bridge: switchdev: Add forward mark support for stacked devices
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <linux/if_packet.h>
41 #include <net/flow.h>
42
43 /* The interface for checksum offload between the stack and networking drivers
44 * is as follows...
45 *
46 * A. IP checksum related features
47 *
48 * Drivers advertise checksum offload capabilities in the features of a device.
49 * From the stack's point of view these are capabilities offered by the driver,
50 * a driver typically only advertises features that it is capable of offloading
51 * to its device.
52 *
53 * The checksum related features are:
54 *
55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
56 * IP (one's complement) checksum for any combination
57 * of protocols or protocol layering. The checksum is
58 * computed and set in a packet per the CHECKSUM_PARTIAL
59 * interface (see below).
60 *
61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
62 * TCP or UDP packets over IPv4. These are specifically
63 * unencapsulated packets of the form IPv4|TCP or
64 * IPv4|UDP where the Protocol field in the IPv4 header
65 * is TCP or UDP. The IPv4 header may contain IP options
66 * This feature cannot be set in features for a device
67 * with NETIF_F_HW_CSUM also set. This feature is being
68 * DEPRECATED (see below).
69 *
70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
71 * TCP or UDP packets over IPv6. These are specifically
72 * unencapsulated packets of the form IPv6|TCP or
73 * IPv4|UDP where the Next Header field in the IPv6
74 * header is either TCP or UDP. IPv6 extension headers
75 * are not supported with this feature. This feature
76 * cannot be set in features for a device with
77 * NETIF_F_HW_CSUM also set. This feature is being
78 * DEPRECATED (see below).
79 *
80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
81 * This flag is used only used to disable the RX checksum
82 * feature for a device. The stack will accept receive
83 * checksum indication in packets received on a device
84 * regardless of whether NETIF_F_RXCSUM is set.
85 *
86 * B. Checksumming of received packets by device. Indication of checksum
87 * verification is in set skb->ip_summed. Possible values are:
88 *
89 * CHECKSUM_NONE:
90 *
91 * Device did not checksum this packet e.g. due to lack of capabilities.
92 * The packet contains full (though not verified) checksum in packet but
93 * not in skb->csum. Thus, skb->csum is undefined in this case.
94 *
95 * CHECKSUM_UNNECESSARY:
96 *
97 * The hardware you're dealing with doesn't calculate the full checksum
98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
100 * if their checksums are okay. skb->csum is still undefined in this case
101 * though. A driver or device must never modify the checksum field in the
102 * packet even if checksum is verified.
103 *
104 * CHECKSUM_UNNECESSARY is applicable to following protocols:
105 * TCP: IPv6 and IPv4.
106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
107 * zero UDP checksum for either IPv4 or IPv6, the networking stack
108 * may perform further validation in this case.
109 * GRE: only if the checksum is present in the header.
110 * SCTP: indicates the CRC in SCTP header has been validated.
111 *
112 * skb->csum_level indicates the number of consecutive checksums found in
113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
115 * and a device is able to verify the checksums for UDP (possibly zero),
116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
117 * two. If the device were only able to verify the UDP checksum and not
118 * GRE, either because it doesn't support GRE checksum of because GRE
119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
120 * not considered in this case).
121 *
122 * CHECKSUM_COMPLETE:
123 *
124 * This is the most generic way. The device supplied checksum of the _whole_
125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
126 * hardware doesn't need to parse L3/L4 headers to implement this.
127 *
128 * Note: Even if device supports only some protocols, but is able to produce
129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
130 *
131 * CHECKSUM_PARTIAL:
132 *
133 * A checksum is set up to be offloaded to a device as described in the
134 * output description for CHECKSUM_PARTIAL. This may occur on a packet
135 * received directly from another Linux OS, e.g., a virtualized Linux kernel
136 * on the same host, or it may be set in the input path in GRO or remote
137 * checksum offload. For the purposes of checksum verification, the checksum
138 * referred to by skb->csum_start + skb->csum_offset and any preceding
139 * checksums in the packet are considered verified. Any checksums in the
140 * packet that are after the checksum being offloaded are not considered to
141 * be verified.
142 *
143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144 * in the skb->ip_summed for a packet. Values are:
145 *
146 * CHECKSUM_PARTIAL:
147 *
148 * The driver is required to checksum the packet as seen by hard_start_xmit()
149 * from skb->csum_start up to the end, and to record/write the checksum at
150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
151 * csum_start and csum_offset values are valid values given the length and
152 * offset of the packet, however they should not attempt to validate that the
153 * checksum refers to a legitimate transport layer checksum-- it is the
154 * purview of the stack to validate that csum_start and csum_offset are set
155 * correctly.
156 *
157 * When the stack requests checksum offload for a packet, the driver MUST
158 * ensure that the checksum is set correctly. A driver can either offload the
159 * checksum calculation to the device, or call skb_checksum_help (in the case
160 * that the device does not support offload for a particular checksum).
161 *
162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164 * checksum offload capability. If a device has limited checksum capabilities
165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
166 * described above) a helper function can be called to resolve
167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
168 * function takes a spec argument that describes the protocol layer that is
169 * supported for checksum offload and can be called for each packet. If a
170 * packet does not match the specification for offload, skb_checksum_help
171 * is called to resolve the checksum.
172 *
173 * CHECKSUM_NONE:
174 *
175 * The skb was already checksummed by the protocol, or a checksum is not
176 * required.
177 *
178 * CHECKSUM_UNNECESSARY:
179 *
180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
181 * output.
182 *
183 * CHECKSUM_COMPLETE:
184 * Not used in checksum output. If a driver observes a packet with this value
185 * set in skbuff, if should treat as CHECKSUM_NONE being set.
186 *
187 * D. Non-IP checksum (CRC) offloads
188 *
189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
190 * offloading the SCTP CRC in a packet. To perform this offload the stack
191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
192 * accordingly. Note the there is no indication in the skbuff that the
193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
194 * both IP checksum offload and SCTP CRC offload must verify which offload
195 * is configured for a packet presumably by inspecting packet headers.
196 *
197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
198 * offloading the FCOE CRC in a packet. To perform this offload the stack
199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
200 * accordingly. Note the there is no indication in the skbuff that the
201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
202 * both IP checksum offload and FCOE CRC offload must verify which offload
203 * is configured for a packet presumably by inspecting packet headers.
204 *
205 * E. Checksumming on output with GSO.
206 *
207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
210 * part of the GSO operation is implied. If a checksum is being offloaded
211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
212 * are set to refer to the outermost checksum being offload (two offloaded
213 * checksums are possible with UDP encapsulation).
214 */
215
216 /* Don't change this without changing skb_csum_unnecessary! */
217 #define CHECKSUM_NONE 0
218 #define CHECKSUM_UNNECESSARY 1
219 #define CHECKSUM_COMPLETE 2
220 #define CHECKSUM_PARTIAL 3
221
222 /* Maximum value in skb->csum_level */
223 #define SKB_MAX_CSUM_LEVEL 3
224
225 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
226 #define SKB_WITH_OVERHEAD(X) \
227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
228 #define SKB_MAX_ORDER(X, ORDER) \
229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
230 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
231 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
232
233 /* return minimum truesize of one skb containing X bytes of data */
234 #define SKB_TRUESIZE(X) ((X) + \
235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
237
238 struct net_device;
239 struct scatterlist;
240 struct pipe_inode_info;
241 struct iov_iter;
242 struct napi_struct;
243
244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
245 struct nf_conntrack {
246 atomic_t use;
247 };
248 #endif
249
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 atomic_t use;
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
257 } orig_proto:8;
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
261 __u16 frag_max_size;
262 struct net_device *physindev;
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
266 union {
267 /* prerouting: detect dnat in orig/reply direction */
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
276 };
277 };
278 #endif
279
280 struct sk_buff_head {
281 /* These two members must be first. */
282 struct sk_buff *next;
283 struct sk_buff *prev;
284
285 __u32 qlen;
286 spinlock_t lock;
287 };
288
289 struct sk_buff;
290
291 /* To allow 64K frame to be packed as single skb without frag_list we
292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
293 * buffers which do not start on a page boundary.
294 *
295 * Since GRO uses frags we allocate at least 16 regardless of page
296 * size.
297 */
298 #if (65536/PAGE_SIZE + 1) < 16
299 #define MAX_SKB_FRAGS 16UL
300 #else
301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
302 #endif
303 extern int sysctl_max_skb_frags;
304
305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
306 * segment using its current segmentation instead.
307 */
308 #define GSO_BY_FRAGS 0xFFFF
309
310 typedef struct skb_frag_struct skb_frag_t;
311
312 struct skb_frag_struct {
313 struct {
314 struct page *p;
315 } page;
316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
317 __u32 page_offset;
318 __u32 size;
319 #else
320 __u16 page_offset;
321 __u16 size;
322 #endif
323 };
324
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 return frag->size;
328 }
329
330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
331 {
332 frag->size = size;
333 }
334
335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
336 {
337 frag->size += delta;
338 }
339
340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
341 {
342 frag->size -= delta;
343 }
344
345 #define HAVE_HW_TIME_STAMP
346
347 /**
348 * struct skb_shared_hwtstamps - hardware time stamps
349 * @hwtstamp: hardware time stamp transformed into duration
350 * since arbitrary point in time
351 *
352 * Software time stamps generated by ktime_get_real() are stored in
353 * skb->tstamp.
354 *
355 * hwtstamps can only be compared against other hwtstamps from
356 * the same device.
357 *
358 * This structure is attached to packets as part of the
359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
360 */
361 struct skb_shared_hwtstamps {
362 ktime_t hwtstamp;
363 };
364
365 /* Definitions for tx_flags in struct skb_shared_info */
366 enum {
367 /* generate hardware time stamp */
368 SKBTX_HW_TSTAMP = 1 << 0,
369
370 /* generate software time stamp when queueing packet to NIC */
371 SKBTX_SW_TSTAMP = 1 << 1,
372
373 /* device driver is going to provide hardware time stamp */
374 SKBTX_IN_PROGRESS = 1 << 2,
375
376 /* device driver supports TX zero-copy buffers */
377 SKBTX_DEV_ZEROCOPY = 1 << 3,
378
379 /* generate wifi status information (where possible) */
380 SKBTX_WIFI_STATUS = 1 << 4,
381
382 /* This indicates at least one fragment might be overwritten
383 * (as in vmsplice(), sendfile() ...)
384 * If we need to compute a TX checksum, we'll need to copy
385 * all frags to avoid possible bad checksum
386 */
387 SKBTX_SHARED_FRAG = 1 << 5,
388
389 /* generate software time stamp when entering packet scheduling */
390 SKBTX_SCHED_TSTAMP = 1 << 6,
391 };
392
393 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
394 SKBTX_SCHED_TSTAMP)
395 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
396
397 /*
398 * The callback notifies userspace to release buffers when skb DMA is done in
399 * lower device, the skb last reference should be 0 when calling this.
400 * The zerocopy_success argument is true if zero copy transmit occurred,
401 * false on data copy or out of memory error caused by data copy attempt.
402 * The ctx field is used to track device context.
403 * The desc field is used to track userspace buffer index.
404 */
405 struct ubuf_info {
406 void (*callback)(struct ubuf_info *, bool zerocopy_success);
407 void *ctx;
408 unsigned long desc;
409 };
410
411 /* This data is invariant across clones and lives at
412 * the end of the header data, ie. at skb->end.
413 */
414 struct skb_shared_info {
415 unsigned char nr_frags;
416 __u8 tx_flags;
417 unsigned short gso_size;
418 /* Warning: this field is not always filled in (UFO)! */
419 unsigned short gso_segs;
420 unsigned short gso_type;
421 struct sk_buff *frag_list;
422 struct skb_shared_hwtstamps hwtstamps;
423 u32 tskey;
424 __be32 ip6_frag_id;
425
426 /*
427 * Warning : all fields before dataref are cleared in __alloc_skb()
428 */
429 atomic_t dataref;
430
431 /* Intermediate layers must ensure that destructor_arg
432 * remains valid until skb destructor */
433 void * destructor_arg;
434
435 /* must be last field, see pskb_expand_head() */
436 skb_frag_t frags[MAX_SKB_FRAGS];
437 };
438
439 /* We divide dataref into two halves. The higher 16 bits hold references
440 * to the payload part of skb->data. The lower 16 bits hold references to
441 * the entire skb->data. A clone of a headerless skb holds the length of
442 * the header in skb->hdr_len.
443 *
444 * All users must obey the rule that the skb->data reference count must be
445 * greater than or equal to the payload reference count.
446 *
447 * Holding a reference to the payload part means that the user does not
448 * care about modifications to the header part of skb->data.
