slab/slub: consider a memcg parameter in kmem_create_cache
[deliverable/linux.git] / include / linux / slab.h
1 /*
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
4 * (C) SGI 2006, Christoph Lameter
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
7 */
8
9 #ifndef _LINUX_SLAB_H
10 #define _LINUX_SLAB_H
11
12 #include <linux/gfp.h>
13 #include <linux/types.h>
14
15 /*
16 * Flags to pass to kmem_cache_create().
17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
18 */
19 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
20 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
21 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
22 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
23 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
24 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
25 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
26 /*
27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
28 *
29 * This delays freeing the SLAB page by a grace period, it does _NOT_
30 * delay object freeing. This means that if you do kmem_cache_free()
31 * that memory location is free to be reused at any time. Thus it may
32 * be possible to see another object there in the same RCU grace period.
33 *
34 * This feature only ensures the memory location backing the object
35 * stays valid, the trick to using this is relying on an independent
36 * object validation pass. Something like:
37 *
38 * rcu_read_lock()
39 * again:
40 * obj = lockless_lookup(key);
41 * if (obj) {
42 * if (!try_get_ref(obj)) // might fail for free objects
43 * goto again;
44 *
45 * if (obj->key != key) { // not the object we expected
46 * put_ref(obj);
47 * goto again;
48 * }
49 * }
50 * rcu_read_unlock();
51 *
52 * See also the comment on struct slab_rcu in mm/slab.c.
53 */
54 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
55 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
56 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
57
58 /* Flag to prevent checks on free */
59 #ifdef CONFIG_DEBUG_OBJECTS
60 # define SLAB_DEBUG_OBJECTS 0x00400000UL
61 #else
62 # define SLAB_DEBUG_OBJECTS 0x00000000UL
63 #endif
64
65 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
66
67 /* Don't track use of uninitialized memory */
68 #ifdef CONFIG_KMEMCHECK
69 # define SLAB_NOTRACK 0x01000000UL
70 #else
71 # define SLAB_NOTRACK 0x00000000UL
72 #endif
73 #ifdef CONFIG_FAILSLAB
74 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
75 #else
76 # define SLAB_FAILSLAB 0x00000000UL
77 #endif
78
79 /* The following flags affect the page allocator grouping pages by mobility */
80 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
81 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
82 /*
83 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
84 *
85 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
86 *
87 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
88 * Both make kfree a no-op.
89 */
90 #define ZERO_SIZE_PTR ((void *)16)
91
92 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
93 (unsigned long)ZERO_SIZE_PTR)
94
95 /*
96 * Common fields provided in kmem_cache by all slab allocators
97 * This struct is either used directly by the allocator (SLOB)
98 * or the allocator must include definitions for all fields
99 * provided in kmem_cache_common in their definition of kmem_cache.
100 *
101 * Once we can do anonymous structs (C11 standard) we could put a
102 * anonymous struct definition in these allocators so that the
103 * separate allocations in the kmem_cache structure of SLAB and
104 * SLUB is no longer needed.
105 */
106 #ifdef CONFIG_SLOB
107 struct kmem_cache {
108 unsigned int object_size;/* The original size of the object */
109 unsigned int size; /* The aligned/padded/added on size */
110 unsigned int align; /* Alignment as calculated */
111 unsigned long flags; /* Active flags on the slab */
112 const char *name; /* Slab name for sysfs */
113 int refcount; /* Use counter */
114 void (*ctor)(void *); /* Called on object slot creation */
115 struct list_head list; /* List of all slab caches on the system */
116 };
117 #endif
118
119 struct mem_cgroup;
120 /*
121 * struct kmem_cache related prototypes
122 */
123 void __init kmem_cache_init(void);
124 int slab_is_available(void);
125
126 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
127 unsigned long,
128 void (*)(void *));
129 struct kmem_cache *
130 kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
131 unsigned long, void (*)(void *));
132 void kmem_cache_destroy(struct kmem_cache *);
133 int kmem_cache_shrink(struct kmem_cache *);
134 void kmem_cache_free(struct kmem_cache *, void *);
135
136 /*
137 * Please use this macro to create slab caches. Simply specify the
138 * name of the structure and maybe some flags that are listed above.
139 *
140 * The alignment of the struct determines object alignment. If you
141 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
142 * then the objects will be properly aligned in SMP configurations.
