net: Remove prefetches from SKB list handlers.
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/prefetch.h>
32 #include <linux/hrtimer.h>
33
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49 /* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * COMPLETE: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use COMPLETE,
64 * not UNNECESSARY.
65 *
66 * PARTIAL: identical to the case for output below. This may occur
67 * on a packet received directly from another Linux OS, e.g.,
68 * a virtualised Linux kernel on the same host. The packet can
69 * be treated in the same way as UNNECESSARY except that on
70 * output (i.e., forwarding) the checksum must be filled in
71 * by the OS or the hardware.
72 *
73 * B. Checksumming on output.
74 *
75 * NONE: skb is checksummed by protocol or csum is not required.
76 *
77 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
78 * from skb->csum_start to the end and to record the checksum
79 * at skb->csum_start + skb->csum_offset.
80 *
81 * Device must show its capabilities in dev->features, set
82 * at device setup time.
83 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
84 * everything.
85 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
86 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
87 * TCP/UDP over IPv4. Sigh. Vendors like this
88 * way by an unknown reason. Though, see comment above
89 * about CHECKSUM_UNNECESSARY. 8)
90 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91 *
92 * Any questions? No questions, good. --ANK
93 */
94
95 struct net_device;
96 struct scatterlist;
97 struct pipe_inode_info;
98
99 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
100 struct nf_conntrack {
101 atomic_t use;
102 };
103 #endif
104
105 #ifdef CONFIG_BRIDGE_NETFILTER
106 struct nf_bridge_info {
107 atomic_t use;
108 struct net_device *physindev;
109 struct net_device *physoutdev;
110 unsigned int mask;
111 unsigned long data[32 / sizeof(unsigned long)];
112 };
113 #endif
114
115 struct sk_buff_head {
116 /* These two members must be first. */
117 struct sk_buff *next;
118 struct sk_buff *prev;
119
120 __u32 qlen;
121 spinlock_t lock;
122 };
123
124 struct sk_buff;
125
126 /* To allow 64K frame to be packed as single skb without frag_list. Since
127 * GRO uses frags we allocate at least 16 regardless of page size.
128 */
129 #if (65536/PAGE_SIZE + 2) < 16
130 #define MAX_SKB_FRAGS 16UL
131 #else
132 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
133 #endif
134
135 typedef struct skb_frag_struct skb_frag_t;
136
137 struct skb_frag_struct {
138 struct page *page;
139 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
140 __u32 page_offset;
141 __u32 size;
142 #else
143 __u16 page_offset;
144 __u16 size;
145 #endif
146 };
147
148 #define HAVE_HW_TIME_STAMP
149
150 /**
151 * struct skb_shared_hwtstamps - hardware time stamps
152 * @hwtstamp: hardware time stamp transformed into duration
153 * since arbitrary point in time
154 * @syststamp: hwtstamp transformed to system time base
155 *
156 * Software time stamps generated by ktime_get_real() are stored in
157 * skb->tstamp. The relation between the different kinds of time
158 * stamps is as follows:
159 *
160 * syststamp and tstamp can be compared against each other in
161 * arbitrary combinations. The accuracy of a
162 * syststamp/tstamp/"syststamp from other device" comparison is
163 * limited by the accuracy of the transformation into system time
164 * base. This depends on the device driver and its underlying
165 * hardware.
166 *
167 * hwtstamps can only be compared against other hwtstamps from
168 * the same device.
169 *
170 * This structure is attached to packets as part of the
171 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
172 */
173 struct skb_shared_hwtstamps {
174 ktime_t hwtstamp;
175 ktime_t syststamp;
176 };
177
178 /* Definitions for tx_flags in struct skb_shared_info */
179 enum {
180 /* generate hardware time stamp */
181 SKBTX_HW_TSTAMP = 1 << 0,
182
183 /* generate software time stamp */
184 SKBTX_SW_TSTAMP = 1 << 1,
185
186 /* device driver is going to provide hardware time stamp */
187 SKBTX_IN_PROGRESS = 1 << 2,
188
189 /* ensure the originating sk reference is available on driver level */
190 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
191 };
192
193 /* This data is invariant across clones and lives at
194 * the end of the header data, ie. at skb->end.
195 */
196 struct skb_shared_info {
197 unsigned short nr_frags;
198 unsigned short gso_size;
199 /* Warning: this field is not always filled in (UFO)! */
200 unsigned short gso_segs;
201 unsigned short gso_type;
202 __be32 ip6_frag_id;
203 __u8 tx_flags;
204 struct sk_buff *frag_list;
205 struct skb_shared_hwtstamps hwtstamps;
206
207 /*
208 * Warning : all fields before dataref are cleared in __alloc_skb()
209 */
210 atomic_t dataref;
211
212 /* Intermediate layers must ensure that destructor_arg
213 * remains valid until skb destructor */
214 void * destructor_arg;
215 /* must be last field, see pskb_expand_head() */
216 skb_frag_t frags[MAX_SKB_FRAGS];
217 };
218
219 /* We divide dataref into two halves. The higher 16 bits hold references
220 * to the payload part of skb->data. The lower 16 bits hold references to
221 * the entire skb->data. A clone of a headerless skb holds the length of
222 * the header in skb->hdr_len.
223 *
224 * All users must obey the rule that the skb->data reference count must be
225 * greater than or equal to the payload reference count.
226 *
227 * Holding a reference to the payload part means that the user does not
228 * care about modifications to the header part of skb->data.
229 */
230 #define SKB_DATAREF_SHIFT 16
231 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
232
233
234 enum {
235 SKB_FCLONE_UNAVAILABLE,
236 SKB_FCLONE_ORIG,
237 SKB_FCLONE_CLONE,
238 };
239
240 enum {
241 SKB_GSO_TCPV4 = 1 << 0,
242 SKB_GSO_UDP = 1 << 1,
243
244 /* This indicates the skb is from an untrusted source. */
245 SKB_GSO_DODGY = 1 << 2,
246
247 /* This indicates the tcp segment has CWR set. */
248 SKB_GSO_TCP_ECN = 1 << 3,
249
250 SKB_GSO_TCPV6 = 1 << 4,
251
252 SKB_GSO_FCOE = 1 << 5,
253 };
254
255 #if BITS_PER_LONG > 32
256 #define NET_SKBUFF_DATA_USES_OFFSET 1
257 #endif
258
259 #ifdef NET_SKBUFF_DATA_USES_OFFSET
260 typedef unsigned int sk_buff_data_t;
261 #else
262 typedef unsigned char *sk_buff_data_t;
263 #endif
264
265 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
266 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
267 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
268 #endif
269
270 /**
271 * struct sk_buff - socket buffer
272 * @next: Next buffer in list
273 * @prev: Previous buffer in list
274 * @sk: Socket we are owned by
275 * @tstamp: Time we arrived
276 * @dev: Device we arrived on/are leaving by
277 * @transport_header: Transport layer header
278 * @network_header: Network layer header
279 * @mac_header: Link layer header
280 * @_skb_refdst: destination entry (with norefcount bit)
281 * @sp: the security path, used for xfrm
282 * @cb: Control buffer. Free for use by every layer. Put private vars here
283 * @len: Length of actual data
284 * @data_len: Data length
285 * @mac_len: Length of link layer header
286 * @hdr_len: writable header length of cloned skb
287 * @csum: Checksum (must include start/offset pair)
288 * @csum_start: Offset from skb->head where checksumming should start
289 * @csum_offset: Offset from csum_start where checksum should be stored
290 * @local_df: allow local fragmentation
291 * @cloned: Head may be cloned (check refcnt to be sure)
292 * @nohdr: Payload reference only, must not modify header
293 * @pkt_type: Packet class
294 * @fclone: skbuff clone status
295 * @ip_summed: Driver fed us an IP checksum
296 * @priority: Packet queueing priority
297 * @users: User count - see {datagram,tcp}.c
298 * @protocol: Packet protocol from driver
299 * @truesize: Buffer size
300 * @head: Head of buffer
301 * @data: Data head pointer
302 * @tail: Tail pointer
303 * @end: End pointer
304 * @destructor: Destruct function
305 * @mark: Generic packet mark
306 * @nfct: Associated connection, if any
307 * @ipvs_property: skbuff is owned by ipvs
308 * @peeked: this packet has been seen already, so stats have been
309 * done for it, don't do them again
310 * @nf_trace: netfilter packet trace flag
311 * @nfctinfo: Relationship of this skb to the connection
312 * @nfct_reasm: netfilter conntrack re-assembly pointer
313 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
314 * @skb_iif: ifindex of device we arrived on
315 * @rxhash: the packet hash computed on receive
316 * @queue_mapping: Queue mapping for multiqueue devices
317 * @tc_index: Traffic control index
318 * @tc_verd: traffic control verdict
319 * @ndisc_nodetype: router type (from link layer)
320 * @dma_cookie: a cookie to one of several possible DMA operations
321 * done by skb DMA functions
322 * @secmark: security marking
323 * @vlan_tci: vlan tag control information
324 */
325
326 struct sk_buff {
327 /* These two members must be first. */
328 struct sk_buff *next;
329 struct sk_buff *prev;
330
331 ktime_t tstamp;
332
333 struct sock *sk;
334 struct net_device *dev;
335
336 /*
337 * This is the control buffer. It is free to use for every
338 * layer. Please put your private variables there. If you
339 * want to keep them across layers you have to do a skb_clone()
340 * first. This is owned by whoever has the skb queued ATM.