449 */
450 #define SKB_DATAREF_SHIFT 16
451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
452
453
454 enum {
455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
458 };
459
460 enum {
461 SKB_GSO_TCPV4 = 1 << 0,
462 SKB_GSO_UDP = 1 << 1,
463
464 /* This indicates the skb is from an untrusted source. */
465 SKB_GSO_DODGY = 1 << 2,
466
467 /* This indicates the tcp segment has CWR set. */
468 SKB_GSO_TCP_ECN = 1 << 3,
469
470 SKB_GSO_TCP_FIXEDID = 1 << 4,
471
472 SKB_GSO_TCPV6 = 1 << 5,
473
474 SKB_GSO_FCOE = 1 << 6,
475
476 SKB_GSO_GRE = 1 << 7,
477
478 SKB_GSO_GRE_CSUM = 1 << 8,
479
480 SKB_GSO_IPXIP4 = 1 << 9,
481
482 SKB_GSO_IPXIP6 = 1 << 10,
483
484 SKB_GSO_UDP_TUNNEL = 1 << 11,
485
486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
487
488 SKB_GSO_PARTIAL = 1 << 13,
489
490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
491
492 SKB_GSO_SCTP = 1 << 15,
493 };
494
495 #if BITS_PER_LONG > 32
496 #define NET_SKBUFF_DATA_USES_OFFSET 1
497 #endif
498
499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
500 typedef unsigned int sk_buff_data_t;
501 #else
502 typedef unsigned char *sk_buff_data_t;
503 #endif
504
505 /**
506 * struct skb_mstamp - multi resolution time stamps
507 * @stamp_us: timestamp in us resolution
508 * @stamp_jiffies: timestamp in jiffies
509 */
510 struct skb_mstamp {
511 union {
512 u64 v64;
513 struct {
514 u32 stamp_us;
515 u32 stamp_jiffies;
516 };
517 };
518 };
519
520 /**
521 * skb_mstamp_get - get current timestamp
522 * @cl: place to store timestamps
523 */
524 static inline void skb_mstamp_get(struct skb_mstamp *cl)
525 {
526 u64 val = local_clock();
527
528 do_div(val, NSEC_PER_USEC);
529 cl->stamp_us = (u32)val;
530 cl->stamp_jiffies = (u32)jiffies;
531 }
532
533 /**
534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
535 * @t1: pointer to newest sample
536 * @t0: pointer to oldest sample
537 */
538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
539 const struct skb_mstamp *t0)
540 {
541 s32 delta_us = t1->stamp_us - t0->stamp_us;
542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
543
544 /* If delta_us is negative, this might be because interval is too big,
545 * or local_clock() drift is too big : fallback using jiffies.
546 */
547 if (delta_us <= 0 ||
548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
549
550 delta_us = jiffies_to_usecs(delta_jiffies);
551
552 return delta_us;
553 }
554
555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
556 const struct skb_mstamp *t0)
557 {
558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
559
560 if (!diff)
561 diff = t1->stamp_us - t0->stamp_us;
562 return diff > 0;
563 }
564
565 /**
566 * struct sk_buff - socket buffer
567 * @next: Next buffer in list
568 * @prev: Previous buffer in list
569 * @tstamp: Time we arrived/left
570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
571 * @sk: Socket we are owned by
572 * @dev: Device we arrived on/are leaving by
573 * @cb: Control buffer. Free for use by every layer. Put private vars here
574 * @_skb_refdst: destination entry (with norefcount bit)
575 * @sp: the security path, used for xfrm
576 * @len: Length of actual data
577 * @data_len: Data length
578 * @mac_len: Length of link layer header
579 * @hdr_len: writable header length of cloned skb
580 * @csum: Checksum (must include start/offset pair)
581 * @csum_start: Offset from skb->head where checksumming should start
582 * @csum_offset: Offset from csum_start where checksum should be stored
583 * @priority: Packet queueing priority
584 * @ignore_df: allow local fragmentation
585 * @cloned: Head may be cloned (check refcnt to be sure)
586 * @ip_summed: Driver fed us an IP checksum
587 * @nohdr: Payload reference only, must not modify header
588 * @nfctinfo: Relationship of this skb to the connection
589 * @pkt_type: Packet class
590 * @fclone: skbuff clone status
591 * @ipvs_property: skbuff is owned by ipvs
592 * @peeked: this packet has been seen already, so stats have been
593 * done for it, don't do them again
594 * @nf_trace: netfilter packet trace flag
595 * @protocol: Packet protocol from driver
596 * @destructor: Destruct function
597 * @nfct: Associated connection, if any
598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
599 * @skb_iif: ifindex of device we arrived on
600 * @tc_index: Traffic control index
601 * @tc_verd: traffic control verdict
602 * @hash: the packet hash
603 * @queue_mapping: Queue mapping for multiqueue devices
604 * @xmit_more: More SKBs are pending for this queue
605 * @ndisc_nodetype: router type (from link layer)
606 * @ooo_okay: allow the mapping of a socket to a queue to be changed
607 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
608 * ports.
609 * @sw_hash: indicates hash was computed in software stack
610 * @wifi_acked_valid: wifi_acked was set
611 * @wifi_acked: whether frame was acked on wifi or not
612 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
613 * @napi_id: id of the NAPI struct this skb came from
614 * @secmark: security marking
615 * @mark: Generic packet mark
616 * @vlan_proto: vlan encapsulation protocol
617 * @vlan_tci: vlan tag control information
618 * @inner_protocol: Protocol (encapsulation)
619 * @inner_transport_header: Inner transport layer header (encapsulation)
620 * @inner_network_header: Network layer header (encapsulation)
621 * @inner_mac_header: Link layer header (encapsulation)
622 * @transport_header: Transport layer header
623 * @network_header: Network layer header
624 * @mac_header: Link layer header
625 * @tail: Tail pointer
626 * @end: End pointer
627 * @head: Head of buffer
628 * @data: Data head pointer
629 * @truesize: Buffer size
630 * @users: User count - see {datagram,tcp}.c
631 */
632
633 struct sk_buff {
634 union {
635 struct {
636 /* These two members must be first. */
637 struct sk_buff *next;
638 struct sk_buff *prev;
639
640 union {
641 ktime_t tstamp;
642 struct skb_mstamp skb_mstamp;
643 };
644 };
645 struct rb_node rbnode; /* used in netem & tcp stack */
646 };
647 struct sock *sk;
648 struct net_device *dev;
649
650 /*
651 * This is the control buffer. It is free to use for every
652 * layer. Please put your private variables there. If you
653 * want to keep them across layers you have to do a skb_clone()
654 * first. This is owned by whoever has the skb queued ATM.
655 */
656 char cb[48] __aligned(8);
657
658 unsigned long _skb_refdst;
659 void (*destructor)(struct sk_buff *skb);
660 #ifdef CONFIG_XFRM
661 struct sec_path *sp;
662 #endif
663 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
664 struct nf_conntrack *nfct;
665 #endif
666 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
667 struct nf_bridge_info *nf_bridge;
668 #endif
669 unsigned int len,
670 data_len;
671 __u16 mac_len,
672 hdr_len;
673
674 /* Following fields are _not_ copied in __copy_skb_header()
675 * Note that queue_mapping is here mostly to fill a hole.
676 */
677 kmemcheck_bitfield_begin(flags1);
678 __u16 queue_mapping;
679 __u8 cloned:1,
680 nohdr:1,
681 fclone:2,
682 peeked:1,
683 head_frag:1,
684 xmit_more:1;
685 /* one bit hole */
686 kmemcheck_bitfield_end(flags1);
687
688 /* fields enclosed in headers_start/headers_end are copied
689 * using a single memcpy() in __copy_skb_header()
690 */
691 /* private: */
692 __u32 headers_start[0];
693 /* public: */
694
695 /* if you move pkt_type around you also must adapt those constants */
696 #ifdef __BIG_ENDIAN_BITFIELD
697 #define PKT_TYPE_MAX (7 << 5)
698 #else
699 #define PKT_TYPE_MAX 7
700 #endif
701 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
702
703 __u8 __pkt_type_offset[0];
704 __u8 pkt_type:3;
705 __u8 pfmemalloc:1;
706 __u8 ignore_df:1;
707 __u8 nfctinfo:3;
708
709 __u8 nf_trace:1;
710 __u8 ip_summed:2;
711 __u8 ooo_okay:1;
712 __u8 l4_hash:1;
713 __u8 sw_hash:1;
714 __u8 wifi_acked_valid:1;
715 __u8 wifi_acked:1;
716
717 __u8 no_fcs:1;
718 /* Indicates the inner headers are valid in the skbuff. */
719 __u8 encapsulation:1;
720 __u8 encap_hdr_csum:1;
721 __u8 csum_valid:1;
722 __u8 csum_complete_sw:1;
723 __u8 csum_level:2;
724 __u8 csum_bad:1;
725
726 #ifdef CONFIG_IPV6_NDISC_NODETYPE
727 __u8 ndisc_nodetype:2;
728 #endif
729 __u8 ipvs_property:1;
730 __u8 inner_protocol_type:1;
731 __u8 remcsum_offload:1;
732 #ifdef CONFIG_NET_SWITCHDEV
733 __u8 offload_fwd_mark:1;
734 #endif
735 /* 2, 4 or 5 bit hole */
736
737 #ifdef CONFIG_NET_SCHED
738 __u16 tc_index; /* traffic control index */
739 #ifdef CONFIG_NET_CLS_ACT
740 __u16 tc_verd; /* traffic control verdict */
741 #endif
742 #endif
743
744 union {
745 __wsum csum;
746 struct {
747 __u16 csum_start;
748 __u16 csum_offset;
749 };
750 };
751 __u32 priority;
752 int skb_iif;
753 __u32 hash;
754 __be16 vlan_proto;
755 __u16 vlan_tci;
756 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
757 union {
758 unsigned int napi_id;
759 unsigned int sender_cpu;
760 };
761 #endif
762 #ifdef CONFIG_NETWORK_SECMARK
763 __u32 secmark;
764 #endif
765
766 union {
767 __u32 mark;
768 __u32 reserved_tailroom;
769 };
770
771 union {
772 __be16 inner_protocol;
773 __u8 inner_ipproto;
774 };
775
776 __u16 inner_transport_header;
777 __u16 inner_network_header;
778 __u16 inner_mac_header;
779
780 __be16 protocol;
781 __u16 transport_header;
782 __u16 network_header;
783 __u16 mac_header;
784
785 /* private: */
786 __u32 headers_end[0];
787 /* public: */
788
789 /* These elements must be at the end, see alloc_skb() for details. */
790 sk_buff_data_t tail;
791 sk_buff_data_t end;
792 unsigned char *head,
793 *data;
794 unsigned int truesize;
795 atomic_t users;
796 };
797
798 #ifdef __KERNEL__
799 /*
800 * Handling routines are only of interest to the kernel
801 */
802 #include <linux/slab.h>
803
804
805 #define SKB_ALLOC_FCLONE 0x01
806 #define SKB_ALLOC_RX 0x02
807 #define SKB_ALLOC_NAPI 0x04
808
809 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
810 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
811 {
812 return unlikely(skb->pfmemalloc);
813 }
814
815 /*
816 * skb might have a dst pointer attached, refcounted or not.
817 * _skb_refdst low order bit is set if refcount was _not_ taken
818 */
819 #define SKB_DST_NOREF 1UL
820 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
821
822 /**
823 * skb_dst - returns skb dst_entry
824 * @skb: buffer
825 *
826 * Returns skb dst_entry, regardless of reference taken or not.
827 */
828 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
829 {
830 /* If refdst was not refcounted, check we still are in a
831 * rcu_read_lock section
832 */
833 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
834 !rcu_read_lock_held() &&
835 !rcu_read_lock_bh_held());
836 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
837 }
838
839 /**
840 * skb_dst_set - sets skb dst
841 * @skb: buffer
842 * @dst: dst entry
843 *
844 * Sets skb dst, assuming a reference was taken on dst and should
845 * be released by skb_dst_drop()
846 */
847 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
848 {
849 skb->_skb_refdst = (unsigned long)dst;
850 }
851
852 /**
853 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
854 * @skb: buffer
855 * @dst: dst entry
856 *
857 * Sets skb dst, assuming a reference was not taken on dst.
858 * If dst entry is cached, we do not take reference and dst_release
859 * will be avoided by refdst_drop. If dst entry is not cached, we take
860 * reference, so that last dst_release can destroy the dst immediately.
861 */
862 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
863 {
864 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
865 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
866 }
867
868 /**
869 * skb_dst_is_noref - Test if skb dst isn't refcounted
870 * @skb: buffer
871 */
872 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
873 {
874 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
875 }
876
877 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
878 {
879 return (struct rtable *)skb_dst(skb);
880 }
881
882 /* For mangling skb->pkt_type from user space side from applications
883 * such as nft, tc, etc, we only allow a conservative subset of
884 * possible pkt_types to be set.
885 */
886 static inline bool skb_pkt_type_ok(u32 ptype)
887 {
888 return ptype <= PACKET_OTHERHOST;
889 }
890
891 void kfree_skb(struct sk_buff *skb);
892 void kfree_skb_list(struct sk_buff *segs);
893 void skb_tx_error(struct sk_buff *skb);
894 void consume_skb(struct sk_buff *skb);
895 void __kfree_skb(struct sk_buff *skb);
896 extern struct kmem_cache *skbuff_head_cache;
897
898 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
899 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
900 bool *fragstolen, int *delta_truesize);
901
902 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
903 int node);
904 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
905 struct sk_buff *build_skb(void *data, unsigned int frag_size);
906 static inline struct sk_buff *alloc_skb(unsigned int size,
907 gfp_t priority)
908 {
909 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
910 }
911
912 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
913 unsigned long data_len,
914 int max_page_order,
915 int *errcode,
916 gfp_t gfp_mask);
917
918 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
919 struct sk_buff_fclones {
920 struct sk_buff skb1;
921
922 struct sk_buff skb2;
923
924 atomic_t fclone_ref;
925 };
926
927 /**
928 * skb_fclone_busy - check if fclone is busy
929 * @skb: buffer
930 *
931 * Returns true if skb is a fast clone, and its clone is not freed.
