net: add skb_recycle_check() to enable netdriver skb recycling
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 unsigned int num_dma_maps;
151 #endif
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158
159 /* We divide dataref into two halves. The higher 16 bits hold references
160 * to the payload part of skb->data. The lower 16 bits hold references to
161 * the entire skb->data. A clone of a headerless skb holds the length of
162 * the header in skb->hdr_len.
163 *
164 * All users must obey the rule that the skb->data reference count must be
165 * greater than or equal to the payload reference count.
166 *
167 * Holding a reference to the payload part means that the user does not
168 * care about modifications to the header part of skb->data.
169 */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172
173
174 enum {
175 SKB_FCLONE_UNAVAILABLE,
176 SKB_FCLONE_ORIG,
177 SKB_FCLONE_CLONE,
178 };
179
180 enum {
181 SKB_GSO_TCPV4 = 1 << 0,
182 SKB_GSO_UDP = 1 << 1,
183
184 /* This indicates the skb is from an untrusted source. */
185 SKB_GSO_DODGY = 1 << 2,
186
187 /* This indicates the tcp segment has CWR set. */
188 SKB_GSO_TCP_ECN = 1 << 3,
189
190 SKB_GSO_TCPV6 = 1 << 4,
191 };
192
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202
203 /**
204 * struct sk_buff - socket buffer
205 * @next: Next buffer in list
206 * @prev: Previous buffer in list
207 * @sk: Socket we are owned by
208 * @tstamp: Time we arrived
209 * @dev: Device we arrived on/are leaving by
210 * @transport_header: Transport layer header
211 * @network_header: Network layer header
212 * @mac_header: Link layer header
213 * @dst: destination entry
214 * @sp: the security path, used for xfrm
215 * @cb: Control buffer. Free for use by every layer. Put private vars here
216 * @len: Length of actual data
217 * @data_len: Data length
218 * @mac_len: Length of link layer header
219 * @hdr_len: writable header length of cloned skb
220 * @csum: Checksum (must include start/offset pair)
221 * @csum_start: Offset from skb->head where checksumming should start
222 * @csum_offset: Offset from csum_start where checksum should be stored
223 * @local_df: allow local fragmentation
224 * @cloned: Head may be cloned (check refcnt to be sure)
225 * @nohdr: Payload reference only, must not modify header
226 * @pkt_type: Packet class
227 * @fclone: skbuff clone status
228 * @ip_summed: Driver fed us an IP checksum
229 * @priority: Packet queueing priority
230 * @users: User count - see {datagram,tcp}.c
231 * @protocol: Packet protocol from driver
232 * @truesize: Buffer size
233 * @head: Head of buffer
234 * @data: Data head pointer
235 * @tail: Tail pointer
236 * @end: End pointer
237 * @destructor: Destruct function
238 * @mark: Generic packet mark
239 * @nfct: Associated connection, if any
240 * @ipvs_property: skbuff is owned by ipvs
241 * @peeked: this packet has been seen already, so stats have been
242 * done for it, don't do them again
243 * @nf_trace: netfilter packet trace flag
244 * @nfctinfo: Relationship of this skb to the connection
245 * @nfct_reasm: netfilter conntrack re-assembly pointer
246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247 * @iif: ifindex of device we arrived on
248 * @queue_mapping: Queue mapping for multiqueue devices
249 * @tc_index: Traffic control index
250 * @tc_verd: traffic control verdict
251 * @ndisc_nodetype: router type (from link layer)
252 * @do_not_encrypt: set to prevent encryption of this frame
253 * @dma_cookie: a cookie to one of several possible DMA operations
254 * done by skb DMA functions
255 * @secmark: security marking
256 * @vlan_tci: vlan tag control information
257 */
258
259 struct sk_buff {
260 /* These two members must be first. */
261 struct sk_buff *next;
262 struct sk_buff *prev;
263
264 struct sock *sk;
265 ktime_t tstamp;
266 struct net_device *dev;
267
268 union {
269 struct dst_entry *dst;
270 struct rtable *rtable;
271 };
272 struct sec_path *sp;
273
274 /*
275 * This is the control buffer. It is free to use for every
276 * layer. Please put your private variables there. If you
277 * want to keep them across layers you have to do a skb_clone()
278 * first. This is owned by whoever has the skb queued ATM.
