Merge branch 'for-3.17/core' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <linux/sched.h>
36 #include <net/flow_keys.h>
37
38 /* A. Checksumming of received packets by device.
39 *
40 * CHECKSUM_NONE:
41 *
42 * Device failed to checksum this packet e.g. due to lack of capabilities.
43 * The packet contains full (though not verified) checksum in packet but
44 * not in skb->csum. Thus, skb->csum is undefined in this case.
45 *
46 * CHECKSUM_UNNECESSARY:
47 *
48 * The hardware you're dealing with doesn't calculate the full checksum
49 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
50 * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
51 * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
52 * undefined in this case though. It is a bad option, but, unfortunately,
53 * nowadays most vendors do this. Apparently with the secret goal to sell
54 * you new devices, when you will add new protocol to your host, f.e. IPv6 8)
55 *
56 * CHECKSUM_COMPLETE:
57 *
58 * This is the most generic way. The device supplied checksum of the _whole_
59 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
60 * hardware doesn't need to parse L3/L4 headers to implement this.
61 *
62 * Note: Even if device supports only some protocols, but is able to produce
63 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
64 *
65 * CHECKSUM_PARTIAL:
66 *
67 * This is identical to the case for output below. This may occur on a packet
68 * received directly from another Linux OS, e.g., a virtualized Linux kernel
69 * on the same host. The packet can be treated in the same way as
70 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
71 * checksum must be filled in by the OS or the hardware.
72 *
73 * B. Checksumming on output.
74 *
75 * CHECKSUM_NONE:
76 *
77 * The skb was already checksummed by the protocol, or a checksum is not
78 * required.
79 *
80 * CHECKSUM_PARTIAL:
81 *
82 * The device is required to checksum the packet as seen by hard_start_xmit()
83 * from skb->csum_start up to the end, and to record/write the checksum at
84 * offset skb->csum_start + skb->csum_offset.
85 *
86 * The device must show its capabilities in dev->features, set up at device
87 * setup time, e.g. netdev_features.h:
88 *
89 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
90 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
91 * IPv4. Sigh. Vendors like this way for an unknown reason.
92 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
93 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
94 * NETIF_F_... - Well, you get the picture.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * Normally, the device will do per protocol specific checksumming. Protocol
99 * implementations that do not want the NIC to perform the checksum
100 * calculation should use this flag in their outgoing skbs.
101 *
102 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
109 /* Don't change this without changing skb_csum_unnecessary! */
110 #define CHECKSUM_NONE 0
111 #define CHECKSUM_UNNECESSARY 1
112 #define CHECKSUM_COMPLETE 2
113 #define CHECKSUM_PARTIAL 3
114
115 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
116 #define SKB_WITH_OVERHEAD(X) \
117 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
118 #define SKB_MAX_ORDER(X, ORDER) \
119 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
120 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
121 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
122
123 /* return minimum truesize of one skb containing X bytes of data */
124 #define SKB_TRUESIZE(X) ((X) + \
125 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
126 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
127
128 struct net_device;
129 struct scatterlist;
130 struct pipe_inode_info;
131
132 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
133 struct nf_conntrack {
134 atomic_t use;
135 };
136 #endif
137
138 #ifdef CONFIG_BRIDGE_NETFILTER
139 struct nf_bridge_info {
140 atomic_t use;
141 unsigned int mask;
142 struct net_device *physindev;
143 struct net_device *physoutdev;
144 unsigned long data[32 / sizeof(unsigned long)];
145 };
146 #endif
147
148 struct sk_buff_head {
149 /* These two members must be first. */
150 struct sk_buff *next;
151 struct sk_buff *prev;
152
153 __u32 qlen;
154 spinlock_t lock;
155 };
156
157 struct sk_buff;
158
159 /* To allow 64K frame to be packed as single skb without frag_list we
160 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
161 * buffers which do not start on a page boundary.
162 *
163 * Since GRO uses frags we allocate at least 16 regardless of page
164 * size.
165 */
166 #if (65536/PAGE_SIZE + 1) < 16
167 #define MAX_SKB_FRAGS 16UL
168 #else
169 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
170 #endif
171
172 typedef struct skb_frag_struct skb_frag_t;
173
174 struct skb_frag_struct {
175 struct {
176 struct page *p;
177 } page;
178 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
179 __u32 page_offset;
180 __u32 size;
181 #else
182 __u16 page_offset;
183 __u16 size;
184 #endif
185 };
186
187 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
188 {
189 return frag->size;
190 }
191
192 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
193 {
194 frag->size = size;
195 }
196
197 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
198 {
199 frag->size += delta;
200 }
201
202 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
203 {
204 frag->size -= delta;
205 }
206
207 #define HAVE_HW_TIME_STAMP
208
209 /**
210 * struct skb_shared_hwtstamps - hardware time stamps
211 * @hwtstamp: hardware time stamp transformed into duration
212 * since arbitrary point in time
213 *
214 * Software time stamps generated by ktime_get_real() are stored in
215 * skb->tstamp.
216 *
217 * hwtstamps can only be compared against other hwtstamps from
218 * the same device.
219 *
220 * This structure is attached to packets as part of the
221 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
222 */
223 struct skb_shared_hwtstamps {
224 ktime_t hwtstamp;
225 };
226
227 /* Definitions for tx_flags in struct skb_shared_info */
228 enum {
229 /* generate hardware time stamp */
230 SKBTX_HW_TSTAMP = 1 << 0,
231
232 /* generate software time stamp when queueing packet to NIC */
233 SKBTX_SW_TSTAMP = 1 << 1,
234
235 /* device driver is going to provide hardware time stamp */
236 SKBTX_IN_PROGRESS = 1 << 2,
237
238 /* device driver supports TX zero-copy buffers */
239 SKBTX_DEV_ZEROCOPY = 1 << 3,
240
241 /* generate wifi status information (where possible) */
242 SKBTX_WIFI_STATUS = 1 << 4,
243
244 /* This indicates at least one fragment might be overwritten
245 * (as in vmsplice(), sendfile() ...)
246 * If we need to compute a TX checksum, we'll need to copy
247 * all frags to avoid possible bad checksum
248 */
249 SKBTX_SHARED_FRAG = 1 << 5,
250
251 /* generate software time stamp when entering packet scheduling */
252 SKBTX_SCHED_TSTAMP = 1 << 6,
253
254 /* generate software timestamp on peer data acknowledgment */
255 SKBTX_ACK_TSTAMP = 1 << 7,
256 };
257
258 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
259 SKBTX_SCHED_TSTAMP | \
260 SKBTX_ACK_TSTAMP)
261 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
262
263 /*
264 * The callback notifies userspace to release buffers when skb DMA is done in
265 * lower device, the skb last reference should be 0 when calling this.
266 * The zerocopy_success argument is true if zero copy transmit occurred,
267 * false on data copy or out of memory error caused by data copy attempt.
268 * The ctx field is used to track device context.
269 * The desc field is used to track userspace buffer index.
270 */
271 struct ubuf_info {
272 void (*callback)(struct ubuf_info *, bool zerocopy_success);
273 void *ctx;
274 unsigned long desc;
275 };
276
277 /* This data is invariant across clones and lives at
278 * the end of the header data, ie. at skb->end.
279 */
280 struct skb_shared_info {
281 unsigned char nr_frags;
282 __u8 tx_flags;
283 unsigned short gso_size;
284 /* Warning: this field is not always filled in (UFO)! */
285 unsigned short gso_segs;
286 unsigned short gso_type;
287 struct sk_buff *frag_list;
288 struct skb_shared_hwtstamps hwtstamps;
289 u32 tskey;
290 __be32 ip6_frag_id;
291
292 /*
293 * Warning : all fields before dataref are cleared in __alloc_skb()
294 */
295 atomic_t dataref;
296
297 /* Intermediate layers must ensure that destructor_arg
298 * remains valid until skb destructor */
299 void * destructor_arg;
300
301 /* must be last field, see pskb_expand_head() */
302 skb_frag_t frags[MAX_SKB_FRAGS];
303 };
304
305 /* We divide dataref into two halves. The higher 16 bits hold references
306 * to the payload part of skb->data. The lower 16 bits hold references to
307 * the entire skb->data. A clone of a headerless skb holds the length of
308 * the header in skb->hdr_len.
309 *
310 * All users must obey the rule that the skb->data reference count must be
311 * greater than or equal to the payload reference count.
312 *
313 * Holding a reference to the payload part means that the user does not
314 * care about modifications to the header part of skb->data.
315 */
316 #define SKB_DATAREF_SHIFT 16
317 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
318
319
320 enum {
321 SKB_FCLONE_UNAVAILABLE,
322 SKB_FCLONE_ORIG,
323 SKB_FCLONE_CLONE,
324 };
325
326 enum {
327 SKB_GSO_TCPV4 = 1 << 0,
328 SKB_GSO_UDP = 1 << 1,
329
330 /* This indicates the skb is from an untrusted source. */
331 SKB_GSO_DODGY = 1 << 2,
332
333 /* This indicates the tcp segment has CWR set. */
334 SKB_GSO_TCP_ECN = 1 << 3,
335
336 SKB_GSO_TCPV6 = 1 << 4,
337
338 SKB_GSO_FCOE = 1 << 5,
339
340 SKB_GSO_GRE = 1 << 6,
341
342 SKB_GSO_GRE_CSUM = 1 << 7,
343
344 SKB_GSO_IPIP = 1 << 8,
345
346 SKB_GSO_SIT = 1 << 9,
347
348 SKB_GSO_UDP_TUNNEL = 1 << 10,
349
350 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
351
352 SKB_GSO_MPLS = 1 << 12,
353
354 };
355
356 #if BITS_PER_LONG > 32
357 #define NET_SKBUFF_DATA_USES_OFFSET 1
358 #endif
359
360 #ifdef NET_SKBUFF_DATA_USES_OFFSET
361 typedef unsigned int sk_buff_data_t;
362 #else
363 typedef unsigned char *sk_buff_data_t;
364 #endif
365
366 /**
367 * struct skb_mstamp - multi resolution time stamps
368 * @stamp_us: timestamp in us resolution
369 * @stamp_jiffies: timestamp in jiffies
370 */
371 struct skb_mstamp {
372 union {
373 u64 v64;
374 struct {
375 u32 stamp_us;
376 u32 stamp_jiffies;
377 };
378 };
379 };
380
381 /**
382 * skb_mstamp_get - get current timestamp
383 * @cl: place to store timestamps
384 */
385 static inline void skb_mstamp_get(struct skb_mstamp *cl)
386 {
387 u64 val = local_clock();
388
389 do_div(val, NSEC_PER_USEC);
390 cl->stamp_us = (u32)val;
391 cl->stamp_jiffies = (u32)jiffies;
392 }
393
394 /**
395 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
396 * @t1: pointer to newest sample
397 * @t0: pointer to oldest sample
398 */
399 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
400 const struct skb_mstamp *t0)
401 {
402 s32 delta_us = t1->stamp_us - t0->stamp_us;
403 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
404
405 /* If delta_us is negative, this might be because interval is too big,
406 * or local_clock() drift is too big : fallback using jiffies.