932 * Some drivers call skb_orphan() in their ndo_start_xmit(),
933 * so we also check that this didnt happen.
934 */
935 static inline bool skb_fclone_busy(const struct sock *sk,
936 const struct sk_buff *skb)
937 {
938 const struct sk_buff_fclones *fclones;
939
940 fclones = container_of(skb, struct sk_buff_fclones, skb1);
941
942 return skb->fclone == SKB_FCLONE_ORIG &&
943 atomic_read(&fclones->fclone_ref) > 1 &&
944 fclones->skb2.sk == sk;
945 }
946
947 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
948 gfp_t priority)
949 {
950 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
951 }
952
953 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
954 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
955 {
956 return __alloc_skb_head(priority, -1);
957 }
958
959 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
960 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
961 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
962 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
963 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
964 gfp_t gfp_mask, bool fclone);
965 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
966 gfp_t gfp_mask)
967 {
968 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
969 }
970
971 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
972 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
973 unsigned int headroom);
974 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
975 int newtailroom, gfp_t priority);
976 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
977 int offset, int len);
978 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
979 int len);
980 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
981 int skb_pad(struct sk_buff *skb, int pad);
982 #define dev_kfree_skb(a) consume_skb(a)
983
984 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
985 int getfrag(void *from, char *to, int offset,
986 int len, int odd, struct sk_buff *skb),
987 void *from, int length);
988
989 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
990 int offset, size_t size);
991
992 struct skb_seq_state {
993 __u32 lower_offset;
994 __u32 upper_offset;
995 __u32 frag_idx;
996 __u32 stepped_offset;
997 struct sk_buff *root_skb;
998 struct sk_buff *cur_skb;
999 __u8 *frag_data;
1000 };
1001
1002 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1003 unsigned int to, struct skb_seq_state *st);
1004 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1005 struct skb_seq_state *st);
1006 void skb_abort_seq_read(struct skb_seq_state *st);
1007
1008 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1009 unsigned int to, struct ts_config *config);
1010
1011 /*
1012 * Packet hash types specify the type of hash in skb_set_hash.
1013 *
1014 * Hash types refer to the protocol layer addresses which are used to
1015 * construct a packet's hash. The hashes are used to differentiate or identify
1016 * flows of the protocol layer for the hash type. Hash types are either
1017 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1018 *
1019 * Properties of hashes:
1020 *
1021 * 1) Two packets in different flows have different hash values
1022 * 2) Two packets in the same flow should have the same hash value
1023 *
1024 * A hash at a higher layer is considered to be more specific. A driver should
1025 * set the most specific hash possible.
1026 *
1027 * A driver cannot indicate a more specific hash than the layer at which a hash
1028 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1029 *
1030 * A driver may indicate a hash level which is less specific than the
1031 * actual layer the hash was computed on. For instance, a hash computed
1032 * at L4 may be considered an L3 hash. This should only be done if the
1033 * driver can't unambiguously determine that the HW computed the hash at
1034 * the higher layer. Note that the "should" in the second property above
1035 * permits this.
1036 */
1037 enum pkt_hash_types {
1038 PKT_HASH_TYPE_NONE, /* Undefined type */
1039 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1040 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1041 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1042 };
1043
1044 static inline void skb_clear_hash(struct sk_buff *skb)
1045 {
1046 skb->hash = 0;
1047 skb->sw_hash = 0;
1048 skb->l4_hash = 0;
1049 }
1050
1051 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1052 {
1053 if (!skb->l4_hash)
1054 skb_clear_hash(skb);
1055 }
1056
1057 static inline void
1058 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1059 {
1060 skb->l4_hash = is_l4;
1061 skb->sw_hash = is_sw;
1062 skb->hash = hash;
1063 }
1064
1065 static inline void
1066 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1067 {
1068 /* Used by drivers to set hash from HW */
1069 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1070 }
1071
1072 static inline void
1073 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1074 {
1075 __skb_set_hash(skb, hash, true, is_l4);
1076 }
1077
1078 void __skb_get_hash(struct sk_buff *skb);
1079 u32 __skb_get_hash_symmetric(struct sk_buff *skb);
1080 u32 skb_get_poff(const struct sk_buff *skb);
1081 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1082 const struct flow_keys *keys, int hlen);
1083 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1084 void *data, int hlen_proto);
1085
1086 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1087 int thoff, u8 ip_proto)
1088 {
1089 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1090 }
1091
1092 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1093 const struct flow_dissector_key *key,
1094 unsigned int key_count);
1095
1096 bool __skb_flow_dissect(const struct sk_buff *skb,
1097 struct flow_dissector *flow_dissector,
1098 void *target_container,
1099 void *data, __be16 proto, int nhoff, int hlen,
1100 unsigned int flags);
1101
1102 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1103 struct flow_dissector *flow_dissector,
1104 void *target_container, unsigned int flags)
1105 {
1106 return __skb_flow_dissect(skb, flow_dissector, target_container,
1107 NULL, 0, 0, 0, flags);
1108 }
1109
1110 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1111 struct flow_keys *flow,
1112 unsigned int flags)
1113 {
1114 memset(flow, 0, sizeof(*flow));
1115 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1116 NULL, 0, 0, 0, flags);
1117 }
1118
1119 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1120 void *data, __be16 proto,
1121 int nhoff, int hlen,
1122 unsigned int flags)
1123 {
1124 memset(flow, 0, sizeof(*flow));
1125 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1126 data, proto, nhoff, hlen, flags);
1127 }
1128
1129 static inline __u32 skb_get_hash(struct sk_buff *skb)
1130 {
1131 if (!skb->l4_hash && !skb->sw_hash)
1132 __skb_get_hash(skb);
1133
1134 return skb->hash;
1135 }
1136
1137 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1138
1139 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1140 {
1141 if (!skb->l4_hash && !skb->sw_hash) {
1142 struct flow_keys keys;
1143 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1144
1145 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1146 }
1147
1148 return skb->hash;
1149 }
1150
1151 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1152
1153 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1154 {
1155 if (!skb->l4_hash && !skb->sw_hash) {
1156 struct flow_keys keys;
1157 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1158
1159 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1160 }
1161
1162 return skb->hash;
1163 }
1164
1165 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1166
1167 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1168 {
1169 return skb->hash;
1170 }
1171
1172 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1173 {
1174 to->hash = from->hash;
1175 to->sw_hash = from->sw_hash;
1176 to->l4_hash = from->l4_hash;
1177 };
1178
1179 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1180 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1181 {
1182 return skb->head + skb->end;
1183 }
1184
1185 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1186 {
1187 return skb->end;
1188 }
1189 #else
1190 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1191 {
1192 return skb->end;
1193 }
1194
1195 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1196 {
1197 return skb->end - skb->head;
1198 }
1199 #endif
1200
1201 /* Internal */
1202 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1203
1204 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1205 {
1206 return &skb_shinfo(skb)->hwtstamps;
1207 }
1208
1209 /**
1210 * skb_queue_empty - check if a queue is empty
1211 * @list: queue head
1212 *
1213 * Returns true if the queue is empty, false otherwise.
1214 */
1215 static inline int skb_queue_empty(const struct sk_buff_head *list)
1216 {
1217 return list->next == (const struct sk_buff *) list;
1218 }
1219
1220 /**
1221 * skb_queue_is_last - check if skb is the last entry in the queue
1222 * @list: queue head
1223 * @skb: buffer
1224 *
1225 * Returns true if @skb is the last buffer on the list.
1226 */
1227 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1228 const struct sk_buff *skb)
1229 {
1230 return skb->next == (const struct sk_buff *) list;
1231 }
1232
1233 /**
1234 * skb_queue_is_first - check if skb is the first entry in the queue
1235 * @list: queue head
1236 * @skb: buffer
1237 *
1238 * Returns true if @skb is the first buffer on the list.
1239 */
1240 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1241 const struct sk_buff *skb)
1242 {
1243 return skb->prev == (const struct sk_buff *) list;
1244 }
1245
1246 /**
1247 * skb_queue_next - return the next packet in the queue
1248 * @list: queue head
1249 * @skb: current buffer
1250 *
1251 * Return the next packet in @list after @skb. It is only valid to
1252 * call this if skb_queue_is_last() evaluates to false.
1253 */
1254 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1255 const struct sk_buff *skb)
1256 {
1257 /* This BUG_ON may seem severe, but if we just return then we
1258 * are going to dereference garbage.
1259 */
1260 BUG_ON(skb_queue_is_last(list, skb));
1261 return skb->next;
1262 }
1263
1264 /**
1265 * skb_queue_prev - return the prev packet in the queue
1266 * @list: queue head
1267 * @skb: current buffer
1268 *
1269 * Return the prev packet in @list before @skb. It is only valid to
1270 * call this if skb_queue_is_first() evaluates to false.
1271 */
1272 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1273 const struct sk_buff *skb)
1274 {
1275 /* This BUG_ON may seem severe, but if we just return then we
1276 * are going to dereference garbage.
1277 */
1278 BUG_ON(skb_queue_is_first(list, skb));
1279 return skb->prev;
1280 }
1281
1282 /**
1283 * skb_get - reference buffer
1284 * @skb: buffer to reference
1285 *
1286 * Makes another reference to a socket buffer and returns a pointer
1287 * to the buffer.
1288 */
1289 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1290 {
1291 atomic_inc(&skb->users);
1292 return skb;
1293 }
1294
1295 /*
1296 * If users == 1, we are the only owner and are can avoid redundant
1297 * atomic change.
1298 */
1299
1300 /**
1301 * skb_cloned - is the buffer a clone
1302 * @skb: buffer to check
1303 *
1304 * Returns true if the buffer was generated with skb_clone() and is
1305 * one of multiple shared copies of the buffer. Cloned buffers are
1306 * shared data so must not be written to under normal circumstances.
1307 */
1308 static inline int skb_cloned(const struct sk_buff *skb)
1309 {
1310 return skb->cloned &&
1311 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1312 }
1313
1314 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1315 {
1316 might_sleep_if(gfpflags_allow_blocking(pri));
1317
1318 if (skb_cloned(skb))
1319 return pskb_expand_head(skb, 0, 0, pri);
1320
1321 return 0;
1322 }
1323
1324 /**
1325 * skb_header_cloned - is the header a clone
1326 * @skb: buffer to check
1327 *
1328 * Returns true if modifying the header part of the buffer requires
1329 * the data to be copied.
1330 */
1331 static inline int skb_header_cloned(const struct sk_buff *skb)
1332 {
1333 int dataref;
1334
1335 if (!skb->cloned)
1336 return 0;
1337
1338 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1339 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1340 return dataref != 1;
1341 }
1342
1343 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1344 {
1345 might_sleep_if(gfpflags_allow_blocking(pri));
1346
1347 if (skb_header_cloned(skb))
1348 return pskb_expand_head(skb, 0, 0, pri);
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * skb_header_release - release reference to header
1355 * @skb: buffer to operate on
1356 *
1357 * Drop a reference to the header part of the buffer. This is done
1358 * by acquiring a payload reference. You must not read from the header
1359 * part of skb->data after this.
1360 * Note : Check if you can use __skb_header_release() instead.
1361 */
1362 static inline void skb_header_release(struct sk_buff *skb)
1363 {
1364 BUG_ON(skb->nohdr);
1365 skb->nohdr = 1;
1366 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1367 }
1368
1369 /**
1370 * __skb_header_release - release reference to header
1371 * @skb: buffer to operate on
1372 *
1373 * Variant of skb_header_release() assuming skb is private to caller.
1374 * We can avoid one atomic operation.
1375 */
1376 static inline void __skb_header_release(struct sk_buff *skb)
1377 {
1378 skb->nohdr = 1;
1379 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1380 }
1381
1382
1383 /**
1384 * skb_shared - is the buffer shared
1385 * @skb: buffer to check
1386 *
1387 * Returns true if more than one person has a reference to this
1388 * buffer.
1389 */
1390 static inline int skb_shared(const struct sk_buff *skb)
1391 {
1392 return atomic_read(&skb->users) != 1;
1393 }
1394
1395 /**
1396 * skb_share_check - check if buffer is shared and if so clone it
1397 * @skb: buffer to check
1398 * @pri: priority for memory allocation
1399 *
1400 * If the buffer is shared the buffer is cloned and the old copy
1401 * drops a reference. A new clone with a single reference is returned.
1402 * If the buffer is not shared the original buffer is returned. When
1403 * being called from interrupt status or with spinlocks held pri must
1404 * be GFP_ATOMIC.
1405 *
1406 * NULL is returned on a memory allocation failure.
1407 */
1408 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1409 {
1410 might_sleep_if(gfpflags_allow_blocking(pri));
1411 if (skb_shared(skb)) {
1412 struct sk_buff *nskb = skb_clone(skb, pri);
1413
1414 if (likely(nskb))
1415 consume_skb(skb);
1416 else
1417 kfree_skb(skb);
1418 skb = nskb;
1419 }
1420 return skb;
1421 }
1422
1423 /*
1424 * Copy shared buffers into a new sk_buff. We effectively do COW on
1425 * packets to handle cases where we have a local reader and forward
1426 * and a couple of other messy ones. The normal one is tcpdumping
1427 * a packet thats being forwarded.