143 */
144 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
145 sizeof(struct __struct), __alignof__(struct __struct),\
146 (__flags), NULL)
147
148 /*
149 * The largest kmalloc size supported by the slab allocators is
150 * 32 megabyte (2^25) or the maximum allocatable page order if that is
151 * less than 32 MB.
152 *
153 * WARNING: Its not easy to increase this value since the allocators have
154 * to do various tricks to work around compiler limitations in order to
155 * ensure proper constant folding.
156 */
157 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
158 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
159
160 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
161 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
162
163 /*
164 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
165 * alignment larger than the alignment of a 64-bit integer.
166 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
167 */
168 #ifdef ARCH_DMA_MINALIGN
169 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
170 #else
171 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
172 #endif
173
174 /*
175 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
176 * Intended for arches that get misalignment faults even for 64 bit integer
177 * aligned buffers.
178 */
179 #ifndef ARCH_SLAB_MINALIGN
180 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
181 #endif
182
183 /*
184 * This is the main placeholder for memcg-related information in kmem caches.
185 * struct kmem_cache will hold a pointer to it, so the memory cost while
186 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
187 * would otherwise be if that would be bundled in kmem_cache: we'll need an
188 * extra pointer chase. But the trade off clearly lays in favor of not
189 * penalizing non-users.
190 *
191 * Both the root cache and the child caches will have it. For the root cache,
192 * this will hold a dynamically allocated array large enough to hold
193 * information about the currently limited memcgs in the system.
194 *
195 * Child caches will hold extra metadata needed for its operation. Fields are:
196 *
197 * @memcg: pointer to the memcg this cache belongs to
198 * @list: list_head for the list of all caches in this memcg
199 * @root_cache: pointer to the global, root cache, this cache was derived from
200 */
201 struct memcg_cache_params {
202 bool is_root_cache;
203 union {
204 struct kmem_cache *memcg_caches[0];
205 struct {
206 struct mem_cgroup *memcg;
207 struct list_head list;
208 struct kmem_cache *root_cache;
209 };
210 };
211 };
212
213 int memcg_update_all_caches(int num_memcgs);
214
215 /*
216 * Common kmalloc functions provided by all allocators
217 */
218 void * __must_check __krealloc(const void *, size_t, gfp_t);
219 void * __must_check krealloc(const void *, size_t, gfp_t);
220 void kfree(const void *);
221 void kzfree(const void *);
222 size_t ksize(const void *);
223
224 /*
225 * Allocator specific definitions. These are mainly used to establish optimized
226 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
227 * selecting the appropriate general cache at compile time.
228 *
229 * Allocators must define at least:
230 *
231 * kmem_cache_alloc()
232 * __kmalloc()
233 * kmalloc()
234 *
235 * Those wishing to support NUMA must also define:
236 *
237 * kmem_cache_alloc_node()
238 * kmalloc_node()
239 *
240 * See each allocator definition file for additional comments and
241 * implementation notes.
242 */
243 #ifdef CONFIG_SLUB
244 #include <linux/slub_def.h>
245 #elif defined(CONFIG_SLOB)
246 #include <linux/slob_def.h>
247 #else
248 #include <linux/slab_def.h>
249 #endif
250
251 /**
252 * kmalloc_array - allocate memory for an array.
253 * @n: number of elements.
254 * @size: element size.
255 * @flags: the type of memory to allocate.
256 *
257 * The @flags argument may be one of:
258 *
259 * %GFP_USER - Allocate memory on behalf of user. May sleep.
260 *
261 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
262 *
263 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
264 * For example, use this inside interrupt handlers.
265 *
266 * %GFP_HIGHUSER - Allocate pages from high memory.
267 *
268 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
269 *
270 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
271 *
272 * %GFP_NOWAIT - Allocation will not sleep.
273 *
274 * %GFP_THISNODE - Allocate node-local memory only.
275 *
276 * %GFP_DMA - Allocation suitable for DMA.
277 * Should only be used for kmalloc() caches. Otherwise, use a
278 * slab created with SLAB_DMA.
279 *
280 * Also it is possible to set different flags by OR'ing
281 * in one or more of the following additional @flags:
282 *
283 * %__GFP_COLD - Request cache-cold pages instead of
284 * trying to return cache-warm pages.
285 *
286 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
287 *
288 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
289 * (think twice before using).
