 * call this if skb_queue_is_last() evaluates to false.
1155 */
1156 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1157 const struct sk_buff *skb)
1158 {
1159 /* This BUG_ON may seem severe, but if we just return then we
1160 * are going to dereference garbage.
1161 */
1162 BUG_ON(skb_queue_is_last(list, skb));
1163 return skb->next;
1164 }
1165
1166 /**
1167 * skb_queue_prev - return the prev packet in the queue
1168 * @list: queue head
1169 * @skb: current buffer
1170 *
1171 * Return the prev packet in @list before @skb. It is only valid to
1172 * call this if skb_queue_is_first() evaluates to false.
1173 */
1174 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1175 const struct sk_buff *skb)
1176 {
1177 /* This BUG_ON may seem severe, but if we just return then we
1178 * are going to dereference garbage.
1179 */
1180 BUG_ON(skb_queue_is_first(list, skb));
1181 return skb->prev;
1182 }
1183
1184 /**
1185 * skb_get - reference buffer
1186 * @skb: buffer to reference
1187 *
1188 * Makes another reference to a socket buffer and returns a pointer
1189 * to the buffer.
1190 */
1191 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1192 {
1193 atomic_inc(&skb->users);
1194 return skb;
1195 }
1196
1197 /*
1198 * If users == 1, we are the only owner and are can avoid redundant
1199 * atomic change.
1200 */
1201
1202 /**
1203 * skb_cloned - is the buffer a clone
1204 * @skb: buffer to check
1205 *
1206 * Returns true if the buffer was generated with skb_clone() and is
1207 * one of multiple shared copies of the buffer. Cloned buffers are
1208 * shared data so must not be written to under normal circumstances.
1209 */
1210 static inline int skb_cloned(const struct sk_buff *skb)
1211 {
1212 return skb->cloned &&
1213 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1214 }
1215
1216 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1217 {
1218 might_sleep_if(pri & __GFP_WAIT);
1219
1220 if (skb_cloned(skb))
1221 return pskb_expand_head(skb, 0, 0, pri);
1222
1223 return 0;
1224 }
1225
1226 /**
1227 * skb_header_cloned - is the header a clone
1228 * @skb: buffer to check
1229 *
1230 * Returns true if modifying the header part of the buffer requires
1231 * the data to be copied.
1232 */
1233 static inline int skb_header_cloned(const struct sk_buff *skb)
1234 {
1235 int dataref;
1236
1237 if (!skb->cloned)
1238 return 0;
1239
1240 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1241 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1242 return dataref != 1;
1243 }
1244
1245 /**
1246 * skb_header_release - release reference to header
1247 * @skb: buffer to operate on
1248 *
1249 * Drop a reference to the header part of the buffer. This is done
1250 * by acquiring a payload reference. You must not read from the header
1251 * part of skb->data after this.
1252 * Note : Check if you can use __skb_header_release() instead.
1253 */
1254 static inline void skb_header_release(struct sk_buff *skb)
1255 {
1256 BUG_ON(skb->nohdr);
1257 skb->nohdr = 1;
1258 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1259 }
1260
1261 /**
1262 * __skb_header_release - release reference to header
1263 * @skb: buffer to operate on
1264 *
1265 * Variant of skb_header_release() assuming skb is private to caller.
1266 * We can avoid one atomic operation.
1267 */
1268 static inline void __skb_header_release(struct sk_buff *skb)
1269 {
1270 skb->nohdr = 1;
1271 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1272 }
1273
1274
1275 /**
1276 * skb_shared - is the buffer shared
1277 * @skb: buffer to check
1278 *
1279 * Returns true if more than one person has a reference to this
1280 * buffer.
1281 */
1282 static inline int skb_shared(const struct sk_buff *skb)
1283 {
1284 return atomic_read(&skb->users) != 1;
1285 }
1286
1287 /**
1288 * skb_share_check - check if buffer is shared and if so clone it
1289 * @skb: buffer to check
1290 * @pri: priority for memory allocation
1291 *
1292 * If the buffer is shared the buffer is cloned and the old copy
1293 * drops a reference. A new clone with a single reference is returned.
1294 * If the buffer is not shared the original buffer is returned. When
1295 * being called from interrupt status or with spinlocks held pri must
1296 * be GFP_ATOMIC.
1297 *
1298 * NULL is returned on a memory allocation failure.
1299 */
1300 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1301 {
1302 might_sleep_if(pri & __GFP_WAIT);
1303 if (skb_shared(skb)) {
1304 struct sk_buff *nskb = skb_clone(skb, pri);
1305
1306 if (likely(nskb))
1307 consume_skb(skb);
1308 else
1309 kfree_skb(skb);
1310 skb = nskb;
1311 }
1312 return skb;
1313 }
1314
1315 /*
1316 * Copy shared buffers into a new sk_buff. We effectively do COW on
1317 * packets to handle cases where we have a local reader and forward
1318 * and a couple of other messy ones. The normal one is tcpdumping
1319 * a packet thats being forwarded.
1320 */
1321
1322 /**
1323 * skb_unshare - make a copy of a shared buffer
1324 * @skb: buffer to check
1325 * @pri: priority for memory allocation
1326 *
1327 * If the socket buffer is a clone then this function creates a new
1328 * copy of the data, drops a reference count on the old copy and returns
1329 * the new copy with the reference count at 1. If the buffer is not a clone
1330 * the original buffer is returned. When called with a spinlock held or
1331 * from interrupt state @pri must be %GFP_ATOMIC
1332 *
1333 * %NULL is returned on a memory allocation failure.
1334 */
1335 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1336 gfp_t pri)
1337 {
1338 might_sleep_if(pri & __GFP_WAIT);
1339 if (skb_cloned(skb)) {
1340 struct sk_buff *nskb = skb_copy(skb, pri);
1341
1342 /* Free our shared copy */
1343 if (likely(nskb))
1344 consume_skb(skb);
1345 else
1346 kfree_skb(skb);
1347 skb = nskb;
1348 }
1349 return skb;
1350 }
1351
1352 /**
1353 * skb_peek - peek at the head of an &sk_buff_head
1354 * @list_: list to peek at
1355 *
1356 * Peek an &sk_buff. Unlike most other operations you _MUST_
1357 * be careful with this one. A peek leaves the buffer on the
1358 * list and someone else may run off with it. You must hold
1359 * the appropriate locks or have a private queue to do this.
1360 *
1361 * Returns %NULL for an empty list or a pointer to the head element.
1362 * The reference count is not incremented and the reference is therefore
1363 * volatile. Use with caution.
1364 */
1365 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1366 {
1367 struct sk_buff *skb = list_->next;
1368
1369 if (skb == (struct sk_buff *)list_)
1370 skb = NULL;
1371 return skb;
1372 }
1373
1374 /**
1375 * skb_peek_next - peek skb following the given one from a queue
1376 * @skb: skb to start from
1377 * @list_: list to peek at
1378 *
1379 * Returns %NULL when the end of the list is met or a pointer to the
1380 * next element. The reference count is not incremented and the
1381 * reference is therefore volatile. Use with caution.
1382 */
1383 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1384 const struct sk_buff_head *list_)
1385 {
1386 struct sk_buff *next = skb->next;
1387
1388 if (next == (struct sk_buff *)list_)
1389 next = NULL;
1390 return next;
1391 }
1392
1393 /**
1394 * skb_peek_tail - peek at the tail of an &sk_buff_head
1395 * @list_: list to peek at
1396 *
1397 * Peek an &sk_buff. Unlike most other operations you _MUST_
1398 * be careful with this one. A peek leaves the buffer on the
1399 * list and someone else may run off with it. You must hold
1400 * the appropriate locks or have a private queue to do this.
1401 *
1402 * Returns %NULL for an empty list or a pointer to the tail element.
1403 * The reference count is not incremented and the reference is therefore
1404 * volatile. Use with caution.
1405 */
1406 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1407 {
1408 struct sk_buff *skb = list_->prev;
1409
1410 if (skb == (struct sk_buff *)list_)
1411 skb = NULL;
1412 return skb;
1413
1414 }
1415
1416 /**
1417 * skb_queue_len - get queue length
1418 * @list_: list to measure
1419 *
1420 * Return the length of an &sk_buff queue.