1428 */
1429
1430 /**
1431 * skb_unshare - make a copy of a shared buffer
1432 * @skb: buffer to check
1433 * @pri: priority for memory allocation
1434 *
1435 * If the socket buffer is a clone then this function creates a new
1436 * copy of the data, drops a reference count on the old copy and returns
1437 * the new copy with the reference count at 1. If the buffer is not a clone
1438 * the original buffer is returned. When called with a spinlock held or
1439 * from interrupt state @pri must be %GFP_ATOMIC
1440 *
1441 * %NULL is returned on a memory allocation failure.
1442 */
1443 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1444 gfp_t pri)
1445 {
1446 might_sleep_if(gfpflags_allow_blocking(pri));
1447 if (skb_cloned(skb)) {
1448 struct sk_buff *nskb = skb_copy(skb, pri);
1449
1450 /* Free our shared copy */
1451 if (likely(nskb))
1452 consume_skb(skb);
1453 else
1454 kfree_skb(skb);
1455 skb = nskb;
1456 }
1457 return skb;
1458 }
1459
1460 /**
1461 * skb_peek - peek at the head of an &sk_buff_head
1462 * @list_: list to peek at
1463 *
1464 * Peek an &sk_buff. Unlike most other operations you _MUST_
1465 * be careful with this one. A peek leaves the buffer on the
1466 * list and someone else may run off with it. You must hold
1467 * the appropriate locks or have a private queue to do this.
1468 *
1469 * Returns %NULL for an empty list or a pointer to the head element.
1470 * The reference count is not incremented and the reference is therefore
1471 * volatile. Use with caution.
1472 */
1473 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1474 {
1475 struct sk_buff *skb = list_->next;
1476
1477 if (skb == (struct sk_buff *)list_)
1478 skb = NULL;
1479 return skb;
1480 }
1481
1482 /**
1483 * skb_peek_next - peek skb following the given one from a queue
1484 * @skb: skb to start from
1485 * @list_: list to peek at
1486 *
1487 * Returns %NULL when the end of the list is met or a pointer to the
1488 * next element. The reference count is not incremented and the
1489 * reference is therefore volatile. Use with caution.
1490 */
1491 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1492 const struct sk_buff_head *list_)
1493 {
1494 struct sk_buff *next = skb->next;
1495
1496 if (next == (struct sk_buff *)list_)
1497 next = NULL;
1498 return next;
1499 }
1500
1501 /**
1502 * skb_peek_tail - peek at the tail of an &sk_buff_head
1503 * @list_: list to peek at
1504 *
1505 * Peek an &sk_buff. Unlike most other operations you _MUST_
1506 * be careful with this one. A peek leaves the buffer on the
1507 * list and someone else may run off with it. You must hold
1508 * the appropriate locks or have a private queue to do this.
1509 *
1510 * Returns %NULL for an empty list or a pointer to the tail element.
1511 * The reference count is not incremented and the reference is therefore
1512 * volatile. Use with caution.
1513 */
1514 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1515 {
1516 struct sk_buff *skb = list_->prev;
1517
1518 if (skb == (struct sk_buff *)list_)
1519 skb = NULL;
1520 return skb;
1521
1522 }
1523
1524 /**
1525 * skb_queue_len - get queue length
1526 * @list_: list to measure
1527 *
1528 * Return the length of an &sk_buff queue.
1529 */
1530 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1531 {
1532 return list_->qlen;
1533 }
1534
1535 /**
1536 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1537 * @list: queue to initialize
1538 *
1539 * This initializes only the list and queue length aspects of
1540 * an sk_buff_head object. This allows to initialize the list
1541 * aspects of an sk_buff_head without reinitializing things like
1542 * the spinlock. It can also be used for on-stack sk_buff_head
1543 * objects where the spinlock is known to not be used.
1544 */
1545 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1546 {
1547 list->prev = list->next = (struct sk_buff *)list;
1548 list->qlen = 0;
1549 }
1550
1551 /*
1552 * This function creates a split out lock class for each invocation;
1553 * this is needed for now since a whole lot of users of the skb-queue
1554 * infrastructure in drivers have different locking usage (in hardirq)
1555 * than the networking core (in softirq only). In the long run either the
1556 * network layer or drivers should need annotation to consolidate the
1557 * main types of usage into 3 classes.
1558 */
1559 static inline void skb_queue_head_init(struct sk_buff_head *list)
1560 {
1561 spin_lock_init(&list->lock);
1562 __skb_queue_head_init(list);
1563 }
1564
1565 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1566 struct lock_class_key *class)
1567 {
1568 skb_queue_head_init(list);
1569 lockdep_set_class(&list->lock, class);
1570 }
1571
1572 /*
1573 * Insert an sk_buff on a list.
1574 *
1575 * The "__skb_xxxx()" functions are the non-atomic ones that
1576 * can only be called with interrupts disabled.
1577 */
1578 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1579 struct sk_buff_head *list);
1580 static inline void __skb_insert(struct sk_buff *newsk,
1581 struct sk_buff *prev, struct sk_buff *next,
1582 struct sk_buff_head *list)
1583 {
1584 newsk->next = next;
1585 newsk->prev = prev;
1586 next->prev = prev->next = newsk;
1587 list->qlen++;
1588 }
1589
1590 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1591 struct sk_buff *prev,
1592 struct sk_buff *next)
1593 {
1594 struct sk_buff *first = list->next;
1595 struct sk_buff *last = list->prev;
1596
1597 first->prev = prev;
1598 prev->next = first;
1599
1600 last->next = next;
1601 next->prev = last;
1602 }
1603
1604 /**
1605 * skb_queue_splice - join two skb lists, this is designed for stacks
1606 * @list: the new list to add
1607 * @head: the place to add it in the first list
1608 */
1609 static inline void skb_queue_splice(const struct sk_buff_head *list,
1610 struct sk_buff_head *head)
1611 {
1612 if (!skb_queue_empty(list)) {
1613 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1614 head->qlen += list->qlen;
1615 }
1616 }
1617
1618 /**
1619 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1620 * @list: the new list to add
1621 * @head: the place to add it in the first list
1622 *
1623 * The list at @list is reinitialised
1624 */
1625 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1626 struct sk_buff_head *head)
1627 {
1628 if (!skb_queue_empty(list)) {
1629 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1630 head->qlen += list->qlen;
1631 __skb_queue_head_init(list);
1632 }
1633 }
1634
1635 /**
1636 * skb_queue_splice_tail - join two skb lists, each list being a queue
1637 * @list: the new list to add
1638 * @head: the place to add it in the first list
1639 */
1640 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1641 struct sk_buff_head *head)
1642 {
1643 if (!skb_queue_empty(list)) {
1644 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1645 head->qlen += list->qlen;
1646 }
1647 }
1648
1649 /**
1650 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1651 * @list: the new list to add
1652 * @head: the place to add it in the first list
1653 *
1654 * Each of the lists is a queue.
1655 * The list at @list is reinitialised
1656 */
1657 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1658 struct sk_buff_head *head)
1659 {
1660 if (!skb_queue_empty(list)) {
1661 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1662 head->qlen += list->qlen;
1663 __skb_queue_head_init(list);
1664 }
1665 }
1666
1667 /**
1668 * __skb_queue_after - queue a buffer at the list head
1669 * @list: list to use
1670 * @prev: place after this buffer
1671 * @newsk: buffer to queue
1672 *
1673 * Queue a buffer int the middle of a list. This function takes no locks
1674 * and you must therefore hold required locks before calling it.
1675 *
1676 * A buffer cannot be placed on two lists at the same time.
1677 */
1678 static inline void __skb_queue_after(struct sk_buff_head *list,
1679 struct sk_buff *prev,
1680 struct sk_buff *newsk)
1681 {
1682 __skb_insert(newsk, prev, prev->next, list);
1683 }
1684
1685 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1686 struct sk_buff_head *list);
1687
1688 static inline void __skb_queue_before(struct sk_buff_head *list,
1689 struct sk_buff *next,
1690 struct sk_buff *newsk)
1691 {
1692 __skb_insert(newsk, next->prev, next, list);
1693 }
1694
1695 /**
1696 * __skb_queue_head - queue a buffer at the list head
1697 * @list: list to use
1698 * @newsk: buffer to queue
1699 *
1700 * Queue a buffer at the start of a list. This function takes no locks
1701 * and you must therefore hold required locks before calling it.
1702 *
1703 * A buffer cannot be placed on two lists at the same time.
1704 */
1705 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1706 static inline void __skb_queue_head(struct sk_buff_head *list,
1707 struct sk_buff *newsk)
1708 {
1709 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1710 }
1711
1712 /**
1713 * __skb_queue_tail - queue a buffer at the list tail
1714 * @list: list to use
1715 * @newsk: buffer to queue
1716 *
1717 * Queue a buffer at the end of a list. This function takes no locks
1718 * and you must therefore hold required locks before calling it.
1719 *
1720 * A buffer cannot be placed on two lists at the same time.
1721 */
1722 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1723 static inline void __skb_queue_tail(struct sk_buff_head *list,
1724 struct sk_buff *newsk)
1725 {
1726 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1727 }
1728
1729 /*
1730 * remove sk_buff from list. _Must_ be called atomically, and with
1731 * the list known..
1732 */
1733 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1734 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1735 {
1736 struct sk_buff *next, *prev;
1737
1738 list->qlen--;
1739 next = skb->next;
1740 prev = skb->prev;
1741 skb->next = skb->prev = NULL;
1742 next->prev = prev;
1743 prev->next = next;
1744 }
1745
1746 /**
1747 * __skb_dequeue - remove from the head of the queue
1748 * @list: list to dequeue from
1749 *
1750 * Remove the head of the list. This function does not take any locks
1751 * so must be used with appropriate locks held only. The head item is
1752 * returned or %NULL if the list is empty.
1753 */
1754 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1755 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1756 {
1757 struct sk_buff *skb = skb_peek(list);
1758 if (skb)
1759 __skb_unlink(skb, list);
1760 return skb;
1761 }
1762
1763 /**
1764 * __skb_dequeue_tail - remove from the tail of the queue
1765 * @list: list to dequeue from
1766 *
1767 * Remove the tail of the list. This function does not take any locks
1768 * so must be used with appropriate locks held only. The tail item is
1769 * returned or %NULL if the list is empty.
1770 */
1771 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1772 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1773 {
1774 struct sk_buff *skb = skb_peek_tail(list);
1775 if (skb)
1776 __skb_unlink(skb, list);
1777 return skb;
1778 }
1779
1780
1781 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1782 {
1783 return skb->data_len;
1784 }
1785
1786 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1787 {
1788 return skb->len - skb->data_len;
1789 }
1790
1791 static inline int skb_pagelen(const struct sk_buff *skb)
1792 {
1793 int i, len = 0;
1794
1795 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1796 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1797 return len + skb_headlen(skb);
1798 }
1799
1800 /**
1801 * __skb_fill_page_desc - initialise a paged fragment in an skb
1802 * @skb: buffer containing fragment to be initialised
1803 * @i: paged fragment index to initialise
1804 * @page: the page to use for this fragment
1805 * @off: the offset to the data with @page
1806 * @size: the length of the data
1807 *
1808 * Initialises the @i'th fragment of @skb to point to &size bytes at
1809 * offset @off within @page.
1810 *
1811 * Does not take any additional reference on the fragment.
1812 */
1813 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1814 struct page *page, int off, int size)
1815 {
1816 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1817
1818 /*
1819 * Propagate page pfmemalloc to the skb if we can. The problem is
1820 * that not all callers have unique ownership of the page but rely
1821 * on page_is_pfmemalloc doing the right thing(tm).
1822 */
1823 frag->page.p = page;
1824 frag->page_offset = off;
1825 skb_frag_size_set(frag, size);
1826
1827 page = compound_head(page);
1828 if (page_is_pfmemalloc(page))
1829 skb->pfmemalloc = true;
1830 }
1831
1832 /**
1833 * skb_fill_page_desc - initialise a paged fragment in an skb
1834 * @skb: buffer containing fragment to be initialised
1835 * @i: paged fragment index to initialise
1836 * @page: the page to use for this fragment
1837 * @off: the offset to the data with @page
1838 * @size: the length of the data
1839 *
1840 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1841 * @skb to point to @size bytes at offset @off within @page. In
1842 * addition updates @skb such that @i is the last fragment.
1843 *
1844 * Does not take any additional reference on the fragment.