341 */
342 char cb[48] __aligned(8);
343
344 unsigned long _skb_refdst;
345 #ifdef CONFIG_XFRM
346 struct sec_path *sp;
347 #endif
348 unsigned int len,
349 data_len;
350 __u16 mac_len,
351 hdr_len;
352 union {
353 __wsum csum;
354 struct {
355 __u16 csum_start;
356 __u16 csum_offset;
357 };
358 };
359 __u32 priority;
360 kmemcheck_bitfield_begin(flags1);
361 __u8 local_df:1,
362 cloned:1,
363 ip_summed:2,
364 nohdr:1,
365 nfctinfo:3;
366 __u8 pkt_type:3,
367 fclone:2,
368 ipvs_property:1,
369 peeked:1,
370 nf_trace:1;
371 kmemcheck_bitfield_end(flags1);
372 __be16 protocol;
373
374 void (*destructor)(struct sk_buff *skb);
375 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
376 struct nf_conntrack *nfct;
377 #endif
378 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
379 struct sk_buff *nfct_reasm;
380 #endif
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 struct nf_bridge_info *nf_bridge;
383 #endif
384
385 int skb_iif;
386 #ifdef CONFIG_NET_SCHED
387 __u16 tc_index; /* traffic control index */
388 #ifdef CONFIG_NET_CLS_ACT
389 __u16 tc_verd; /* traffic control verdict */
390 #endif
391 #endif
392
393 __u32 rxhash;
394
395 __u16 queue_mapping;
396 kmemcheck_bitfield_begin(flags2);
397 #ifdef CONFIG_IPV6_NDISC_NODETYPE
398 __u8 ndisc_nodetype:2;
399 #endif
400 __u8 ooo_okay:1;
401 kmemcheck_bitfield_end(flags2);
402
403 /* 0/13 bit hole */
404
405 #ifdef CONFIG_NET_DMA
406 dma_cookie_t dma_cookie;
407 #endif
408 #ifdef CONFIG_NETWORK_SECMARK
409 __u32 secmark;
410 #endif
411 union {
412 __u32 mark;
413 __u32 dropcount;
414 };
415
416 __u16 vlan_tci;
417
418 sk_buff_data_t transport_header;
419 sk_buff_data_t network_header;
420 sk_buff_data_t mac_header;
421 /* These elements must be at the end, see alloc_skb() for details. */
422 sk_buff_data_t tail;
423 sk_buff_data_t end;
424 unsigned char *head,
425 *data;
426 unsigned int truesize;
427 atomic_t users;
428 };
429
430 #ifdef __KERNEL__
431 /*
432 * Handling routines are only of interest to the kernel
433 */
434 #include <linux/slab.h>
435
436 #include <asm/system.h>
437
438 /*
439 * skb might have a dst pointer attached, refcounted or not.
440 * _skb_refdst low order bit is set if refcount was _not_ taken
441 */
442 #define SKB_DST_NOREF 1UL
443 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
444
445 /**
446 * skb_dst - returns skb dst_entry
447 * @skb: buffer
448 *
449 * Returns skb dst_entry, regardless of reference taken or not.
450 */
451 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
452 {
453 /* If refdst was not refcounted, check we still are in a
454 * rcu_read_lock section
455 */
456 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
457 !rcu_read_lock_held() &&
458 !rcu_read_lock_bh_held());
459 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
460 }
461
462 /**
463 * skb_dst_set - sets skb dst
464 * @skb: buffer
465 * @dst: dst entry
466 *
467 * Sets skb dst, assuming a reference was taken on dst and should
468 * be released by skb_dst_drop()
469 */
470 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
471 {
472 skb->_skb_refdst = (unsigned long)dst;
473 }
474
475 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
476
477 /**
478 * skb_dst_is_noref - Test if skb dst isn't refcounted
479 * @skb: buffer
480 */
481 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
482 {
483 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
484 }
485
486 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
487 {
488 return (struct rtable *)skb_dst(skb);
489 }
490
491 extern void kfree_skb(struct sk_buff *skb);
492 extern void consume_skb(struct sk_buff *skb);
493 extern void __kfree_skb(struct sk_buff *skb);
494 extern struct sk_buff *__alloc_skb(unsigned int size,
495 gfp_t priority, int fclone, int node);
496 static inline struct sk_buff *alloc_skb(unsigned int size,
497 gfp_t priority)
498 {
499 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
500 }
501
502 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
503 gfp_t priority)
504 {
505 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
506 }
507
508 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
509
510 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
511 extern struct sk_buff *skb_clone(struct sk_buff *skb,
512 gfp_t priority);
513 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
514 gfp_t priority);
515 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
516 gfp_t gfp_mask);
517 extern int pskb_expand_head(struct sk_buff *skb,
518 int nhead, int ntail,
519 gfp_t gfp_mask);
520 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
521 unsigned int headroom);
522 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
523 int newheadroom, int newtailroom,
524 gfp_t priority);
525 extern int skb_to_sgvec(struct sk_buff *skb,
526 struct scatterlist *sg, int offset,
527 int len);
528 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
529 struct sk_buff **trailer);
530 extern int skb_pad(struct sk_buff *skb, int pad);
531 #define dev_kfree_skb(a) consume_skb(a)
532
533 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
534 int getfrag(void *from, char *to, int offset,
535 int len,int odd, struct sk_buff *skb),
536 void *from, int length);
537
538 struct skb_seq_state {
539 __u32 lower_offset;
540 __u32 upper_offset;
541 __u32 frag_idx;
542 __u32 stepped_offset;
543 struct sk_buff *root_skb;
544 struct sk_buff *cur_skb;
545 __u8 *frag_data;
546 };
547
548 extern void skb_prepare_seq_read(struct sk_buff *skb,
549 unsigned int from, unsigned int to,
550 struct skb_seq_state *st);
551 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
552 struct skb_seq_state *st);
553 extern void skb_abort_seq_read(struct skb_seq_state *st);
554
555 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
556 unsigned int to, struct ts_config *config,
557 struct ts_state *state);
558
559 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
560 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
561 {
562 if (!skb->rxhash)
563 skb->rxhash = __skb_get_rxhash(skb);
564
565 return skb->rxhash;
566 }
567
568 #ifdef NET_SKBUFF_DATA_USES_OFFSET
569 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
570 {
571 return skb->head + skb->end;
572 }
573 #else
574 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
575 {
576 return skb->end;
577 }
578 #endif
579
580 /* Internal */
581 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
582
583 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
584 {
585 return &skb_shinfo(skb)->hwtstamps;
586 }
587
588 /**
589 * skb_queue_empty - check if a queue is empty
590 * @list: queue head
591 *
592 * Returns true if the queue is empty, false otherwise.