407 */
408 if (delta_us <= 0 ||
409 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
410
411 delta_us = jiffies_to_usecs(delta_jiffies);
412
413 return delta_us;
414 }
415
416
417 /**
418 * struct sk_buff - socket buffer
419 * @next: Next buffer in list
420 * @prev: Previous buffer in list
421 * @tstamp: Time we arrived/left
422 * @sk: Socket we are owned by
423 * @dev: Device we arrived on/are leaving by
424 * @cb: Control buffer. Free for use by every layer. Put private vars here
425 * @_skb_refdst: destination entry (with norefcount bit)
426 * @sp: the security path, used for xfrm
427 * @len: Length of actual data
428 * @data_len: Data length
429 * @mac_len: Length of link layer header
430 * @hdr_len: writable header length of cloned skb
431 * @csum: Checksum (must include start/offset pair)
432 * @csum_start: Offset from skb->head where checksumming should start
433 * @csum_offset: Offset from csum_start where checksum should be stored
434 * @priority: Packet queueing priority
435 * @ignore_df: allow local fragmentation
436 * @cloned: Head may be cloned (check refcnt to be sure)
437 * @ip_summed: Driver fed us an IP checksum
438 * @nohdr: Payload reference only, must not modify header
439 * @nfctinfo: Relationship of this skb to the connection
440 * @pkt_type: Packet class
441 * @fclone: skbuff clone status
442 * @ipvs_property: skbuff is owned by ipvs
443 * @peeked: this packet has been seen already, so stats have been
444 * done for it, don't do them again
445 * @nf_trace: netfilter packet trace flag
446 * @protocol: Packet protocol from driver
447 * @destructor: Destruct function
448 * @nfct: Associated connection, if any
449 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
450 * @skb_iif: ifindex of device we arrived on
451 * @tc_index: Traffic control index
452 * @tc_verd: traffic control verdict
453 * @hash: the packet hash
454 * @queue_mapping: Queue mapping for multiqueue devices
455 * @ndisc_nodetype: router type (from link layer)
456 * @ooo_okay: allow the mapping of a socket to a queue to be changed
457 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
458 * ports.
459 * @sw_hash: indicates hash was computed in software stack
460 * @wifi_acked_valid: wifi_acked was set
461 * @wifi_acked: whether frame was acked on wifi or not
462 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
463 * @dma_cookie: a cookie to one of several possible DMA operations
464 * done by skb DMA functions
465 * @napi_id: id of the NAPI struct this skb came from
466 * @secmark: security marking
467 * @mark: Generic packet mark
468 * @dropcount: total number of sk_receive_queue overflows
469 * @vlan_proto: vlan encapsulation protocol
470 * @vlan_tci: vlan tag control information
471 * @inner_protocol: Protocol (encapsulation)
472 * @inner_transport_header: Inner transport layer header (encapsulation)
473 * @inner_network_header: Network layer header (encapsulation)
474 * @inner_mac_header: Link layer header (encapsulation)
475 * @transport_header: Transport layer header
476 * @network_header: Network layer header
477 * @mac_header: Link layer header
478 * @tail: Tail pointer
479 * @end: End pointer
480 * @head: Head of buffer
481 * @data: Data head pointer
482 * @truesize: Buffer size
483 * @users: User count - see {datagram,tcp}.c
484 */
485
486 struct sk_buff {
487 /* These two members must be first. */
488 struct sk_buff *next;
489 struct sk_buff *prev;
490
491 union {
492 ktime_t tstamp;
493 struct skb_mstamp skb_mstamp;
494 };
495
496 struct sock *sk;
497 struct net_device *dev;
498
499 /*
500 * This is the control buffer. It is free to use for every
501 * layer. Please put your private variables there. If you
502 * want to keep them across layers you have to do a skb_clone()
503 * first. This is owned by whoever has the skb queued ATM.
504 */
505 char cb[48] __aligned(8);
506
507 unsigned long _skb_refdst;
508 #ifdef CONFIG_XFRM
509 struct sec_path *sp;
510 #endif
511 unsigned int len,
512 data_len;
513 __u16 mac_len,
514 hdr_len;
515 union {
516 __wsum csum;
517 struct {
518 __u16 csum_start;
519 __u16 csum_offset;
520 };
521 };
522 __u32 priority;
523 kmemcheck_bitfield_begin(flags1);
524 __u8 ignore_df:1,
525 cloned:1,
526 ip_summed:2,
527 nohdr:1,
528 nfctinfo:3;
529 __u8 pkt_type:3,
530 fclone:2,
531 ipvs_property:1,
532 peeked:1,
533 nf_trace:1;
534 kmemcheck_bitfield_end(flags1);
535 __be16 protocol;
536
537 void (*destructor)(struct sk_buff *skb);
538 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
539 struct nf_conntrack *nfct;
540 #endif
541 #ifdef CONFIG_BRIDGE_NETFILTER
542 struct nf_bridge_info *nf_bridge;
543 #endif
544
545 int skb_iif;
546
547 __u32 hash;
548
549 __be16 vlan_proto;
550 __u16 vlan_tci;
551
552 #ifdef CONFIG_NET_SCHED
553 __u16 tc_index; /* traffic control index */
554 #ifdef CONFIG_NET_CLS_ACT
555 __u16 tc_verd; /* traffic control verdict */
556 #endif
557 #endif
558
559 __u16 queue_mapping;
560 kmemcheck_bitfield_begin(flags2);
561 #ifdef CONFIG_IPV6_NDISC_NODETYPE
562 __u8 ndisc_nodetype:2;
563 #endif
564 __u8 pfmemalloc:1;
565 __u8 ooo_okay:1;
566 __u8 l4_hash:1;
567 __u8 sw_hash:1;
568 __u8 wifi_acked_valid:1;
569 __u8 wifi_acked:1;
570 __u8 no_fcs:1;
571 __u8 head_frag:1;
572 /* Encapsulation protocol and NIC drivers should use
573 * this flag to indicate to each other if the skb contains
574 * encapsulated packet or not and maybe use the inner packet
575 * headers if needed
576 */
577 __u8 encapsulation:1;
578 __u8 encap_hdr_csum:1;
579 __u8 csum_valid:1;
580 __u8 csum_complete_sw:1;
581 /* 2/4 bit hole (depending on ndisc_nodetype presence) */
582 kmemcheck_bitfield_end(flags2);
583
584 #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
585 union {
586 unsigned int napi_id;
587 dma_cookie_t dma_cookie;
588 };
589 #endif
590 #ifdef CONFIG_NETWORK_SECMARK
591 __u32 secmark;
592 #endif
593 union {
594 __u32 mark;
595 __u32 dropcount;
596 __u32 reserved_tailroom;
597 };
598
599 __be16 inner_protocol;
600 __u16 inner_transport_header;
601 __u16 inner_network_header;
602 __u16 inner_mac_header;
603 __u16 transport_header;
604 __u16 network_header;
605 __u16 mac_header;
606 /* These elements must be at the end, see alloc_skb() for details. */
607 sk_buff_data_t tail;
608 sk_buff_data_t end;
609 unsigned char *head,
610 *data;
611 unsigned int truesize;
612 atomic_t users;
613 };
614
615 #ifdef __KERNEL__
616 /*
617 * Handling routines are only of interest to the kernel
618 */
619 #include <linux/slab.h>
620
621
622 #define SKB_ALLOC_FCLONE 0x01
623 #define SKB_ALLOC_RX 0x02
624
625 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
626 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
627 {
628 return unlikely(skb->pfmemalloc);
629 }
630
631 /*
632 * skb might have a dst pointer attached, refcounted or not.
633 * _skb_refdst low order bit is set if refcount was _not_ taken
634 */
635 #define SKB_DST_NOREF 1UL
636 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
637
638 /**
639 * skb_dst - returns skb dst_entry
640 * @skb: buffer
641 *
642 * Returns skb dst_entry, regardless of reference taken or not.
643 */
644 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
645 {
646 /* If refdst was not refcounted, check we still are in a
647 * rcu_read_lock section
648 */
649 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
650 !rcu_read_lock_held() &&
651 !rcu_read_lock_bh_held());
652 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
653 }
654
655 /**
656 * skb_dst_set - sets skb dst
657 * @skb: buffer
658 * @dst: dst entry
659 *
660 * Sets skb dst, assuming a reference was taken on dst and should
661 * be released by skb_dst_drop()
662 */
663 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
664 {
665 skb->_skb_refdst = (unsigned long)dst;
666 }
667
668 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
669 bool force);
670
671 /**
672 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
673 * @skb: buffer
674 * @dst: dst entry
675 *
676 * Sets skb dst, assuming a reference was not taken on dst.
677 * If dst entry is cached, we do not take reference and dst_release
678 * will be avoided by refdst_drop. If dst entry is not cached, we take
679 * reference, so that last dst_release can destroy the dst immediately.
680 */
681 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
682 {
683 __skb_dst_set_noref(skb, dst, false);
684 }
685
686 /**
687 * skb_dst_set_noref_force - sets skb dst, without taking reference
688 * @skb: buffer
689 * @dst: dst entry
690 *
691 * Sets skb dst, assuming a reference was not taken on dst.
692 * No reference is taken and no dst_release will be called. While for
693 * cached dsts deferred reclaim is a basic feature, for entries that are
694 * not cached it is caller's job to guarantee that last dst_release for
695 * provided dst happens when nobody uses it, eg. after a RCU grace period.
696 */
697 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
698 struct dst_entry *dst)
699 {
700 __skb_dst_set_noref(skb, dst, true);
701 }
702
703 /**
704 * skb_dst_is_noref - Test if skb dst isn't refcounted
705 * @skb: buffer
706 */
707 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
708 {
709 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
710 }
711
712 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
713 {
714 return (struct rtable *)skb_dst(skb);
715 }
716
717 void kfree_skb(struct sk_buff *skb);
718 void kfree_skb_list(struct sk_buff *segs);
719 void skb_tx_error(struct sk_buff *skb);
720 void consume_skb(struct sk_buff *skb);
721 void __kfree_skb(struct sk_buff *skb);
722 extern struct kmem_cache *skbuff_head_cache;
723
724 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
725 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
726 bool *fragstolen, int *delta_truesize);
727
728 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
729 int node);
730 struct sk_buff *build_skb(void *data, unsigned int frag_size);
731 static inline struct sk_buff *alloc_skb(unsigned int size,
732 gfp_t priority)
733 {
734 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
735 }
736
737 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
738 gfp_t priority)
739 {
740 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
741 }
742
743 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
744 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
745 {
746 return __alloc_skb_head(priority, -1);
747 }
748
749 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
750 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
751 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
752 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
753 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
754 gfp_t gfp_mask, bool fclone);
755 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
756 gfp_t gfp_mask)
757 {
758 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
759 }
760
761 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
762 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
763 unsigned int headroom);
764 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
765 int newtailroom, gfp_t priority);
766 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
767 int offset, int len);
768 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
769 int len);
770 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
771 int skb_pad(struct sk_buff *skb, int pad);
772 #define dev_kfree_skb(a) consume_skb(a)
773
774 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
775 int getfrag(void *from, char *to, int offset,
776 int len, int odd, struct sk_buff *skb),
777 void *from, int length);
778
779 struct skb_seq_state {
780 __u32 lower_offset;
781 __u32 upper_offset;
782 __u32 frag_idx;
783 __u32 stepped_offset;
784 struct sk_buff *root_skb;
785 struct sk_buff *cur_skb;
786 __u8 *frag_data;
787 };
788
789 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
790 unsigned int to, struct skb_seq_state *st);
791 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
792 struct skb_seq_state *st);
793 void skb_abort_seq_read(struct skb_seq_state *st);
794
795 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
796 unsigned int to, struct ts_config *config,
797 struct ts_state *state);
798
799 /*
800 * Packet hash types specify the type of hash in skb_set_hash.