1845 */
1846 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1847 struct page *page, int off, int size)
1848 {
1849 __skb_fill_page_desc(skb, i, page, off, size);
1850 skb_shinfo(skb)->nr_frags = i + 1;
1851 }
1852
1853 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1854 int size, unsigned int truesize);
1855
1856 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1857 unsigned int truesize);
1858
1859 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1860 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1861 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1862
1863 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1864 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1865 {
1866 return skb->head + skb->tail;
1867 }
1868
1869 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1870 {
1871 skb->tail = skb->data - skb->head;
1872 }
1873
1874 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1875 {
1876 skb_reset_tail_pointer(skb);
1877 skb->tail += offset;
1878 }
1879
1880 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1881 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1882 {
1883 return skb->tail;
1884 }
1885
1886 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1887 {
1888 skb->tail = skb->data;
1889 }
1890
1891 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1892 {
1893 skb->tail = skb->data + offset;
1894 }
1895
1896 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1897
1898 /*
1899 * Add data to an sk_buff
1900 */
1901 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1902 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1903 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1904 {
1905 unsigned char *tmp = skb_tail_pointer(skb);
1906 SKB_LINEAR_ASSERT(skb);
1907 skb->tail += len;
1908 skb->len += len;
1909 return tmp;
1910 }
1911
1912 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1913 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1914 {
1915 skb->data -= len;
1916 skb->len += len;
1917 return skb->data;
1918 }
1919
1920 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1921 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1922 {
1923 skb->len -= len;
1924 BUG_ON(skb->len < skb->data_len);
1925 return skb->data += len;
1926 }
1927
1928 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1929 {
1930 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1931 }
1932
1933 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1934
1935 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1936 {
1937 if (len > skb_headlen(skb) &&
1938 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1939 return NULL;
1940 skb->len -= len;
1941 return skb->data += len;
1942 }
1943
1944 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1945 {
1946 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1947 }
1948
1949 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1950 {
1951 if (likely(len <= skb_headlen(skb)))
1952 return 1;
1953 if (unlikely(len > skb->len))
1954 return 0;
1955 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1956 }
1957
1958 /**
1959 * skb_headroom - bytes at buffer head
1960 * @skb: buffer to check
1961 *
1962 * Return the number of bytes of free space at the head of an &sk_buff.
1963 */
1964 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1965 {
1966 return skb->data - skb->head;
1967 }
1968
1969 /**
1970 * skb_tailroom - bytes at buffer end
1971 * @skb: buffer to check
1972 *
1973 * Return the number of bytes of free space at the tail of an sk_buff
1974 */
1975 static inline int skb_tailroom(const struct sk_buff *skb)
1976 {
1977 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1978 }
1979
1980 /**
1981 * skb_availroom - bytes at buffer end
1982 * @skb: buffer to check
1983 *
1984 * Return the number of bytes of free space at the tail of an sk_buff
1985 * allocated by sk_stream_alloc()
1986 */
1987 static inline int skb_availroom(const struct sk_buff *skb)
1988 {
1989 if (skb_is_nonlinear(skb))
1990 return 0;
1991
1992 return skb->end - skb->tail - skb->reserved_tailroom;
1993 }
1994
1995 /**
1996 * skb_reserve - adjust headroom
1997 * @skb: buffer to alter
1998 * @len: bytes to move
1999 *
2000 * Increase the headroom of an empty &sk_buff by reducing the tail
2001 * room. This is only allowed for an empty buffer.
2002 */
2003 static inline void skb_reserve(struct sk_buff *skb, int len)
2004 {
2005 skb->data += len;
2006 skb->tail += len;
2007 }
2008
2009 /**
2010 * skb_tailroom_reserve - adjust reserved_tailroom
2011 * @skb: buffer to alter
2012 * @mtu: maximum amount of headlen permitted
2013 * @needed_tailroom: minimum amount of reserved_tailroom
2014 *
2015 * Set reserved_tailroom so that headlen can be as large as possible but
2016 * not larger than mtu and tailroom cannot be smaller than
2017 * needed_tailroom.
2018 * The required headroom should already have been reserved before using
2019 * this function.
2020 */
2021 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2022 unsigned int needed_tailroom)
2023 {
2024 SKB_LINEAR_ASSERT(skb);
2025 if (mtu < skb_tailroom(skb) - needed_tailroom)
2026 /* use at most mtu */
2027 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2028 else
2029 /* use up to all available space */
2030 skb->reserved_tailroom = needed_tailroom;
2031 }
2032
2033 #define ENCAP_TYPE_ETHER 0
2034 #define ENCAP_TYPE_IPPROTO 1
2035
2036 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2037 __be16 protocol)
2038 {
2039 skb->inner_protocol = protocol;
2040 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2041 }
2042
2043 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2044 __u8 ipproto)
2045 {
2046 skb->inner_ipproto = ipproto;
2047 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2048 }
2049
2050 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2051 {
2052 skb->inner_mac_header = skb->mac_header;
2053 skb->inner_network_header = skb->network_header;
2054 skb->inner_transport_header = skb->transport_header;
2055 }
2056
2057 static inline void skb_reset_mac_len(struct sk_buff *skb)
2058 {
2059 skb->mac_len = skb->network_header - skb->mac_header;
2060 }
2061
2062 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2063 *skb)
2064 {
2065 return skb->head + skb->inner_transport_header;
2066 }
2067
2068 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2069 {
2070 return skb_inner_transport_header(skb) - skb->data;
2071 }
2072
2073 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2074 {
2075 skb->inner_transport_header = skb->data - skb->head;
2076 }
2077
2078 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2079 const int offset)
2080 {
2081 skb_reset_inner_transport_header(skb);
2082 skb->inner_transport_header += offset;
2083 }
2084
2085 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2086 {
2087 return skb->head + skb->inner_network_header;
2088 }
2089
2090 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2091 {
2092 skb->inner_network_header = skb->data - skb->head;
2093 }
2094
2095 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2096 const int offset)
2097 {
2098 skb_reset_inner_network_header(skb);
2099 skb->inner_network_header += offset;
2100 }
2101
2102 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2103 {
2104 return skb->head + skb->inner_mac_header;
2105 }
2106
2107 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2108 {
2109 skb->inner_mac_header = skb->data - skb->head;
2110 }
2111
2112 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2113 const int offset)
2114 {
2115 skb_reset_inner_mac_header(skb);
2116 skb->inner_mac_header += offset;
2117 }
2118 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2119 {
2120 return skb->transport_header != (typeof(skb->transport_header))~0U;
2121 }
2122
2123 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2124 {
2125 return skb->head + skb->transport_header;
2126 }
2127
2128 static inline void skb_reset_transport_header(struct sk_buff *skb)
2129 {
2130 skb->transport_header = skb->data - skb->head;
2131 }
2132
2133 static inline void skb_set_transport_header(struct sk_buff *skb,
2134 const int offset)
2135 {
2136 skb_reset_transport_header(skb);
2137 skb->transport_header += offset;
2138 }
2139
2140 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2141 {
2142 return skb->head + skb->network_header;
2143 }
2144
2145 static inline void skb_reset_network_header(struct sk_buff *skb)
2146 {
2147 skb->network_header = skb->data - skb->head;
2148 }
2149
2150 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2151 {
2152 skb_reset_network_header(skb);
2153 skb->network_header += offset;
2154 }
2155
2156 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2157 {
2158 return skb->head + skb->mac_header;
2159 }
2160
2161 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2162 {
2163 return skb->mac_header != (typeof(skb->mac_header))~0U;
2164 }
2165
2166 static inline void skb_reset_mac_header(struct sk_buff *skb)
2167 {
2168 skb->mac_header = skb->data - skb->head;
2169 }
2170
2171 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2172 {
2173 skb_reset_mac_header(skb);
2174 skb->mac_header += offset;
2175 }
2176
2177 static inline void skb_pop_mac_header(struct sk_buff *skb)
2178 {
2179 skb->mac_header = skb->network_header;
2180 }
2181
2182 static inline void skb_probe_transport_header(struct sk_buff *skb,
2183 const int offset_hint)
2184 {
2185 struct flow_keys keys;
2186
2187 if (skb_transport_header_was_set(skb))
2188 return;
2189 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2190 skb_set_transport_header(skb, keys.control.thoff);
2191 else
2192 skb_set_transport_header(skb, offset_hint);
2193 }
2194
2195 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2196 {
2197 if (skb_mac_header_was_set(skb)) {
2198 const unsigned char *old_mac = skb_mac_header(skb);
2199
2200 skb_set_mac_header(skb, -skb->mac_len);
2201 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2202 }
2203 }
2204
2205 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2206 {
2207 return skb->csum_start - skb_headroom(skb);
2208 }
2209
2210 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2211 {
2212 return skb->head + skb->csum_start;
2213 }
2214
2215 static inline int skb_transport_offset(const struct sk_buff *skb)
2216 {
2217 return skb_transport_header(skb) - skb->data;
2218 }
2219
2220 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2221 {
2222 return skb->transport_header - skb->network_header;
2223 }
2224
2225 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2226 {
2227 return skb->inner_transport_header - skb->inner_network_header;
2228 }
2229
2230 static inline int skb_network_offset(const struct sk_buff *skb)
2231 {
2232 return skb_network_header(skb) - skb->data;
2233 }
2234
2235 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2236 {
2237 return skb_inner_network_header(skb) - skb->data;
2238 }
2239
2240 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2241 {
2242 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2243 }
2244
2245 /*
2246 * CPUs often take a performance hit when accessing unaligned memory
2247 * locations. The actual performance hit varies, it can be small if the
2248 * hardware handles it or large if we have to take an exception and fix it
2249 * in software.
2250 *
2251 * Since an ethernet header is 14 bytes network drivers often end up with
2252 * the IP header at an unaligned offset. The IP header can be aligned by
2253 * shifting the start of the packet by 2 bytes. Drivers should do this
2254 * with:
2255 *
2256 * skb_reserve(skb, NET_IP_ALIGN);
2257 *
2258 * The downside to this alignment of the IP header is that the DMA is now
2259 * unaligned. On some architectures the cost of an unaligned DMA is high
2260 * and this cost outweighs the gains made by aligning the IP header.
2261 *
2262 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2263 * to be overridden.
2264 */
2265 #ifndef NET_IP_ALIGN
2266 #define NET_IP_ALIGN 2
2267 #endif
2268
2269 /*
2270 * The networking layer reserves some headroom in skb data (via
2271 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2272 * the header has to grow. In the default case, if the header has to grow
2273 * 32 bytes or less we avoid the reallocation.
2274 *
2275 * Unfortunately this headroom changes the DMA alignment of the resulting
2276 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2277 * on some architectures. An architecture can override this value,
2278 * perhaps setting it to a cacheline in size (since that will maintain
2279 * cacheline alignment of the DMA). It must be a power of 2.
2280 *
2281 * Various parts of the networking layer expect at least 32 bytes of
2282 * headroom, you should not reduce this.
2283 *
2284 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2285 * to reduce average number of cache lines per packet.
2286 * get_rps_cpus() for example only access one 64 bytes aligned block :
2287 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2288 */
2289 #ifndef NET_SKB_PAD
2290 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2291 #endif
2292
2293 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2294
2295 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2296 {
2297 if (unlikely(skb_is_nonlinear(skb))) {
2298 WARN_ON(1);
2299 return;
2300 }
2301 skb->len = len;
2302 skb_set_tail_pointer(skb, len);
2303 }
2304
2305 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2306 {
2307 __skb_set_length(skb, len);
2308 }
2309
2310 void skb_trim(struct sk_buff *skb, unsigned int len);
2311
2312 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2313 {
2314 if (skb->data_len)
2315 return ___pskb_trim(skb, len);
2316 __skb_trim(skb, len);
2317 return 0;
2318 }
2319
2320 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2321 {
2322 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2323 }
2324
2325 /**
2326 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2327 * @skb: buffer to alter
2328 * @len: new length
2329 *
2330 * This is identical to pskb_trim except that the caller knows that
2331 * the skb is not cloned so we should never get an error due to out-
2332 * of-memory.
2333 */
2334 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2335 {
2336 int err = pskb_trim(skb, len);
2337 BUG_ON(err);
2338 }
2339
2340 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2341 {
2342 unsigned int diff = len - skb->len;
2343
2344 if (skb_tailroom(skb) < diff) {
2345 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2346 GFP_ATOMIC);
2347 if (ret)
2348 return ret;
2349 }
2350 __skb_set_length(skb, len);
2351 return 0;
2352 }
2353
2354 /**
2355 * skb_orphan - orphan a buffer
2356 * @skb: buffer to orphan
2357 *
2358 * If a buffer currently has an owner then we call the owner's
2359 * destructor function and make the @skb unowned. The buffer continues
2360 * to exist but is no longer charged to its former owner.
2361 */
2362 static inline void skb_orphan(struct sk_buff *skb)
2363 {
2364 if (skb->destructor) {
2365 skb->destructor(skb);
2366 skb->destructor = NULL;
2367 skb->sk = NULL;
2368 } else {
2369 BUG_ON(skb->sk);
2370 }
2371 }
2372
2373 /**
2374 * skb_orphan_frags - orphan the frags contained in a buffer
2375 * @skb: buffer to orphan frags from
2376 * @gfp_mask: allocation mask for replacement pages
2377 *
2378 * For each frag in the SKB which needs a destructor (i.e. has an
2379 * owner) create a copy of that frag and release the original
2380 * page by calling the destructor.
2381 */
2382 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2383 {
2384 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2385 return 0;
2386 return skb_copy_ubufs(skb, gfp_mask);
2387 }
2388
2389 /**
2390 * __skb_queue_purge - empty a list
2391 * @list: list to empty
2392 *
2393 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2394 * the list and one reference dropped. This function does not take the
2395 * list lock and the caller must hold the relevant locks to use it.
2396 */
2397 void skb_queue_purge(struct sk_buff_head *list);
2398 static inline void __skb_queue_purge(struct sk_buff_head *list)
2399 {
2400 struct sk_buff *skb;
2401 while ((skb = __skb_dequeue(list)) != NULL)
2402 kfree_skb(skb);
2403 }
2404
2405 void *netdev_alloc_frag(unsigned int fragsz);
2406
2407 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2408 gfp_t gfp_mask);
2409
2410 /**
2411 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2412 * @dev: network device to receive on
2413 * @length: length to allocate
2414 *
2415 * Allocate a new &sk_buff and assign it a usage count of one. The
2416 * buffer has unspecified headroom built in. Users should allocate
2417 * the headroom they think they need without accounting for the
2418 * built in space. The built in space is used for optimisations.