1421 */
1422 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1423 {
1424 return list_->qlen;
1425 }
1426
1427 /**
1428 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1429 * @list: queue to initialize
1430 *
1431 * This initializes only the list and queue length aspects of
1432 * an sk_buff_head object. This allows to initialize the list
1433 * aspects of an sk_buff_head without reinitializing things like
1434 * the spinlock. It can also be used for on-stack sk_buff_head
1435 * objects where the spinlock is known to not be used.
1436 */
1437 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1438 {
1439 list->prev = list->next = (struct sk_buff *)list;
1440 list->qlen = 0;
1441 }
1442
1443 /*
1444 * This function creates a split out lock class for each invocation;
1445 * this is needed for now since a whole lot of users of the skb-queue
1446 * infrastructure in drivers have different locking usage (in hardirq)
1447 * than the networking core (in softirq only). In the long run either the
1448 * network layer or drivers should need annotation to consolidate the
1449 * main types of usage into 3 classes.
1450 */
1451 static inline void skb_queue_head_init(struct sk_buff_head *list)
1452 {
1453 spin_lock_init(&list->lock);
1454 __skb_queue_head_init(list);
1455 }
1456
1457 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1458 struct lock_class_key *class)
1459 {
1460 skb_queue_head_init(list);
1461 lockdep_set_class(&list->lock, class);
1462 }
1463
1464 /*
1465 * Insert an sk_buff on a list.
1466 *
1467 * The "__skb_xxxx()" functions are the non-atomic ones that
1468 * can only be called with interrupts disabled.
1469 */
1470 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1471 struct sk_buff_head *list);
1472 static inline void __skb_insert(struct sk_buff *newsk,
1473 struct sk_buff *prev, struct sk_buff *next,
1474 struct sk_buff_head *list)
1475 {
1476 newsk->next = next;
1477 newsk->prev = prev;
1478 next->prev = prev->next = newsk;
1479 list->qlen++;
1480 }
1481
1482 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1483 struct sk_buff *prev,
1484 struct sk_buff *next)
1485 {
1486 struct sk_buff *first = list->next;
1487 struct sk_buff *last = list->prev;
1488
1489 first->prev = prev;
1490 prev->next = first;
1491
1492 last->next = next;
1493 next->prev = last;
1494 }
1495
1496 /**
1497 * skb_queue_splice - join two skb lists, this is designed for stacks
1498 * @list: the new list to add
1499 * @head: the place to add it in the first list
1500 */
1501 static inline void skb_queue_splice(const struct sk_buff_head *list,
1502 struct sk_buff_head *head)
1503 {
1504 if (!skb_queue_empty(list)) {
1505 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1506 head->qlen += list->qlen;
1507 }
1508 }
1509
1510 /**
1511 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1512 * @list: the new list to add
1513 * @head: the place to add it in the first list
1514 *
1515 * The list at @list is reinitialised
1516 */
1517 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1518 struct sk_buff_head *head)
1519 {
1520 if (!skb_queue_empty(list)) {
1521 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1522 head->qlen += list->qlen;
1523 __skb_queue_head_init(list);
1524 }
1525 }
1526
1527 /**
1528 * skb_queue_splice_tail - join two skb lists, each list being a queue
1529 * @list: the new list to add
1530 * @head: the place to add it in the first list
1531 */
1532 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1533 struct sk_buff_head *head)
1534 {
1535 if (!skb_queue_empty(list)) {
1536 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1537 head->qlen += list->qlen;
1538 }
1539 }
1540
1541 /**
1542 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1543 * @list: the new list to add
1544 * @head: the place to add it in the first list
1545 *
1546 * Each of the lists is a queue.
1547 * The list at @list is reinitialised
1548 */
1549 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1550 struct sk_buff_head *head)
1551 {
1552 if (!skb_queue_empty(list)) {
1553 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1554 head->qlen += list->qlen;
1555 __skb_queue_head_init(list);
1556 }
1557 }
1558
1559 /**
1560 * __skb_queue_after - queue a buffer at the list head
1561 * @list: list to use
1562 * @prev: place after this buffer
1563 * @newsk: buffer to queue
1564 *
1565 * Queue a buffer int the middle of a list. This function takes no locks
1566 * and you must therefore hold required locks before calling it.
1567 *
1568 * A buffer cannot be placed on two lists at the same time.
1569 */
1570 static inline void __skb_queue_after(struct sk_buff_head *list,
1571 struct sk_buff *prev,
1572 struct sk_buff *newsk)
1573 {
1574 __skb_insert(newsk, prev, prev->next, list);
1575 }
1576
1577 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1578 struct sk_buff_head *list);
1579
1580 static inline void __skb_queue_before(struct sk_buff_head *list,
1581 struct sk_buff *next,
1582 struct sk_buff *newsk)
1583 {
1584 __skb_insert(newsk, next->prev, next, list);
1585 }
1586
1587 /**
1588 * __skb_queue_head - queue a buffer at the list head
1589 * @list: list to use
1590 * @newsk: buffer to queue
1591 *
1592 * Queue a buffer at the start of a list. This function takes no locks
1593 * and you must therefore hold required locks before calling it.
1594 *
1595 * A buffer cannot be placed on two lists at the same time.
1596 */
1597 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1598 static inline void __skb_queue_head(struct sk_buff_head *list,
1599 struct sk_buff *newsk)
1600 {
1601 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1602 }
1603
1604 /**
1605 * __skb_queue_tail - queue a buffer at the list tail
1606 * @list: list to use
1607 * @newsk: buffer to queue
1608 *
1609 * Queue a buffer at the end of a list. This function takes no locks
1610 * and you must therefore hold required locks before calling it.
1611 *
1612 * A buffer cannot be placed on two lists at the same time.
1613 */
1614 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1615 static inline void __skb_queue_tail(struct sk_buff_head *list,
1616 struct sk_buff *newsk)
1617 {
1618 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1619 }
1620
1621 /*
1622 * remove sk_buff from list. _Must_ be called atomically, and with
1623 * the list known..
1624 */
1625 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1626 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1627 {
1628 struct sk_buff *next, *prev;
1629
1630 list->qlen--;
1631 next = skb->next;
1632 prev = skb->prev;
1633 skb->next = skb->prev = NULL;
1634 next->prev = prev;
1635 prev->next = next;
1636 }
1637
1638 /**
1639 * __skb_dequeue - remove from the head of the queue
1640 * @list: list to dequeue from
1641 *
1642 * Remove the head of the list. This function does not take any locks
1643 * so must be used with appropriate locks held only. The head item is
1644 * returned or %NULL if the list is empty.
1645 */
1646 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1647 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1648 {
1649 struct sk_buff *skb = skb_peek(list);
1650 if (skb)
1651 __skb_unlink(skb, list);
1652 return skb;
1653 }
1654
1655 /**
1656 * __skb_dequeue_tail - remove from the tail of the queue
1657 * @list: list to dequeue from
1658 *
1659 * Remove the tail of the list. This function does not take any locks
1660 * so must be used with appropriate locks held only. The tail item is
1661 * returned or %NULL if the list is empty.
1662 */
1663 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1664 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1665 {
1666 struct sk_buff *skb = skb_peek_tail(list);
1667 if (skb)
1668 __skb_unlink(skb, list);
1669 return skb;
1670 }
1671
1672
1673 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1674 {
1675 return skb->data_len;
1676 }
1677
1678 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1679 {
1680 return skb->len - skb->data_len;
1681 }
1682
1683 static inline int skb_pagelen(const struct sk_buff *skb)
1684 {
1685 int i, len = 0;
1686
1687 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1688 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1689 return len + skb_headlen(skb);
1690 }
1691
1692 /**
1693 * __skb_fill_page_desc - initialise a paged fragment in an skb
1694 * @skb: buffer containing fragment to be initialised
1695 * @i: paged fragment index to initialise
1696 * @page: the page to use for this fragment
1697 * @off: the offset to the data with @page
1698 * @size: the length of the data
1699 *
1700 * Initialises the @i'th fragment of @skb to point to &size bytes at
1701 * offset @off within @page.
1702 *
1703 * Does not take any additional reference on the fragment.
1704 */
1705 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1706 struct page *page, int off, int size)
1707 {
1708 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1709
1710 /*
1711 * Propagate page pfmemalloc to the skb if we can. The problem is
1712 * that not all callers have unique ownership of the page but rely
1713 * on page_is_pfmemalloc doing the right thing(tm).