593 */
594 static inline int skb_queue_empty(const struct sk_buff_head *list)
595 {
596 return list->next == (struct sk_buff *)list;
597 }
598
599 /**
600 * skb_queue_is_last - check if skb is the last entry in the queue
601 * @list: queue head
602 * @skb: buffer
603 *
604 * Returns true if @skb is the last buffer on the list.
605 */
606 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
607 const struct sk_buff *skb)
608 {
609 return skb->next == (struct sk_buff *)list;
610 }
611
612 /**
613 * skb_queue_is_first - check if skb is the first entry in the queue
614 * @list: queue head
615 * @skb: buffer
616 *
617 * Returns true if @skb is the first buffer on the list.
618 */
619 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
620 const struct sk_buff *skb)
621 {
622 return skb->prev == (struct sk_buff *)list;
623 }
624
625 /**
626 * skb_queue_next - return the next packet in the queue
627 * @list: queue head
628 * @skb: current buffer
629 *
630 * Return the next packet in @list after @skb. It is only valid to
631 * call this if skb_queue_is_last() evaluates to false.
632 */
633 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
634 const struct sk_buff *skb)
635 {
636 /* This BUG_ON may seem severe, but if we just return then we
637 * are going to dereference garbage.
638 */
639 BUG_ON(skb_queue_is_last(list, skb));
640 return skb->next;
641 }
642
643 /**
644 * skb_queue_prev - return the prev packet in the queue
645 * @list: queue head
646 * @skb: current buffer
647 *
648 * Return the prev packet in @list before @skb. It is only valid to
649 * call this if skb_queue_is_first() evaluates to false.
650 */
651 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
652 const struct sk_buff *skb)
653 {
654 /* This BUG_ON may seem severe, but if we just return then we
655 * are going to dereference garbage.
656 */
657 BUG_ON(skb_queue_is_first(list, skb));
658 return skb->prev;
659 }
660
661 /**
662 * skb_get - reference buffer
663 * @skb: buffer to reference
664 *
665 * Makes another reference to a socket buffer and returns a pointer
666 * to the buffer.
667 */
668 static inline struct sk_buff *skb_get(struct sk_buff *skb)
669 {
670 atomic_inc(&skb->users);
671 return skb;
672 }
673
674 /*
675 * If users == 1, we are the only owner and are can avoid redundant
676 * atomic change.
677 */
678
679 /**
680 * skb_cloned - is the buffer a clone
681 * @skb: buffer to check
682 *
683 * Returns true if the buffer was generated with skb_clone() and is
684 * one of multiple shared copies of the buffer. Cloned buffers are
685 * shared data so must not be written to under normal circumstances.
686 */
687 static inline int skb_cloned(const struct sk_buff *skb)
688 {
689 return skb->cloned &&
690 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
691 }
692
693 /**
694 * skb_header_cloned - is the header a clone
695 * @skb: buffer to check
696 *
697 * Returns true if modifying the header part of the buffer requires
698 * the data to be copied.
699 */
700 static inline int skb_header_cloned(const struct sk_buff *skb)
701 {
702 int dataref;
703
704 if (!skb->cloned)
705 return 0;
706
707 dataref = atomic_read(&skb_shinfo(skb)->dataref);
708 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
709 return dataref != 1;
710 }
711
712 /**
713 * skb_header_release - release reference to header
714 * @skb: buffer to operate on
715 *
716 * Drop a reference to the header part of the buffer. This is done
717 * by acquiring a payload reference. You must not read from the header
718 * part of skb->data after this.
719 */
720 static inline void skb_header_release(struct sk_buff *skb)
721 {
722 BUG_ON(skb->nohdr);
723 skb->nohdr = 1;
724 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
725 }
726
727 /**
728 * skb_shared - is the buffer shared
729 * @skb: buffer to check
730 *
731 * Returns true if more than one person has a reference to this
732 * buffer.
733 */
734 static inline int skb_shared(const struct sk_buff *skb)
735 {
736 return atomic_read(&skb->users) != 1;
737 }
738
739 /**
740 * skb_share_check - check if buffer is shared and if so clone it
741 * @skb: buffer to check
742 * @pri: priority for memory allocation
743 *
744 * If the buffer is shared the buffer is cloned and the old copy
745 * drops a reference. A new clone with a single reference is returned.
746 * If the buffer is not shared the original buffer is returned. When
747 * being called from interrupt status or with spinlocks held pri must
748 * be GFP_ATOMIC.
749 *
750 * NULL is returned on a memory allocation failure.
751 */
752 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
753 gfp_t pri)
754 {
755 might_sleep_if(pri & __GFP_WAIT);
756 if (skb_shared(skb)) {
757 struct sk_buff *nskb = skb_clone(skb, pri);
758 kfree_skb(skb);
759 skb = nskb;
760 }
761 return skb;
762 }
763
764 /*
765 * Copy shared buffers into a new sk_buff. We effectively do COW on
766 * packets to handle cases where we have a local reader and forward
767 * and a couple of other messy ones. The normal one is tcpdumping
768 * a packet thats being forwarded.
769 */
770
771 /**
772 * skb_unshare - make a copy of a shared buffer
773 * @skb: buffer to check
774 * @pri: priority for memory allocation
775 *
776 * If the socket buffer is a clone then this function creates a new
777 * copy of the data, drops a reference count on the old copy and returns
778 * the new copy with the reference count at 1. If the buffer is not a clone
779 * the original buffer is returned. When called with a spinlock held or
780 * from interrupt state @pri must be %GFP_ATOMIC
781 *
782 * %NULL is returned on a memory allocation failure.
783 */
784 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
785 gfp_t pri)
786 {
787 might_sleep_if(pri & __GFP_WAIT);
788 if (skb_cloned(skb)) {
789 struct sk_buff *nskb = skb_copy(skb, pri);
790 kfree_skb(skb); /* Free our shared copy */
791 skb = nskb;
792 }
793 return skb;
794 }
795
796 /**
797 * skb_peek - peek at the head of an &sk_buff_head
798 * @list_: list to peek at
799 *
800 * Peek an &sk_buff. Unlike most other operations you _MUST_
801 * be careful with this one. A peek leaves the buffer on the
802 * list and someone else may run off with it. You must hold
803 * the appropriate locks or have a private queue to do this.
804 *
805 * Returns %NULL for an empty list or a pointer to the head element.
806 * The reference count is not incremented and the reference is therefore
807 * volatile. Use with caution.
808 */
809 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
810 {
811 struct sk_buff *list = ((struct sk_buff *)list_)->next;
812 if (list == (struct sk_buff *)list_)
813 list = NULL;
814 return list;
815 }
816
817 /**
818 * skb_peek_tail - peek at the tail of an &sk_buff_head
819 * @list_: list to peek at
820 *
821 * Peek an &sk_buff. Unlike most other operations you _MUST_
822 * be careful with this one. A peek leaves the buffer on the
823 * list and someone else may run off with it. You must hold
824 * the appropriate locks or have a private queue to do this.