2419 *
2420 * %NULL is returned if there is no free memory. Although this function
2421 * allocates memory it can be called from an interrupt.
2422 */
2423 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2424 unsigned int length)
2425 {
2426 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2427 }
2428
2429 /* legacy helper around __netdev_alloc_skb() */
2430 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2431 gfp_t gfp_mask)
2432 {
2433 return __netdev_alloc_skb(NULL, length, gfp_mask);
2434 }
2435
2436 /* legacy helper around netdev_alloc_skb() */
2437 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2438 {
2439 return netdev_alloc_skb(NULL, length);
2440 }
2441
2442
2443 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2444 unsigned int length, gfp_t gfp)
2445 {
2446 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2447
2448 if (NET_IP_ALIGN && skb)
2449 skb_reserve(skb, NET_IP_ALIGN);
2450 return skb;
2451 }
2452
2453 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2454 unsigned int length)
2455 {
2456 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2457 }
2458
2459 static inline void skb_free_frag(void *addr)
2460 {
2461 __free_page_frag(addr);
2462 }
2463
2464 void *napi_alloc_frag(unsigned int fragsz);
2465 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2466 unsigned int length, gfp_t gfp_mask);
2467 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2468 unsigned int length)
2469 {
2470 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2471 }
2472 void napi_consume_skb(struct sk_buff *skb, int budget);
2473
2474 void __kfree_skb_flush(void);
2475 void __kfree_skb_defer(struct sk_buff *skb);
2476
2477 /**
2478 * __dev_alloc_pages - allocate page for network Rx
2479 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2480 * @order: size of the allocation
2481 *
2482 * Allocate a new page.
2483 *
2484 * %NULL is returned if there is no free memory.
2485 */
2486 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2487 unsigned int order)
2488 {
2489 /* This piece of code contains several assumptions.
2490 * 1. This is for device Rx, therefor a cold page is preferred.
2491 * 2. The expectation is the user wants a compound page.
2492 * 3. If requesting a order 0 page it will not be compound
2493 * due to the check to see if order has a value in prep_new_page
2494 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2495 * code in gfp_to_alloc_flags that should be enforcing this.
2496 */
2497 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2498
2499 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2500 }
2501
2502 static inline struct page *dev_alloc_pages(unsigned int order)
2503 {
2504 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2505 }
2506
2507 /**
2508 * __dev_alloc_page - allocate a page for network Rx
2509 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2510 *
2511 * Allocate a new page.
2512 *
2513 * %NULL is returned if there is no free memory.
2514 */
2515 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2516 {
2517 return __dev_alloc_pages(gfp_mask, 0);
2518 }
2519
2520 static inline struct page *dev_alloc_page(void)
2521 {
2522 return dev_alloc_pages(0);
2523 }
2524
2525 /**
2526 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2527 * @page: The page that was allocated from skb_alloc_page
2528 * @skb: The skb that may need pfmemalloc set
2529 */
2530 static inline void skb_propagate_pfmemalloc(struct page *page,
2531 struct sk_buff *skb)
2532 {
2533 if (page_is_pfmemalloc(page))
2534 skb->pfmemalloc = true;
2535 }
2536
2537 /**
2538 * skb_frag_page - retrieve the page referred to by a paged fragment
2539 * @frag: the paged fragment
2540 *
2541 * Returns the &struct page associated with @frag.
2542 */
2543 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2544 {
2545 return frag->page.p;
2546 }
2547
2548 /**
2549 * __skb_frag_ref - take an addition reference on a paged fragment.
2550 * @frag: the paged fragment
2551 *
2552 * Takes an additional reference on the paged fragment @frag.
2553 */
2554 static inline void __skb_frag_ref(skb_frag_t *frag)
2555 {
2556 get_page(skb_frag_page(frag));
2557 }
2558
2559 /**
2560 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2561 * @skb: the buffer
2562 * @f: the fragment offset.
2563 *
2564 * Takes an additional reference on the @f'th paged fragment of @skb.
2565 */
2566 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2567 {
2568 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2569 }
2570
2571 /**
2572 * __skb_frag_unref - release a reference on a paged fragment.
2573 * @frag: the paged fragment
2574 *
2575 * Releases a reference on the paged fragment @frag.
2576 */
2577 static inline void __skb_frag_unref(skb_frag_t *frag)
2578 {
2579 put_page(skb_frag_page(frag));
2580 }
2581
2582 /**
2583 * skb_frag_unref - release a reference on a paged fragment of an skb.
2584 * @skb: the buffer
2585 * @f: the fragment offset
2586 *
2587 * Releases a reference on the @f'th paged fragment of @skb.
2588 */
2589 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2590 {
2591 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2592 }
2593
2594 /**
2595 * skb_frag_address - gets the address of the data contained in a paged fragment
2596 * @frag: the paged fragment buffer
2597 *
2598 * Returns the address of the data within @frag. The page must already
2599 * be mapped.
2600 */
2601 static inline void *skb_frag_address(const skb_frag_t *frag)
2602 {
2603 return page_address(skb_frag_page(frag)) + frag->page_offset;
2604 }
2605
2606 /**
2607 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2608 * @frag: the paged fragment buffer
2609 *
2610 * Returns the address of the data within @frag. Checks that the page
2611 * is mapped and returns %NULL otherwise.
2612 */
2613 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2614 {
2615 void *ptr = page_address(skb_frag_page(frag));
2616 if (unlikely(!ptr))
2617 return NULL;
2618
2619 return ptr + frag->page_offset;
2620 }
2621
2622 /**
2623 * __skb_frag_set_page - sets the page contained in a paged fragment
2624 * @frag: the paged fragment
2625 * @page: the page to set
2626 *
2627 * Sets the fragment @frag to contain @page.
2628 */
2629 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2630 {
2631 frag->page.p = page;
2632 }
2633
2634 /**
2635 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2636 * @skb: the buffer
2637 * @f: the fragment offset
2638 * @page: the page to set
2639 *
2640 * Sets the @f'th fragment of @skb to contain @page.
2641 */
2642 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2643 struct page *page)
2644 {
2645 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2646 }
2647
2648 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2649
2650 /**
2651 * skb_frag_dma_map - maps a paged fragment via the DMA API
2652 * @dev: the device to map the fragment to
2653 * @frag: the paged fragment to map
2654 * @offset: the offset within the fragment (starting at the
2655 * fragment's own offset)
2656 * @size: the number of bytes to map
2657 * @dir: the direction of the mapping (%PCI_DMA_*)
2658 *
2659 * Maps the page associated with @frag to @device.
2660 */
2661 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2662 const skb_frag_t *frag,
2663 size_t offset, size_t size,
2664 enum dma_data_direction dir)
2665 {
2666 return dma_map_page(dev, skb_frag_page(frag),
2667 frag->page_offset + offset, size, dir);
2668 }
2669
2670 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2671 gfp_t gfp_mask)
2672 {
2673 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2674 }
2675
2676
2677 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2678 gfp_t gfp_mask)
2679 {
2680 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2681 }
2682
2683
2684 /**
2685 * skb_clone_writable - is the header of a clone writable
2686 * @skb: buffer to check
2687 * @len: length up to which to write
2688 *
2689 * Returns true if modifying the header part of the cloned buffer
2690 * does not requires the data to be copied.
2691 */
2692 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2693 {
2694 return !skb_header_cloned(skb) &&
2695 skb_headroom(skb) + len <= skb->hdr_len;
2696 }
2697
2698 static inline int skb_try_make_writable(struct sk_buff *skb,
2699 unsigned int write_len)
2700 {
2701 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2702 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2703 }
2704
2705 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2706 int cloned)
2707 {
2708 int delta = 0;
2709
2710 if (headroom > skb_headroom(skb))
2711 delta = headroom - skb_headroom(skb);
2712
2713 if (delta || cloned)
2714 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2715 GFP_ATOMIC);
2716 return 0;
2717 }
2718
2719 /**
2720 * skb_cow - copy header of skb when it is required
2721 * @skb: buffer to cow
2722 * @headroom: needed headroom
2723 *
2724 * If the skb passed lacks sufficient headroom or its data part
2725 * is shared, data is reallocated. If reallocation fails, an error
2726 * is returned and original skb is not changed.
2727 *
2728 * The result is skb with writable area skb->head...skb->tail
2729 * and at least @headroom of space at head.
2730 */
2731 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2732 {
2733 return __skb_cow(skb, headroom, skb_cloned(skb));
2734 }
2735
2736 /**
2737 * skb_cow_head - skb_cow but only making the head writable
2738 * @skb: buffer to cow
2739 * @headroom: needed headroom
2740 *
2741 * This function is identical to skb_cow except that we replace the
2742 * skb_cloned check by skb_header_cloned. It should be used when
2743 * you only need to push on some header and do not need to modify
2744 * the data.
2745 */
2746 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2747 {
2748 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2749 }
2750
2751 /**
2752 * skb_padto - pad an skbuff up to a minimal size
2753 * @skb: buffer to pad
2754 * @len: minimal length
2755 *
2756 * Pads up a buffer to ensure the trailing bytes exist and are
2757 * blanked. If the buffer already contains sufficient data it
2758 * is untouched. Otherwise it is extended. Returns zero on
2759 * success. The skb is freed on error.
2760 */
2761 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2762 {
2763 unsigned int size = skb->len;
2764 if (likely(size >= len))
2765 return 0;
2766 return skb_pad(skb, len - size);
2767 }
2768
2769 /**
2770 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2771 * @skb: buffer to pad
2772 * @len: minimal length
2773 *
2774 * Pads up a buffer to ensure the trailing bytes exist and are
2775 * blanked. If the buffer already contains sufficient data it
2776 * is untouched. Otherwise it is extended. Returns zero on
2777 * success. The skb is freed on error.
2778 */
2779 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2780 {
2781 unsigned int size = skb->len;
2782
2783 if (unlikely(size < len)) {
2784 len -= size;
2785 if (skb_pad(skb, len))
2786 return -ENOMEM;
2787 __skb_put(skb, len);
2788 }
2789 return 0;
2790 }
2791
2792 static inline int skb_add_data(struct sk_buff *skb,
2793 struct iov_iter *from, int copy)
2794 {
2795 const int off = skb->len;
2796
2797 if (skb->ip_summed == CHECKSUM_NONE) {
2798 __wsum csum = 0;
2799 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2800 &csum, from) == copy) {
2801 skb->csum = csum_block_add(skb->csum, csum, off);
2802 return 0;
2803 }
2804 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2805 return 0;
2806
2807 __skb_trim(skb, off);
2808 return -EFAULT;
2809 }
2810
2811 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2812 const struct page *page, int off)
2813 {
2814 if (i) {
2815 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2816
2817 return page == skb_frag_page(frag) &&
2818 off == frag->page_offset + skb_frag_size(frag);
2819 }
2820 return false;
2821 }
2822
2823 static inline int __skb_linearize(struct sk_buff *skb)
2824 {
2825 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2826 }
2827
2828 /**
2829 * skb_linearize - convert paged skb to linear one
2830 * @skb: buffer to linarize
2831 *
2832 * If there is no free memory -ENOMEM is returned, otherwise zero
2833 * is returned and the old skb data released.
2834 */
2835 static inline int skb_linearize(struct sk_buff *skb)
2836 {
2837 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2838 }
2839
2840 /**
2841 * skb_has_shared_frag - can any frag be overwritten
2842 * @skb: buffer to test
2843 *
2844 * Return true if the skb has at least one frag that might be modified
2845 * by an external entity (as in vmsplice()/sendfile())
2846 */
2847 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2848 {
2849 return skb_is_nonlinear(skb) &&
2850 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2851 }
2852
2853 /**
2854 * skb_linearize_cow - make sure skb is linear and writable
2855 * @skb: buffer to process
2856 *
2857 * If there is no free memory -ENOMEM is returned, otherwise zero
2858 * is returned and the old skb data released.
2859 */
2860 static inline int skb_linearize_cow(struct sk_buff *skb)
2861 {
2862 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2863 __skb_linearize(skb) : 0;
2864 }
2865
2866 static __always_inline void
2867 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2868 unsigned int off)
2869 {
2870 if (skb->ip_summed == CHECKSUM_COMPLETE)
2871 skb->csum = csum_block_sub(skb->csum,
2872 csum_partial(start, len, 0), off);
2873 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2874 skb_checksum_start_offset(skb) < 0)
2875 skb->ip_summed = CHECKSUM_NONE;
2876 }
2877
2878 /**
2879 * skb_postpull_rcsum - update checksum for received skb after pull
2880 * @skb: buffer to update
2881 * @start: start of data before pull
2882 * @len: length of data pulled
2883 *
2884 * After doing a pull on a received packet, you need to call this to
2885 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2886 * CHECKSUM_NONE so that it can be recomputed from scratch.
2887 */
2888 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2889 const void *start, unsigned int len)
2890 {
2891 __skb_postpull_rcsum(skb, start, len, 0);
2892 }
2893
2894 static __always_inline void
2895 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2896 unsigned int off)
2897 {
2898 if (skb->ip_summed == CHECKSUM_COMPLETE)
2899 skb->csum = csum_block_add(skb->csum,
2900 csum_partial(start, len, 0), off);
2901 }
2902
2903 /**
2904 * skb_postpush_rcsum - update checksum for received skb after push
2905 * @skb: buffer to update
2906 * @start: start of data after push
2907 * @len: length of data pushed
2908 *
2909 * After doing a push on a received packet, you need to call this to
2910 * update the CHECKSUM_COMPLETE checksum.