1714 */
1715 frag->page.p = page;
1716 frag->page_offset = off;
1717 skb_frag_size_set(frag, size);
1718
1719 page = compound_head(page);
1720 if (page_is_pfmemalloc(page))
1721 skb->pfmemalloc = true;
1722 }
1723
1724 /**
1725 * skb_fill_page_desc - initialise a paged fragment in an skb
1726 * @skb: buffer containing fragment to be initialised
1727 * @i: paged fragment index to initialise
1728 * @page: the page to use for this fragment
1729 * @off: the offset to the data with @page
1730 * @size: the length of the data
1731 *
1732 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1733 * @skb to point to @size bytes at offset @off within @page. In
1734 * addition updates @skb such that @i is the last fragment.
1735 *
1736 * Does not take any additional reference on the fragment.
1737 */
1738 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1739 struct page *page, int off, int size)
1740 {
1741 __skb_fill_page_desc(skb, i, page, off, size);
1742 skb_shinfo(skb)->nr_frags = i + 1;
1743 }
1744
1745 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1746 int size, unsigned int truesize);
1747
1748 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1749 unsigned int truesize);
1750
1751 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1752 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1753 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1754
1755 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1756 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1757 {
1758 return skb->head + skb->tail;
1759 }
1760
1761 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1762 {
1763 skb->tail = skb->data - skb->head;
1764 }
1765
1766 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1767 {
1768 skb_reset_tail_pointer(skb);
1769 skb->tail += offset;
1770 }
1771
1772 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1773 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1774 {
1775 return skb->tail;
1776 }
1777
1778 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1779 {
1780 skb->tail = skb->data;
1781 }
1782
1783 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1784 {
1785 skb->tail = skb->data + offset;
1786 }
1787
1788 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1789
1790 /*
1791 * Add data to an sk_buff
1792 */
1793 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1794 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1795 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1796 {
1797 unsigned char *tmp = skb_tail_pointer(skb);
1798 SKB_LINEAR_ASSERT(skb);
1799 skb->tail += len;
1800 skb->len += len;
1801 return tmp;
1802 }
1803
1804 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1805 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1806 {
1807 skb->data -= len;
1808 skb->len += len;
1809 return skb->data;
1810 }
1811
1812 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1813 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1814 {
1815 skb->len -= len;
1816 BUG_ON(skb->len < skb->data_len);
1817 return skb->data += len;
1818 }
1819
1820 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1821 {
1822 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1823 }
1824
1825 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1826
1827 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1828 {
1829 if (len > skb_headlen(skb) &&
1830 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1831 return NULL;
1832 skb->len -= len;
1833 return skb->data += len;
1834 }
1835
1836 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1837 {
1838 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1839 }
1840
1841 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1842 {
1843 if (likely(len <= skb_headlen(skb)))
1844 return 1;
1845 if (unlikely(len > skb->len))
1846 return 0;
1847 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1848 }
1849
1850 /**
1851 * skb_headroom - bytes at buffer head
1852 * @skb: buffer to check
1853 *
1854 * Return the number of bytes of free space at the head of an &sk_buff.
1855 */
1856 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1857 {
1858 return skb->data - skb->head;
1859 }
1860
1861 /**
1862 * skb_tailroom - bytes at buffer end
1863 * @skb: buffer to check
1864 *
1865 * Return the number of bytes of free space at the tail of an sk_buff
1866 */
1867 static inline int skb_tailroom(const struct sk_buff *skb)
1868 {
1869 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1870 }
1871
1872 /**
1873 * skb_availroom - bytes at buffer end
1874 * @skb: buffer to check
1875 *
1876 * Return the number of bytes of free space at the tail of an sk_buff
1877 * allocated by sk_stream_alloc()
1878 */
1879 static inline int skb_availroom(const struct sk_buff *skb)
1880 {
1881 if (skb_is_nonlinear(skb))
1882 return 0;
1883
1884 return skb->end - skb->tail - skb->reserved_tailroom;
1885 }
1886
1887 /**
1888 * skb_reserve - adjust headroom
1889 * @skb: buffer to alter
1890 * @len: bytes to move
1891 *
1892 * Increase the headroom of an empty &sk_buff by reducing the tail
1893 * room. This is only allowed for an empty buffer.
1894 */
1895 static inline void skb_reserve(struct sk_buff *skb, int len)
1896 {
1897 skb->data += len;
1898 skb->tail += len;
1899 }
1900
1901 #define ENCAP_TYPE_ETHER 0
1902 #define ENCAP_TYPE_IPPROTO 1
1903
1904 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1905 __be16 protocol)
1906 {
1907 skb->inner_protocol = protocol;
1908 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1909 }
1910
1911 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1912 __u8 ipproto)
1913 {
1914 skb->inner_ipproto = ipproto;
1915 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1916 }
1917
1918 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1919 {
1920 skb->inner_mac_header = skb->mac_header;
1921 skb->inner_network_header = skb->network_header;
1922 skb->inner_transport_header = skb->transport_header;
1923 }
1924
1925 static inline void skb_reset_mac_len(struct sk_buff *skb)
1926 {
1927 skb->mac_len = skb->network_header - skb->mac_header;
1928 }
1929
1930 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1931 *skb)
1932 {
1933 return skb->head + skb->inner_transport_header;
1934 }
1935
1936 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1937 {
1938 skb->inner_transport_header = skb->data - skb->head;
1939 }
1940
1941 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1942 const int offset)
1943 {
1944 skb_reset_inner_transport_header(skb);
1945 skb->inner_transport_header += offset;
1946 }
1947
1948 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1949 {
1950 return skb->head + skb->inner_network_header;
1951 }
1952
1953 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1954 {
1955 skb->inner_network_header = skb->data - skb->head;
1956 }
1957
1958 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1959 const int offset)
1960 {
1961 skb_reset_inner_network_header(skb);
1962 skb->inner_network_header += offset;
1963 }
1964
1965 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1966 {
1967 return skb->head + skb->inner_mac_header;
1968 }
1969
1970 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1971 {
1972 skb->inner_mac_header = skb->data - skb->head;
1973 }
1974
1975 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1976 const int offset)
1977 {
1978 skb_reset_inner_mac_header(skb);
1979 skb->inner_mac_header += offset;
1980 }
1981 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1982 {
1983 return skb->transport_header != (typeof(skb->transport_header))~0U;
1984 }
1985
1986 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1987 {
1988 return skb->head + skb->transport_header;
1989 }
1990
1991 static inline void skb_reset_transport_header(struct sk_buff *skb)
1992 {
1993 skb->transport_header = skb->data - skb->head;
1994 }
1995
1996 static inline void skb_set_transport_header(struct sk_buff *skb,
1997 const int offset)
1998 {
1999 skb_reset_transport_header(skb);
2000 skb->transport_header += offset;
2001 }
2002
2003 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2004 {
2005 return skb->head + skb->network_header;
2006 }
2007
2008 static inline void skb_reset_network_header(struct sk_buff *skb)
2009 {
2010 skb->network_header = skb->data - skb->head;
2011 }
2012
2013 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2014 {
2015 skb_reset_network_header(skb);
2016 skb->network_header += offset;
2017 }
2018
2019 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2020 {
2021 return skb->head + skb->mac_header;
2022 }
2023
2024 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2025 {
2026 return skb->mac_header != (typeof(skb->mac_header))~0U;
2027 }
2028
2029 static inline void skb_reset_mac_header(struct sk_buff *skb)
2030 {
2031 skb->mac_header = skb->data - skb->head;
2032 }
2033
2034 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2035 {
2036 skb_reset_mac_header(skb);
2037 skb->mac_header += offset;
2038 }
2039
2040 static inline void skb_pop_mac_header(struct sk_buff *skb)
2041 {
2042 skb->mac_header = skb->network_header;
2043 }
2044
2045 static inline void skb_probe_transport_header(struct sk_buff *skb,
2046 const int offset_hint)
2047 {
2048 struct flow_keys keys;
2049
2050 if (skb_transport_header_was_set(skb))
2051 return;
2052 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2053 skb_set_transport_header(skb, keys.control.thoff);
2054 else
2055 skb_set_transport_header(skb, offset_hint);
2056 }
2057
2058 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2059 {
2060 if (skb_mac_header_was_set(skb)) {
2061 const unsigned char *old_mac = skb_mac_header(skb);
2062
2063 skb_set_mac_header(skb, -skb->mac_len);
2064 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2065 }
2066 }
2067
2068 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2069 {
2070 return skb->csum_start - skb_headroom(skb);
2071 }
2072
2073 static inline int skb_transport_offset(const struct sk_buff *skb)
2074 {
2075 return skb_transport_header(skb) - skb->data;
2076 }
2077
2078 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2079 {
2080 return skb->transport_header - skb->network_header;
2081 }
2082
2083 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2084 {
2085 return skb->inner_transport_header - skb->inner_network_header;
2086 }
2087
2088 static inline int skb_network_offset(const struct sk_buff *skb)
2089 {
2090 return skb_network_header(skb) - skb->data;
2091 }
2092
2093 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2094 {
2095 return skb_inner_network_header(skb) - skb->data;
2096 }
2097
2098 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2099 {
2100 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2101 }
2102
2103 /*
2104 * CPUs often take a performance hit when accessing unaligned memory
2105 * locations. The actual performance hit varies, it can be small if the
2106 * hardware handles it or large if we have to take an exception and fix it
2107 * in software.