825 *
826 * Returns %NULL for an empty list or a pointer to the tail element.
827 * The reference count is not incremented and the reference is therefore
828 * volatile. Use with caution.
829 */
830 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
831 {
832 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
833 if (list == (struct sk_buff *)list_)
834 list = NULL;
835 return list;
836 }
837
838 /**
839 * skb_queue_len - get queue length
840 * @list_: list to measure
841 *
842 * Return the length of an &sk_buff queue.
843 */
844 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
845 {
846 return list_->qlen;
847 }
848
849 /**
850 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
851 * @list: queue to initialize
852 *
853 * This initializes only the list and queue length aspects of
854 * an sk_buff_head object. This allows to initialize the list
855 * aspects of an sk_buff_head without reinitializing things like
856 * the spinlock. It can also be used for on-stack sk_buff_head
857 * objects where the spinlock is known to not be used.
858 */
859 static inline void __skb_queue_head_init(struct sk_buff_head *list)
860 {
861 list->prev = list->next = (struct sk_buff *)list;
862 list->qlen = 0;
863 }
864
865 /*
866 * This function creates a split out lock class for each invocation;
867 * this is needed for now since a whole lot of users of the skb-queue
868 * infrastructure in drivers have different locking usage (in hardirq)
869 * than the networking core (in softirq only). In the long run either the
870 * network layer or drivers should need annotation to consolidate the
871 * main types of usage into 3 classes.
872 */
873 static inline void skb_queue_head_init(struct sk_buff_head *list)
874 {
875 spin_lock_init(&list->lock);
876 __skb_queue_head_init(list);
877 }
878
879 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
880 struct lock_class_key *class)
881 {
882 skb_queue_head_init(list);
883 lockdep_set_class(&list->lock, class);
884 }
885
886 /*
887 * Insert an sk_buff on a list.
888 *
889 * The "__skb_xxxx()" functions are the non-atomic ones that
890 * can only be called with interrupts disabled.
891 */
892 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
893 static inline void __skb_insert(struct sk_buff *newsk,
894 struct sk_buff *prev, struct sk_buff *next,
895 struct sk_buff_head *list)
896 {
897 newsk->next = next;
898 newsk->prev = prev;
899 next->prev = prev->next = newsk;
900 list->qlen++;
901 }
902
903 static inline void __skb_queue_splice(const struct sk_buff_head *list,
904 struct sk_buff *prev,
905 struct sk_buff *next)
906 {
907 struct sk_buff *first = list->next;
908 struct sk_buff *last = list->prev;
909
910 first->prev = prev;
911 prev->next = first;
912
913 last->next = next;
914 next->prev = last;
915 }
916
917 /**
918 * skb_queue_splice - join two skb lists, this is designed for stacks
919 * @list: the new list to add
920 * @head: the place to add it in the first list
921 */
922 static inline void skb_queue_splice(const struct sk_buff_head *list,
923 struct sk_buff_head *head)
924 {
925 if (!skb_queue_empty(list)) {
926 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
927 head->qlen += list->qlen;
928 }
929 }
930
931 /**
932 * skb_queue_splice - join two skb lists and reinitialise the emptied list
933 * @list: the new list to add
934 * @head: the place to add it in the first list
935 *
936 * The list at @list is reinitialised
937 */
938 static inline void skb_queue_splice_init(struct sk_buff_head *list,
939 struct sk_buff_head *head)
940 {
941 if (!skb_queue_empty(list)) {
942 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
943 head->qlen += list->qlen;
944 __skb_queue_head_init(list);
945 }
946 }
947
948 /**
949 * skb_queue_splice_tail - join two skb lists, each list being a queue
950 * @list: the new list to add
951 * @head: the place to add it in the first list
952 */
953 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
954 struct sk_buff_head *head)
955 {
956 if (!skb_queue_empty(list)) {
957 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
958 head->qlen += list->qlen;
959 }
960 }
961
962 /**
963 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
964 * @list: the new list to add
965 * @head: the place to add it in the first list
966 *
967 * Each of the lists is a queue.
968 * The list at @list is reinitialised
969 */
970 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
971 struct sk_buff_head *head)
972 {
973 if (!skb_queue_empty(list)) {
974 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
975 head->qlen += list->qlen;
976 __skb_queue_head_init(list);
977 }
978 }
979
980 /**
981 * __skb_queue_after - queue a buffer at the list head
982 * @list: list to use
983 * @prev: place after this buffer
984 * @newsk: buffer to queue
985 *
986 * Queue a buffer int the middle of a list. This function takes no locks
987 * and you must therefore hold required locks before calling it.
988 *
989 * A buffer cannot be placed on two lists at the same time.
990 */
991 static inline void __skb_queue_after(struct sk_buff_head *list,
992 struct sk_buff *prev,
993 struct sk_buff *newsk)
994 {
995 __skb_insert(newsk, prev, prev->next, list);
996 }
997
998 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
999 struct sk_buff_head *list);
1000
1001 static inline void __skb_queue_before(struct sk_buff_head *list,
1002 struct sk_buff *next,
1003 struct sk_buff *newsk)
1004 {
1005 __skb_insert(newsk, next->prev, next, list);
1006 }
1007
1008 /**
1009 * __skb_queue_head - queue a buffer at the list head
1010 * @list: list to use
1011 * @newsk: buffer to queue
1012 *
1013 * Queue a buffer at the start of a list. This function takes no locks
1014 * and you must therefore hold required locks before calling it.
1015 *
1016 * A buffer cannot be placed on two lists at the same time.
1017 */
1018 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1019 static inline void __skb_queue_head(struct sk_buff_head *list,
1020 struct sk_buff *newsk)
1021 {
1022 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1023 }
1024
1025 /**
1026 * __skb_queue_tail - queue a buffer at the list tail
1027 * @list: list to use
1028 * @newsk: buffer to queue
1029 *
1030 * Queue a buffer at the end of a list. This function takes no locks
1031 * and you must therefore hold required locks before calling it.
1032 *
1033 * A buffer cannot be placed on two lists at the same time.
1034 */
1035 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1036 static inline void __skb_queue_tail(struct sk_buff_head *list,
1037 struct sk_buff *newsk)
1038 {
1039 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1040 }
1041
1042 /*
1043 * remove sk_buff from list. _Must_ be called atomically, and with
1044 * the list known..
1045 */
1046 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1047 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1048 {
1049 struct sk_buff *next, *prev;
1050
1051 list->qlen--;
1052 next = skb->next;
1053 prev = skb->prev;
1054 skb->next = skb->prev = NULL;
1055 next->prev = prev;
1056 prev->next = next;
1057 }
1058
1059 /**
1060 * __skb_dequeue - remove from the head of the queue
1061 * @list: list to dequeue from
1062 *
1063 * Remove the head of the list. This function does not take any locks
1064 * so must be used with appropriate locks held only. The head item is
1065 * returned or %NULL if the list is empty.
1066 */
1067 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1068 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1069 {
1070 struct sk_buff *skb = skb_peek(list);
1071 if (skb)
1072 __skb_unlink(skb, list);
1073 return skb;
1074 }
1075
1076 /**
1077 * __skb_dequeue_tail - remove from the tail of the queue
1078 * @list: list to dequeue from
1079 *
1080 * Remove the tail of the list. This function does not take any locks
1081 * so must be used with appropriate locks held only. The tail item is
1082 * returned or %NULL if the list is empty.