290 *
291 * %__GFP_NORETRY - If memory is not immediately available,
292 * then give up at once.
293 *
294 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
295 *
296 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
297 *
298 * There are other flags available as well, but these are not intended
299 * for general use, and so are not documented here. For a full list of
300 * potential flags, always refer to linux/gfp.h.
301 */
302 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
303 {
304 if (size != 0 && n > SIZE_MAX / size)
305 return NULL;
306 return __kmalloc(n * size, flags);
307 }
308
309 /**
310 * kcalloc - allocate memory for an array. The memory is set to zero.
311 * @n: number of elements.
312 * @size: element size.
313 * @flags: the type of memory to allocate (see kmalloc).
314 */
315 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
316 {
317 return kmalloc_array(n, size, flags | __GFP_ZERO);
318 }
319
320 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
321 /**
322 * kmalloc_node - allocate memory from a specific node
323 * @size: how many bytes of memory are required.
324 * @flags: the type of memory to allocate (see kcalloc).
325 * @node: node to allocate from.
326 *
327 * kmalloc() for non-local nodes, used to allocate from a specific node
328 * if available. Equivalent to kmalloc() in the non-NUMA single-node
329 * case.
330 */
331 static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
332 {
333 return kmalloc(size, flags);
334 }
335
336 static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
337 {
338 return __kmalloc(size, flags);
339 }
340
341 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
342
343 static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
344 gfp_t flags, int node)
345 {
346 return kmem_cache_alloc(cachep, flags);
347 }
348 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
349
350 /*
351 * kmalloc_track_caller is a special version of kmalloc that records the
352 * calling function of the routine calling it for slab leak tracking instead
353 * of just the calling function (confusing, eh?).
354 * It's useful when the call to kmalloc comes from a widely-used standard
355 * allocator where we care about the real place the memory allocation
356 * request comes from.
357 */
358 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
359 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
360 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
361 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
362 #define kmalloc_track_caller(size, flags) \
363 __kmalloc_track_caller(size, flags, _RET_IP_)
364 #else
365 #define kmalloc_track_caller(size, flags) \
366 __kmalloc(size, flags)
367 #endif /* DEBUG_SLAB */
368
369 #ifdef CONFIG_NUMA
370 /*
371 * kmalloc_node_track_caller is a special version of kmalloc_node that
372 * records the calling function of the routine calling it for slab leak
373 * tracking instead of just the calling function (confusing, eh?).
374 * It's useful when the call to kmalloc_node comes from a widely-used
375 * standard allocator where we care about the real place the memory
376 * allocation request comes from.
377 */
378 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
379 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
380 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
381 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
382 #define kmalloc_node_track_caller(size, flags, node) \
383 __kmalloc_node_track_caller(size, flags, node, \
384 _RET_IP_)
385 #else
386 #define kmalloc_node_track_caller(size, flags, node) \
387 __kmalloc_node(size, flags, node)
388 #endif
389
390 #else /* CONFIG_NUMA */
391
392 #define kmalloc_node_track_caller(size, flags, node) \
393 kmalloc_track_caller(size, flags)
394
395 #endif /* CONFIG_NUMA */
396
397 /*
398 * Shortcuts
399 */
400 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
401 {
402 return kmem_cache_alloc(k, flags | __GFP_ZERO);
403 }
404
405 /**
406 * kzalloc - allocate memory. The memory is set to zero.
407 * @size: how many bytes of memory are required.
408 * @flags: the type of memory to allocate (see kmalloc).
409 */
410 static inline void *kzalloc(size_t size, gfp_t flags)
411 {
412 return kmalloc(size, flags | __GFP_ZERO);
413 }
414
415 /**
416 * kzalloc_node - allocate zeroed memory from a particular memory node.
417 * @size: how many bytes of memory are required.
418 * @flags: the type of memory to allocate (see kmalloc).
419 * @node: memory node from which to allocate
420 */
421 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
422 {
423 return kmalloc_node(size, flags | __GFP_ZERO, node);
424 }
425
426 /*
427 * Determine the size of a slab object
428 */
429 static inline unsigned int kmem_cache_size(struct kmem_cache *s)
430 {
431 return s->object_size;
432 }
433
434 void __init kmem_cache_init_late(void);
435
436 #endif /* _LINUX_SLAB_H */
This page took 0.041148 seconds and 5 git commands to generate.