2108 *
2109 * Since an ethernet header is 14 bytes network drivers often end up with
2110 * the IP header at an unaligned offset. The IP header can be aligned by
2111 * shifting the start of the packet by 2 bytes. Drivers should do this
2112 * with:
2113 *
2114 * skb_reserve(skb, NET_IP_ALIGN);
2115 *
2116 * The downside to this alignment of the IP header is that the DMA is now
2117 * unaligned. On some architectures the cost of an unaligned DMA is high
2118 * and this cost outweighs the gains made by aligning the IP header.
2119 *
2120 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2121 * to be overridden.
2122 */
2123 #ifndef NET_IP_ALIGN
2124 #define NET_IP_ALIGN 2
2125 #endif
2126
2127 /*
2128 * The networking layer reserves some headroom in skb data (via
2129 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2130 * the header has to grow. In the default case, if the header has to grow
2131 * 32 bytes or less we avoid the reallocation.
2132 *
2133 * Unfortunately this headroom changes the DMA alignment of the resulting
2134 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2135 * on some architectures. An architecture can override this value,
2136 * perhaps setting it to a cacheline in size (since that will maintain
2137 * cacheline alignment of the DMA). It must be a power of 2.
2138 *
2139 * Various parts of the networking layer expect at least 32 bytes of
2140 * headroom, you should not reduce this.
2141 *
2142 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2143 * to reduce average number of cache lines per packet.
2144 * get_rps_cpus() for example only access one 64 bytes aligned block :
2145 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2146 */
2147 #ifndef NET_SKB_PAD
2148 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2149 #endif
2150
2151 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2152
2153 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2154 {
2155 if (unlikely(skb_is_nonlinear(skb))) {
2156 WARN_ON(1);
2157 return;
2158 }
2159 skb->len = len;
2160 skb_set_tail_pointer(skb, len);
2161 }
2162
2163 void skb_trim(struct sk_buff *skb, unsigned int len);
2164
2165 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2166 {
2167 if (skb->data_len)
2168 return ___pskb_trim(skb, len);
2169 __skb_trim(skb, len);
2170 return 0;
2171 }
2172
2173 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2174 {
2175 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2176 }
2177
2178 /**
2179 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2180 * @skb: buffer to alter
2181 * @len: new length
2182 *
2183 * This is identical to pskb_trim except that the caller knows that
2184 * the skb is not cloned so we should never get an error due to out-
2185 * of-memory.
2186 */
2187 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2188 {
2189 int err = pskb_trim(skb, len);
2190 BUG_ON(err);
2191 }
2192
2193 /**
2194 * skb_orphan - orphan a buffer
2195 * @skb: buffer to orphan
2196 *
2197 * If a buffer currently has an owner then we call the owner's
2198 * destructor function and make the @skb unowned. The buffer continues
2199 * to exist but is no longer charged to its former owner.
2200 */
2201 static inline void skb_orphan(struct sk_buff *skb)
2202 {
2203 if (skb->destructor) {
2204 skb->destructor(skb);
2205 skb->destructor = NULL;
2206 skb->sk = NULL;
2207 } else {
2208 BUG_ON(skb->sk);
2209 }
2210 }
2211
2212 /**
2213 * skb_orphan_frags - orphan the frags contained in a buffer
2214 * @skb: buffer to orphan frags from
2215 * @gfp_mask: allocation mask for replacement pages
2216 *
2217 * For each frag in the SKB which needs a destructor (i.e. has an
2218 * owner) create a copy of that frag and release the original
2219 * page by calling the destructor.
2220 */
2221 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2222 {
2223 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2224 return 0;
2225 return skb_copy_ubufs(skb, gfp_mask);
2226 }
2227
2228 /**
2229 * __skb_queue_purge - empty a list
2230 * @list: list to empty
2231 *
2232 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2233 * the list and one reference dropped. This function does not take the
2234 * list lock and the caller must hold the relevant locks to use it.
2235 */
2236 void skb_queue_purge(struct sk_buff_head *list);
2237 static inline void __skb_queue_purge(struct sk_buff_head *list)
2238 {
2239 struct sk_buff *skb;
2240 while ((skb = __skb_dequeue(list)) != NULL)
2241 kfree_skb(skb);
2242 }
2243
2244 void *netdev_alloc_frag(unsigned int fragsz);
2245
2246 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2247 gfp_t gfp_mask);
2248
2249 /**
2250 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2251 * @dev: network device to receive on
2252 * @length: length to allocate
2253 *
2254 * Allocate a new &sk_buff and assign it a usage count of one. The
2255 * buffer has unspecified headroom built in. Users should allocate
2256 * the headroom they think they need without accounting for the
2257 * built in space. The built in space is used for optimisations.
2258 *
2259 * %NULL is returned if there is no free memory. Although this function
2260 * allocates memory it can be called from an interrupt.
2261 */
2262 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2263 unsigned int length)
2264 {
2265 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2266 }
2267
2268 /* legacy helper around __netdev_alloc_skb() */
2269 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2270 gfp_t gfp_mask)
2271 {
2272 return __netdev_alloc_skb(NULL, length, gfp_mask);
2273 }
2274
2275 /* legacy helper around netdev_alloc_skb() */
2276 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2277 {
2278 return netdev_alloc_skb(NULL, length);
2279 }
2280
2281
2282 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2283 unsigned int length, gfp_t gfp)
2284 {
2285 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2286
2287 if (NET_IP_ALIGN && skb)
2288 skb_reserve(skb, NET_IP_ALIGN);
2289 return skb;
2290 }
2291
2292 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2293 unsigned int length)
2294 {
2295 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2296 }
2297
2298 static inline void skb_free_frag(void *addr)
2299 {
2300 __free_page_frag(addr);
2301 }
2302
2303 void *napi_alloc_frag(unsigned int fragsz);
2304 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2305 unsigned int length, gfp_t gfp_mask);
2306 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2307 unsigned int length)
2308 {
2309 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2310 }
2311
2312 /**
2313 * __dev_alloc_pages - allocate page for network Rx
2314 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2315 * @order: size of the allocation
2316 *
2317 * Allocate a new page.
2318 *
2319 * %NULL is returned if there is no free memory.
2320 */
2321 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2322 unsigned int order)
2323 {
2324 /* This piece of code contains several assumptions.
2325 * 1. This is for device Rx, therefor a cold page is preferred.
2326 * 2. The expectation is the user wants a compound page.
2327 * 3. If requesting a order 0 page it will not be compound
2328 * due to the check to see if order has a value in prep_new_page
2329 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2330 * code in gfp_to_alloc_flags that should be enforcing this.
2331 */
2332 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2333
2334 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2335 }
2336
2337 static inline struct page *dev_alloc_pages(unsigned int order)
2338 {
2339 return __dev_alloc_pages(GFP_ATOMIC, order);
2340 }
2341
2342 /**
2343 * __dev_alloc_page - allocate a page for network Rx
2344 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2345 *
2346 * Allocate a new page.
2347 *
2348 * %NULL is returned if there is no free memory.