1083 */
1084 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1085 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1086 {
1087 struct sk_buff *skb = skb_peek_tail(list);
1088 if (skb)
1089 __skb_unlink(skb, list);
1090 return skb;
1091 }
1092
1093
1094 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1095 {
1096 return skb->data_len;
1097 }
1098
1099 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1100 {
1101 return skb->len - skb->data_len;
1102 }
1103
1104 static inline int skb_pagelen(const struct sk_buff *skb)
1105 {
1106 int i, len = 0;
1107
1108 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1109 len += skb_shinfo(skb)->frags[i].size;
1110 return len + skb_headlen(skb);
1111 }
1112
1113 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1114 struct page *page, int off, int size)
1115 {
1116 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117
1118 frag->page = page;
1119 frag->page_offset = off;
1120 frag->size = size;
1121 skb_shinfo(skb)->nr_frags = i + 1;
1122 }
1123
1124 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1125 int off, int size);
1126
1127 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1128 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1129 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1130
1131 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1132 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1133 {
1134 return skb->head + skb->tail;
1135 }
1136
1137 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1138 {
1139 skb->tail = skb->data - skb->head;
1140 }
1141
1142 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1143 {
1144 skb_reset_tail_pointer(skb);
1145 skb->tail += offset;
1146 }
1147 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1148 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1149 {
1150 return skb->tail;
1151 }
1152
1153 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1154 {
1155 skb->tail = skb->data;
1156 }
1157
1158 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1159 {
1160 skb->tail = skb->data + offset;
1161 }
1162
1163 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1164
1165 /*
1166 * Add data to an sk_buff
1167 */
1168 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1169 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1170 {
1171 unsigned char *tmp = skb_tail_pointer(skb);
1172 SKB_LINEAR_ASSERT(skb);
1173 skb->tail += len;
1174 skb->len += len;
1175 return tmp;
1176 }
1177
1178 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1179 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1180 {
1181 skb->data -= len;
1182 skb->len += len;
1183 return skb->data;
1184 }
1185
1186 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1187 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1188 {
1189 skb->len -= len;
1190 BUG_ON(skb->len < skb->data_len);
1191 return skb->data += len;
1192 }
1193
1194 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1195 {
1196 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1197 }
1198
1199 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1200
1201 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1202 {
1203 if (len > skb_headlen(skb) &&
1204 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1205 return NULL;
1206 skb->len -= len;
1207 return skb->data += len;
1208 }
1209
1210 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1211 {
1212 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1213 }
1214
1215 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1216 {
1217 if (likely(len <= skb_headlen(skb)))
1218 return 1;
1219 if (unlikely(len > skb->len))
1220 return 0;
1221 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1222 }
1223
1224 /**
1225 * skb_headroom - bytes at buffer head
1226 * @skb: buffer to check
1227 *
1228 * Return the number of bytes of free space at the head of an &sk_buff.
1229 */
1230 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1231 {
1232 return skb->data - skb->head;
1233 }
1234
1235 /**
1236 * skb_tailroom - bytes at buffer end
1237 * @skb: buffer to check
1238 *
1239 * Return the number of bytes of free space at the tail of an sk_buff
1240 */
1241 static inline int skb_tailroom(const struct sk_buff *skb)
1242 {
1243 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1244 }
1245
1246 /**
1247 * skb_reserve - adjust headroom
1248 * @skb: buffer to alter
1249 * @len: bytes to move
1250 *
1251 * Increase the headroom of an empty &sk_buff by reducing the tail
1252 * room. This is only allowed for an empty buffer.
1253 */
1254 static inline void skb_reserve(struct sk_buff *skb, int len)
1255 {
1256 skb->data += len;
1257 skb->tail += len;
1258 }
1259
1260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1261 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1262 {
1263 return skb->head + skb->transport_header;
1264 }
1265
1266 static inline void skb_reset_transport_header(struct sk_buff *skb)
1267 {
1268 skb->transport_header = skb->data - skb->head;
1269 }
1270
1271 static inline void skb_set_transport_header(struct sk_buff *skb,
1272 const int offset)
1273 {
1274 skb_reset_transport_header(skb);
1275 skb->transport_header += offset;
1276 }
1277
1278 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1279 {
1280 return skb->head + skb->network_header;
1281 }
1282
1283 static inline void skb_reset_network_header(struct sk_buff *skb)
1284 {
1285 skb->network_header = skb->data - skb->head;
1286 }
1287
1288 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1289 {
1290 skb_reset_network_header(skb);
1291 skb->network_header += offset;
1292 }
1293
1294 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1295 {
1296 return skb->head + skb->mac_header;
1297 }
1298
1299 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1300 {
1301 return skb->mac_header != ~0U;
1302 }
1303
1304 static inline void skb_reset_mac_header(struct sk_buff *skb)
1305 {
1306 skb->mac_header = skb->data - skb->head;
1307 }
1308
1309 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1310 {
1311 skb_reset_mac_header(skb);
1312 skb->mac_header += offset;
1313 }
1314
1315 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1316
1317 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1318 {
1319 return skb->transport_header;
1320 }
1321
1322 static inline void skb_reset_transport_header(struct sk_buff *skb)
1323 {
1324 skb->transport_header = skb->data;
1325 }
1326
1327 static inline void skb_set_transport_header(struct sk_buff *skb,
1328 const int offset)
1329 {
1330 skb->transport_header = skb->data + offset;
1331 }
1332
1333 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1334 {
1335 return skb->network_header;
1336 }
1337
1338 static inline void skb_reset_network_header(struct sk_buff *skb)
1339 {
1340 skb->network_header = skb->data;
1341 }
1342
1343 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1344 {
1345 skb->network_header = skb->data + offset;
1346 }
1347
1348 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1349 {
1350 return skb->mac_header;
1351 }
1352
1353 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1354 {
1355 return skb->mac_header != NULL;
1356 }
1357
1358 static inline void skb_reset_mac_header(struct sk_buff *skb)
1359 {
1360 skb->mac_header = skb->data;
1361 }
1362
1363 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1364 {
1365 skb->mac_header = skb->data + offset;
1366 }
1367 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1368
1369 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1370 {
1371 return skb->csum_start - skb_headroom(skb);
1372 }
1373
1374 static inline int skb_transport_offset(const struct sk_buff *skb)
1375 {
1376 return skb_transport_header(skb) - skb->data;
1377 }
1378
1379 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1380 {
1381 return skb->transport_header - skb->network_header;
1382 }
1383
1384 static inline int skb_network_offset(const struct sk_buff *skb)
1385 {
1386 return skb_network_header(skb) - skb->data;
1387 }
1388
1389 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1390 {
1391 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1392 }
1393
1394 /*
1395 * CPUs often take a performance hit when accessing unaligned memory
1396 * locations. The actual performance hit varies, it can be small if the
1397 * hardware handles it or large if we have to take an exception and fix it
1398 * in software.
1399 *
1400 * Since an ethernet header is 14 bytes network drivers often end up with
1401 * the IP header at an unaligned offset. The IP header can be aligned by
1402 * shifting the start of the packet by 2 bytes. Drivers should do this
1403 * with:
1404 *
1405 * skb_reserve(skb, NET_IP_ALIGN);
1406 *
1407 * The downside to this alignment of the IP header is that the DMA is now
1408 * unaligned. On some architectures the cost of an unaligned DMA is high
1409 * and this cost outweighs the gains made by aligning the IP header.
1410 *
1411 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1412 * to be overridden.
1413 */
1414 #ifndef NET_IP_ALIGN
1415 #define NET_IP_ALIGN 2
1416 #endif
1417
1418 /*
1419 * The networking layer reserves some headroom in skb data (via
1420 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1421 * the header has to grow. In the default case, if the header has to grow
1422 * 32 bytes or less we avoid the reallocation.