279 */
280 char cb[48];
281
282 unsigned int len,
283 data_len;
284 __u16 mac_len,
285 hdr_len;
286 union {
287 __wsum csum;
288 struct {
289 __u16 csum_start;
290 __u16 csum_offset;
291 };
292 };
293 __u32 priority;
294 __u8 local_df:1,
295 cloned:1,
296 ip_summed:2,
297 nohdr:1,
298 nfctinfo:3;
299 __u8 pkt_type:3,
300 fclone:2,
301 ipvs_property:1,
302 peeked:1,
303 nf_trace:1;
304 __be16 protocol;
305
306 void (*destructor)(struct sk_buff *skb);
307 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
308 struct nf_conntrack *nfct;
309 struct sk_buff *nfct_reasm;
310 #endif
311 #ifdef CONFIG_BRIDGE_NETFILTER
312 struct nf_bridge_info *nf_bridge;
313 #endif
314
315 int iif;
316 __u16 queue_mapping;
317 #ifdef CONFIG_NET_SCHED
318 __u16 tc_index; /* traffic control index */
319 #ifdef CONFIG_NET_CLS_ACT
320 __u16 tc_verd; /* traffic control verdict */
321 #endif
322 #endif
323 #ifdef CONFIG_IPV6_NDISC_NODETYPE
324 __u8 ndisc_nodetype:2;
325 #endif
326 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
327 __u8 do_not_encrypt:1;
328 #endif
329 /* 0/13/14 bit hole */
330
331 #ifdef CONFIG_NET_DMA
332 dma_cookie_t dma_cookie;
333 #endif
334 #ifdef CONFIG_NETWORK_SECMARK
335 __u32 secmark;
336 #endif
337
338 __u32 mark;
339
340 __u16 vlan_tci;
341
342 sk_buff_data_t transport_header;
343 sk_buff_data_t network_header;
344 sk_buff_data_t mac_header;
345 /* These elements must be at the end, see alloc_skb() for details. */
346 sk_buff_data_t tail;
347 sk_buff_data_t end;
348 unsigned char *head,
349 *data;
350 unsigned int truesize;
351 atomic_t users;
352 };
353
354 #ifdef __KERNEL__
355 /*
356 * Handling routines are only of interest to the kernel
357 */
358 #include <linux/slab.h>
359
360 #include <asm/system.h>
361
362 #ifdef CONFIG_HAS_DMA
363 #include <linux/dma-mapping.h>
364 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
365 enum dma_data_direction dir);
366 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
367 enum dma_data_direction dir);
368 #endif
369
370 extern void kfree_skb(struct sk_buff *skb);
371 extern void __kfree_skb(struct sk_buff *skb);
372 extern struct sk_buff *__alloc_skb(unsigned int size,
373 gfp_t priority, int fclone, int node);
374 static inline struct sk_buff *alloc_skb(unsigned int size,
375 gfp_t priority)
376 {
377 return __alloc_skb(size, priority, 0, -1);
378 }
379
380 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
381 gfp_t priority)
382 {
383 return __alloc_skb(size, priority, 1, -1);
384 }
385
386 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
387
388 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
389 extern struct sk_buff *skb_clone(struct sk_buff *skb,
390 gfp_t priority);
391 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
392 gfp_t priority);
393 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
394 gfp_t gfp_mask);
395 extern int pskb_expand_head(struct sk_buff *skb,
396 int nhead, int ntail,
397 gfp_t gfp_mask);
398 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
399 unsigned int headroom);
400 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
401 int newheadroom, int newtailroom,
402 gfp_t priority);
403 extern int skb_to_sgvec(struct sk_buff *skb,
404 struct scatterlist *sg, int offset,
405 int len);
406 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
407 struct sk_buff **trailer);
408 extern int skb_pad(struct sk_buff *skb, int pad);
409 #define dev_kfree_skb(a) kfree_skb(a)
410 extern void skb_over_panic(struct sk_buff *skb, int len,
411 void *here);
412 extern void skb_under_panic(struct sk_buff *skb, int len,
413 void *here);
414 extern void skb_truesize_bug(struct sk_buff *skb);
415
416 static inline void skb_truesize_check(struct sk_buff *skb)
417 {
418 int len = sizeof(struct sk_buff) + skb->len;
419
420 if (unlikely((int)skb->truesize < len))
421 skb_truesize_bug(skb);
422 }
423
424 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
425 int getfrag(void *from, char *to, int offset,
426 int len,int odd, struct sk_buff *skb),
427 void *from, int length);
428
429 struct skb_seq_state
430 {
431 __u32 lower_offset;
432 __u32 upper_offset;
433 __u32 frag_idx;
434 __u32 stepped_offset;
435 struct sk_buff *root_skb;
436 struct sk_buff *cur_skb;
437 __u8 *frag_data;
438 };
439
440 extern void skb_prepare_seq_read(struct sk_buff *skb,
441 unsigned int from, unsigned int to,
442 struct skb_seq_state *st);
443 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
444 struct skb_seq_state *st);
445 extern void skb_abort_seq_read(struct skb_seq_state *st);
446
447 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
448 unsigned int to, struct ts_config *config,
449 struct ts_state *state);
450
451 #ifdef NET_SKBUFF_DATA_USES_OFFSET
452 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
453 {
454 return skb->head + skb->end;
455 }
456 #else
457 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
458 {
459 return skb->end;
460 }
461 #endif
462
463 /* Internal */
464 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
465
466 /**
467 * skb_queue_empty - check if a queue is empty
468 * @list: queue head
469 *
470 * Returns true if the queue is empty, false otherwise.
471 */
472 static inline int skb_queue_empty(const struct sk_buff_head *list)
473 {
474 return list->next == (struct sk_buff *)list;
475 }
476
477 /**
478 * skb_queue_is_last - check if skb is the last entry in the queue
479 * @list: queue head
480 * @skb: buffer
481 *
482 * Returns true if @skb is the last buffer on the list.
483 */
484 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
485 const struct sk_buff *skb)
486 {
487 return (skb->next == (struct sk_buff *) list);
488 }
489
490 /**
491 * skb_queue_next - return the next packet in the queue
492 * @list: queue head
493 * @skb: current buffer
494 *
495 * Return the next packet in @list after @skb. It is only valid to
496 * call this if skb_queue_is_last() evaluates to false.
497 */
498 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
499 const struct sk_buff *skb)
500 {
501 /* This BUG_ON may seem severe, but if we just return then we
502 * are going to dereference garbage.
503 */
504 BUG_ON(skb_queue_is_last(list, skb));
505 return skb->next;
506 }
507
508 /**
509 * skb_get - reference buffer
510 * @skb: buffer to reference
511 *
512 * Makes another reference to a socket buffer and returns a pointer
513 * to the buffer.
514 */
515 static inline struct sk_buff *skb_get(struct sk_buff *skb)
516 {
517 atomic_inc(&skb->users);
518 return skb;
519 }
520
521 /*
522 * If users == 1, we are the only owner and are can avoid redundant
523 * atomic change.
524 */
525
526 /**
527 * skb_cloned - is the buffer a clone
528 * @skb: buffer to check
529 *
530 * Returns true if the buffer was generated with skb_clone() and is
531 * one of multiple shared copies of the buffer. Cloned buffers are
532 * shared data so must not be written to under normal circumstances.
533 */
534 static inline int skb_cloned(const struct sk_buff *skb)
535 {
536 return skb->cloned &&
537 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
538 }
539
540 /**
541 * skb_header_cloned - is the header a clone
542 * @skb: buffer to check
543 *
544 * Returns true if modifying the header part of the buffer requires
545 * the data to be copied.