2349 */
2350 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2351 {
2352 return __dev_alloc_pages(gfp_mask, 0);
2353 }
2354
2355 static inline struct page *dev_alloc_page(void)
2356 {
2357 return __dev_alloc_page(GFP_ATOMIC);
2358 }
2359
2360 /**
2361 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2362 * @page: The page that was allocated from skb_alloc_page
2363 * @skb: The skb that may need pfmemalloc set
2364 */
2365 static inline void skb_propagate_pfmemalloc(struct page *page,
2366 struct sk_buff *skb)
2367 {
2368 if (page_is_pfmemalloc(page))
2369 skb->pfmemalloc = true;
2370 }
2371
2372 /**
2373 * skb_frag_page - retrieve the page referred to by a paged fragment
2374 * @frag: the paged fragment
2375 *
2376 * Returns the &struct page associated with @frag.
2377 */
2378 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2379 {
2380 return frag->page.p;
2381 }
2382
2383 /**
2384 * __skb_frag_ref - take an addition reference on a paged fragment.
2385 * @frag: the paged fragment
2386 *
2387 * Takes an additional reference on the paged fragment @frag.
2388 */
2389 static inline void __skb_frag_ref(skb_frag_t *frag)
2390 {
2391 get_page(skb_frag_page(frag));
2392 }
2393
2394 /**
2395 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2396 * @skb: the buffer
2397 * @f: the fragment offset.
2398 *
2399 * Takes an additional reference on the @f'th paged fragment of @skb.
2400 */
2401 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2402 {
2403 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2404 }
2405
2406 /**
2407 * __skb_frag_unref - release a reference on a paged fragment.
2408 * @frag: the paged fragment
2409 *
2410 * Releases a reference on the paged fragment @frag.
2411 */
2412 static inline void __skb_frag_unref(skb_frag_t *frag)
2413 {
2414 put_page(skb_frag_page(frag));
2415 }
2416
2417 /**
2418 * skb_frag_unref - release a reference on a paged fragment of an skb.
2419 * @skb: the buffer
2420 * @f: the fragment offset
2421 *
2422 * Releases a reference on the @f'th paged fragment of @skb.
2423 */
2424 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2425 {
2426 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2427 }
2428
2429 /**
2430 * skb_frag_address - gets the address of the data contained in a paged fragment
2431 * @frag: the paged fragment buffer
2432 *
2433 * Returns the address of the data within @frag. The page must already
2434 * be mapped.
2435 */
2436 static inline void *skb_frag_address(const skb_frag_t *frag)
2437 {
2438 return page_address(skb_frag_page(frag)) + frag->page_offset;
2439 }
2440
2441 /**
2442 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2443 * @frag: the paged fragment buffer
2444 *
2445 * Returns the address of the data within @frag. Checks that the page
2446 * is mapped and returns %NULL otherwise.
2447 */
2448 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2449 {
2450 void *ptr = page_address(skb_frag_page(frag));
2451 if (unlikely(!ptr))
2452 return NULL;
2453
2454 return ptr + frag->page_offset;
2455 }
2456
2457 /**
2458 * __skb_frag_set_page - sets the page contained in a paged fragment
2459 * @frag: the paged fragment
2460 * @page: the page to set
2461 *
2462 * Sets the fragment @frag to contain @page.
2463 */
2464 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2465 {
2466 frag->page.p = page;
2467 }
2468
2469 /**
2470 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2471 * @skb: the buffer
2472 * @f: the fragment offset
2473 * @page: the page to set
2474 *
2475 * Sets the @f'th fragment of @skb to contain @page.
2476 */
2477 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2478 struct page *page)
2479 {
2480 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2481 }
2482
2483 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2484
2485 /**
2486 * skb_frag_dma_map - maps a paged fragment via the DMA API
2487 * @dev: the device to map the fragment to
2488 * @frag: the paged fragment to map
2489 * @offset: the offset within the fragment (starting at the
2490 * fragment's own offset)
2491 * @size: the number of bytes to map
2492 * @dir: the direction of the mapping (%PCI_DMA_*)
2493 *
2494 * Maps the page associated with @frag to @device.
2495 */
2496 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2497 const skb_frag_t *frag,
2498 size_t offset, size_t size,
2499 enum dma_data_direction dir)
2500 {
2501 return dma_map_page(dev, skb_frag_page(frag),
2502 frag->page_offset + offset, size, dir);
2503 }
2504
2505 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2506 gfp_t gfp_mask)
2507 {
2508 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2509 }
2510
2511
2512 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2513 gfp_t gfp_mask)
2514 {
2515 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2516 }
2517
2518
2519 /**
2520 * skb_clone_writable - is the header of a clone writable
2521 * @skb: buffer to check
2522 * @len: length up to which to write
2523 *
2524 * Returns true if modifying the header part of the cloned buffer
2525 * does not requires the data to be copied.
2526 */
2527 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2528 {
2529 return !skb_header_cloned(skb) &&
2530 skb_headroom(skb) + len <= skb->hdr_len;
2531 }
2532
2533 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2534 int cloned)
2535 {
2536 int delta = 0;
2537
2538 if (headroom > skb_headroom(skb))
2539 delta = headroom - skb_headroom(skb);
2540
2541 if (delta || cloned)
2542 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2543 GFP_ATOMIC);
2544 return 0;
2545 }
2546
2547 /**
2548 * skb_cow - copy header of skb when it is required
2549 * @skb: buffer to cow
2550 * @headroom: needed headroom
2551 *
2552 * If the skb passed lacks sufficient headroom or its data part
2553 * is shared, data is reallocated. If reallocation fails, an error
2554 * is returned and original skb is not changed.
2555 *
2556 * The result is skb with writable area skb->head...skb->tail
2557 * and at least @headroom of space at head.
2558 */
2559 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2560 {
2561 return __skb_cow(skb, headroom, skb_cloned(skb));
2562 }
2563
2564 /**
2565 * skb_cow_head - skb_cow but only making the head writable
2566 * @skb: buffer to cow
2567 * @headroom: needed headroom
2568 *
2569 * This function is identical to skb_cow except that we replace the
2570 * skb_cloned check by skb_header_cloned. It should be used when
2571 * you only need to push on some header and do not need to modify
2572 * the data.
2573 */
2574 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2575 {
2576 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2577 }
2578
2579 /**
2580 * skb_padto - pad an skbuff up to a minimal size
2581 * @skb: buffer to pad
2582 * @len: minimal length
2583 *
2584 * Pads up a buffer to ensure the trailing bytes exist and are
2585 * blanked. If the buffer already contains sufficient data it
2586 * is untouched. Otherwise it is extended. Returns zero on
2587 * success. The skb is freed on error.
2588 */
2589 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2590 {
2591 unsigned int size = skb->len;
2592 if (likely(size >= len))
2593 return 0;
2594 return skb_pad(skb, len - size);
2595 }
2596
2597 /**
2598 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2599 * @skb: buffer to pad
2600 * @len: minimal length
2601 *
2602 * Pads up a buffer to ensure the trailing bytes exist and are
2603 * blanked. If the buffer already contains sufficient data it
2604 * is untouched. Otherwise it is extended. Returns zero on
2605 * success. The skb is freed on error.
2606 */
2607 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2608 {
2609 unsigned int size = skb->len;
2610
2611 if (unlikely(size < len)) {
2612 len -= size;
2613 if (skb_pad(skb, len))
2614 return -ENOMEM;
2615 __skb_put(skb, len);
2616 }
2617 return 0;
2618 }
2619
2620 static inline int skb_add_data(struct sk_buff *skb,
2621 struct iov_iter *from, int copy)
2622 {
2623 const int off = skb->len;
2624
2625 if (skb->ip_summed == CHECKSUM_NONE) {
2626 __wsum csum = 0;
2627 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2628 &csum, from) == copy) {
2629 skb->csum = csum_block_add(skb->csum, csum, off);
2630 return 0;
2631 }
2632 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2633 return 0;
2634
2635 __skb_trim(skb, off);
2636 return -EFAULT;
2637 }
2638
2639 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2640 const struct page *page, int off)
2641 {
2642 if (i) {
2643 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2644
2645 return page == skb_frag_page(frag) &&
2646 off == frag->page_offset + skb_frag_size(frag);
2647 }
2648 return false;
2649 }
2650
2651 static inline int __skb_linearize(struct sk_buff *skb)
2652 {
2653 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2654 }
2655
2656 /**
2657 * skb_linearize - convert paged skb to linear one
2658 * @skb: buffer to linarize
2659 *
2660 * If there is no free memory -ENOMEM is returned, otherwise zero
2661 * is returned and the old skb data released.