1423 *
1424 * Unfortunately this headroom changes the DMA alignment of the resulting
1425 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1426 * on some architectures. An architecture can override this value,
1427 * perhaps setting it to a cacheline in size (since that will maintain
1428 * cacheline alignment of the DMA). It must be a power of 2.
1429 *
1430 * Various parts of the networking layer expect at least 32 bytes of
1431 * headroom, you should not reduce this.
1432 *
1433 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1434 * to reduce average number of cache lines per packet.
1435 * get_rps_cpus() for example only access one 64 bytes aligned block :
1436 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1437 */
1438 #ifndef NET_SKB_PAD
1439 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1440 #endif
1441
1442 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1443
1444 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1445 {
1446 if (unlikely(skb->data_len)) {
1447 WARN_ON(1);
1448 return;
1449 }
1450 skb->len = len;
1451 skb_set_tail_pointer(skb, len);
1452 }
1453
1454 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1455
1456 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1457 {
1458 if (skb->data_len)
1459 return ___pskb_trim(skb, len);
1460 __skb_trim(skb, len);
1461 return 0;
1462 }
1463
1464 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1465 {
1466 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1467 }
1468
1469 /**
1470 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1471 * @skb: buffer to alter
1472 * @len: new length
1473 *
1474 * This is identical to pskb_trim except that the caller knows that
1475 * the skb is not cloned so we should never get an error due to out-
1476 * of-memory.
1477 */
1478 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1479 {
1480 int err = pskb_trim(skb, len);
1481 BUG_ON(err);
1482 }
1483
1484 /**
1485 * skb_orphan - orphan a buffer
1486 * @skb: buffer to orphan
1487 *
1488 * If a buffer currently has an owner then we call the owner's
1489 * destructor function and make the @skb unowned. The buffer continues
1490 * to exist but is no longer charged to its former owner.
1491 */
1492 static inline void skb_orphan(struct sk_buff *skb)
1493 {
1494 if (skb->destructor)
1495 skb->destructor(skb);
1496 skb->destructor = NULL;
1497 skb->sk = NULL;
1498 }
1499
1500 /**
1501 * __skb_queue_purge - empty a list
1502 * @list: list to empty
1503 *
1504 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1505 * the list and one reference dropped. This function does not take the
1506 * list lock and the caller must hold the relevant locks to use it.
1507 */
1508 extern void skb_queue_purge(struct sk_buff_head *list);
1509 static inline void __skb_queue_purge(struct sk_buff_head *list)
1510 {
1511 struct sk_buff *skb;
1512 while ((skb = __skb_dequeue(list)) != NULL)
1513 kfree_skb(skb);
1514 }
1515
1516 /**
1517 * __dev_alloc_skb - allocate an skbuff for receiving
1518 * @length: length to allocate
1519 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1520 *
1521 * Allocate a new &sk_buff and assign it a usage count of one. The
1522 * buffer has unspecified headroom built in. Users should allocate
1523 * the headroom they think they need without accounting for the
1524 * built in space. The built in space is used for optimisations.
1525 *
1526 * %NULL is returned if there is no free memory.
1527 */
1528 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1529 gfp_t gfp_mask)
1530 {
1531 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1532 if (likely(skb))
1533 skb_reserve(skb, NET_SKB_PAD);
1534 return skb;
1535 }
1536
1537 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1538
1539 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1540 unsigned int length, gfp_t gfp_mask);
1541
1542 /**
1543 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1544 * @dev: network device to receive on
1545 * @length: length to allocate
1546 *
1547 * Allocate a new &sk_buff and assign it a usage count of one. The
1548 * buffer has unspecified headroom built in. Users should allocate
1549 * the headroom they think they need without accounting for the
1550 * built in space. The built in space is used for optimisations.
1551 *
1552 * %NULL is returned if there is no free memory. Although this function
1553 * allocates memory it can be called from an interrupt.
1554 */
1555 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1556 unsigned int length)
1557 {
1558 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1559 }
1560
1561 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1562 unsigned int length)
1563 {
1564 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1565
1566 if (NET_IP_ALIGN && skb)
1567 skb_reserve(skb, NET_IP_ALIGN);
1568 return skb;
1569 }
1570
1571 /**
1572 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1573 * @dev: network device to receive on
1574 * @gfp_mask: alloc_pages_node mask
1575 *
1576 * Allocate a new page. dev currently unused.
1577 *
1578 * %NULL is returned if there is no free memory.
1579 */
1580 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1581 {
1582 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1583 }
1584
1585 /**
1586 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1587 * @dev: network device to receive on
1588 *
1589 * Allocate a new page. dev currently unused.
1590 *
1591 * %NULL is returned if there is no free memory.
1592 */
1593 static inline struct page *netdev_alloc_page(struct net_device *dev)
1594 {
1595 return __netdev_alloc_page(dev, GFP_ATOMIC);
1596 }
1597
1598 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1599 {
1600 __free_page(page);
1601 }
1602
1603 /**
1604 * skb_clone_writable - is the header of a clone writable
1605 * @skb: buffer to check
1606 * @len: length up to which to write
1607 *
1608 * Returns true if modifying the header part of the cloned buffer
1609 * does not requires the data to be copied.
1610 */
1611 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1612 {
1613 return !skb_header_cloned(skb) &&
1614 skb_headroom(skb) + len <= skb->hdr_len;
1615 }
1616
1617 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1618 int cloned)
1619 {
1620 int delta = 0;
1621
1622 if (headroom < NET_SKB_PAD)
1623 headroom = NET_SKB_PAD;
1624 if (headroom > skb_headroom(skb))
1625 delta = headroom - skb_headroom(skb);
1626
1627 if (delta || cloned)
1628 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1629 GFP_ATOMIC);
1630 return 0;
1631 }
1632
1633 /**
1634 * skb_cow - copy header of skb when it is required
1635 * @skb: buffer to cow
1636 * @headroom: needed headroom
1637 *
1638 * If the skb passed lacks sufficient headroom or its data part
1639 * is shared, data is reallocated. If reallocation fails, an error
1640 * is returned and original skb is not changed.
1641 *
1642 * The result is skb with writable area skb->head...skb->tail
1643 * and at least @headroom of space at head.
1644 */
1645 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1646 {
1647 return __skb_cow(skb, headroom, skb_cloned(skb));
1648 }
1649
1650 /**
1651 * skb_cow_head - skb_cow but only making the head writable
1652 * @skb: buffer to cow
1653 * @headroom: needed headroom
1654 *
1655 * This function is identical to skb_cow except that we replace the
1656 * skb_cloned check by skb_header_cloned. It should be used when
1657 * you only need to push on some header and do not need to modify
1658 * the data.
1659 */
1660 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1661 {
1662 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1663 }
1664
1665 /**
1666 * skb_padto - pad an skbuff up to a minimal size
1667 * @skb: buffer to pad
1668 * @len: minimal length
1669 *
1670 * Pads up a buffer to ensure the trailing bytes exist and are
1671 * blanked. If the buffer already contains sufficient data it
1672 * is untouched. Otherwise it is extended. Returns zero on
1673 * success. The skb is freed on error.
1674 */
1675
1676 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1677 {
1678 unsigned int size = skb->len;
1679 if (likely(size >= len))
1680 return 0;
1681 return skb_pad(skb, len - size);
1682 }
1683
1684 static inline int skb_add_data(struct sk_buff *skb,
1685 char __user *from, int copy)
1686 {
1687 const int off = skb->len;
1688
1689 if (skb->ip_summed == CHECKSUM_NONE) {
1690 int err = 0;
1691 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1692 copy, 0, &err);
1693 if (!err) {
1694 skb->csum = csum_block_add(skb->csum, csum, off);
1695 return 0;
1696 }
1697 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1698 return 0;
1699
1700 __skb_trim(skb, off);
1701 return -EFAULT;
1702 }
1703
1704 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1705 struct page *page, int off)
1706 {
1707 if (i) {
1708 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1709
1710 return page == frag->page &&
1711 off == frag->page_offset + frag->size;
1712 }
1713 return 0;
1714 }
1715
1716 static inline int __skb_linearize(struct sk_buff *skb)
1717 {
1718 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1719 }
1720
1721 /**
1722 * skb_linearize - convert paged skb to linear one
1723 * @skb: buffer to linarize
1724 *
1725 * If there is no free memory -ENOMEM is returned, otherwise zero
1726 * is returned and the old skb data released.