801 *
802 * Hash types refer to the protocol layer addresses which are used to
803 * construct a packet's hash. The hashes are used to differentiate or identify
804 * flows of the protocol layer for the hash type. Hash types are either
805 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
806 *
807 * Properties of hashes:
808 *
809 * 1) Two packets in different flows have different hash values
810 * 2) Two packets in the same flow should have the same hash value
811 *
812 * A hash at a higher layer is considered to be more specific. A driver should
813 * set the most specific hash possible.
814 *
815 * A driver cannot indicate a more specific hash than the layer at which a hash
816 * was computed. For instance an L3 hash cannot be set as an L4 hash.
817 *
818 * A driver may indicate a hash level which is less specific than the
819 * actual layer the hash was computed on. For instance, a hash computed
820 * at L4 may be considered an L3 hash. This should only be done if the
821 * driver can't unambiguously determine that the HW computed the hash at
822 * the higher layer. Note that the "should" in the second property above
823 * permits this.
824 */
825 enum pkt_hash_types {
826 PKT_HASH_TYPE_NONE, /* Undefined type */
827 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
828 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
829 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
830 };
831
832 static inline void
833 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
834 {
835 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
836 skb->sw_hash = 0;
837 skb->hash = hash;
838 }
839
840 void __skb_get_hash(struct sk_buff *skb);
841 static inline __u32 skb_get_hash(struct sk_buff *skb)
842 {
843 if (!skb->l4_hash && !skb->sw_hash)
844 __skb_get_hash(skb);
845
846 return skb->hash;
847 }
848
849 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
850 {
851 return skb->hash;
852 }
853
854 static inline void skb_clear_hash(struct sk_buff *skb)
855 {
856 skb->hash = 0;
857 skb->sw_hash = 0;
858 skb->l4_hash = 0;
859 }
860
861 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
862 {
863 if (!skb->l4_hash)
864 skb_clear_hash(skb);
865 }
866
867 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
868 {
869 to->hash = from->hash;
870 to->sw_hash = from->sw_hash;
871 to->l4_hash = from->l4_hash;
872 };
873
874 #ifdef NET_SKBUFF_DATA_USES_OFFSET
875 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
876 {
877 return skb->head + skb->end;
878 }
879
880 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
881 {
882 return skb->end;
883 }
884 #else
885 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
886 {
887 return skb->end;
888 }
889
890 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
891 {
892 return skb->end - skb->head;
893 }
894 #endif
895
896 /* Internal */
897 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
898
899 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
900 {
901 return &skb_shinfo(skb)->hwtstamps;
902 }
903
904 /**
905 * skb_queue_empty - check if a queue is empty
906 * @list: queue head
907 *
908 * Returns true if the queue is empty, false otherwise.
909 */
910 static inline int skb_queue_empty(const struct sk_buff_head *list)
911 {
912 return list->next == (const struct sk_buff *) list;
913 }
914
915 /**
916 * skb_queue_is_last - check if skb is the last entry in the queue
917 * @list: queue head
918 * @skb: buffer
919 *
920 * Returns true if @skb is the last buffer on the list.
921 */
922 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
923 const struct sk_buff *skb)
924 {
925 return skb->next == (const struct sk_buff *) list;
926 }
927
928 /**
929 * skb_queue_is_first - check if skb is the first entry in the queue
930 * @list: queue head
931 * @skb: buffer
932 *
933 * Returns true if @skb is the first buffer on the list.
934 */
935 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
936 const struct sk_buff *skb)
937 {
938 return skb->prev == (const struct sk_buff *) list;
939 }
940
941 /**
942 * skb_queue_next - return the next packet in the queue
943 * @list: queue head
944 * @skb: current buffer
945 *
946 * Return the next packet in @list after @skb. It is only valid to
947 * call this if skb_queue_is_last() evaluates to false.
948 */
949 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
950 const struct sk_buff *skb)
951 {
952 /* This BUG_ON may seem severe, but if we just return then we
953 * are going to dereference garbage.
954 */
955 BUG_ON(skb_queue_is_last(list, skb));
956 return skb->next;
957 }
958
959 /**
960 * skb_queue_prev - return the prev packet in the queue
961 * @list: queue head
962 * @skb: current buffer
963 *
964 * Return the prev packet in @list before @skb. It is only valid to
965 * call this if skb_queue_is_first() evaluates to false.
966 */
967 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
968 const struct sk_buff *skb)
969 {
970 /* This BUG_ON may seem severe, but if we just return then we
971 * are going to dereference garbage.
972 */
973 BUG_ON(skb_queue_is_first(list, skb));
974 return skb->prev;
975 }
976
977 /**
978 * skb_get - reference buffer
979 * @skb: buffer to reference
980 *
981 * Makes another reference to a socket buffer and returns a pointer
982 * to the buffer.
983 */
984 static inline struct sk_buff *skb_get(struct sk_buff *skb)
985 {
986 atomic_inc(&skb->users);
987 return skb;
988 }
989
990 /*
991 * If users == 1, we are the only owner and are can avoid redundant
992 * atomic change.
993 */
994
995 /**
996 * skb_cloned - is the buffer a clone
997 * @skb: buffer to check
998 *
999 * Returns true if the buffer was generated with skb_clone() and is
1000 * one of multiple shared copies of the buffer. Cloned buffers are
1001 * shared data so must not be written to under normal circumstances.
1002 */
1003 static inline int skb_cloned(const struct sk_buff *skb)
1004 {
1005 return skb->cloned &&
1006 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1007 }
1008
1009 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1010 {
1011 might_sleep_if(pri & __GFP_WAIT);
1012
1013 if (skb_cloned(skb))
1014 return pskb_expand_head(skb, 0, 0, pri);
1015
1016 return 0;
1017 }
1018
1019 /**
1020 * skb_header_cloned - is the header a clone
1021 * @skb: buffer to check
1022 *
1023 * Returns true if modifying the header part of the buffer requires
1024 * the data to be copied.
1025 */
1026 static inline int skb_header_cloned(const struct sk_buff *skb)
1027 {
1028 int dataref;
1029
1030 if (!skb->cloned)
1031 return 0;
1032
1033 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1034 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1035 return dataref != 1;
1036 }
1037
1038 /**
1039 * skb_header_release - release reference to header
1040 * @skb: buffer to operate on
1041 *
1042 * Drop a reference to the header part of the buffer. This is done
1043 * by acquiring a payload reference. You must not read from the header
1044 * part of skb->data after this.
1045 */
1046 static inline void skb_header_release(struct sk_buff *skb)
1047 {
1048 BUG_ON(skb->nohdr);
1049 skb->nohdr = 1;
1050 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1051 }
1052
1053 /**
1054 * skb_shared - is the buffer shared
1055 * @skb: buffer to check
1056 *
1057 * Returns true if more than one person has a reference to this
1058 * buffer.
1059 */
1060 static inline int skb_shared(const struct sk_buff *skb)
1061 {
1062 return atomic_read(&skb->users) != 1;
1063 }
1064
1065 /**
1066 * skb_share_check - check if buffer is shared and if so clone it
1067 * @skb: buffer to check
1068 * @pri: priority for memory allocation
1069 *
1070 * If the buffer is shared the buffer is cloned and the old copy
1071 * drops a reference. A new clone with a single reference is returned.
1072 * If the buffer is not shared the original buffer is returned. When
1073 * being called from interrupt status or with spinlocks held pri must
1074 * be GFP_ATOMIC.
1075 *
1076 * NULL is returned on a memory allocation failure.
1077 */
1078 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1079 {
1080 might_sleep_if(pri & __GFP_WAIT);
1081 if (skb_shared(skb)) {
1082 struct sk_buff *nskb = skb_clone(skb, pri);
1083
1084 if (likely(nskb))
1085 consume_skb(skb);
1086 else
1087 kfree_skb(skb);
1088 skb = nskb;
1089 }
1090 return skb;
1091 }
1092
1093 /*
1094 * Copy shared buffers into a new sk_buff. We effectively do COW on
1095 * packets to handle cases where we have a local reader and forward
1096 * and a couple of other messy ones. The normal one is tcpdumping
1097 * a packet thats being forwarded.
1098 */
1099
1100 /**
1101 * skb_unshare - make a copy of a shared buffer
1102 * @skb: buffer to check
1103 * @pri: priority for memory allocation
1104 *
1105 * If the socket buffer is a clone then this function creates a new
1106 * copy of the data, drops a reference count on the old copy and returns
1107 * the new copy with the reference count at 1. If the buffer is not a clone
1108 * the original buffer is returned. When called with a spinlock held or
1109 * from interrupt state @pri must be %GFP_ATOMIC
1110 *
1111 * %NULL is returned on a memory allocation failure.
1112 */
1113 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1114 gfp_t pri)
1115 {
1116 might_sleep_if(pri & __GFP_WAIT);
1117 if (skb_cloned(skb)) {
1118 struct sk_buff *nskb = skb_copy(skb, pri);
1119 kfree_skb(skb); /* Free our shared copy */
1120 skb = nskb;
1121 }
1122 return skb;
1123 }
1124
1125 /**
1126 * skb_peek - peek at the head of an &sk_buff_head
1127 * @list_: list to peek at
1128 *
1129 * Peek an &sk_buff. Unlike most other operations you _MUST_
1130 * be careful with this one. A peek leaves the buffer on the
1131 * list and someone else may run off with it. You must hold
1132 * the appropriate locks or have a private queue to do this.
1133 *
1134 * Returns %NULL for an empty list or a pointer to the head element.
1135 * The reference count is not incremented and the reference is therefore
1136 * volatile. Use with caution.
1137 */
1138 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1139 {
1140 struct sk_buff *skb = list_->next;
1141
1142 if (skb == (struct sk_buff *)list_)
1143 skb = NULL;
1144 return skb;
1145 }
1146
1147 /**
1148 * skb_peek_next - peek skb following the given one from a queue
1149 * @skb: skb to start from
1150 * @list_: list to peek at
1151 *
1152 * Returns %NULL when the end of the list is met or a pointer to the
1153 * next element. The reference count is not incremented and the
1154 * reference is therefore volatile. Use with caution.