546 */
547 static inline int skb_header_cloned(const struct sk_buff *skb)
548 {
549 int dataref;
550
551 if (!skb->cloned)
552 return 0;
553
554 dataref = atomic_read(&skb_shinfo(skb)->dataref);
555 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
556 return dataref != 1;
557 }
558
559 /**
560 * skb_header_release - release reference to header
561 * @skb: buffer to operate on
562 *
563 * Drop a reference to the header part of the buffer. This is done
564 * by acquiring a payload reference. You must not read from the header
565 * part of skb->data after this.
566 */
567 static inline void skb_header_release(struct sk_buff *skb)
568 {
569 BUG_ON(skb->nohdr);
570 skb->nohdr = 1;
571 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
572 }
573
574 /**
575 * skb_shared - is the buffer shared
576 * @skb: buffer to check
577 *
578 * Returns true if more than one person has a reference to this
579 * buffer.
580 */
581 static inline int skb_shared(const struct sk_buff *skb)
582 {
583 return atomic_read(&skb->users) != 1;
584 }
585
586 /**
587 * skb_share_check - check if buffer is shared and if so clone it
588 * @skb: buffer to check
589 * @pri: priority for memory allocation
590 *
591 * If the buffer is shared the buffer is cloned and the old copy
592 * drops a reference. A new clone with a single reference is returned.
593 * If the buffer is not shared the original buffer is returned. When
594 * being called from interrupt status or with spinlocks held pri must
595 * be GFP_ATOMIC.
596 *
597 * NULL is returned on a memory allocation failure.
598 */
599 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
600 gfp_t pri)
601 {
602 might_sleep_if(pri & __GFP_WAIT);
603 if (skb_shared(skb)) {
604 struct sk_buff *nskb = skb_clone(skb, pri);
605 kfree_skb(skb);
606 skb = nskb;
607 }
608 return skb;
609 }
610
611 /*
612 * Copy shared buffers into a new sk_buff. We effectively do COW on
613 * packets to handle cases where we have a local reader and forward
614 * and a couple of other messy ones. The normal one is tcpdumping
615 * a packet thats being forwarded.
616 */
617
618 /**
619 * skb_unshare - make a copy of a shared buffer
620 * @skb: buffer to check
621 * @pri: priority for memory allocation
622 *
623 * If the socket buffer is a clone then this function creates a new
624 * copy of the data, drops a reference count on the old copy and returns
625 * the new copy with the reference count at 1. If the buffer is not a clone
626 * the original buffer is returned. When called with a spinlock held or
627 * from interrupt state @pri must be %GFP_ATOMIC
628 *
629 * %NULL is returned on a memory allocation failure.
630 */
631 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
632 gfp_t pri)
633 {
634 might_sleep_if(pri & __GFP_WAIT);
635 if (skb_cloned(skb)) {
636 struct sk_buff *nskb = skb_copy(skb, pri);
637 kfree_skb(skb); /* Free our shared copy */
638 skb = nskb;
639 }
640 return skb;
641 }
642
643 /**
644 * skb_peek
645 * @list_: list to peek at
646 *
647 * Peek an &sk_buff. Unlike most other operations you _MUST_
648 * be careful with this one. A peek leaves the buffer on the
649 * list and someone else may run off with it. You must hold
650 * the appropriate locks or have a private queue to do this.
651 *
652 * Returns %NULL for an empty list or a pointer to the head element.
653 * The reference count is not incremented and the reference is therefore
654 * volatile. Use with caution.
655 */
656 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
657 {
658 struct sk_buff *list = ((struct sk_buff *)list_)->next;
659 if (list == (struct sk_buff *)list_)
660 list = NULL;
661 return list;
662 }
663
664 /**
665 * skb_peek_tail
666 * @list_: list to peek at
667 *
668 * Peek an &sk_buff. Unlike most other operations you _MUST_
669 * be careful with this one. A peek leaves the buffer on the
670 * list and someone else may run off with it. You must hold
671 * the appropriate locks or have a private queue to do this.
672 *
673 * Returns %NULL for an empty list or a pointer to the tail element.
674 * The reference count is not incremented and the reference is therefore
675 * volatile. Use with caution.
676 */
677 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
678 {
679 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
680 if (list == (struct sk_buff *)list_)
681 list = NULL;
682 return list;
683 }
684
685 /**
686 * skb_queue_len - get queue length
687 * @list_: list to measure
688 *
689 * Return the length of an &sk_buff queue.
690 */
691 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
692 {
693 return list_->qlen;
694 }
695
696 /**
697 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
698 * @list: queue to initialize
699 *
700 * This initializes only the list and queue length aspects of
701 * an sk_buff_head object. This allows to initialize the list
702 * aspects of an sk_buff_head without reinitializing things like
703 * the spinlock. It can also be used for on-stack sk_buff_head
704 * objects where the spinlock is known to not be used.
705 */
706 static inline void __skb_queue_head_init(struct sk_buff_head *list)
707 {
708 list->prev = list->next = (struct sk_buff *)list;
709 list->qlen = 0;
710 }
711
712 /*
713 * This function creates a split out lock class for each invocation;
714 * this is needed for now since a whole lot of users of the skb-queue
715 * infrastructure in drivers have different locking usage (in hardirq)
716 * than the networking core (in softirq only). In the long run either the
717 * network layer or drivers should need annotation to consolidate the
718 * main types of usage into 3 classes.
719 */
720 static inline void skb_queue_head_init(struct sk_buff_head *list)
721 {
722 spin_lock_init(&list->lock);
723 __skb_queue_head_init(list);
724 }
725
726 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
727 struct lock_class_key *class)
728 {
729 skb_queue_head_init(list);
730 lockdep_set_class(&list->lock, class);
731 }
732
733 /*
734 * Insert an sk_buff on a list.
735 *
736 * The "__skb_xxxx()" functions are the non-atomic ones that
737 * can only be called with interrupts disabled.