2662 */
2663 static inline int skb_linearize(struct sk_buff *skb)
2664 {
2665 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2666 }
2667
2668 /**
2669 * skb_has_shared_frag - can any frag be overwritten
2670 * @skb: buffer to test
2671 *
2672 * Return true if the skb has at least one frag that might be modified
2673 * by an external entity (as in vmsplice()/sendfile())
2674 */
2675 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2676 {
2677 return skb_is_nonlinear(skb) &&
2678 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2679 }
2680
2681 /**
2682 * skb_linearize_cow - make sure skb is linear and writable
2683 * @skb: buffer to process
2684 *
2685 * If there is no free memory -ENOMEM is returned, otherwise zero
2686 * is returned and the old skb data released.
2687 */
2688 static inline int skb_linearize_cow(struct sk_buff *skb)
2689 {
2690 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2691 __skb_linearize(skb) : 0;
2692 }
2693
2694 /**
2695 * skb_postpull_rcsum - update checksum for received skb after pull
2696 * @skb: buffer to update
2697 * @start: start of data before pull
2698 * @len: length of data pulled
2699 *
2700 * After doing a pull on a received packet, you need to call this to
2701 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2702 * CHECKSUM_NONE so that it can be recomputed from scratch.
2703 */
2704
2705 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2706 const void *start, unsigned int len)
2707 {
2708 if (skb->ip_summed == CHECKSUM_COMPLETE)
2709 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2710 }
2711
2712 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2713
2714 /**
2715 * pskb_trim_rcsum - trim received skb and update checksum
2716 * @skb: buffer to trim
2717 * @len: new length
2718 *
2719 * This is exactly the same as pskb_trim except that it ensures the
2720 * checksum of received packets are still valid after the operation.
2721 */
2722
2723 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2724 {
2725 if (likely(len >= skb->len))
2726 return 0;
2727 if (skb->ip_summed == CHECKSUM_COMPLETE)
2728 skb->ip_summed = CHECKSUM_NONE;
2729 return __pskb_trim(skb, len);
2730 }
2731
2732 #define skb_queue_walk(queue, skb) \
2733 for (skb = (queue)->next; \
2734 skb != (struct sk_buff *)(queue); \
2735 skb = skb->next)
2736
2737 #define skb_queue_walk_safe(queue, skb, tmp) \
2738 for (skb = (queue)->next, tmp = skb->next; \
2739 skb != (struct sk_buff *)(queue); \
2740 skb = tmp, tmp = skb->next)
2741
2742 #define skb_queue_walk_from(queue, skb) \
2743 for (; skb != (struct sk_buff *)(queue); \
2744 skb = skb->next)
2745
2746 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2747 for (tmp = skb->next; \
2748 skb != (struct sk_buff *)(queue); \
2749 skb = tmp, tmp = skb->next)
2750
2751 #define skb_queue_reverse_walk(queue, skb) \
2752 for (skb = (queue)->prev; \
2753 skb != (struct sk_buff *)(queue); \
2754 skb = skb->prev)
2755
2756 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2757 for (skb = (queue)->prev, tmp = skb->prev; \
2758 skb != (struct sk_buff *)(queue); \
2759 skb = tmp, tmp = skb->prev)
2760
2761 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2762 for (tmp = skb->prev; \
2763 skb != (struct sk_buff *)(queue); \
2764 skb = tmp, tmp = skb->prev)
2765
2766 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2767 {
2768 return skb_shinfo(skb)->frag_list != NULL;
2769 }
2770
2771 static inline void skb_frag_list_init(struct sk_buff *skb)
2772 {
2773 skb_shinfo(skb)->frag_list = NULL;
2774 }
2775
2776 #define skb_walk_frags(skb, iter) \
2777 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2778
2779 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2780 int *peeked, int *off, int *err);
2781 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2782 int *err);
2783 unsigned int datagram_poll(struct file *file, struct socket *sock,
2784 struct poll_table_struct *wait);
2785 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2786 struct iov_iter *to, int size);
2787 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2788 struct msghdr *msg, int size)
2789 {
2790 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2791 }
2792 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2793 struct msghdr *msg);
2794 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2795 struct iov_iter *from, int len);
2796 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2797 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2798 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2799 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2800 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2801 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2802 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2803 int len, __wsum csum);
2804 ssize_t skb_socket_splice(struct sock *sk,
2805 struct pipe_inode_info *pipe,
2806 struct splice_pipe_desc *spd);
2807 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2808 struct pipe_inode_info *pipe, unsigned int len,
2809 unsigned int flags,
2810 ssize_t (*splice_cb)(struct sock *,
2811 struct pipe_inode_info *,
2812 struct splice_pipe_desc *));
2813 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2814 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2815 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2816 int len, int hlen);
2817 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2818 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2819 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2820 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2821 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2822 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2823 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2824 int skb_vlan_pop(struct sk_buff *skb);
2825 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2826
2827 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2828 {
2829 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2830 }
2831
2832 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2833 {
2834 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2835 }
2836
2837 struct skb_checksum_ops {
2838 __wsum (*update)(const void *mem, int len, __wsum wsum);
2839 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2840 };
2841
2842 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2843 __wsum csum, const struct skb_checksum_ops *ops);
2844 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2845 __wsum csum);
2846
2847 static inline void * __must_check
2848 __skb_header_pointer(const struct sk_buff *skb, int offset,
2849 int len, void *data, int hlen, void *buffer)
2850 {
2851 if (hlen - offset >= len)
2852 return data + offset;
2853
2854 if (!skb ||
2855 skb_copy_bits(skb, offset, buffer, len) < 0)
2856 return NULL;
2857
2858 return buffer;
2859 }
2860
2861 static inline void * __must_check
2862 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2863 {
2864 return __skb_header_pointer(skb, offset, len, skb->data,
2865 skb_headlen(skb), buffer);
2866 }
2867
2868 /**
2869 * skb_needs_linearize - check if we need to linearize a given skb
2870 * depending on the given device features.
2871 * @skb: socket buffer to check
2872 * @features: net device features
2873 *
2874 * Returns true if either:
2875 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2876 * 2. skb is fragmented and the device does not support SG.
2877 */
2878 static inline bool skb_needs_linearize(struct sk_buff *skb,
2879 netdev_features_t features)
2880 {
2881 return skb_is_nonlinear(skb) &&
2882 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2883 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2884 }
2885
2886 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2887 void *to,
2888 const unsigned int len)
2889 {
2890 memcpy(to, skb->data, len);
2891 }
2892
2893 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2894 const int offset, void *to,
2895 const unsigned int len)
2896 {
2897 memcpy(to, skb->data + offset, len);
2898 }
2899
2900 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2901 const void *from,
2902 const unsigned int len)
2903 {
2904 memcpy(skb->data, from, len);
2905 }
2906
2907 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2908 const int offset,
2909 const void *from,
2910 const unsigned int len)
2911 {
2912 memcpy(skb->data + offset, from, len);
2913 }
2914
2915 void skb_init(void);
2916
2917 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2918 {
2919 return skb->tstamp;
2920 }
2921
2922 /**
2923 * skb_get_timestamp - get timestamp from a skb
2924 * @skb: skb to get stamp from
2925 * @stamp: pointer to struct timeval to store stamp in
2926 *
2927 * Timestamps are stored in the skb as offsets to a base timestamp.
2928 * This function converts the offset back to a struct timeval and stores
2929 * it in stamp.
2930 */
2931 static inline void skb_get_timestamp(const struct sk_buff *skb,
2932 struct timeval *stamp)
2933 {
2934 *stamp = ktime_to_timeval(skb->tstamp);
2935 }
2936
2937 static inline void skb_get_timestampns(const struct sk_buff *skb,
2938 struct timespec *stamp)
2939 {
2940 *stamp = ktime_to_timespec(skb->tstamp);
2941 }
2942
2943 static inline void __net_timestamp(struct sk_buff *skb)
2944 {
2945 skb->tstamp = ktime_get_real();
2946 }
2947
2948 static inline ktime_t net_timedelta(ktime_t t)
2949 {
2950 return ktime_sub(ktime_get_real(), t);
2951 }
2952
2953 static inline ktime_t net_invalid_timestamp(void)
2954 {
2955 return ktime_set(0, 0);
2956 }
2957
2958 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2959
2960 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2961
2962 void skb_clone_tx_timestamp(struct sk_buff *skb);
2963 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2964
2965 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2966
2967 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2968 {
2969 }
2970
2971 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2972 {
2973 return false;
2974 }
2975
2976 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2977
2978 /**
2979 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2980 *
2981 * PHY drivers may accept clones of transmitted packets for
2982 * timestamping via their phy_driver.txtstamp method. These drivers
2983 * must call this function to return the skb back to the stack with a
2984 * timestamp.