1155 */
1156 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1157 const struct sk_buff_head *list_)
1158 {
1159 struct sk_buff *next = skb->next;
1160
1161 if (next == (struct sk_buff *)list_)
1162 next = NULL;
1163 return next;
1164 }
1165
1166 /**
1167 * skb_peek_tail - peek at the tail of an &sk_buff_head
1168 * @list_: list to peek at
1169 *
1170 * Peek an &sk_buff. Unlike most other operations you _MUST_
1171 * be careful with this one. A peek leaves the buffer on the
1172 * list and someone else may run off with it. You must hold
1173 * the appropriate locks or have a private queue to do this.
1174 *
1175 * Returns %NULL for an empty list or a pointer to the tail element.
1176 * The reference count is not incremented and the reference is therefore
1177 * volatile. Use with caution.
1178 */
1179 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1180 {
1181 struct sk_buff *skb = list_->prev;
1182
1183 if (skb == (struct sk_buff *)list_)
1184 skb = NULL;
1185 return skb;
1186
1187 }
1188
1189 /**
1190 * skb_queue_len - get queue length
1191 * @list_: list to measure
1192 *
1193 * Return the length of an &sk_buff queue.
1194 */
1195 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1196 {
1197 return list_->qlen;
1198 }
1199
1200 /**
1201 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1202 * @list: queue to initialize
1203 *
1204 * This initializes only the list and queue length aspects of
1205 * an sk_buff_head object. This allows to initialize the list
1206 * aspects of an sk_buff_head without reinitializing things like
1207 * the spinlock. It can also be used for on-stack sk_buff_head
1208 * objects where the spinlock is known to not be used.
1209 */
1210 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1211 {
1212 list->prev = list->next = (struct sk_buff *)list;
1213 list->qlen = 0;
1214 }
1215
1216 /*
1217 * This function creates a split out lock class for each invocation;
1218 * this is needed for now since a whole lot of users of the skb-queue
1219 * infrastructure in drivers have different locking usage (in hardirq)
1220 * than the networking core (in softirq only). In the long run either the
1221 * network layer or drivers should need annotation to consolidate the
1222 * main types of usage into 3 classes.
1223 */
1224 static inline void skb_queue_head_init(struct sk_buff_head *list)
1225 {
1226 spin_lock_init(&list->lock);
1227 __skb_queue_head_init(list);
1228 }
1229
1230 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1231 struct lock_class_key *class)
1232 {
1233 skb_queue_head_init(list);
1234 lockdep_set_class(&list->lock, class);
1235 }
1236
1237 /*
1238 * Insert an sk_buff on a list.
1239 *
1240 * The "__skb_xxxx()" functions are the non-atomic ones that
1241 * can only be called with interrupts disabled.
1242 */
1243 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1244 struct sk_buff_head *list);
1245 static inline void __skb_insert(struct sk_buff *newsk,
1246 struct sk_buff *prev, struct sk_buff *next,
1247 struct sk_buff_head *list)
1248 {
1249 newsk->next = next;
1250 newsk->prev = prev;
1251 next->prev = prev->next = newsk;
1252 list->qlen++;
1253 }
1254
1255 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1256 struct sk_buff *prev,
1257 struct sk_buff *next)
1258 {
1259 struct sk_buff *first = list->next;
1260 struct sk_buff *last = list->prev;
1261
1262 first->prev = prev;
1263 prev->next = first;
1264
1265 last->next = next;
1266 next->prev = last;
1267 }
1268
1269 /**
1270 * skb_queue_splice - join two skb lists, this is designed for stacks
1271 * @list: the new list to add
1272 * @head: the place to add it in the first list
1273 */
1274 static inline void skb_queue_splice(const struct sk_buff_head *list,
1275 struct sk_buff_head *head)
1276 {
1277 if (!skb_queue_empty(list)) {
1278 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1279 head->qlen += list->qlen;
1280 }
1281 }
1282
1283 /**
1284 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1285 * @list: the new list to add
1286 * @head: the place to add it in the first list
1287 *
1288 * The list at @list is reinitialised
1289 */
1290 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1291 struct sk_buff_head *head)
1292 {
1293 if (!skb_queue_empty(list)) {
1294 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1295 head->qlen += list->qlen;
1296 __skb_queue_head_init(list);
1297 }
1298 }
1299
1300 /**
1301 * skb_queue_splice_tail - join two skb lists, each list being a queue
1302 * @list: the new list to add
1303 * @head: the place to add it in the first list
1304 */
1305 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1306 struct sk_buff_head *head)
1307 {
1308 if (!skb_queue_empty(list)) {
1309 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1310 head->qlen += list->qlen;
1311 }
1312 }
1313
1314 /**
1315 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1316 * @list: the new list to add
1317 * @head: the place to add it in the first list
1318 *
1319 * Each of the lists is a queue.
1320 * The list at @list is reinitialised
1321 */
1322 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1323 struct sk_buff_head *head)
1324 {
1325 if (!skb_queue_empty(list)) {
1326 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1327 head->qlen += list->qlen;
1328 __skb_queue_head_init(list);
1329 }
1330 }
1331
1332 /**
1333 * __skb_queue_after - queue a buffer at the list head
1334 * @list: list to use
1335 * @prev: place after this buffer
1336 * @newsk: buffer to queue
1337 *
1338 * Queue a buffer int the middle of a list. This function takes no locks
1339 * and you must therefore hold required locks before calling it.
1340 *
1341 * A buffer cannot be placed on two lists at the same time.
1342 */
1343 static inline void __skb_queue_after(struct sk_buff_head *list,
1344 struct sk_buff *prev,
1345 struct sk_buff *newsk)
1346 {
1347 __skb_insert(newsk, prev, prev->next, list);
1348 }
1349
1350 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1351 struct sk_buff_head *list);
1352
1353 static inline void __skb_queue_before(struct sk_buff_head *list,
1354 struct sk_buff *next,
1355 struct sk_buff *newsk)
1356 {
1357 __skb_insert(newsk, next->prev, next, list);
1358 }
1359
1360 /**
1361 * __skb_queue_head - queue a buffer at the list head
1362 * @list: list to use
1363 * @newsk: buffer to queue
1364 *
1365 * Queue a buffer at the start of a list. This function takes no locks
1366 * and you must therefore hold required locks before calling it.
1367 *
1368 * A buffer cannot be placed on two lists at the same time.
1369 */
1370 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1371 static inline void __skb_queue_head(struct sk_buff_head *list,
1372 struct sk_buff *newsk)
1373 {
1374 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1375 }
1376
1377 /**
1378 * __skb_queue_tail - queue a buffer at the list tail
1379 * @list: list to use
1380 * @newsk: buffer to queue
1381 *
1382 * Queue a buffer at the end of a list. This function takes no locks
1383 * and you must therefore hold required locks before calling it.
1384 *
1385 * A buffer cannot be placed on two lists at the same time.
1386 */
1387 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1388 static inline void __skb_queue_tail(struct sk_buff_head *list,
1389 struct sk_buff *newsk)
1390 {
1391 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1392 }
1393
1394 /*
1395 * remove sk_buff from list. _Must_ be called atomically, and with
1396 * the list known..
1397 */
1398 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1399 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1400 {
1401 struct sk_buff *next, *prev;
1402
1403 list->qlen--;
1404 next = skb->next;
1405 prev = skb->prev;
1406 skb->next = skb->prev = NULL;
1407 next->prev = prev;
1408 prev->next = next;
1409 }
1410
1411 /**
1412 * __skb_dequeue - remove from the head of the queue
1413 * @list: list to dequeue from
1414 *
1415 * Remove the head of the list. This function does not take any locks
1416 * so must be used with appropriate locks held only. The head item is
1417 * returned or %NULL if the list is empty.
1418 */
1419 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1420 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1421 {
1422 struct sk_buff *skb = skb_peek(list);
1423 if (skb)
1424 __skb_unlink(skb, list);
1425 return skb;
1426 }
1427
1428 /**
1429 * __skb_dequeue_tail - remove from the tail of the queue
1430 * @list: list to dequeue from
1431 *
1432 * Remove the tail of the list. This function does not take any locks
1433 * so must be used with appropriate locks held only. The tail item is
1434 * returned or %NULL if the list is empty.
1435 */
1436 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1437 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1438 {
1439 struct sk_buff *skb = skb_peek_tail(list);
1440 if (skb)
1441 __skb_unlink(skb, list);
1442 return skb;
1443 }
1444
1445
1446 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1447 {
1448 return skb->data_len;
1449 }
1450
1451 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1452 {
1453 return skb->len - skb->data_len;
1454 }
1455
1456 static inline int skb_pagelen(const struct sk_buff *skb)
1457 {
1458 int i, len = 0;
1459
1460 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1461 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1462 return len + skb_headlen(skb);
1463 }
1464
1465 /**
1466 * __skb_fill_page_desc - initialise a paged fragment in an skb
1467 * @skb: buffer containing fragment to be initialised
1468 * @i: paged fragment index to initialise
1469 * @page: the page to use for this fragment
1470 * @off: the offset to the data with @page
1471 * @size: the length of the data
1472 *
1473 * Initialises the @i'th fragment of @skb to point to &size bytes at
1474 * offset @off within @page.
1475 *
1476 * Does not take any additional reference on the fragment.
1477 */
1478 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1479 struct page *page, int off, int size)
1480 {
1481 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1482
1483 /*
1484 * Propagate page->pfmemalloc to the skb if we can. The problem is
1485 * that not all callers have unique ownership of the page. If
1486 * pfmemalloc is set, we check the mapping as a mapping implies
1487 * page->index is set (index and pfmemalloc share space).
1488 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1489 * do not lose pfmemalloc information as the pages would not be
1490 * allocated using __GFP_MEMALLOC.
1491 */
1492 frag->page.p = page;
1493 frag->page_offset = off;
1494 skb_frag_size_set(frag, size);
1495
1496 page = compound_head(page);
1497 if (page->pfmemalloc && !page->mapping)
1498 skb->pfmemalloc = true;
1499 }
1500
1501 /**
1502 * skb_fill_page_desc - initialise a paged fragment in an skb
1503 * @skb: buffer containing fragment to be initialised
1504 * @i: paged fragment index to initialise
1505 * @page: the page to use for this fragment
1506 * @off: the offset to the data with @page
1507 * @size: the length of the data
1508 *
1509 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1510 * @skb to point to @size bytes at offset @off within @page. In
1511 * addition updates @skb such that @i is the last fragment.
1512 *
1513 * Does not take any additional reference on the fragment.