738 */
739 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
740 static inline void __skb_insert(struct sk_buff *newsk,
741 struct sk_buff *prev, struct sk_buff *next,
742 struct sk_buff_head *list)
743 {
744 newsk->next = next;
745 newsk->prev = prev;
746 next->prev = prev->next = newsk;
747 list->qlen++;
748 }
749
750 static inline void __skb_queue_splice(const struct sk_buff_head *list,
751 struct sk_buff *prev,
752 struct sk_buff *next)
753 {
754 struct sk_buff *first = list->next;
755 struct sk_buff *last = list->prev;
756
757 first->prev = prev;
758 prev->next = first;
759
760 last->next = next;
761 next->prev = last;
762 }
763
764 /**
765 * skb_queue_splice - join two skb lists, this is designed for stacks
766 * @list: the new list to add
767 * @head: the place to add it in the first list
768 */
769 static inline void skb_queue_splice(const struct sk_buff_head *list,
770 struct sk_buff_head *head)
771 {
772 if (!skb_queue_empty(list)) {
773 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
774 head->qlen += list->qlen;
775 }
776 }
777
778 /**
779 * skb_queue_splice - join two skb lists and reinitialise the emptied list
780 * @list: the new list to add
781 * @head: the place to add it in the first list
782 *
783 * The list at @list is reinitialised
784 */
785 static inline void skb_queue_splice_init(struct sk_buff_head *list,
786 struct sk_buff_head *head)
787 {
788 if (!skb_queue_empty(list)) {
789 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
790 head->qlen += list->qlen;
791 __skb_queue_head_init(list);
792 }
793 }
794
795 /**
796 * skb_queue_splice_tail - join two skb lists, each list being a queue
797 * @list: the new list to add
798 * @head: the place to add it in the first list
799 */
800 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
801 struct sk_buff_head *head)
802 {
803 if (!skb_queue_empty(list)) {
804 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
805 head->qlen += list->qlen;
806 }
807 }
808
809 /**
810 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
811 * @list: the new list to add
812 * @head: the place to add it in the first list
813 *
814 * Each of the lists is a queue.
815 * The list at @list is reinitialised
816 */
817 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
818 struct sk_buff_head *head)
819 {
820 if (!skb_queue_empty(list)) {
821 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
822 head->qlen += list->qlen;
823 __skb_queue_head_init(list);
824 }
825 }
826
827 /**
828 * __skb_queue_after - queue a buffer at the list head
829 * @list: list to use
830 * @prev: place after this buffer
831 * @newsk: buffer to queue
832 *
833 * Queue a buffer int the middle of a list. This function takes no locks
834 * and you must therefore hold required locks before calling it.
835 *
836 * A buffer cannot be placed on two lists at the same time.
837 */
838 static inline void __skb_queue_after(struct sk_buff_head *list,
839 struct sk_buff *prev,
840 struct sk_buff *newsk)
841 {
842 __skb_insert(newsk, prev, prev->next, list);
843 }
844
845 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
846 struct sk_buff_head *list);
847
848 static inline void __skb_queue_before(struct sk_buff_head *list,
849 struct sk_buff *next,
850 struct sk_buff *newsk)
851 {
852 __skb_insert(newsk, next->prev, next, list);
853 }
854
855 /**
856 * __skb_queue_head - queue a buffer at the list head
857 * @list: list to use
858 * @newsk: buffer to queue
859 *
860 * Queue a buffer at the start of a list. This function takes no locks
861 * and you must therefore hold required locks before calling it.
862 *
863 * A buffer cannot be placed on two lists at the same time.
864 */
865 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
866 static inline void __skb_queue_head(struct sk_buff_head *list,
867 struct sk_buff *newsk)
868 {
869 __skb_queue_after(list, (struct sk_buff *)list, newsk);
870 }
871
872 /**
873 * __skb_queue_tail - queue a buffer at the list tail
874 * @list: list to use
875 * @newsk: buffer to queue
876 *
877 * Queue a buffer at the end of a list. This function takes no locks
878 * and you must therefore hold required locks before calling it.
879 *
880 * A buffer cannot be placed on two lists at the same time.
881 */
882 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
883 static inline void __skb_queue_tail(struct sk_buff_head *list,
884 struct sk_buff *newsk)
885 {
886 __skb_queue_before(list, (struct sk_buff *)list, newsk);
887 }
888
889 /*
890 * remove sk_buff from list. _Must_ be called atomically, and with
891 * the list known..
892 */
893 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
894 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
895 {
896 struct sk_buff *next, *prev;
897
898 list->qlen--;
899 next = skb->next;
900 prev = skb->prev;
901 skb->next = skb->prev = NULL;
902 next->prev = prev;
903 prev->next = next;
904 }
905
906 /**
907 * __skb_dequeue - remove from the head of the queue
908 * @list: list to dequeue from
909 *
910 * Remove the head of the list. This function does not take any locks
911 * so must be used with appropriate locks held only. The head item is
912 * returned or %NULL if the list is empty.
913 */
914 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
915 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
916 {
917 struct sk_buff *skb = skb_peek(list);
918 if (skb)
919 __skb_unlink(skb, list);
920 return skb;
921 }
922
923 /**
924 * __skb_dequeue_tail - remove from the tail of the queue
925 * @list: list to dequeue from
926 *
927 * Remove the tail of the list. This function does not take any locks
928 * so must be used with appropriate locks held only. The tail item is
929 * returned or %NULL if the list is empty.