1727 */
1728 static inline int skb_linearize(struct sk_buff *skb)
1729 {
1730 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1731 }
1732
1733 /**
1734 * skb_linearize_cow - make sure skb is linear and writable
1735 * @skb: buffer to process
1736 *
1737 * If there is no free memory -ENOMEM is returned, otherwise zero
1738 * is returned and the old skb data released.
1739 */
1740 static inline int skb_linearize_cow(struct sk_buff *skb)
1741 {
1742 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1743 __skb_linearize(skb) : 0;
1744 }
1745
1746 /**
1747 * skb_postpull_rcsum - update checksum for received skb after pull
1748 * @skb: buffer to update
1749 * @start: start of data before pull
1750 * @len: length of data pulled
1751 *
1752 * After doing a pull on a received packet, you need to call this to
1753 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1754 * CHECKSUM_NONE so that it can be recomputed from scratch.
1755 */
1756
1757 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1758 const void *start, unsigned int len)
1759 {
1760 if (skb->ip_summed == CHECKSUM_COMPLETE)
1761 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1762 }
1763
1764 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1765
1766 /**
1767 * pskb_trim_rcsum - trim received skb and update checksum
1768 * @skb: buffer to trim
1769 * @len: new length
1770 *
1771 * This is exactly the same as pskb_trim except that it ensures the
1772 * checksum of received packets are still valid after the operation.
1773 */
1774
1775 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1776 {
1777 if (likely(len >= skb->len))
1778 return 0;
1779 if (skb->ip_summed == CHECKSUM_COMPLETE)
1780 skb->ip_summed = CHECKSUM_NONE;
1781 return __pskb_trim(skb, len);
1782 }
1783
1784 #define skb_queue_walk(queue, skb) \
1785 for (skb = (queue)->next; \
1786 (skb != (struct sk_buff *)(queue)); \
1787 skb = skb->next)
1788
1789 #define skb_queue_walk_safe(queue, skb, tmp) \
1790 for (skb = (queue)->next, tmp = skb->next; \
1791 skb != (struct sk_buff *)(queue); \
1792 skb = tmp, tmp = skb->next)
1793
1794 #define skb_queue_walk_from(queue, skb) \
1795 for (; (skb != (struct sk_buff *)(queue)); \
1796 skb = skb->next)
1797
1798 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1799 for (tmp = skb->next; \
1800 skb != (struct sk_buff *)(queue); \
1801 skb = tmp, tmp = skb->next)
1802
1803 #define skb_queue_reverse_walk(queue, skb) \
1804 for (skb = (queue)->prev; \
1805 (skb != (struct sk_buff *)(queue)); \
1806 skb = skb->prev)
1807
1808 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
1809 for (skb = (queue)->prev, tmp = skb->prev; \
1810 skb != (struct sk_buff *)(queue); \
1811 skb = tmp, tmp = skb->prev)
1812
1813 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
1814 for (tmp = skb->prev; \
1815 skb != (struct sk_buff *)(queue); \
1816 skb = tmp, tmp = skb->prev)
1817
1818 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1819 {
1820 return skb_shinfo(skb)->frag_list != NULL;
1821 }
1822
1823 static inline void skb_frag_list_init(struct sk_buff *skb)
1824 {
1825 skb_shinfo(skb)->frag_list = NULL;
1826 }
1827
1828 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1829 {
1830 frag->next = skb_shinfo(skb)->frag_list;
1831 skb_shinfo(skb)->frag_list = frag;
1832 }
1833
1834 #define skb_walk_frags(skb, iter) \
1835 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1836
1837 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1838 int *peeked, int *err);
1839 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1840 int noblock, int *err);
1841 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1842 struct poll_table_struct *wait);
1843 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1844 int offset, struct iovec *to,
1845 int size);
1846 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1847 int hlen,
1848 struct iovec *iov);
1849 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1850 int offset,
1851 const struct iovec *from,
1852 int from_offset,
1853 int len);
1854 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1855 int offset,
1856 const struct iovec *to,
1857 int to_offset,
1858 int size);
1859 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1860 extern void skb_free_datagram_locked(struct sock *sk,
1861 struct sk_buff *skb);
1862 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1863 unsigned int flags);
1864 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1865 int len, __wsum csum);
1866 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1867 void *to, int len);
1868 extern int skb_store_bits(struct sk_buff *skb, int offset,
1869 const void *from, int len);
1870 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1871 int offset, u8 *to, int len,
1872 __wsum csum);
1873 extern int skb_splice_bits(struct sk_buff *skb,
1874 unsigned int offset,
1875 struct pipe_inode_info *pipe,
1876 unsigned int len,
1877 unsigned int flags);
1878 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1879 extern void skb_split(struct sk_buff *skb,
1880 struct sk_buff *skb1, const u32 len);
1881 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1882 int shiftlen);
1883
1884 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1885
1886 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1887 int len, void *buffer)
1888 {
1889 int hlen = skb_headlen(skb);
1890
1891 if (hlen - offset >= len)
1892 return skb->data + offset;
1893
1894 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1895 return NULL;
1896
1897 return buffer;
1898 }
1899
1900 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1901 void *to,
1902 const unsigned int len)
1903 {
1904 memcpy(to, skb->data, len);
1905 }
1906
1907 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1908 const int offset, void *to,
1909 const unsigned int len)
1910 {
1911 memcpy(to, skb->data + offset, len);
1912 }
1913
1914 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1915 const void *from,
1916 const unsigned int len)
1917 {
1918 memcpy(skb->data, from, len);
1919 }
1920
1921 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1922 const int offset,
1923 const void *from,
1924 const unsigned int len)
1925 {
1926 memcpy(skb->data + offset, from, len);
1927 }
1928
1929 extern void skb_init(void);
1930
1931 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1932 {
1933 return skb->tstamp;
1934 }
1935
1936 /**
1937 * skb_get_timestamp - get timestamp from a skb
1938 * @skb: skb to get stamp from
1939 * @stamp: pointer to struct timeval to store stamp in
1940 *
1941 * Timestamps are stored in the skb as offsets to a base timestamp.
1942 * This function converts the offset back to a struct timeval and stores
1943 * it in stamp.