1514 */
1515 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1516 struct page *page, int off, int size)
1517 {
1518 __skb_fill_page_desc(skb, i, page, off, size);
1519 skb_shinfo(skb)->nr_frags = i + 1;
1520 }
1521
1522 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1523 int size, unsigned int truesize);
1524
1525 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1526 unsigned int truesize);
1527
1528 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1529 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1530 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1531
1532 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1533 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1534 {
1535 return skb->head + skb->tail;
1536 }
1537
1538 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1539 {
1540 skb->tail = skb->data - skb->head;
1541 }
1542
1543 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1544 {
1545 skb_reset_tail_pointer(skb);
1546 skb->tail += offset;
1547 }
1548
1549 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1550 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1551 {
1552 return skb->tail;
1553 }
1554
1555 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1556 {
1557 skb->tail = skb->data;
1558 }
1559
1560 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1561 {
1562 skb->tail = skb->data + offset;
1563 }
1564
1565 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1566
1567 /*
1568 * Add data to an sk_buff
1569 */
1570 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1571 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1572 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1573 {
1574 unsigned char *tmp = skb_tail_pointer(skb);
1575 SKB_LINEAR_ASSERT(skb);
1576 skb->tail += len;
1577 skb->len += len;
1578 return tmp;
1579 }
1580
1581 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1582 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1583 {
1584 skb->data -= len;
1585 skb->len += len;
1586 return skb->data;
1587 }
1588
1589 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1590 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1591 {
1592 skb->len -= len;
1593 BUG_ON(skb->len < skb->data_len);
1594 return skb->data += len;
1595 }
1596
1597 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1598 {
1599 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1600 }
1601
1602 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1603
1604 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1605 {
1606 if (len > skb_headlen(skb) &&
1607 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1608 return NULL;
1609 skb->len -= len;
1610 return skb->data += len;
1611 }
1612
1613 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1614 {
1615 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1616 }
1617
1618 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1619 {
1620 if (likely(len <= skb_headlen(skb)))
1621 return 1;
1622 if (unlikely(len > skb->len))
1623 return 0;
1624 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1625 }
1626
1627 /**
1628 * skb_headroom - bytes at buffer head
1629 * @skb: buffer to check
1630 *
1631 * Return the number of bytes of free space at the head of an &sk_buff.
1632 */
1633 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1634 {
1635 return skb->data - skb->head;
1636 }
1637
1638 /**
1639 * skb_tailroom - bytes at buffer end
1640 * @skb: buffer to check
1641 *
1642 * Return the number of bytes of free space at the tail of an sk_buff
1643 */
1644 static inline int skb_tailroom(const struct sk_buff *skb)
1645 {
1646 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1647 }
1648
1649 /**
1650 * skb_availroom - bytes at buffer end
1651 * @skb: buffer to check
1652 *
1653 * Return the number of bytes of free space at the tail of an sk_buff
1654 * allocated by sk_stream_alloc()
1655 */
1656 static inline int skb_availroom(const struct sk_buff *skb)
1657 {
1658 if (skb_is_nonlinear(skb))
1659 return 0;
1660
1661 return skb->end - skb->tail - skb->reserved_tailroom;
1662 }
1663
1664 /**
1665 * skb_reserve - adjust headroom
1666 * @skb: buffer to alter
1667 * @len: bytes to move
1668 *
1669 * Increase the headroom of an empty &sk_buff by reducing the tail
1670 * room. This is only allowed for an empty buffer.
1671 */
1672 static inline void skb_reserve(struct sk_buff *skb, int len)
1673 {
1674 skb->data += len;
1675 skb->tail += len;
1676 }
1677
1678 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1679 {
1680 skb->inner_mac_header = skb->mac_header;
1681 skb->inner_network_header = skb->network_header;
1682 skb->inner_transport_header = skb->transport_header;
1683 }
1684
1685 static inline void skb_reset_mac_len(struct sk_buff *skb)
1686 {
1687 skb->mac_len = skb->network_header - skb->mac_header;
1688 }
1689
1690 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1691 *skb)
1692 {
1693 return skb->head + skb->inner_transport_header;
1694 }
1695
1696 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1697 {
1698 skb->inner_transport_header = skb->data - skb->head;
1699 }
1700
1701 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1702 const int offset)
1703 {
1704 skb_reset_inner_transport_header(skb);
1705 skb->inner_transport_header += offset;
1706 }
1707
1708 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1709 {
1710 return skb->head + skb->inner_network_header;
1711 }
1712
1713 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1714 {
1715 skb->inner_network_header = skb->data - skb->head;
1716 }
1717
1718 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1719 const int offset)
1720 {
1721 skb_reset_inner_network_header(skb);
1722 skb->inner_network_header += offset;
1723 }
1724
1725 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1726 {
1727 return skb->head + skb->inner_mac_header;
1728 }
1729
1730 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1731 {
1732 skb->inner_mac_header = skb->data - skb->head;
1733 }
1734
1735 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1736 const int offset)
1737 {
1738 skb_reset_inner_mac_header(skb);
1739 skb->inner_mac_header += offset;
1740 }
1741 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1742 {
1743 return skb->transport_header != (typeof(skb->transport_header))~0U;
1744 }
1745
1746 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1747 {
1748 return skb->head + skb->transport_header;
1749 }
1750
1751 static inline void skb_reset_transport_header(struct sk_buff *skb)
1752 {
1753 skb->transport_header = skb->data - skb->head;
1754 }
1755
1756 static inline void skb_set_transport_header(struct sk_buff *skb,
1757 const int offset)
1758 {
1759 skb_reset_transport_header(skb);
1760 skb->transport_header += offset;
1761 }
1762
1763 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1764 {
1765 return skb->head + skb->network_header;
1766 }
1767
1768 static inline void skb_reset_network_header(struct sk_buff *skb)
1769 {
1770 skb->network_header = skb->data - skb->head;
1771 }
1772
1773 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1774 {
1775 skb_reset_network_header(skb);
1776 skb->network_header += offset;
1777 }
1778
1779 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1780 {
1781 return skb->head + skb->mac_header;
1782 }
1783
1784 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1785 {
1786 return skb->mac_header != (typeof(skb->mac_header))~0U;
1787 }
1788
1789 static inline void skb_reset_mac_header(struct sk_buff *skb)
1790 {
1791 skb->mac_header = skb->data - skb->head;
1792 }
1793
1794 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1795 {
1796 skb_reset_mac_header(skb);
1797 skb->mac_header += offset;
1798 }
1799
1800 static inline void skb_pop_mac_header(struct sk_buff *skb)
1801 {
1802 skb->mac_header = skb->network_header;
1803 }
1804
1805 static inline void skb_probe_transport_header(struct sk_buff *skb,
1806 const int offset_hint)
1807 {
1808 struct flow_keys keys;
1809
1810 if (skb_transport_header_was_set(skb))
1811 return;
1812 else if (skb_flow_dissect(skb, &keys))
1813 skb_set_transport_header(skb, keys.thoff);
1814 else
1815 skb_set_transport_header(skb, offset_hint);
1816 }
1817
1818 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1819 {
1820 if (skb_mac_header_was_set(skb)) {
1821 const unsigned char *old_mac = skb_mac_header(skb);
1822
1823 skb_set_mac_header(skb, -skb->mac_len);
1824 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1825 }
1826 }
1827
1828 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1829 {
1830 return skb->csum_start - skb_headroom(skb);
1831 }
1832
1833 static inline int skb_transport_offset(const struct sk_buff *skb)
1834 {
1835 return skb_transport_header(skb) - skb->data;
1836 }
1837
1838 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1839 {
1840 return skb->transport_header - skb->network_header;
1841 }
1842
1843 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1844 {
1845 return skb->inner_transport_header - skb->inner_network_header;
1846 }
1847
1848 static inline int skb_network_offset(const struct sk_buff *skb)
1849 {
1850 return skb_network_header(skb) - skb->data;
1851 }
1852
1853 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1854 {
1855 return skb_inner_network_header(skb) - skb->data;
1856 }
1857
1858 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1859 {
1860 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1861 }
1862
1863 static inline void skb_pop_rcv_encapsulation(struct sk_buff *skb)
1864 {
1865 /* Only continue with checksum unnecessary if device indicated
1866 * it is valid across encapsulation (skb->encapsulation was set).
1867 */
1868 if (skb->ip_summed == CHECKSUM_UNNECESSARY && !skb->encapsulation)
1869 skb->ip_summed = CHECKSUM_NONE;
1870
1871 skb->encapsulation = 0;
1872 skb->csum_valid = 0;
1873 }
1874
1875 /*
1876 * CPUs often take a performance hit when accessing unaligned memory
1877 * locations. The actual performance hit varies, it can be small if the
1878 * hardware handles it or large if we have to take an exception and fix it
1879 * in software.
1880 *
1881 * Since an ethernet header is 14 bytes network drivers often end up with
1882 * the IP header at an unaligned offset. The IP header can be aligned by
1883 * shifting the start of the packet by 2 bytes. Drivers should do this
1884 * with:
1885 *
1886 * skb_reserve(skb, NET_IP_ALIGN);
1887 *
1888 * The downside to this alignment of the IP header is that the DMA is now
1889 * unaligned. On some architectures the cost of an unaligned DMA is high
1890 * and this cost outweighs the gains made by aligning the IP header.
1891 *
1892 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1893 * to be overridden.
1894 */
1895 #ifndef NET_IP_ALIGN
1896 #define NET_IP_ALIGN 2
1897 #endif
1898
1899 /*
1900 * The networking layer reserves some headroom in skb data (via
1901 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1902 * the header has to grow. In the default case, if the header has to grow
1903 * 32 bytes or less we avoid the reallocation.
1904 *
1905 * Unfortunately this headroom changes the DMA alignment of the resulting
1906 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1907 * on some architectures. An architecture can override this value,
1908 * perhaps setting it to a cacheline in size (since that will maintain
1909 * cacheline alignment of the DMA). It must be a power of 2.
1910 *
1911 * Various parts of the networking layer expect at least 32 bytes of
1912 * headroom, you should not reduce this.
1913 *
1914 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1915 * to reduce average number of cache lines per packet.
1916 * get_rps_cpus() for example only access one 64 bytes aligned block :
1917 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1918 */
1919 #ifndef NET_SKB_PAD
1920 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1921 #endif
1922
1923 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1924
1925 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927 if (unlikely(skb_is_nonlinear(skb))) {
1928 WARN_ON(1);
1929 return;
1930 }
1931 skb->len = len;
1932 skb_set_tail_pointer(skb, len);
1933 }
1934
1935 void skb_trim(struct sk_buff *skb, unsigned int len);
1936
1937 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1938 {
1939 if (skb->data_len)
1940 return ___pskb_trim(skb, len);
1941 __skb_trim(skb, len);
1942 return 0;
1943 }
1944
1945 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1946 {
1947 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1948 }
1949
1950 /**
1951 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1952 * @skb: buffer to alter
1953 * @len: new length
1954 *
1955 * This is identical to pskb_trim except that the caller knows that
1956 * the skb is not cloned so we should never get an error due to out-
1957 * of-memory.
1958 */
1959 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1960 {
1961 int err = pskb_trim(skb, len);
1962 BUG_ON(err);
1963 }
1964
1965 /**
1966 * skb_orphan - orphan a buffer
1967 * @skb: buffer to orphan
1968 *
1969 * If a buffer currently has an owner then we call the owner's
1970 * destructor function and make the @skb unowned. The buffer continues
1971 * to exist but is no longer charged to its former owner.