930 */
931 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
932 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
933 {
934 struct sk_buff *skb = skb_peek_tail(list);
935 if (skb)
936 __skb_unlink(skb, list);
937 return skb;
938 }
939
940
941 static inline int skb_is_nonlinear(const struct sk_buff *skb)
942 {
943 return skb->data_len;
944 }
945
946 static inline unsigned int skb_headlen(const struct sk_buff *skb)
947 {
948 return skb->len - skb->data_len;
949 }
950
951 static inline int skb_pagelen(const struct sk_buff *skb)
952 {
953 int i, len = 0;
954
955 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
956 len += skb_shinfo(skb)->frags[i].size;
957 return len + skb_headlen(skb);
958 }
959
960 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
961 struct page *page, int off, int size)
962 {
963 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
964
965 frag->page = page;
966 frag->page_offset = off;
967 frag->size = size;
968 skb_shinfo(skb)->nr_frags = i + 1;
969 }
970
971 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
972 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
973 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
974
975 #ifdef NET_SKBUFF_DATA_USES_OFFSET
976 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
977 {
978 return skb->head + skb->tail;
979 }
980
981 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
982 {
983 skb->tail = skb->data - skb->head;
984 }
985
986 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
987 {
988 skb_reset_tail_pointer(skb);
989 skb->tail += offset;
990 }
991 #else /* NET_SKBUFF_DATA_USES_OFFSET */
992 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
993 {
994 return skb->tail;
995 }
996
997 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
998 {
999 skb->tail = skb->data;
1000 }
1001
1002 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1003 {
1004 skb->tail = skb->data + offset;
1005 }
1006
1007 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1008
1009 /*
1010 * Add data to an sk_buff
1011 */
1012 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1013 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1014 {
1015 unsigned char *tmp = skb_tail_pointer(skb);
1016 SKB_LINEAR_ASSERT(skb);
1017 skb->tail += len;
1018 skb->len += len;
1019 return tmp;
1020 }
1021
1022 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1023 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1024 {
1025 skb->data -= len;
1026 skb->len += len;
1027 return skb->data;
1028 }
1029
1030 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1031 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1032 {
1033 skb->len -= len;
1034 BUG_ON(skb->len < skb->data_len);
1035 return skb->data += len;
1036 }
1037
1038 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1039
1040 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1041 {
1042 if (len > skb_headlen(skb) &&
1043 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1044 return NULL;
1045 skb->len -= len;
1046 return skb->data += len;
1047 }
1048
1049 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1050 {
1051 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1052 }
1053
1054 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1055 {
1056 if (likely(len <= skb_headlen(skb)))
1057 return 1;
1058 if (unlikely(len > skb->len))
1059 return 0;
1060 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1061 }
1062
1063 /**
1064 * skb_headroom - bytes at buffer head
1065 * @skb: buffer to check
1066 *
1067 * Return the number of bytes of free space at the head of an &sk_buff.
1068 */
1069 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1070 {
1071 return skb->data - skb->head;
1072 }
1073
1074 /**
1075 * skb_tailroom - bytes at buffer end
1076 * @skb: buffer to check
1077 *
1078 * Return the number of bytes of free space at the tail of an sk_buff
1079 */
1080 static inline int skb_tailroom(const struct sk_buff *skb)
1081 {
1082 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1083 }
1084
1085 /**
1086 * skb_reserve - adjust headroom
1087 * @skb: buffer to alter
1088 * @len: bytes to move
1089 *
1090 * Increase the headroom of an empty &sk_buff by reducing the tail
1091 * room. This is only allowed for an empty buffer.
1092 */
1093 static inline void skb_reserve(struct sk_buff *skb, int len)
1094 {
1095 skb->data += len;
1096 skb->tail += len;
1097 }
1098
1099 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1100 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1101 {
1102 return skb->head + skb->transport_header;
1103 }
1104
1105 static inline void skb_reset_transport_header(struct sk_buff *skb)
1106 {
1107 skb->transport_header = skb->data - skb->head;
1108 }
1109
1110 static inline void skb_set_transport_header(struct sk_buff *skb,
1111 const int offset)
1112 {
1113 skb_reset_transport_header(skb);
1114 skb->transport_header += offset;
1115 }
1116
1117 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1118 {
1119 return skb->head + skb->network_header;
1120 }
1121
1122 static inline void skb_reset_network_header(struct sk_buff *skb)
1123 {
1124 skb->network_header = skb->data - skb->head;
1125 }
1126
1127 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1128 {
1129 skb_reset_network_header(skb);
1130 skb->network_header += offset;
1131 }
1132
1133 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1134 {
1135 return skb->head + skb->mac_header;
1136 }
1137
1138 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1139 {
1140 return skb->mac_header != ~0U;
1141 }
1142
1143 static inline void skb_reset_mac_header(struct sk_buff *skb)
1144 {
1145 skb->mac_header = skb->data - skb->head;
1146 }
1147
1148 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1149 {
1150 skb_reset_mac_header(skb);
1151 skb->mac_header += offset;
1152 }
1153
1154 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1155
1156 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1157 {
1158 return skb->transport_header;
1159 }
1160
1161 static inline void skb_reset_transport_header(struct sk_buff *skb)
1162 {
1163 skb->transport_header = skb->data;
1164 }
1165
1166 static inline void skb_set_transport_header(struct sk_buff *skb,
1167 const int offset)
1168 {
1169 skb->transport_header = skb->data + offset;
1170 }
1171
1172 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1173 {
1174 return skb->network_header;
1175 }
1176
1177 static inline void skb_reset_network_header(struct sk_buff *skb)
1178 {
1179 skb->network_header = skb->data;
1180 }
1181
1182 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1183 {
1184 skb->network_header = skb->data + offset;
1185 }
1186
1187 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1188 {
1189 return skb->mac_header;
1190 }
1191
1192 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1193 {
1194 return skb->mac_header != NULL;
1195 }
1196
1197 static inline void skb_reset_mac_header(struct sk_buff *skb)
1198 {
1199 skb->mac_header = skb->data;
1200 }
1201
1202 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1203 {
1204 skb->mac_header = skb->data + offset;
1205 }
1206 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1207
1208 static inline int skb_transport_offset(const struct sk_buff *skb)
1209 {
1210 return skb_transport_header(skb) - skb->data;
1211 }
1212
1213 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1214 {
1215 return skb->transport_header - skb->network_header;
1216 }
1217
1218 static inline int skb_network_offset(const struct sk_buff *skb)
1219 {
1220 return skb_network_header(skb) - skb->data;
1221 }
1222
1223 /*
1224 * CPUs often take a performance hit when accessing unaligned memory
1225 * locations. The actual performance hit varies, it can be small if the
1226 * hardware handles it or large if we have to take an exception and fix it
1227 * in software.
1228 *
1229 * Since an ethernet header is 14 bytes network drivers often end up with
1230 * the IP header at an unaligned offset. The IP header can be aligned by
1231 * shifting the start of the packet by 2 bytes. Drivers should do this
1232 * with:
1233 *
1234 * skb_reserve(NET_IP_ALIGN);
1235 *
1236 * The downside to this alignment of the IP header is that the DMA is now
1237 * unaligned. On some architectures the cost of an unaligned DMA is high
1238 * and this cost outweighs the gains made by aligning the IP header.