2911 */
2912 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2913 const void *start, unsigned int len)
2914 {
2915 __skb_postpush_rcsum(skb, start, len, 0);
2916 }
2917
2918 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2919
2920 /**
2921 * skb_push_rcsum - push skb and update receive checksum
2922 * @skb: buffer to update
2923 * @len: length of data pulled
2924 *
2925 * This function performs an skb_push on the packet and updates
2926 * the CHECKSUM_COMPLETE checksum. It should be used on
2927 * receive path processing instead of skb_push unless you know
2928 * that the checksum difference is zero (e.g., a valid IP header)
2929 * or you are setting ip_summed to CHECKSUM_NONE.
2930 */
2931 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2932 unsigned int len)
2933 {
2934 skb_push(skb, len);
2935 skb_postpush_rcsum(skb, skb->data, len);
2936 return skb->data;
2937 }
2938
2939 /**
2940 * pskb_trim_rcsum - trim received skb and update checksum
2941 * @skb: buffer to trim
2942 * @len: new length
2943 *
2944 * This is exactly the same as pskb_trim except that it ensures the
2945 * checksum of received packets are still valid after the operation.
2946 */
2947
2948 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2949 {
2950 if (likely(len >= skb->len))
2951 return 0;
2952 if (skb->ip_summed == CHECKSUM_COMPLETE)
2953 skb->ip_summed = CHECKSUM_NONE;
2954 return __pskb_trim(skb, len);
2955 }
2956
2957 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2958 {
2959 if (skb->ip_summed == CHECKSUM_COMPLETE)
2960 skb->ip_summed = CHECKSUM_NONE;
2961 __skb_trim(skb, len);
2962 return 0;
2963 }
2964
2965 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2966 {
2967 if (skb->ip_summed == CHECKSUM_COMPLETE)
2968 skb->ip_summed = CHECKSUM_NONE;
2969 return __skb_grow(skb, len);
2970 }
2971
2972 #define skb_queue_walk(queue, skb) \
2973 for (skb = (queue)->next; \
2974 skb != (struct sk_buff *)(queue); \
2975 skb = skb->next)
2976
2977 #define skb_queue_walk_safe(queue, skb, tmp) \
2978 for (skb = (queue)->next, tmp = skb->next; \
2979 skb != (struct sk_buff *)(queue); \
2980 skb = tmp, tmp = skb->next)
2981
2982 #define skb_queue_walk_from(queue, skb) \
2983 for (; skb != (struct sk_buff *)(queue); \
2984 skb = skb->next)
2985
2986 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2987 for (tmp = skb->next; \
2988 skb != (struct sk_buff *)(queue); \
2989 skb = tmp, tmp = skb->next)
2990
2991 #define skb_queue_reverse_walk(queue, skb) \
2992 for (skb = (queue)->prev; \
2993 skb != (struct sk_buff *)(queue); \
2994 skb = skb->prev)
2995
2996 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2997 for (skb = (queue)->prev, tmp = skb->prev; \
2998 skb != (struct sk_buff *)(queue); \
2999 skb = tmp, tmp = skb->prev)
3000
3001 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3002 for (tmp = skb->prev; \
3003 skb != (struct sk_buff *)(queue); \
3004 skb = tmp, tmp = skb->prev)
3005
3006 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3007 {
3008 return skb_shinfo(skb)->frag_list != NULL;
3009 }
3010
3011 static inline void skb_frag_list_init(struct sk_buff *skb)
3012 {
3013 skb_shinfo(skb)->frag_list = NULL;
3014 }
3015
3016 #define skb_walk_frags(skb, iter) \
3017 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3018
3019
3020 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3021 const struct sk_buff *skb);
3022 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3023 int *peeked, int *off, int *err,
3024 struct sk_buff **last);
3025 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3026 int *peeked, int *off, int *err);
3027 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3028 int *err);
3029 unsigned int datagram_poll(struct file *file, struct socket *sock,
3030 struct poll_table_struct *wait);
3031 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3032 struct iov_iter *to, int size);
3033 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3034 struct msghdr *msg, int size)
3035 {
3036 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3037 }
3038 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3039 struct msghdr *msg);
3040 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3041 struct iov_iter *from, int len);
3042 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3043 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3044 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3045 static inline void skb_free_datagram_locked(struct sock *sk,
3046 struct sk_buff *skb)
3047 {
3048 __skb_free_datagram_locked(sk, skb, 0);
3049 }
3050 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3051 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3052 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3053 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3054 int len, __wsum csum);
3055 ssize_t skb_socket_splice(struct sock *sk,
3056 struct pipe_inode_info *pipe,
3057 struct splice_pipe_desc *spd);
3058 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3059 struct pipe_inode_info *pipe, unsigned int len,
3060 unsigned int flags,
3061 ssize_t (*splice_cb)(struct sock *,
3062 struct pipe_inode_info *,
3063 struct splice_pipe_desc *));
3064 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3065 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3066 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3067 int len, int hlen);
3068 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3069 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3070 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3071 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3072 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3073 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3074 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3075 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3076 int skb_vlan_pop(struct sk_buff *skb);
3077 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3078 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3079 gfp_t gfp);
3080
3081 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3082 {
3083 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3084 }
3085
3086 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3087 {
3088 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3089 }
3090
3091 struct skb_checksum_ops {
3092 __wsum (*update)(const void *mem, int len, __wsum wsum);
3093 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3094 };
3095
3096 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3097 __wsum csum, const struct skb_checksum_ops *ops);
3098 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3099 __wsum csum);
3100
3101 static inline void * __must_check
3102 __skb_header_pointer(const struct sk_buff *skb, int offset,
3103 int len, void *data, int hlen, void *buffer)
3104 {
3105 if (hlen - offset >= len)
3106 return data + offset;
3107
3108 if (!skb ||
3109 skb_copy_bits(skb, offset, buffer, len) < 0)
3110 return NULL;
3111
3112 return buffer;
3113 }
3114
3115 static inline void * __must_check
3116 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3117 {
3118 return __skb_header_pointer(skb, offset, len, skb->data,
3119 skb_headlen(skb), buffer);
3120 }
3121
3122 /**
3123 * skb_needs_linearize - check if we need to linearize a given skb
3124 * depending on the given device features.
3125 * @skb: socket buffer to check
3126 * @features: net device features
3127 *
3128 * Returns true if either:
3129 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3130 * 2. skb is fragmented and the device does not support SG.
3131 */
3132 static inline bool skb_needs_linearize(struct sk_buff *skb,
3133 netdev_features_t features)
3134 {
3135 return skb_is_nonlinear(skb) &&
3136 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3137 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3138 }
3139
3140 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3141 void *to,
3142 const unsigned int len)
3143 {
3144 memcpy(to, skb->data, len);
3145 }
3146
3147 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3148 const int offset, void *to,
3149 const unsigned int len)
3150 {
3151 memcpy(to, skb->data + offset, len);
3152 }
3153
3154 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3155 const void *from,
3156 const unsigned int len)
3157 {
3158 memcpy(skb->data, from, len);
3159 }
3160
3161 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3162 const int offset,
3163 const void *from,
3164 const unsigned int len)
3165 {
3166 memcpy(skb->data + offset, from, len);
3167 }
3168
3169 void skb_init(void);
3170
3171 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3172 {
3173 return skb->tstamp;
3174 }
3175
3176 /**
3177 * skb_get_timestamp - get timestamp from a skb
3178 * @skb: skb to get stamp from
3179 * @stamp: pointer to struct timeval to store stamp in
3180 *
3181 * Timestamps are stored in the skb as offsets to a base timestamp.
3182 * This function converts the offset back to a struct timeval and stores
3183 * it in stamp.
3184 */
3185 static inline void skb_get_timestamp(const struct sk_buff *skb,
3186 struct timeval *stamp)
3187 {
3188 *stamp = ktime_to_timeval(skb->tstamp);
3189 }
3190
3191 static inline void skb_get_timestampns(const struct sk_buff *skb,
3192 struct timespec *stamp)
3193 {
3194 *stamp = ktime_to_timespec(skb->tstamp);
3195 }
3196
3197 static inline void __net_timestamp(struct sk_buff *skb)
3198 {
3199 skb->tstamp = ktime_get_real();
3200 }
3201
3202 static inline ktime_t net_timedelta(ktime_t t)
3203 {
3204 return ktime_sub(ktime_get_real(), t);
3205 }
3206
3207 static inline ktime_t net_invalid_timestamp(void)
3208 {
3209 return ktime_set(0, 0);
3210 }
3211
3212 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3213
3214 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3215
3216 void skb_clone_tx_timestamp(struct sk_buff *skb);
3217 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3218
3219 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3220
3221 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3222 {
3223 }
3224
3225 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3226 {
3227 return false;
3228 }
3229
3230 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3231
3232 /**
3233 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3234 *
3235 * PHY drivers may accept clones of transmitted packets for
3236 * timestamping via their phy_driver.txtstamp method. These drivers
3237 * must call this function to return the skb back to the stack with a
3238 * timestamp.
3239 *
3240 * @skb: clone of the the original outgoing packet
3241 * @hwtstamps: hardware time stamps
3242 *
3243 */
3244 void skb_complete_tx_timestamp(struct sk_buff *skb,
3245 struct skb_shared_hwtstamps *hwtstamps);
3246
3247 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3248 struct skb_shared_hwtstamps *hwtstamps,
3249 struct sock *sk, int tstype);
3250
3251 /**
3252 * skb_tstamp_tx - queue clone of skb with send time stamps
3253 * @orig_skb: the original outgoing packet
3254 * @hwtstamps: hardware time stamps, may be NULL if not available
3255 *
3256 * If the skb has a socket associated, then this function clones the
3257 * skb (thus sharing the actual data and optional structures), stores
3258 * the optional hardware time stamping information (if non NULL) or
3259 * generates a software time stamp (otherwise), then queues the clone
3260 * to the error queue of the socket. Errors are silently ignored.
3261 */
3262 void skb_tstamp_tx(struct sk_buff *orig_skb,
3263 struct skb_shared_hwtstamps *hwtstamps);
3264
3265 static inline void sw_tx_timestamp(struct sk_buff *skb)
3266 {
3267 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3268 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3269 skb_tstamp_tx(skb, NULL);
3270 }
3271
3272 /**
3273 * skb_tx_timestamp() - Driver hook for transmit timestamping
3274 *
3275 * Ethernet MAC Drivers should call this function in their hard_xmit()
3276 * function immediately before giving the sk_buff to the MAC hardware.
3277 *
3278 * Specifically, one should make absolutely sure that this function is
3279 * called before TX completion of this packet can trigger. Otherwise
3280 * the packet could potentially already be freed.
3281 *
3282 * @skb: A socket buffer.
3283 */
3284 static inline void skb_tx_timestamp(struct sk_buff *skb)
3285 {
3286 skb_clone_tx_timestamp(skb);
3287 sw_tx_timestamp(skb);
3288 }
3289
3290 /**
3291 * skb_complete_wifi_ack - deliver skb with wifi status
3292 *
3293 * @skb: the original outgoing packet
3294 * @acked: ack status
3295 *
3296 */
3297 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3298
3299 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3300 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3301
3302 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3303 {
3304 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3305 skb->csum_valid ||
3306 (skb->ip_summed == CHECKSUM_PARTIAL &&
3307 skb_checksum_start_offset(skb) >= 0));
3308 }
3309
3310 /**
3311 * skb_checksum_complete - Calculate checksum of an entire packet
3312 * @skb: packet to process
3313 *
3314 * This function calculates the checksum over the entire packet plus
3315 * the value of skb->csum. The latter can be used to supply the
3316 * checksum of a pseudo header as used by TCP/UDP. It returns the
3317 * checksum.
3318 *
3319 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3320 * this function can be used to verify that checksum on received
3321 * packets. In that case the function should return zero if the
3322 * checksum is correct. In particular, this function will return zero
3323 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3324 * hardware has already verified the correctness of the checksum.
3325 */
3326 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3327 {
3328 return skb_csum_unnecessary(skb) ?
3329 0 : __skb_checksum_complete(skb);
3330 }
3331
3332 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3333 {
3334 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3335 if (skb->csum_level == 0)
3336 skb->ip_summed = CHECKSUM_NONE;
3337 else
3338 skb->csum_level--;
3339 }
3340 }
3341
3342 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3343 {
3344 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3345 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3346 skb->csum_level++;
3347 } else if (skb->ip_summed == CHECKSUM_NONE) {
3348 skb->ip_summed = CHECKSUM_UNNECESSARY;
3349 skb->csum_level = 0;
3350 }
3351 }
3352
3353 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3354 {
3355 /* Mark current checksum as bad (typically called from GRO
3356 * path). In the case that ip_summed is CHECKSUM_NONE
3357 * this must be the first checksum encountered in the packet.
3358 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3359 * checksum after the last one validated. For UDP, a zero
3360 * checksum can not be marked as bad.
3361 */
3362
3363 if (skb->ip_summed == CHECKSUM_NONE ||
3364 skb->ip_summed == CHECKSUM_UNNECESSARY)
3365 skb->csum_bad = 1;
3366 }
3367
3368 /* Check if we need to perform checksum complete validation.