1972 */
1973 static inline void skb_orphan(struct sk_buff *skb)
1974 {
1975 if (skb->destructor) {
1976 skb->destructor(skb);
1977 skb->destructor = NULL;
1978 skb->sk = NULL;
1979 } else {
1980 BUG_ON(skb->sk);
1981 }
1982 }
1983
1984 /**
1985 * skb_orphan_frags - orphan the frags contained in a buffer
1986 * @skb: buffer to orphan frags from
1987 * @gfp_mask: allocation mask for replacement pages
1988 *
1989 * For each frag in the SKB which needs a destructor (i.e. has an
1990 * owner) create a copy of that frag and release the original
1991 * page by calling the destructor.
1992 */
1993 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1994 {
1995 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1996 return 0;
1997 return skb_copy_ubufs(skb, gfp_mask);
1998 }
1999
2000 /**
2001 * __skb_queue_purge - empty a list
2002 * @list: list to empty
2003 *
2004 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2005 * the list and one reference dropped. This function does not take the
2006 * list lock and the caller must hold the relevant locks to use it.
2007 */
2008 void skb_queue_purge(struct sk_buff_head *list);
2009 static inline void __skb_queue_purge(struct sk_buff_head *list)
2010 {
2011 struct sk_buff *skb;
2012 while ((skb = __skb_dequeue(list)) != NULL)
2013 kfree_skb(skb);
2014 }
2015
2016 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2017 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2018 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2019
2020 void *netdev_alloc_frag(unsigned int fragsz);
2021
2022 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2023 gfp_t gfp_mask);
2024
2025 /**
2026 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2027 * @dev: network device to receive on
2028 * @length: length to allocate
2029 *
2030 * Allocate a new &sk_buff and assign it a usage count of one. The
2031 * buffer has unspecified headroom built in. Users should allocate
2032 * the headroom they think they need without accounting for the
2033 * built in space. The built in space is used for optimisations.
2034 *
2035 * %NULL is returned if there is no free memory. Although this function
2036 * allocates memory it can be called from an interrupt.
2037 */
2038 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2039 unsigned int length)
2040 {
2041 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2042 }
2043
2044 /* legacy helper around __netdev_alloc_skb() */
2045 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2046 gfp_t gfp_mask)
2047 {
2048 return __netdev_alloc_skb(NULL, length, gfp_mask);
2049 }
2050
2051 /* legacy helper around netdev_alloc_skb() */
2052 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2053 {
2054 return netdev_alloc_skb(NULL, length);
2055 }
2056
2057
2058 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2059 unsigned int length, gfp_t gfp)
2060 {
2061 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2062
2063 if (NET_IP_ALIGN && skb)
2064 skb_reserve(skb, NET_IP_ALIGN);
2065 return skb;
2066 }
2067
2068 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2069 unsigned int length)
2070 {
2071 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2072 }
2073
2074 /**
2075 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2076 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2077 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2078 * @order: size of the allocation
2079 *
2080 * Allocate a new page.
2081 *
2082 * %NULL is returned if there is no free memory.
2083 */
2084 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2085 struct sk_buff *skb,
2086 unsigned int order)
2087 {
2088 struct page *page;
2089
2090 gfp_mask |= __GFP_COLD;
2091
2092 if (!(gfp_mask & __GFP_NOMEMALLOC))
2093 gfp_mask |= __GFP_MEMALLOC;
2094
2095 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2096 if (skb && page && page->pfmemalloc)
2097 skb->pfmemalloc = true;
2098
2099 return page;
2100 }
2101
2102 /**
2103 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2104 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2105 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2106 *
2107 * Allocate a new page.
2108 *
2109 * %NULL is returned if there is no free memory.
2110 */
2111 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2112 struct sk_buff *skb)
2113 {
2114 return __skb_alloc_pages(gfp_mask, skb, 0);
2115 }
2116
2117 /**
2118 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2119 * @page: The page that was allocated from skb_alloc_page
2120 * @skb: The skb that may need pfmemalloc set
2121 */
2122 static inline void skb_propagate_pfmemalloc(struct page *page,
2123 struct sk_buff *skb)
2124 {
2125 if (page && page->pfmemalloc)
2126 skb->pfmemalloc = true;
2127 }
2128
2129 /**
2130 * skb_frag_page - retrieve the page referred to by a paged fragment
2131 * @frag: the paged fragment
2132 *
2133 * Returns the &struct page associated with @frag.
2134 */
2135 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2136 {
2137 return frag->page.p;
2138 }
2139
2140 /**
2141 * __skb_frag_ref - take an addition reference on a paged fragment.
2142 * @frag: the paged fragment
2143 *
2144 * Takes an additional reference on the paged fragment @frag.
2145 */
2146 static inline void __skb_frag_ref(skb_frag_t *frag)
2147 {
2148 get_page(skb_frag_page(frag));
2149 }
2150
2151 /**
2152 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2153 * @skb: the buffer
2154 * @f: the fragment offset.
2155 *
2156 * Takes an additional reference on the @f'th paged fragment of @skb.
2157 */
2158 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2159 {
2160 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2161 }
2162
2163 /**
2164 * __skb_frag_unref - release a reference on a paged fragment.
2165 * @frag: the paged fragment
2166 *
2167 * Releases a reference on the paged fragment @frag.
2168 */
2169 static inline void __skb_frag_unref(skb_frag_t *frag)
2170 {
2171 put_page(skb_frag_page(frag));
2172 }
2173
2174 /**
2175 * skb_frag_unref - release a reference on a paged fragment of an skb.
2176 * @skb: the buffer
2177 * @f: the fragment offset
2178 *
2179 * Releases a reference on the @f'th paged fragment of @skb.
2180 */
2181 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2182 {
2183 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2184 }
2185
2186 /**
2187 * skb_frag_address - gets the address of the data contained in a paged fragment
2188 * @frag: the paged fragment buffer
2189 *
2190 * Returns the address of the data within @frag. The page must already
2191 * be mapped.
2192 */
2193 static inline void *skb_frag_address(const skb_frag_t *frag)
2194 {
2195 return page_address(skb_frag_page(frag)) + frag->page_offset;
2196 }
2197
2198 /**
2199 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2200 * @frag: the paged fragment buffer
2201 *
2202 * Returns the address of the data within @frag. Checks that the page
2203 * is mapped and returns %NULL otherwise.
2204 */
2205 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2206 {
2207 void *ptr = page_address(skb_frag_page(frag));
2208 if (unlikely(!ptr))
2209 return NULL;
2210
2211 return ptr + frag->page_offset;
2212 }
2213
2214 /**
2215 * __skb_frag_set_page - sets the page contained in a paged fragment
2216 * @frag: the paged fragment
2217 * @page: the page to set
2218 *
2219 * Sets the fragment @frag to contain @page.
2220 */
2221 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2222 {
2223 frag->page.p = page;
2224 }
2225
2226 /**
2227 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2228 * @skb: the buffer
2229 * @f: the fragment offset
2230 * @page: the page to set
2231 *
2232 * Sets the @f'th fragment of @skb to contain @page.
2233 */
2234 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2235 struct page *page)
2236 {
2237 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2238 }
2239
2240 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2241
2242 /**
2243 * skb_frag_dma_map - maps a paged fragment via the DMA API
2244 * @dev: the device to map the fragment to
2245 * @frag: the paged fragment to map
2246 * @offset: the offset within the fragment (starting at the
2247 * fragment's own offset)
2248 * @size: the number of bytes to map
2249 * @dir: the direction of the mapping (%PCI_DMA_*)
2250 *
2251 * Maps the page associated with @frag to @device.
2252 */
2253 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2254 const skb_frag_t *frag,
2255 size_t offset, size_t size,
2256 enum dma_data_direction dir)
2257 {
2258 return dma_map_page(dev, skb_frag_page(frag),
2259 frag->page_offset + offset, size, dir);
2260 }
2261
2262 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2263 gfp_t gfp_mask)
2264 {
2265 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2266 }
2267
2268
2269 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2270 gfp_t gfp_mask)
2271 {
2272 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2273 }
2274
2275
2276 /**
2277 * skb_clone_writable - is the header of a clone writable
2278 * @skb: buffer to check
2279 * @len: length up to which to write
2280 *
2281 * Returns true if modifying the header part of the cloned buffer
2282 * does not requires the data to be copied.
2283 */
2284 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2285 {
2286 return !skb_header_cloned(skb) &&
2287 skb_headroom(skb) + len <= skb->hdr_len;
2288 }
2289
2290 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2291 int cloned)
2292 {
2293 int delta = 0;
2294
2295 if (headroom > skb_headroom(skb))
2296 delta = headroom - skb_headroom(skb);
2297
2298 if (delta || cloned)
2299 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2300 GFP_ATOMIC);
2301 return 0;
2302 }
2303
2304 /**
2305 * skb_cow - copy header of skb when it is required
2306 * @skb: buffer to cow
2307 * @headroom: needed headroom
2308 *
2309 * If the skb passed lacks sufficient headroom or its data part
2310 * is shared, data is reallocated. If reallocation fails, an error
2311 * is returned and original skb is not changed.
2312 *
2313 * The result is skb with writable area skb->head...skb->tail
2314 * and at least @headroom of space at head.
2315 */
2316 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2317 {
2318 return __skb_cow(skb, headroom, skb_cloned(skb));
2319 }
2320
2321 /**
2322 * skb_cow_head - skb_cow but only making the head writable
2323 * @skb: buffer to cow
2324 * @headroom: needed headroom
2325 *
2326 * This function is identical to skb_cow except that we replace the
2327 * skb_cloned check by skb_header_cloned. It should be used when
2328 * you only need to push on some header and do not need to modify
2329 * the data.
2330 */
2331 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2332 {
2333 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2334 }
2335
2336 /**
2337 * skb_padto - pad an skbuff up to a minimal size
2338 * @skb: buffer to pad
2339 * @len: minimal length
2340 *
2341 * Pads up a buffer to ensure the trailing bytes exist and are
2342 * blanked. If the buffer already contains sufficient data it
2343 * is untouched. Otherwise it is extended. Returns zero on
2344 * success. The skb is freed on error.
2345 */
2346
2347 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2348 {
2349 unsigned int size = skb->len;
2350 if (likely(size >= len))
2351 return 0;
2352 return skb_pad(skb, len - size);
2353 }
2354
2355 static inline int skb_add_data(struct sk_buff *skb,
2356 char __user *from, int copy)
2357 {
2358 const int off = skb->len;
2359
2360 if (skb->ip_summed == CHECKSUM_NONE) {
2361 int err = 0;
2362 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2363 copy, 0, &err);
2364 if (!err) {
2365 skb->csum = csum_block_add(skb->csum, csum, off);
2366 return 0;
2367 }
2368 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2369 return 0;
2370
2371 __skb_trim(skb, off);
2372 return -EFAULT;
2373 }
2374
2375 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2376 const struct page *page, int off)
2377 {
2378 if (i) {
2379 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2380
2381 return page == skb_frag_page(frag) &&
2382 off == frag->page_offset + skb_frag_size(frag);
2383 }
2384 return false;
2385 }
2386
2387 static inline int __skb_linearize(struct sk_buff *skb)
2388 {
2389 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2390 }
2391
2392 /**
2393 * skb_linearize - convert paged skb to linear one
2394 * @skb: buffer to linarize
2395 *
2396 * If there is no free memory -ENOMEM is returned, otherwise zero
2397 * is returned and the old skb data released.