1239 *
1240 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1241 * to be overridden.
1242 */
1243 #ifndef NET_IP_ALIGN
1244 #define NET_IP_ALIGN 2
1245 #endif
1246
1247 /*
1248 * The networking layer reserves some headroom in skb data (via
1249 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1250 * the header has to grow. In the default case, if the header has to grow
1251 * 16 bytes or less we avoid the reallocation.
1252 *
1253 * Unfortunately this headroom changes the DMA alignment of the resulting
1254 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1255 * on some architectures. An architecture can override this value,
1256 * perhaps setting it to a cacheline in size (since that will maintain
1257 * cacheline alignment of the DMA). It must be a power of 2.
1258 *
1259 * Various parts of the networking layer expect at least 16 bytes of
1260 * headroom, you should not reduce this.
1261 */
1262 #ifndef NET_SKB_PAD
1263 #define NET_SKB_PAD 16
1264 #endif
1265
1266 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1267
1268 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1269 {
1270 if (unlikely(skb->data_len)) {
1271 WARN_ON(1);
1272 return;
1273 }
1274 skb->len = len;
1275 skb_set_tail_pointer(skb, len);
1276 }
1277
1278 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1279
1280 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1281 {
1282 if (skb->data_len)
1283 return ___pskb_trim(skb, len);
1284 __skb_trim(skb, len);
1285 return 0;
1286 }
1287
1288 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1289 {
1290 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1291 }
1292
1293 /**
1294 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1295 * @skb: buffer to alter
1296 * @len: new length
1297 *
1298 * This is identical to pskb_trim except that the caller knows that
1299 * the skb is not cloned so we should never get an error due to out-
1300 * of-memory.
1301 */
1302 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1303 {
1304 int err = pskb_trim(skb, len);
1305 BUG_ON(err);
1306 }
1307
1308 /**
1309 * skb_orphan - orphan a buffer
1310 * @skb: buffer to orphan
1311 *
1312 * If a buffer currently has an owner then we call the owner's
1313 * destructor function and make the @skb unowned. The buffer continues
1314 * to exist but is no longer charged to its former owner.
1315 */
1316 static inline void skb_orphan(struct sk_buff *skb)
1317 {
1318 if (skb->destructor)
1319 skb->destructor(skb);
1320 skb->destructor = NULL;
1321 skb->sk = NULL;
1322 }
1323
1324 /**
1325 * __skb_queue_purge - empty a list
1326 * @list: list to empty
1327 *
1328 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1329 * the list and one reference dropped. This function does not take the
1330 * list lock and the caller must hold the relevant locks to use it.
1331 */
1332 extern void skb_queue_purge(struct sk_buff_head *list);
1333 static inline void __skb_queue_purge(struct sk_buff_head *list)
1334 {
1335 struct sk_buff *skb;
1336 while ((skb = __skb_dequeue(list)) != NULL)
1337 kfree_skb(skb);
1338 }
1339
1340 /**
1341 * __dev_alloc_skb - allocate an skbuff for receiving
1342 * @length: length to allocate
1343 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1344 *
1345 * Allocate a new &sk_buff and assign it a usage count of one. The
1346 * buffer has unspecified headroom built in. Users should allocate
1347 * the headroom they think they need without accounting for the
1348 * built in space. The built in space is used for optimisations.
1349 *
1350 * %NULL is returned if there is no free memory.
1351 */
1352 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1353 gfp_t gfp_mask)
1354 {
1355 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1356 if (likely(skb))
1357 skb_reserve(skb, NET_SKB_PAD);
1358 return skb;
1359 }
1360
1361 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1362
1363 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1364 unsigned int length, gfp_t gfp_mask);
1365
1366 /**
1367 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1368 * @dev: network device to receive on
1369 * @length: length to allocate
1370 *
1371 * Allocate a new &sk_buff and assign it a usage count of one. The
1372 * buffer has unspecified headroom built in. Users should allocate
1373 * the headroom they think they need without accounting for the
1374 * built in space. The built in space is used for optimisations.
1375 *
1376 * %NULL is returned if there is no free memory. Although this function
1377 * allocates memory it can be called from an interrupt.
1378 */
1379 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1380 unsigned int length)
1381 {
1382 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1383 }
1384
1385 /**
1386 * skb_clone_writable - is the header of a clone writable
1387 * @skb: buffer to check
1388 * @len: length up to which to write
1389 *
1390 * Returns true if modifying the header part of the cloned buffer
1391 * does not requires the data to be copied.
1392 */
1393 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1394 {
1395 return !skb_header_cloned(skb) &&
1396 skb_headroom(skb) + len <= skb->hdr_len;
1397 }
1398
1399 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1400 int cloned)
1401 {
1402 int delta = 0;
1403
1404 if (headroom < NET_SKB_PAD)
1405 headroom = NET_SKB_PAD;
1406 if (headroom > skb_headroom(skb))
1407 delta = headroom - skb_headroom(skb);
1408
1409 if (delta || cloned)
1410 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1411 GFP_ATOMIC);
1412 return 0;
1413 }
1414
1415 /**
1416 * skb_cow - copy header of skb when it is required
1417 * @skb: buffer to cow
1418 * @headroom: needed headroom
1419 *
1420 * If the skb passed lacks sufficient headroom or its data part
1421 * is shared, data is reallocated. If reallocation fails, an error
1422 * is returned and original skb is not changed.
1423 *
1424 * The result is skb with writable area skb->head...skb->tail
1425 * and at least @headroom of space at head.
1426 */
1427 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1428 {
1429 return __skb_cow(skb, headroom, skb_cloned(skb));
1430 }
1431
1432 /**
1433 * skb_cow_head - skb_cow but only making the head writable
1434 * @skb: buffer to cow
1435 * @headroom: needed headroom
1436 *
1437 * This function is identical to skb_cow except that we replace the
1438 * skb_cloned check by skb_header_cloned. It should be used when
1439 * you only need to push on some header and do not need to modify
1440 * the data.