2985 *
2986 * @skb: clone of the the original outgoing packet
2987 * @hwtstamps: hardware time stamps
2988 *
2989 */
2990 void skb_complete_tx_timestamp(struct sk_buff *skb,
2991 struct skb_shared_hwtstamps *hwtstamps);
2992
2993 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2994 struct skb_shared_hwtstamps *hwtstamps,
2995 struct sock *sk, int tstype);
2996
2997 /**
2998 * skb_tstamp_tx - queue clone of skb with send time stamps
2999 * @orig_skb: the original outgoing packet
3000 * @hwtstamps: hardware time stamps, may be NULL if not available
3001 *
3002 * If the skb has a socket associated, then this function clones the
3003 * skb (thus sharing the actual data and optional structures), stores
3004 * the optional hardware time stamping information (if non NULL) or
3005 * generates a software time stamp (otherwise), then queues the clone
3006 * to the error queue of the socket. Errors are silently ignored.
3007 */
3008 void skb_tstamp_tx(struct sk_buff *orig_skb,
3009 struct skb_shared_hwtstamps *hwtstamps);
3010
3011 static inline void sw_tx_timestamp(struct sk_buff *skb)
3012 {
3013 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3014 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3015 skb_tstamp_tx(skb, NULL);
3016 }
3017
3018 /**
3019 * skb_tx_timestamp() - Driver hook for transmit timestamping
3020 *
3021 * Ethernet MAC Drivers should call this function in their hard_xmit()
3022 * function immediately before giving the sk_buff to the MAC hardware.
3023 *
3024 * Specifically, one should make absolutely sure that this function is
3025 * called before TX completion of this packet can trigger. Otherwise
3026 * the packet could potentially already be freed.
3027 *
3028 * @skb: A socket buffer.
3029 */
3030 static inline void skb_tx_timestamp(struct sk_buff *skb)
3031 {
3032 skb_clone_tx_timestamp(skb);
3033 sw_tx_timestamp(skb);
3034 }
3035
3036 /**
3037 * skb_complete_wifi_ack - deliver skb with wifi status
3038 *
3039 * @skb: the original outgoing packet
3040 * @acked: ack status
3041 *
3042 */
3043 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3044
3045 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3046 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3047
3048 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3049 {
3050 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3051 skb->csum_valid ||
3052 (skb->ip_summed == CHECKSUM_PARTIAL &&
3053 skb_checksum_start_offset(skb) >= 0));
3054 }
3055
3056 /**
3057 * skb_checksum_complete - Calculate checksum of an entire packet
3058 * @skb: packet to process
3059 *
3060 * This function calculates the checksum over the entire packet plus
3061 * the value of skb->csum. The latter can be used to supply the
3062 * checksum of a pseudo header as used by TCP/UDP. It returns the
3063 * checksum.
3064 *
3065 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3066 * this function can be used to verify that checksum on received
3067 * packets. In that case the function should return zero if the
3068 * checksum is correct. In particular, this function will return zero
3069 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3070 * hardware has already verified the correctness of the checksum.
3071 */
3072 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3073 {
3074 return skb_csum_unnecessary(skb) ?
3075 0 : __skb_checksum_complete(skb);
3076 }
3077
3078 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3079 {
3080 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3081 if (skb->csum_level == 0)
3082 skb->ip_summed = CHECKSUM_NONE;
3083 else
3084 skb->csum_level--;
3085 }
3086 }
3087
3088 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3089 {
3090 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3091 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3092 skb->csum_level++;
3093 } else if (skb->ip_summed == CHECKSUM_NONE) {
3094 skb->ip_summed = CHECKSUM_UNNECESSARY;
3095 skb->csum_level = 0;
3096 }
3097 }
3098
3099 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3100 {
3101 /* Mark current checksum as bad (typically called from GRO
3102 * path). In the case that ip_summed is CHECKSUM_NONE
3103 * this must be the first checksum encountered in the packet.
3104 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3105 * checksum after the last one validated. For UDP, a zero
3106 * checksum can not be marked as bad.
3107 */
3108
3109 if (skb->ip_summed == CHECKSUM_NONE ||
3110 skb->ip_summed == CHECKSUM_UNNECESSARY)
3111 skb->csum_bad = 1;
3112 }
3113
3114 /* Check if we need to perform checksum complete validation.
3115 *
3116 * Returns true if checksum complete is needed, false otherwise
3117 * (either checksum is unnecessary or zero checksum is allowed).
3118 */
3119 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3120 bool zero_okay,
3121 __sum16 check)
3122 {
3123 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3124 skb->csum_valid = 1;
3125 __skb_decr_checksum_unnecessary(skb);
3126 return false;
3127 }
3128
3129 return true;
3130 }
3131
3132 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3133 * in checksum_init.
3134 */
3135 #define CHECKSUM_BREAK 76
3136
3137 /* Unset checksum-complete
3138 *
3139 * Unset checksum complete can be done when packet is being modified
3140 * (uncompressed for instance) and checksum-complete value is
3141 * invalidated.
3142 */
3143 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3144 {
3145 if (skb->ip_summed == CHECKSUM_COMPLETE)
3146 skb->ip_summed = CHECKSUM_NONE;
3147 }
3148
3149 /* Validate (init) checksum based on checksum complete.
3150 *
3151 * Return values:
3152 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3153 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3154 * checksum is stored in skb->csum for use in __skb_checksum_complete
3155 * non-zero: value of invalid checksum
3156 *
3157 */
3158 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3159 bool complete,
3160 __wsum psum)
3161 {
3162 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3163 if (!csum_fold(csum_add(psum, skb->csum))) {
3164 skb->csum_valid = 1;
3165 return 0;
3166 }
3167 } else if (skb->csum_bad) {
3168 /* ip_summed == CHECKSUM_NONE in this case */
3169 return (__force __sum16)1;
3170 }
3171
3172 skb->csum = psum;
3173
3174 if (complete || skb->len <= CHECKSUM_BREAK) {
3175 __sum16 csum;
3176
3177 csum = __skb_checksum_complete(skb);
3178 skb->csum_valid = !csum;
3179 return csum;
3180 }
3181
3182 return 0;
3183 }
3184
3185 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3186 {
3187 return 0;
3188 }
3189
3190 /* Perform checksum validate (init). Note that this is a macro since we only
3191 * want to calculate the pseudo header which is an input function if necessary.
3192 * First we try to validate without any computation (checksum unnecessary) and
3193 * then calculate based on checksum complete calling the function to compute
3194 * pseudo header.
3195 *
3196 * Return values:
3197 * 0: checksum is validated or try to in skb_checksum_complete
3198 * non-zero: value of invalid checksum
3199 */
3200 #define __skb_checksum_validate(skb, proto, complete, \
3201 zero_okay, check, compute_pseudo) \
3202 ({ \
3203 __sum16 __ret = 0; \
3204 skb->csum_valid = 0; \
3205 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3206 __ret = __skb_checksum_validate_complete(skb, \
3207 complete, compute_pseudo(skb, proto)); \
3208 __ret; \
3209 })
3210
3211 #define skb_checksum_init(skb, proto, compute_pseudo) \
3212 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3213
3214 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3215 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3216
3217 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3218 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3219
3220 #define skb_checksum_validate_zero_check(skb, proto, check, \
3221 compute_pseudo) \
3222 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3223
3224 #define skb_checksum_simple_validate(skb) \
3225 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3226
3227 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3228 {
3229 return (skb->ip_summed == CHECKSUM_NONE &&
3230 skb->csum_valid && !skb->csum_bad);
3231 }
3232
3233 static inline void __skb_checksum_convert(struct sk_buff *skb,
3234 __sum16 check, __wsum pseudo)
3235 {
3236 skb->csum = ~pseudo;
3237 skb->ip_summed = CHECKSUM_COMPLETE;
3238 }
3239
3240 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3241 do { \
3242 if (__skb_checksum_convert_check(skb)) \
3243 __skb_checksum_convert(skb, check, \
3244 compute_pseudo(skb, proto)); \
3245 } while (0)
3246
3247 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3248 u16 start, u16 offset)
3249 {
3250 skb->ip_summed = CHECKSUM_PARTIAL;
3251 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3252 skb->csum_offset = offset - start;
3253 }
3254
3255 /* Update skbuf and packet to reflect the remote checksum offload operation.