2398 */
2399 static inline int skb_linearize(struct sk_buff *skb)
2400 {
2401 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2402 }
2403
2404 /**
2405 * skb_has_shared_frag - can any frag be overwritten
2406 * @skb: buffer to test
2407 *
2408 * Return true if the skb has at least one frag that might be modified
2409 * by an external entity (as in vmsplice()/sendfile())
2410 */
2411 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2412 {
2413 return skb_is_nonlinear(skb) &&
2414 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2415 }
2416
2417 /**
2418 * skb_linearize_cow - make sure skb is linear and writable
2419 * @skb: buffer to process
2420 *
2421 * If there is no free memory -ENOMEM is returned, otherwise zero
2422 * is returned and the old skb data released.
2423 */
2424 static inline int skb_linearize_cow(struct sk_buff *skb)
2425 {
2426 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2427 __skb_linearize(skb) : 0;
2428 }
2429
2430 /**
2431 * skb_postpull_rcsum - update checksum for received skb after pull
2432 * @skb: buffer to update
2433 * @start: start of data before pull
2434 * @len: length of data pulled
2435 *
2436 * After doing a pull on a received packet, you need to call this to
2437 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2438 * CHECKSUM_NONE so that it can be recomputed from scratch.
2439 */
2440
2441 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2442 const void *start, unsigned int len)
2443 {
2444 if (skb->ip_summed == CHECKSUM_COMPLETE)
2445 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2446 }
2447
2448 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2449
2450 /**
2451 * pskb_trim_rcsum - trim received skb and update checksum
2452 * @skb: buffer to trim
2453 * @len: new length
2454 *
2455 * This is exactly the same as pskb_trim except that it ensures the
2456 * checksum of received packets are still valid after the operation.
2457 */
2458
2459 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2460 {
2461 if (likely(len >= skb->len))
2462 return 0;
2463 if (skb->ip_summed == CHECKSUM_COMPLETE)
2464 skb->ip_summed = CHECKSUM_NONE;
2465 return __pskb_trim(skb, len);
2466 }
2467
2468 #define skb_queue_walk(queue, skb) \
2469 for (skb = (queue)->next; \
2470 skb != (struct sk_buff *)(queue); \
2471 skb = skb->next)
2472
2473 #define skb_queue_walk_safe(queue, skb, tmp) \
2474 for (skb = (queue)->next, tmp = skb->next; \
2475 skb != (struct sk_buff *)(queue); \
2476 skb = tmp, tmp = skb->next)
2477
2478 #define skb_queue_walk_from(queue, skb) \
2479 for (; skb != (struct sk_buff *)(queue); \
2480 skb = skb->next)
2481
2482 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2483 for (tmp = skb->next; \
2484 skb != (struct sk_buff *)(queue); \
2485 skb = tmp, tmp = skb->next)
2486
2487 #define skb_queue_reverse_walk(queue, skb) \
2488 for (skb = (queue)->prev; \
2489 skb != (struct sk_buff *)(queue); \
2490 skb = skb->prev)
2491
2492 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2493 for (skb = (queue)->prev, tmp = skb->prev; \
2494 skb != (struct sk_buff *)(queue); \
2495 skb = tmp, tmp = skb->prev)
2496
2497 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2498 for (tmp = skb->prev; \
2499 skb != (struct sk_buff *)(queue); \
2500 skb = tmp, tmp = skb->prev)
2501
2502 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2503 {
2504 return skb_shinfo(skb)->frag_list != NULL;
2505 }
2506
2507 static inline void skb_frag_list_init(struct sk_buff *skb)
2508 {
2509 skb_shinfo(skb)->frag_list = NULL;
2510 }
2511
2512 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2513 {
2514 frag->next = skb_shinfo(skb)->frag_list;
2515 skb_shinfo(skb)->frag_list = frag;
2516 }
2517
2518 #define skb_walk_frags(skb, iter) \
2519 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2520
2521 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2522 int *peeked, int *off, int *err);
2523 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2524 int *err);
2525 unsigned int datagram_poll(struct file *file, struct socket *sock,
2526 struct poll_table_struct *wait);
2527 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2528 struct iovec *to, int size);
2529 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2530 struct iovec *iov);
2531 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2532 const struct iovec *from, int from_offset,
2533 int len);
2534 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2535 int offset, size_t count);
2536 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2537 const struct iovec *to, int to_offset,
2538 int size);
2539 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2540 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2541 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2542 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2543 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2544 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2545 int len, __wsum csum);
2546 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2547 struct pipe_inode_info *pipe, unsigned int len,
2548 unsigned int flags);
2549 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2550 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2551 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2552 int len, int hlen);
2553 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2554 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2555 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2556 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2557 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2558 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2559
2560 struct skb_checksum_ops {
2561 __wsum (*update)(const void *mem, int len, __wsum wsum);
2562 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2563 };
2564
2565 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2566 __wsum csum, const struct skb_checksum_ops *ops);
2567 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2568 __wsum csum);
2569
2570 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2571 int len, void *buffer)
2572 {
2573 int hlen = skb_headlen(skb);
2574
2575 if (hlen - offset >= len)
2576 return skb->data + offset;
2577
2578 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2579 return NULL;
2580
2581 return buffer;
2582 }
2583
2584 /**
2585 * skb_needs_linearize - check if we need to linearize a given skb
2586 * depending on the given device features.
2587 * @skb: socket buffer to check
2588 * @features: net device features
2589 *
2590 * Returns true if either:
2591 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2592 * 2. skb is fragmented and the device does not support SG.
2593 */
2594 static inline bool skb_needs_linearize(struct sk_buff *skb,
2595 netdev_features_t features)
2596 {
2597 return skb_is_nonlinear(skb) &&
2598 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2599 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2600 }
2601
2602 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2603 void *to,
2604 const unsigned int len)
2605 {
2606 memcpy(to, skb->data, len);
2607 }
2608
2609 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2610 const int offset, void *to,
2611 const unsigned int len)
2612 {
2613 memcpy(to, skb->data + offset, len);
2614 }
2615
2616 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2617 const void *from,
2618 const unsigned int len)
2619 {
2620 memcpy(skb->data, from, len);
2621 }
2622
2623 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2624 const int offset,
2625 const void *from,
2626 const unsigned int len)
2627 {
2628 memcpy(skb->data + offset, from, len);
2629 }
2630
2631 void skb_init(void);
2632
2633 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2634 {
2635 return skb->tstamp;
2636 }
2637
2638 /**
2639 * skb_get_timestamp - get timestamp from a skb
2640 * @skb: skb to get stamp from
2641 * @stamp: pointer to struct timeval to store stamp in
2642 *
2643 * Timestamps are stored in the skb as offsets to a base timestamp.
2644 * This function converts the offset back to a struct timeval and stores
2645 * it in stamp.
2646 */
2647 static inline void skb_get_timestamp(const struct sk_buff *skb,
2648 struct timeval *stamp)
2649 {
2650 *stamp = ktime_to_timeval(skb->tstamp);
2651 }
2652
2653 static inline void skb_get_timestampns(const struct sk_buff *skb,
2654 struct timespec *stamp)
2655 {
2656 *stamp = ktime_to_timespec(skb->tstamp);
2657 }
2658
2659 static inline void __net_timestamp(struct sk_buff *skb)
2660 {
2661 skb->tstamp = ktime_get_real();
2662 }
2663
2664 static inline ktime_t net_timedelta(ktime_t t)
2665 {
2666 return ktime_sub(ktime_get_real(), t);
2667 }
2668
2669 static inline ktime_t net_invalid_timestamp(void)
2670 {
2671 return ktime_set(0, 0);
2672 }
2673
2674 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2675
2676 void skb_clone_tx_timestamp(struct sk_buff *skb);
2677 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2678
2679 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2680
2681 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2682 {
2683 }
2684
2685 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2686 {
2687 return false;
2688 }
2689
2690 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2691
2692 /**
2693 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2694 *
2695 * PHY drivers may accept clones of transmitted packets for
2696 * timestamping via their phy_driver.txtstamp method. These drivers
2697 * must call this function to return the skb back to the stack, with
2698 * or without a timestamp.
2699 *
2700 * @skb: clone of the the original outgoing packet
2701 * @hwtstamps: hardware time stamps, may be NULL if not available
2702 *
2703 */
2704 void skb_complete_tx_timestamp(struct sk_buff *skb,
2705 struct skb_shared_hwtstamps *hwtstamps);
2706
2707 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2708 struct skb_shared_hwtstamps *hwtstamps,
2709 struct sock *sk, int tstype);
2710
2711 /**
2712 * skb_tstamp_tx - queue clone of skb with send time stamps
2713 * @orig_skb: the original outgoing packet
2714 * @hwtstamps: hardware time stamps, may be NULL if not available
2715 *
2716 * If the skb has a socket associated, then this function clones the
2717 * skb (thus sharing the actual data and optional structures), stores
2718 * the optional hardware time stamping information (if non NULL) or
2719 * generates a software time stamp (otherwise), then queues the clone
2720 * to the error queue of the socket. Errors are silently ignored.
2721 */
2722 void skb_tstamp_tx(struct sk_buff *orig_skb,
2723 struct skb_shared_hwtstamps *hwtstamps);
2724
2725 static inline void sw_tx_timestamp(struct sk_buff *skb)
2726 {
2727 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2728 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2729 skb_tstamp_tx(skb, NULL);
2730 }
2731
2732 /**
2733 * skb_tx_timestamp() - Driver hook for transmit timestamping
2734 *
2735 * Ethernet MAC Drivers should call this function in their hard_xmit()
2736 * function immediately before giving the sk_buff to the MAC hardware.
2737 *
2738 * Specifically, one should make absolutely sure that this function is
2739 * called before TX completion of this packet can trigger. Otherwise
2740 * the packet could potentially already be freed.
2741 *
2742 * @skb: A socket buffer.
2743 */
2744 static inline void skb_tx_timestamp(struct sk_buff *skb)
2745 {
2746 skb_clone_tx_timestamp(skb);
2747 sw_tx_timestamp(skb);
2748 }
2749
2750 /**
2751 * skb_complete_wifi_ack - deliver skb with wifi status
2752 *
2753 * @skb: the original outgoing packet
2754 * @acked: ack status
2755 *
2756 */
2757 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2758
2759 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2760 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2761
2762 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2763 {
2764 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2765 }
2766
2767 /**
2768 * skb_checksum_complete - Calculate checksum of an entire packet
2769 * @skb: packet to process
2770 *
2771 * This function calculates the checksum over the entire packet plus
2772 * the value of skb->csum. The latter can be used to supply the
2773 * checksum of a pseudo header as used by TCP/UDP. It returns the
2774 * checksum.