1441 */
1442 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1443 {
1444 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1445 }
1446
1447 /**
1448 * skb_padto - pad an skbuff up to a minimal size
1449 * @skb: buffer to pad
1450 * @len: minimal length
1451 *
1452 * Pads up a buffer to ensure the trailing bytes exist and are
1453 * blanked. If the buffer already contains sufficient data it
1454 * is untouched. Otherwise it is extended. Returns zero on
1455 * success. The skb is freed on error.
1456 */
1457
1458 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1459 {
1460 unsigned int size = skb->len;
1461 if (likely(size >= len))
1462 return 0;
1463 return skb_pad(skb, len - size);
1464 }
1465
1466 static inline int skb_add_data(struct sk_buff *skb,
1467 char __user *from, int copy)
1468 {
1469 const int off = skb->len;
1470
1471 if (skb->ip_summed == CHECKSUM_NONE) {
1472 int err = 0;
1473 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1474 copy, 0, &err);
1475 if (!err) {
1476 skb->csum = csum_block_add(skb->csum, csum, off);
1477 return 0;
1478 }
1479 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1480 return 0;
1481
1482 __skb_trim(skb, off);
1483 return -EFAULT;
1484 }
1485
1486 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1487 struct page *page, int off)
1488 {
1489 if (i) {
1490 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1491
1492 return page == frag->page &&
1493 off == frag->page_offset + frag->size;
1494 }
1495 return 0;
1496 }
1497
1498 static inline int __skb_linearize(struct sk_buff *skb)
1499 {
1500 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1501 }
1502
1503 /**
1504 * skb_linearize - convert paged skb to linear one
1505 * @skb: buffer to linarize
1506 *
1507 * If there is no free memory -ENOMEM is returned, otherwise zero
1508 * is returned and the old skb data released.
1509 */
1510 static inline int skb_linearize(struct sk_buff *skb)
1511 {
1512 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1513 }
1514
1515 /**
1516 * skb_linearize_cow - make sure skb is linear and writable
1517 * @skb: buffer to process
1518 *
1519 * If there is no free memory -ENOMEM is returned, otherwise zero
1520 * is returned and the old skb data released.
1521 */
1522 static inline int skb_linearize_cow(struct sk_buff *skb)
1523 {
1524 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1525 __skb_linearize(skb) : 0;
1526 }
1527
1528 /**
1529 * skb_postpull_rcsum - update checksum for received skb after pull
1530 * @skb: buffer to update
1531 * @start: start of data before pull
1532 * @len: length of data pulled
1533 *
1534 * After doing a pull on a received packet, you need to call this to
1535 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1536 * CHECKSUM_NONE so that it can be recomputed from scratch.
1537 */
1538
1539 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1540 const void *start, unsigned int len)
1541 {
1542 if (skb->ip_summed == CHECKSUM_COMPLETE)
1543 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1544 }
1545
1546 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1547
1548 /**
1549 * pskb_trim_rcsum - trim received skb and update checksum
1550 * @skb: buffer to trim
1551 * @len: new length
1552 *
1553 * This is exactly the same as pskb_trim except that it ensures the
1554 * checksum of received packets are still valid after the operation.
1555 */
1556
1557 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1558 {
1559 if (likely(len >= skb->len))
1560 return 0;
1561 if (skb->ip_summed == CHECKSUM_COMPLETE)
1562 skb->ip_summed = CHECKSUM_NONE;
1563 return __pskb_trim(skb, len);
1564 }
1565
1566 #define skb_queue_walk(queue, skb) \
1567 for (skb = (queue)->next; \
1568 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1569 skb = skb->next)
1570
1571 #define skb_queue_walk_safe(queue, skb, tmp) \
1572 for (skb = (queue)->next, tmp = skb->next; \
1573 skb != (struct sk_buff *)(queue); \
1574 skb = tmp, tmp = skb->next)
1575
1576 #define skb_queue_walk_from(queue, skb) \
1577 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1578 skb = skb->next)
1579
1580 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1581 for (tmp = skb->next; \
1582 skb != (struct sk_buff *)(queue); \
1583 skb = tmp, tmp = skb->next)
1584
1585 #define skb_queue_reverse_walk(queue, skb) \
1586 for (skb = (queue)->prev; \
1587 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1588 skb = skb->prev)
1589
1590
1591 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1592 int *peeked, int *err);
1593 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1594 int noblock, int *err);
1595 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1596 struct poll_table_struct *wait);
1597 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1598 int offset, struct iovec *to,
1599 int size);
1600 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1601 int hlen,
1602 struct iovec *iov);
1603 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1604 int offset,
1605 struct iovec *from,
1606 int len);
1607 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1608 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1609 unsigned int flags);
1610 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1611 int len, __wsum csum);
1612 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1613 void *to, int len);
1614 extern int skb_store_bits(struct sk_buff *skb, int offset,
1615 const void *from, int len);
1616 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1617 int offset, u8 *to, int len,
1618 __wsum csum);
1619 extern int skb_splice_bits(struct sk_buff *skb,
1620 unsigned int offset,
1621 struct pipe_inode_info *pipe,
1622 unsigned int len,
1623 unsigned int flags);
1624 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1625 extern void skb_split(struct sk_buff *skb,
1626 struct sk_buff *skb1, const u32 len);
1627
1628 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1629
1630 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1631 int len, void *buffer)
1632 {
1633 int hlen = skb_headlen(skb);
1634
1635 if (hlen - offset >= len)
1636 return skb->data + offset;
1637
1638 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1639 return NULL;
1640
1641 return buffer;
1642 }
1643
1644 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1645 void *to,
1646 const unsigned int len)
1647 {
1648 memcpy(to, skb->data, len);
1649 }
1650
1651 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1652 const int offset, void *to,
1653 const unsigned int len)
1654 {
1655 memcpy(to, skb->data + offset, len);
1656 }
1657
1658 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1659 const void *from,
1660 const unsigned int len)
1661 {
1662 memcpy(skb->data, from, len);
1663 }
1664
1665 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1666 const int offset,
1667 const void *from,
1668 const unsigned int len)
1669 {
1670 memcpy(skb->data + offset, from, len);
1671 }
1672
1673 extern void skb_init(void);
1674
1675 /**
1676 * skb_get_timestamp - get timestamp from a skb
1677 * @skb: skb to get stamp from
1678 * @stamp: pointer to struct timeval to store stamp in
1679 *
1680 * Timestamps are stored in the skb as offsets to a base timestamp.