1944 */
1945 static inline void skb_get_timestamp(const struct sk_buff *skb,
1946 struct timeval *stamp)
1947 {
1948 *stamp = ktime_to_timeval(skb->tstamp);
1949 }
1950
1951 static inline void skb_get_timestampns(const struct sk_buff *skb,
1952 struct timespec *stamp)
1953 {
1954 *stamp = ktime_to_timespec(skb->tstamp);
1955 }
1956
1957 static inline void __net_timestamp(struct sk_buff *skb)
1958 {
1959 skb->tstamp = ktime_get_real();
1960 }
1961
1962 static inline ktime_t net_timedelta(ktime_t t)
1963 {
1964 return ktime_sub(ktime_get_real(), t);
1965 }
1966
1967 static inline ktime_t net_invalid_timestamp(void)
1968 {
1969 return ktime_set(0, 0);
1970 }
1971
1972 extern void skb_timestamping_init(void);
1973
1974 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1975
1976 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1977 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1978
1979 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1980
1981 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1982 {
1983 }
1984
1985 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1986 {
1987 return false;
1988 }
1989
1990 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1991
1992 /**
1993 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1994 *
1995 * @skb: clone of the the original outgoing packet
1996 * @hwtstamps: hardware time stamps
1997 *
1998 */
1999 void skb_complete_tx_timestamp(struct sk_buff *skb,
2000 struct skb_shared_hwtstamps *hwtstamps);
2001
2002 /**
2003 * skb_tstamp_tx - queue clone of skb with send time stamps
2004 * @orig_skb: the original outgoing packet
2005 * @hwtstamps: hardware time stamps, may be NULL if not available
2006 *
2007 * If the skb has a socket associated, then this function clones the
2008 * skb (thus sharing the actual data and optional structures), stores
2009 * the optional hardware time stamping information (if non NULL) or
2010 * generates a software time stamp (otherwise), then queues the clone
2011 * to the error queue of the socket. Errors are silently ignored.
2012 */
2013 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2014 struct skb_shared_hwtstamps *hwtstamps);
2015
2016 static inline void sw_tx_timestamp(struct sk_buff *skb)
2017 {
2018 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2019 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2020 skb_tstamp_tx(skb, NULL);
2021 }
2022
2023 /**
2024 * skb_tx_timestamp() - Driver hook for transmit timestamping
2025 *
2026 * Ethernet MAC Drivers should call this function in their hard_xmit()
2027 * function as soon as possible after giving the sk_buff to the MAC
2028 * hardware, but before freeing the sk_buff.
2029 *
2030 * @skb: A socket buffer.
2031 */
2032 static inline void skb_tx_timestamp(struct sk_buff *skb)
2033 {
2034 skb_clone_tx_timestamp(skb);
2035 sw_tx_timestamp(skb);
2036 }
2037
2038 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2039 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2040
2041 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2042 {
2043 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2044 }
2045
2046 /**
2047 * skb_checksum_complete - Calculate checksum of an entire packet
2048 * @skb: packet to process
2049 *
2050 * This function calculates the checksum over the entire packet plus
2051 * the value of skb->csum. The latter can be used to supply the
2052 * checksum of a pseudo header as used by TCP/UDP. It returns the
2053 * checksum.
2054 *
2055 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2056 * this function can be used to verify that checksum on received
2057 * packets. In that case the function should return zero if the
2058 * checksum is correct. In particular, this function will return zero
2059 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2060 * hardware has already verified the correctness of the checksum.
2061 */
2062 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2063 {
2064 return skb_csum_unnecessary(skb) ?
2065 0 : __skb_checksum_complete(skb);
2066 }
2067
2068 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2069 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2070 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2071 {
2072 if (nfct && atomic_dec_and_test(&nfct->use))
2073 nf_conntrack_destroy(nfct);
2074 }
2075 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2076 {
2077 if (nfct)
2078 atomic_inc(&nfct->use);
2079 }
2080 #endif
2081 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2082 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2083 {
2084 if (skb)
2085 atomic_inc(&skb->users);
2086 }
2087 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2088 {
2089 if (skb)
2090 kfree_skb(skb);
2091 }
2092 #endif
2093 #ifdef CONFIG_BRIDGE_NETFILTER
2094 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2095 {
2096 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2097 kfree(nf_bridge);
2098 }
2099 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2100 {
2101 if (nf_bridge)
2102 atomic_inc(&nf_bridge->use);
2103 }
2104 #endif /* CONFIG_BRIDGE_NETFILTER */
2105 static inline void nf_reset(struct sk_buff *skb)
2106 {
2107 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2108 nf_conntrack_put(skb->nfct);
2109 skb->nfct = NULL;
2110 #endif
2111 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2112 nf_conntrack_put_reasm(skb->nfct_reasm);
2113 skb->nfct_reasm = NULL;
2114 #endif
2115 #ifdef CONFIG_BRIDGE_NETFILTER
2116 nf_bridge_put(skb->nf_bridge);
2117 skb->nf_bridge = NULL;
2118 #endif
2119 }
2120
2121 /* Note: This doesn't put any conntrack and bridge info in dst. */
2122 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2123 {
2124 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2125 dst->nfct = src->nfct;
2126 nf_conntrack_get(src->nfct);
2127 dst->nfctinfo = src->nfctinfo;
2128 #endif
2129 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2130 dst->nfct_reasm = src->nfct_reasm;
2131 nf_conntrack_get_reasm(src->nfct_reasm);
2132 #endif
2133 #ifdef CONFIG_BRIDGE_NETFILTER
2134 dst->nf_bridge = src->nf_bridge;
2135 nf_bridge_get(src->nf_bridge);
2136 #endif
2137 }
2138
2139 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2140 {
2141 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2142 nf_conntrack_put(dst->nfct);
2143 #endif
2144 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2145 nf_conntrack_put_reasm(dst->nfct_reasm);
2146 #endif
2147 #ifdef CONFIG_BRIDGE_NETFILTER
2148 nf_bridge_put(dst->nf_bridge);
2149 #endif
2150 __nf_copy(dst, src);
2151 }
2152
2153 #ifdef CONFIG_NETWORK_SECMARK
2154 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2155 {
2156 to->secmark = from->secmark;
2157 }
2158
2159 static inline void skb_init_secmark(struct sk_buff *skb)
2160 {
2161 skb->secmark = 0;
2162 }
2163 #else
2164 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2165 { }
2166
2167 static inline void skb_init_secmark(struct sk_buff *skb)
2168 { }
2169 #endif
2170
2171 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2172 {
2173 skb->queue_mapping = queue_mapping;
2174 }
2175
2176 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2177 {
2178 return skb->queue_mapping;
2179 }
2180
2181 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2182 {
2183 to->queue_mapping = from->queue_mapping;
2184 }
2185
2186 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2187 {
2188 skb->queue_mapping = rx_queue + 1;
2189 }
2190
2191 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2192 {
2193 return skb->queue_mapping - 1;
2194 }
2195
2196 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2197 {
2198 return skb->queue_mapping != 0;
2199 }
2200
2201 extern u16 __skb_tx_hash(const struct net_device *dev,
2202 const struct sk_buff *skb,
2203 unsigned int num_tx_queues);
2204
2205 #ifdef CONFIG_XFRM
2206 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2207 {
2208 return skb->sp;
2209 }
2210 #else
2211 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2212 {
2213 return NULL;
2214 }
2215 #endif
2216
2217 static inline int skb_is_gso(const struct sk_buff *skb)
2218 {
2219 return skb_shinfo(skb)->gso_size;
2220 }
2221
2222 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2223 {
2224 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2225 }
2226
2227 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2228
2229 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2230 {
2231 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2232 * wanted then gso_type will be set. */
2233 struct skb_shared_info *shinfo = skb_shinfo(skb);
2234 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2235 unlikely(shinfo->gso_type == 0)) {
2236 __skb_warn_lro_forwarding(skb);
2237 return true;
2238 }
2239 return false;
2240 }
2241
2242 static inline void skb_forward_csum(struct sk_buff *skb)
2243 {
2244 /* Unfortunately we don't support this one. Any brave souls? */
2245 if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 skb->ip_summed = CHECKSUM_NONE;
2247 }
2248
2249 /**
2250 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2251 * @skb: skb to check
2252 *
2253 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2254 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2255 * use this helper, to document places where we make this assertion.
2256 */
2257 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2258 {
2259 #ifdef DEBUG
2260 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2261 #endif
2262 }
2263
2264 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2265 #endif /* __KERNEL__ */
2266 #endif /* _LINUX_SKBUFF_H */
This page took 0.105561 seconds and 6 git commands to generate.