2775 *
2776 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2777 * this function can be used to verify that checksum on received
2778 * packets. In that case the function should return zero if the
2779 * checksum is correct. In particular, this function will return zero
2780 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2781 * hardware has already verified the correctness of the checksum.
2782 */
2783 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2784 {
2785 return skb_csum_unnecessary(skb) ?
2786 0 : __skb_checksum_complete(skb);
2787 }
2788
2789 /* Check if we need to perform checksum complete validation.
2790 *
2791 * Returns true if checksum complete is needed, false otherwise
2792 * (either checksum is unnecessary or zero checksum is allowed).
2793 */
2794 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2795 bool zero_okay,
2796 __sum16 check)
2797 {
2798 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2799 skb->csum_valid = 1;
2800 return false;
2801 }
2802
2803 return true;
2804 }
2805
2806 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2807 * in checksum_init.
2808 */
2809 #define CHECKSUM_BREAK 76
2810
2811 /* Validate (init) checksum based on checksum complete.
2812 *
2813 * Return values:
2814 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
2815 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2816 * checksum is stored in skb->csum for use in __skb_checksum_complete
2817 * non-zero: value of invalid checksum
2818 *
2819 */
2820 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2821 bool complete,
2822 __wsum psum)
2823 {
2824 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2825 if (!csum_fold(csum_add(psum, skb->csum))) {
2826 skb->csum_valid = 1;
2827 return 0;
2828 }
2829 }
2830
2831 skb->csum = psum;
2832
2833 if (complete || skb->len <= CHECKSUM_BREAK) {
2834 __sum16 csum;
2835
2836 csum = __skb_checksum_complete(skb);
2837 skb->csum_valid = !csum;
2838 return csum;
2839 }
2840
2841 return 0;
2842 }
2843
2844 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
2845 {
2846 return 0;
2847 }
2848
2849 /* Perform checksum validate (init). Note that this is a macro since we only
2850 * want to calculate the pseudo header which is an input function if necessary.
2851 * First we try to validate without any computation (checksum unnecessary) and
2852 * then calculate based on checksum complete calling the function to compute
2853 * pseudo header.
2854 *
2855 * Return values:
2856 * 0: checksum is validated or try to in skb_checksum_complete
2857 * non-zero: value of invalid checksum
2858 */
2859 #define __skb_checksum_validate(skb, proto, complete, \
2860 zero_okay, check, compute_pseudo) \
2861 ({ \
2862 __sum16 __ret = 0; \
2863 skb->csum_valid = 0; \
2864 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
2865 __ret = __skb_checksum_validate_complete(skb, \
2866 complete, compute_pseudo(skb, proto)); \
2867 __ret; \
2868 })
2869
2870 #define skb_checksum_init(skb, proto, compute_pseudo) \
2871 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
2872
2873 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
2874 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
2875
2876 #define skb_checksum_validate(skb, proto, compute_pseudo) \
2877 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
2878
2879 #define skb_checksum_validate_zero_check(skb, proto, check, \
2880 compute_pseudo) \
2881 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
2882
2883 #define skb_checksum_simple_validate(skb) \
2884 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
2885
2886 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2887 void nf_conntrack_destroy(struct nf_conntrack *nfct);
2888 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2889 {
2890 if (nfct && atomic_dec_and_test(&nfct->use))
2891 nf_conntrack_destroy(nfct);
2892 }
2893 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2894 {
2895 if (nfct)
2896 atomic_inc(&nfct->use);
2897 }
2898 #endif
2899 #ifdef CONFIG_BRIDGE_NETFILTER
2900 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2901 {
2902 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2903 kfree(nf_bridge);
2904 }
2905 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2906 {
2907 if (nf_bridge)
2908 atomic_inc(&nf_bridge->use);
2909 }
2910 #endif /* CONFIG_BRIDGE_NETFILTER */
2911 static inline void nf_reset(struct sk_buff *skb)
2912 {
2913 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2914 nf_conntrack_put(skb->nfct);
2915 skb->nfct = NULL;
2916 #endif
2917 #ifdef CONFIG_BRIDGE_NETFILTER
2918 nf_bridge_put(skb->nf_bridge);
2919 skb->nf_bridge = NULL;
2920 #endif
2921 }
2922
2923 static inline void nf_reset_trace(struct sk_buff *skb)
2924 {
2925 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
2926 skb->nf_trace = 0;
2927 #endif
2928 }
2929
2930 /* Note: This doesn't put any conntrack and bridge info in dst. */
2931 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2932 {
2933 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2934 dst->nfct = src->nfct;
2935 nf_conntrack_get(src->nfct);
2936 dst->nfctinfo = src->nfctinfo;
2937 #endif
2938 #ifdef CONFIG_BRIDGE_NETFILTER
2939 dst->nf_bridge = src->nf_bridge;
2940 nf_bridge_get(src->nf_bridge);
2941 #endif
2942 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
2943 dst->nf_trace = src->nf_trace;
2944 #endif
2945 }
2946
2947 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2948 {
2949 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2950 nf_conntrack_put(dst->nfct);
2951 #endif
2952 #ifdef CONFIG_BRIDGE_NETFILTER
2953 nf_bridge_put(dst->nf_bridge);
2954 #endif
2955 __nf_copy(dst, src);
2956 }
2957
2958 #ifdef CONFIG_NETWORK_SECMARK
2959 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2960 {
2961 to->secmark = from->secmark;
2962 }
2963
2964 static inline void skb_init_secmark(struct sk_buff *skb)
2965 {
2966 skb->secmark = 0;
2967 }
2968 #else
2969 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2970 { }
2971
2972 static inline void skb_init_secmark(struct sk_buff *skb)
2973 { }
2974 #endif
2975
2976 static inline bool skb_irq_freeable(const struct sk_buff *skb)
2977 {
2978 return !skb->destructor &&
2979 #if IS_ENABLED(CONFIG_XFRM)
2980 !skb->sp &&
2981 #endif
2982 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2983 !skb->nfct &&
2984 #endif
2985 !skb->_skb_refdst &&
2986 !skb_has_frag_list(skb);
2987 }
2988
2989 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2990 {
2991 skb->queue_mapping = queue_mapping;
2992 }
2993
2994 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2995 {
2996 return skb->queue_mapping;
2997 }
2998
2999 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3000 {
3001 to->queue_mapping = from->queue_mapping;
3002 }
3003
3004 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3005 {
3006 skb->queue_mapping = rx_queue + 1;
3007 }
3008
3009 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3010 {
3011 return skb->queue_mapping - 1;
3012 }
3013
3014 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3015 {
3016 return skb->queue_mapping != 0;
3017 }
3018
3019 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3020 unsigned int num_tx_queues);
3021
3022 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3023 {
3024 #ifdef CONFIG_XFRM
3025 return skb->sp;
3026 #else
3027 return NULL;
3028 #endif
3029 }
3030
3031 /* Keeps track of mac header offset relative to skb->head.
3032 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3033 * For non-tunnel skb it points to skb_mac_header() and for
3034 * tunnel skb it points to outer mac header.
3035 * Keeps track of level of encapsulation of network headers.
3036 */
3037 struct skb_gso_cb {
3038 int mac_offset;
3039 int encap_level;
3040 __u16 csum_start;
3041 };
3042 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3043
3044 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3045 {
3046 return (skb_mac_header(inner_skb) - inner_skb->head) -
3047 SKB_GSO_CB(inner_skb)->mac_offset;
3048 }
3049
3050 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3051 {
3052 int new_headroom, headroom;
3053 int ret;
3054
3055 headroom = skb_headroom(skb);
3056 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3057 if (ret)
3058 return ret;
3059
3060 new_headroom = skb_headroom(skb);
3061 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3062 return 0;
3063 }
3064
3065 /* Compute the checksum for a gso segment. First compute the checksum value
3066 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3067 * then add in skb->csum (checksum from csum_start to end of packet).
3068 * skb->csum and csum_start are then updated to reflect the checksum of the
3069 * resultant packet starting from the transport header-- the resultant checksum
3070 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3071 * header.
3072 */
3073 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3074 {
3075 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3076 skb_transport_offset(skb);
3077 __u16 csum;
3078
3079 csum = csum_fold(csum_partial(skb_transport_header(skb),
3080 plen, skb->csum));
3081 skb->csum = res;
3082 SKB_GSO_CB(skb)->csum_start -= plen;
3083
3084 return csum;
3085 }
3086
3087 static inline bool skb_is_gso(const struct sk_buff *skb)
3088 {
3089 return skb_shinfo(skb)->gso_size;
3090 }
3091
3092 /* Note: Should be called only if skb_is_gso(skb) is true */
3093 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3094 {
3095 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3096 }
3097
3098 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3099
3100 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3101 {
3102 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3103 * wanted then gso_type will be set. */
3104 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3105
3106 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3107 unlikely(shinfo->gso_type == 0)) {
3108 __skb_warn_lro_forwarding(skb);
3109 return true;
3110 }
3111 return false;
3112 }
3113
3114 static inline void skb_forward_csum(struct sk_buff *skb)
3115 {
3116 /* Unfortunately we don't support this one. Any brave souls? */
3117 if (skb->ip_summed == CHECKSUM_COMPLETE)
3118 skb->ip_summed = CHECKSUM_NONE;
3119 }
3120
3121 /**
3122 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3123 * @skb: skb to check
3124 *
3125 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3126 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3127 * use this helper, to document places where we make this assertion.
3128 */
3129 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3130 {
3131 #ifdef DEBUG
3132 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3133 #endif
3134 }
3135
3136 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3137
3138 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3139
3140 u32 __skb_get_poff(const struct sk_buff *skb);
3141
3142 /**
3143 * skb_head_is_locked - Determine if the skb->head is locked down
3144 * @skb: skb to check
3145 *
3146 * The head on skbs build around a head frag can be removed if they are
3147 * not cloned. This function returns true if the skb head is locked down
3148 * due to either being allocated via kmalloc, or by being a clone with
3149 * multiple references to the head.
3150 */
3151 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3152 {
3153 return !skb->head_frag || skb_cloned(skb);
3154 }
3155
3156 /**
3157 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3158 *
3159 * @skb: GSO skb
3160 *
3161 * skb_gso_network_seglen is used to determine the real size of the
3162 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3163 *
3164 * The MAC/L2 header is not accounted for.
3165 */
3166 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3167 {
3168 unsigned int hdr_len = skb_transport_header(skb) -
3169 skb_network_header(skb);
3170 return hdr_len + skb_gso_transport_seglen(skb);
3171 }
3172 #endif /* __KERNEL__ */
3173 #endif /* _LINUX_SKBUFF_H */
This page took 0.241663 seconds and 6 git commands to generate.