1681 * This function converts the offset back to a struct timeval and stores
1682 * it in stamp.
1683 */
1684 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1685 {
1686 *stamp = ktime_to_timeval(skb->tstamp);
1687 }
1688
1689 static inline void __net_timestamp(struct sk_buff *skb)
1690 {
1691 skb->tstamp = ktime_get_real();
1692 }
1693
1694 static inline ktime_t net_timedelta(ktime_t t)
1695 {
1696 return ktime_sub(ktime_get_real(), t);
1697 }
1698
1699 static inline ktime_t net_invalid_timestamp(void)
1700 {
1701 return ktime_set(0, 0);
1702 }
1703
1704 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1705 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1706
1707 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1708 {
1709 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1710 }
1711
1712 /**
1713 * skb_checksum_complete - Calculate checksum of an entire packet
1714 * @skb: packet to process
1715 *
1716 * This function calculates the checksum over the entire packet plus
1717 * the value of skb->csum. The latter can be used to supply the
1718 * checksum of a pseudo header as used by TCP/UDP. It returns the
1719 * checksum.
1720 *
1721 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1722 * this function can be used to verify that checksum on received
1723 * packets. In that case the function should return zero if the
1724 * checksum is correct. In particular, this function will return zero
1725 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1726 * hardware has already verified the correctness of the checksum.
1727 */
1728 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1729 {
1730 return skb_csum_unnecessary(skb) ?
1731 0 : __skb_checksum_complete(skb);
1732 }
1733
1734 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1735 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1736 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1737 {
1738 if (nfct && atomic_dec_and_test(&nfct->use))
1739 nf_conntrack_destroy(nfct);
1740 }
1741 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1742 {
1743 if (nfct)
1744 atomic_inc(&nfct->use);
1745 }
1746 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1747 {
1748 if (skb)
1749 atomic_inc(&skb->users);
1750 }
1751 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1752 {
1753 if (skb)
1754 kfree_skb(skb);
1755 }
1756 #endif
1757 #ifdef CONFIG_BRIDGE_NETFILTER
1758 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1759 {
1760 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1761 kfree(nf_bridge);
1762 }
1763 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1764 {
1765 if (nf_bridge)
1766 atomic_inc(&nf_bridge->use);
1767 }
1768 #endif /* CONFIG_BRIDGE_NETFILTER */
1769 static inline void nf_reset(struct sk_buff *skb)
1770 {
1771 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1772 nf_conntrack_put(skb->nfct);
1773 skb->nfct = NULL;
1774 nf_conntrack_put_reasm(skb->nfct_reasm);
1775 skb->nfct_reasm = NULL;
1776 #endif
1777 #ifdef CONFIG_BRIDGE_NETFILTER
1778 nf_bridge_put(skb->nf_bridge);
1779 skb->nf_bridge = NULL;
1780 #endif
1781 }
1782
1783 /* Note: This doesn't put any conntrack and bridge info in dst. */
1784 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1785 {
1786 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1787 dst->nfct = src->nfct;
1788 nf_conntrack_get(src->nfct);
1789 dst->nfctinfo = src->nfctinfo;
1790 dst->nfct_reasm = src->nfct_reasm;
1791 nf_conntrack_get_reasm(src->nfct_reasm);
1792 #endif
1793 #ifdef CONFIG_BRIDGE_NETFILTER
1794 dst->nf_bridge = src->nf_bridge;
1795 nf_bridge_get(src->nf_bridge);
1796 #endif
1797 }
1798
1799 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1800 {
1801 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1802 nf_conntrack_put(dst->nfct);
1803 nf_conntrack_put_reasm(dst->nfct_reasm);
1804 #endif
1805 #ifdef CONFIG_BRIDGE_NETFILTER
1806 nf_bridge_put(dst->nf_bridge);
1807 #endif
1808 __nf_copy(dst, src);
1809 }
1810
1811 #ifdef CONFIG_NETWORK_SECMARK
1812 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1813 {
1814 to->secmark = from->secmark;
1815 }
1816
1817 static inline void skb_init_secmark(struct sk_buff *skb)
1818 {
1819 skb->secmark = 0;
1820 }
1821 #else
1822 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1823 { }
1824
1825 static inline void skb_init_secmark(struct sk_buff *skb)
1826 { }
1827 #endif
1828
1829 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1830 {
1831 skb->queue_mapping = queue_mapping;
1832 }
1833
1834 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1835 {
1836 return skb->queue_mapping;
1837 }
1838
1839 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1840 {
1841 to->queue_mapping = from->queue_mapping;
1842 }
1843
1844 static inline int skb_is_gso(const struct sk_buff *skb)
1845 {
1846 return skb_shinfo(skb)->gso_size;
1847 }
1848
1849 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1850 {
1851 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1852 }
1853
1854 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1855
1856 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1857 {
1858 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1859 * wanted then gso_type will be set. */
1860 struct skb_shared_info *shinfo = skb_shinfo(skb);
1861 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1862 __skb_warn_lro_forwarding(skb);
1863 return true;
1864 }
1865 return false;
1866 }
1867
1868 static inline void skb_forward_csum(struct sk_buff *skb)
1869 {
1870 /* Unfortunately we don't support this one. Any brave souls? */
1871 if (skb->ip_summed == CHECKSUM_COMPLETE)
1872 skb->ip_summed = CHECKSUM_NONE;
1873 }
1874
1875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1876 #endif /* __KERNEL__ */
1877 #endif /* _LINUX_SKBUFF_H */
This page took 0.069594 seconds and 5 git commands to generate.