3369 *
3370 * Returns true if checksum complete is needed, false otherwise
3371 * (either checksum is unnecessary or zero checksum is allowed).
3372 */
3373 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3374 bool zero_okay,
3375 __sum16 check)
3376 {
3377 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3378 skb->csum_valid = 1;
3379 __skb_decr_checksum_unnecessary(skb);
3380 return false;
3381 }
3382
3383 return true;
3384 }
3385
3386 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3387 * in checksum_init.
3388 */
3389 #define CHECKSUM_BREAK 76
3390
3391 /* Unset checksum-complete
3392 *
3393 * Unset checksum complete can be done when packet is being modified
3394 * (uncompressed for instance) and checksum-complete value is
3395 * invalidated.
3396 */
3397 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3398 {
3399 if (skb->ip_summed == CHECKSUM_COMPLETE)
3400 skb->ip_summed = CHECKSUM_NONE;
3401 }
3402
3403 /* Validate (init) checksum based on checksum complete.
3404 *
3405 * Return values:
3406 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3407 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3408 * checksum is stored in skb->csum for use in __skb_checksum_complete
3409 * non-zero: value of invalid checksum
3410 *
3411 */
3412 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3413 bool complete,
3414 __wsum psum)
3415 {
3416 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3417 if (!csum_fold(csum_add(psum, skb->csum))) {
3418 skb->csum_valid = 1;
3419 return 0;
3420 }
3421 } else if (skb->csum_bad) {
3422 /* ip_summed == CHECKSUM_NONE in this case */
3423 return (__force __sum16)1;
3424 }
3425
3426 skb->csum = psum;
3427
3428 if (complete || skb->len <= CHECKSUM_BREAK) {
3429 __sum16 csum;
3430
3431 csum = __skb_checksum_complete(skb);
3432 skb->csum_valid = !csum;
3433 return csum;
3434 }
3435
3436 return 0;
3437 }
3438
3439 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3440 {
3441 return 0;
3442 }
3443
3444 /* Perform checksum validate (init). Note that this is a macro since we only
3445 * want to calculate the pseudo header which is an input function if necessary.
3446 * First we try to validate without any computation (checksum unnecessary) and
3447 * then calculate based on checksum complete calling the function to compute
3448 * pseudo header.
3449 *
3450 * Return values:
3451 * 0: checksum is validated or try to in skb_checksum_complete
3452 * non-zero: value of invalid checksum
3453 */
3454 #define __skb_checksum_validate(skb, proto, complete, \
3455 zero_okay, check, compute_pseudo) \
3456 ({ \
3457 __sum16 __ret = 0; \
3458 skb->csum_valid = 0; \
3459 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3460 __ret = __skb_checksum_validate_complete(skb, \
3461 complete, compute_pseudo(skb, proto)); \
3462 __ret; \
3463 })
3464
3465 #define skb_checksum_init(skb, proto, compute_pseudo) \
3466 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3467
3468 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3469 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3470
3471 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3472 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3473
3474 #define skb_checksum_validate_zero_check(skb, proto, check, \
3475 compute_pseudo) \
3476 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3477
3478 #define skb_checksum_simple_validate(skb) \
3479 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3480
3481 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3482 {
3483 return (skb->ip_summed == CHECKSUM_NONE &&
3484 skb->csum_valid && !skb->csum_bad);
3485 }
3486
3487 static inline void __skb_checksum_convert(struct sk_buff *skb,
3488 __sum16 check, __wsum pseudo)
3489 {
3490 skb->csum = ~pseudo;
3491 skb->ip_summed = CHECKSUM_COMPLETE;
3492 }
3493
3494 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3495 do { \
3496 if (__skb_checksum_convert_check(skb)) \
3497 __skb_checksum_convert(skb, check, \
3498 compute_pseudo(skb, proto)); \
3499 } while (0)
3500
3501 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3502 u16 start, u16 offset)
3503 {
3504 skb->ip_summed = CHECKSUM_PARTIAL;
3505 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3506 skb->csum_offset = offset - start;
3507 }
3508
3509 /* Update skbuf and packet to reflect the remote checksum offload operation.
3510 * When called, ptr indicates the starting point for skb->csum when
3511 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3512 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3513 */
3514 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3515 int start, int offset, bool nopartial)
3516 {
3517 __wsum delta;
3518
3519 if (!nopartial) {
3520 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3521 return;
3522 }
3523
3524 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3525 __skb_checksum_complete(skb);
3526 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3527 }
3528
3529 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3530
3531 /* Adjust skb->csum since we changed the packet */
3532 skb->csum = csum_add(skb->csum, delta);
3533 }
3534
3535 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3536 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3537 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3538 {
3539 if (nfct && atomic_dec_and_test(&nfct->use))
3540 nf_conntrack_destroy(nfct);
3541 }
3542 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3543 {
3544 if (nfct)
3545 atomic_inc(&nfct->use);
3546 }
3547 #endif
3548 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3549 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3550 {
3551 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3552 kfree(nf_bridge);
3553 }
3554 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3555 {
3556 if (nf_bridge)
3557 atomic_inc(&nf_bridge->use);
3558 }
3559 #endif /* CONFIG_BRIDGE_NETFILTER */
3560 static inline void nf_reset(struct sk_buff *skb)
3561 {
3562 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3563 nf_conntrack_put(skb->nfct);
3564 skb->nfct = NULL;
3565 #endif
3566 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3567 nf_bridge_put(skb->nf_bridge);
3568 skb->nf_bridge = NULL;
3569 #endif
3570 }
3571
3572 static inline void nf_reset_trace(struct sk_buff *skb)
3573 {
3574 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3575 skb->nf_trace = 0;
3576 #endif
3577 }
3578
3579 /* Note: This doesn't put any conntrack and bridge info in dst. */
3580 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3581 bool copy)
3582 {
3583 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3584 dst->nfct = src->nfct;
3585 nf_conntrack_get(src->nfct);
3586 if (copy)
3587 dst->nfctinfo = src->nfctinfo;
3588 #endif
3589 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3590 dst->nf_bridge = src->nf_bridge;
3591 nf_bridge_get(src->nf_bridge);
3592 #endif
3593 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3594 if (copy)
3595 dst->nf_trace = src->nf_trace;
3596 #endif
3597 }
3598
3599 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3600 {
3601 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3602 nf_conntrack_put(dst->nfct);
3603 #endif
3604 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3605 nf_bridge_put(dst->nf_bridge);
3606 #endif
3607 __nf_copy(dst, src, true);
3608 }
3609
3610 #ifdef CONFIG_NETWORK_SECMARK
3611 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3612 {
3613 to->secmark = from->secmark;
3614 }
3615
3616 static inline void skb_init_secmark(struct sk_buff *skb)
3617 {
3618 skb->secmark = 0;
3619 }
3620 #else
3621 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3622 { }
3623
3624 static inline void skb_init_secmark(struct sk_buff *skb)
3625 { }
3626 #endif
3627
3628 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3629 {
3630 return !skb->destructor &&
3631 #if IS_ENABLED(CONFIG_XFRM)
3632 !skb->sp &&
3633 #endif
3634 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3635 !skb->nfct &&
3636 #endif
3637 !skb->_skb_refdst &&
3638 !skb_has_frag_list(skb);
3639 }
3640
3641 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3642 {
3643 skb->queue_mapping = queue_mapping;
3644 }
3645
3646 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3647 {
3648 return skb->queue_mapping;
3649 }
3650
3651 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3652 {
3653 to->queue_mapping = from->queue_mapping;
3654 }
3655
3656 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3657 {
3658 skb->queue_mapping = rx_queue + 1;
3659 }
3660
3661 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3662 {
3663 return skb->queue_mapping - 1;
3664 }
3665
3666 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3667 {
3668 return skb->queue_mapping != 0;
3669 }
3670
3671 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3672 {
3673 #ifdef CONFIG_XFRM
3674 return skb->sp;
3675 #else
3676 return NULL;
3677 #endif
3678 }
3679
3680 /* Keeps track of mac header offset relative to skb->head.
3681 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3682 * For non-tunnel skb it points to skb_mac_header() and for
3683 * tunnel skb it points to outer mac header.
3684 * Keeps track of level of encapsulation of network headers.
3685 */
3686 struct skb_gso_cb {
3687 union {
3688 int mac_offset;
3689 int data_offset;
3690 };
3691 int encap_level;
3692 __wsum csum;
3693 __u16 csum_start;
3694 };
3695 #define SKB_SGO_CB_OFFSET 32
3696 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3697
3698 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3699 {
3700 return (skb_mac_header(inner_skb) - inner_skb->head) -
3701 SKB_GSO_CB(inner_skb)->mac_offset;
3702 }
3703
3704 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3705 {
3706 int new_headroom, headroom;
3707 int ret;
3708
3709 headroom = skb_headroom(skb);
3710 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3711 if (ret)
3712 return ret;
3713
3714 new_headroom = skb_headroom(skb);
3715 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3716 return 0;
3717 }
3718
3719 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3720 {
3721 /* Do not update partial checksums if remote checksum is enabled. */
3722 if (skb->remcsum_offload)
3723 return;
3724
3725 SKB_GSO_CB(skb)->csum = res;
3726 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3727 }
3728
3729 /* Compute the checksum for a gso segment. First compute the checksum value
3730 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3731 * then add in skb->csum (checksum from csum_start to end of packet).
3732 * skb->csum and csum_start are then updated to reflect the checksum of the
3733 * resultant packet starting from the transport header-- the resultant checksum
3734 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3735 * header.
3736 */
3737 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3738 {
3739 unsigned char *csum_start = skb_transport_header(skb);
3740 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3741 __wsum partial = SKB_GSO_CB(skb)->csum;
3742
3743 SKB_GSO_CB(skb)->csum = res;
3744 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3745
3746 return csum_fold(csum_partial(csum_start, plen, partial));
3747 }
3748
3749 static inline bool skb_is_gso(const struct sk_buff *skb)
3750 {
3751 return skb_shinfo(skb)->gso_size;
3752 }
3753
3754 /* Note: Should be called only if skb_is_gso(skb) is true */
3755 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3756 {
3757 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3758 }
3759
3760 static inline void skb_gso_reset(struct sk_buff *skb)
3761 {
3762 skb_shinfo(skb)->gso_size = 0;
3763 skb_shinfo(skb)->gso_segs = 0;
3764 skb_shinfo(skb)->gso_type = 0;
3765 }
3766
3767 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3768
3769 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3770 {
3771 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3772 * wanted then gso_type will be set. */
3773 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3774
3775 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3776 unlikely(shinfo->gso_type == 0)) {
3777 __skb_warn_lro_forwarding(skb);
3778 return true;
3779 }
3780 return false;
3781 }
3782
3783 static inline void skb_forward_csum(struct sk_buff *skb)
3784 {
3785 /* Unfortunately we don't support this one. Any brave souls? */
3786 if (skb->ip_summed == CHECKSUM_COMPLETE)
3787 skb->ip_summed = CHECKSUM_NONE;
3788 }
3789
3790 /**
3791 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3792 * @skb: skb to check
3793 *
3794 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3795 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3796 * use this helper, to document places where we make this assertion.
3797 */
3798 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3799 {
3800 #ifdef DEBUG
3801 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3802 #endif
3803 }
3804
3805 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3806
3807 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3808 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3809 unsigned int transport_len,
3810 __sum16(*skb_chkf)(struct sk_buff *skb));
3811
3812 /**
3813 * skb_head_is_locked - Determine if the skb->head is locked down
3814 * @skb: skb to check
3815 *
3816 * The head on skbs build around a head frag can be removed if they are
3817 * not cloned. This function returns true if the skb head is locked down
3818 * due to either being allocated via kmalloc, or by being a clone with
3819 * multiple references to the head.
3820 */
3821 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3822 {
3823 return !skb->head_frag || skb_cloned(skb);
3824 }
3825
3826 /**
3827 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3828 *
3829 * @skb: GSO skb
3830 *
3831 * skb_gso_network_seglen is used to determine the real size of the
3832 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3833 *
3834 * The MAC/L2 header is not accounted for.
3835 */
3836 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3837 {
3838 unsigned int hdr_len = skb_transport_header(skb) -
3839 skb_network_header(skb);
3840 return hdr_len + skb_gso_transport_seglen(skb);
3841 }
3842
3843 /* Local Checksum Offload.
3844 * Compute outer checksum based on the assumption that the
3845 * inner checksum will be offloaded later.
3846 * See Documentation/networking/checksum-offloads.txt for
3847 * explanation of how this works.
3848 * Fill in outer checksum adjustment (e.g. with sum of outer
3849 * pseudo-header) before calling.
3850 * Also ensure that inner checksum is in linear data area.
3851 */
3852 static inline __wsum lco_csum(struct sk_buff *skb)
3853 {
3854 unsigned char *csum_start = skb_checksum_start(skb);
3855 unsigned char *l4_hdr = skb_transport_header(skb);
3856 __wsum partial;
3857
3858 /* Start with complement of inner checksum adjustment */
3859 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3860 skb->csum_offset));
3861
3862 /* Add in checksum of our headers (incl. outer checksum
3863 * adjustment filled in by caller) and return result.
3864 */
3865 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3866 }
3867
3868 #endif /* __KERNEL__ */
3869 #endif /* _LINUX_SKBUFF_H */
This page took 0.120137 seconds and 5 git commands to generate.