3256 * When called, ptr indicates the starting point for skb->csum when
3257 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3258 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3259 */
3260 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3261 int start, int offset, bool nopartial)
3262 {
3263 __wsum delta;
3264
3265 if (!nopartial) {
3266 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3267 return;
3268 }
3269
3270 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3271 __skb_checksum_complete(skb);
3272 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3273 }
3274
3275 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3276
3277 /* Adjust skb->csum since we changed the packet */
3278 skb->csum = csum_add(skb->csum, delta);
3279 }
3280
3281 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3282 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3283 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3284 {
3285 if (nfct && atomic_dec_and_test(&nfct->use))
3286 nf_conntrack_destroy(nfct);
3287 }
3288 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3289 {
3290 if (nfct)
3291 atomic_inc(&nfct->use);
3292 }
3293 #endif
3294 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3295 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3296 {
3297 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3298 kfree(nf_bridge);
3299 }
3300 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3301 {
3302 if (nf_bridge)
3303 atomic_inc(&nf_bridge->use);
3304 }
3305 #endif /* CONFIG_BRIDGE_NETFILTER */
3306 static inline void nf_reset(struct sk_buff *skb)
3307 {
3308 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3309 nf_conntrack_put(skb->nfct);
3310 skb->nfct = NULL;
3311 #endif
3312 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3313 nf_bridge_put(skb->nf_bridge);
3314 skb->nf_bridge = NULL;
3315 #endif
3316 }
3317
3318 static inline void nf_reset_trace(struct sk_buff *skb)
3319 {
3320 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3321 skb->nf_trace = 0;
3322 #endif
3323 }
3324
3325 /* Note: This doesn't put any conntrack and bridge info in dst. */
3326 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3327 bool copy)
3328 {
3329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3330 dst->nfct = src->nfct;
3331 nf_conntrack_get(src->nfct);
3332 if (copy)
3333 dst->nfctinfo = src->nfctinfo;
3334 #endif
3335 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3336 dst->nf_bridge = src->nf_bridge;
3337 nf_bridge_get(src->nf_bridge);
3338 #endif
3339 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3340 if (copy)
3341 dst->nf_trace = src->nf_trace;
3342 #endif
3343 }
3344
3345 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3346 {
3347 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3348 nf_conntrack_put(dst->nfct);
3349 #endif
3350 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3351 nf_bridge_put(dst->nf_bridge);
3352 #endif
3353 __nf_copy(dst, src, true);
3354 }
3355
3356 #ifdef CONFIG_NETWORK_SECMARK
3357 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3358 {
3359 to->secmark = from->secmark;
3360 }
3361
3362 static inline void skb_init_secmark(struct sk_buff *skb)
3363 {
3364 skb->secmark = 0;
3365 }
3366 #else
3367 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3368 { }
3369
3370 static inline void skb_init_secmark(struct sk_buff *skb)
3371 { }
3372 #endif
3373
3374 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3375 {
3376 return !skb->destructor &&
3377 #if IS_ENABLED(CONFIG_XFRM)
3378 !skb->sp &&
3379 #endif
3380 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3381 !skb->nfct &&
3382 #endif
3383 !skb->_skb_refdst &&
3384 !skb_has_frag_list(skb);
3385 }
3386
3387 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3388 {
3389 skb->queue_mapping = queue_mapping;
3390 }
3391
3392 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3393 {
3394 return skb->queue_mapping;
3395 }
3396
3397 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3398 {
3399 to->queue_mapping = from->queue_mapping;
3400 }
3401
3402 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3403 {
3404 skb->queue_mapping = rx_queue + 1;
3405 }
3406
3407 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3408 {
3409 return skb->queue_mapping - 1;
3410 }
3411
3412 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3413 {
3414 return skb->queue_mapping != 0;
3415 }
3416
3417 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3418 {
3419 #ifdef CONFIG_XFRM
3420 return skb->sp;
3421 #else
3422 return NULL;
3423 #endif
3424 }
3425
3426 /* Keeps track of mac header offset relative to skb->head.
3427 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3428 * For non-tunnel skb it points to skb_mac_header() and for
3429 * tunnel skb it points to outer mac header.
3430 * Keeps track of level of encapsulation of network headers.
3431 */
3432 struct skb_gso_cb {
3433 int mac_offset;
3434 int encap_level;
3435 __u16 csum_start;
3436 };
3437 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3438
3439 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3440 {
3441 return (skb_mac_header(inner_skb) - inner_skb->head) -
3442 SKB_GSO_CB(inner_skb)->mac_offset;
3443 }
3444
3445 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3446 {
3447 int new_headroom, headroom;
3448 int ret;
3449
3450 headroom = skb_headroom(skb);
3451 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3452 if (ret)
3453 return ret;
3454
3455 new_headroom = skb_headroom(skb);
3456 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3457 return 0;
3458 }
3459
3460 /* Compute the checksum for a gso segment. First compute the checksum value
3461 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3462 * then add in skb->csum (checksum from csum_start to end of packet).
3463 * skb->csum and csum_start are then updated to reflect the checksum of the
3464 * resultant packet starting from the transport header-- the resultant checksum
3465 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3466 * header.
3467 */
3468 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3469 {
3470 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3471 skb_transport_offset(skb);
3472 __wsum partial;
3473
3474 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3475 skb->csum = res;
3476 SKB_GSO_CB(skb)->csum_start -= plen;
3477
3478 return csum_fold(partial);
3479 }
3480
3481 static inline bool skb_is_gso(const struct sk_buff *skb)
3482 {
3483 return skb_shinfo(skb)->gso_size;
3484 }
3485
3486 /* Note: Should be called only if skb_is_gso(skb) is true */
3487 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3488 {
3489 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3490 }
3491
3492 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3493
3494 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3495 {
3496 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3497 * wanted then gso_type will be set. */
3498 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3499
3500 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3501 unlikely(shinfo->gso_type == 0)) {
3502 __skb_warn_lro_forwarding(skb);
3503 return true;
3504 }
3505 return false;
3506 }
3507
3508 static inline void skb_forward_csum(struct sk_buff *skb)
3509 {
3510 /* Unfortunately we don't support this one. Any brave souls? */
3511 if (skb->ip_summed == CHECKSUM_COMPLETE)
3512 skb->ip_summed = CHECKSUM_NONE;
3513 }
3514
3515 /**
3516 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3517 * @skb: skb to check
3518 *
3519 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3520 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3521 * use this helper, to document places where we make this assertion.
3522 */
3523 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3524 {
3525 #ifdef DEBUG
3526 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3527 #endif
3528 }
3529
3530 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3531
3532 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3533 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3534 unsigned int transport_len,
3535 __sum16(*skb_chkf)(struct sk_buff *skb));
3536
3537 /**
3538 * skb_head_is_locked - Determine if the skb->head is locked down
3539 * @skb: skb to check
3540 *
3541 * The head on skbs build around a head frag can be removed if they are
3542 * not cloned. This function returns true if the skb head is locked down
3543 * due to either being allocated via kmalloc, or by being a clone with
3544 * multiple references to the head.
3545 */
3546 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3547 {
3548 return !skb->head_frag || skb_cloned(skb);
3549 }
3550
3551 /**
3552 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3553 *
3554 * @skb: GSO skb
3555 *
3556 * skb_gso_network_seglen is used to determine the real size of the
3557 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3558 *
3559 * The MAC/L2 header is not accounted for.
3560 */
3561 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3562 {
3563 unsigned int hdr_len = skb_transport_header(skb) -
3564 skb_network_header(skb);
3565 return hdr_len + skb_gso_transport_seglen(skb);
3566 }
3567
3568 #endif /* __KERNEL__ */
3569 #endif /* _LINUX_SKBUFF_H */
This page took 0.120942 seconds and 5 git commands to generate.