Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-fixes
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 int extralen;
81 unsigned char *extra; /* Extra descriptors */
82
83 /* array of desc.bNumEndpoint endpoints associated with this
84 * interface setting. these will be in no particular order.
85 */
86 struct usb_host_endpoint *endpoint;
87
88 char *string; /* iInterface string, if present */
89 };
90
91 enum usb_interface_condition {
92 USB_INTERFACE_UNBOUND = 0,
93 USB_INTERFACE_BINDING,
94 USB_INTERFACE_BOUND,
95 USB_INTERFACE_UNBINDING,
96 };
97
98 /**
99 * struct usb_interface - what usb device drivers talk to
100 * @altsetting: array of interface structures, one for each alternate
101 * setting that may be selected. Each one includes a set of
102 * endpoint configurations. They will be in no particular order.
103 * @cur_altsetting: the current altsetting.
104 * @num_altsetting: number of altsettings defined.
105 * @intf_assoc: interface association descriptor
106 * @minor: the minor number assigned to this interface, if this
107 * interface is bound to a driver that uses the USB major number.
108 * If this interface does not use the USB major, this field should
109 * be unused. The driver should set this value in the probe()
110 * function of the driver, after it has been assigned a minor
111 * number from the USB core by calling usb_register_dev().
112 * @condition: binding state of the interface: not bound, binding
113 * (in probe()), bound to a driver, or unbinding (in disconnect())
114 * @sysfs_files_created: sysfs attributes exist
115 * @ep_devs_created: endpoint child pseudo-devices exist
116 * @unregistering: flag set when the interface is being unregistered
117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118 * capability during autosuspend.
119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120 * has been deferred.
121 * @needs_binding: flag set when the driver should be re-probed or unbound
122 * following a reset or suspend operation it doesn't support.
123 * @dev: driver model's view of this device
124 * @usb_dev: if an interface is bound to the USB major, this will point
125 * to the sysfs representation for that device.
126 * @pm_usage_cnt: PM usage counter for this interface
127 * @reset_ws: Used for scheduling resets from atomic context.
128 * @reset_running: set to 1 if the interface is currently running a
129 * queued reset so that usb_cancel_queued_reset() doesn't try to
130 * remove from the workqueue when running inside the worker
131 * thread. See __usb_queue_reset_device().
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160 struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned reset_running:1;
183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES 32
207 #define USB_MAXIADS (USB_MAXINTERFACES/2)
208
209 /**
210 * struct usb_interface_cache - long-term representation of a device interface
211 * @num_altsetting: number of altsettings defined.
212 * @ref: reference counter.
213 * @altsetting: variable-length array of interface structures, one for
214 * each alternate setting that may be selected. Each one includes a
215 * set of endpoint configurations. They will be in no particular order.
216 *
217 * These structures persist for the lifetime of a usb_device, unlike
218 * struct usb_interface (which persists only as long as its configuration
219 * is installed). The altsetting arrays can be accessed through these
220 * structures at any time, permitting comparison of configurations and
221 * providing support for the /proc/bus/usb/devices pseudo-file.
222 */
223 struct usb_interface_cache {
224 unsigned num_altsetting; /* number of alternate settings */
225 struct kref ref; /* reference counter */
226
227 /* variable-length array of alternate settings for this interface,
228 * stored in no particular order */
229 struct usb_host_interface altsetting[0];
230 };
231 #define ref_to_usb_interface_cache(r) \
232 container_of(r, struct usb_interface_cache, ref)
233 #define altsetting_to_usb_interface_cache(a) \
234 container_of(a, struct usb_interface_cache, altsetting[0])
235
236 /**
237 * struct usb_host_config - representation of a device's configuration
238 * @desc: the device's configuration descriptor.
239 * @string: pointer to the cached version of the iConfiguration string, if
240 * present for this configuration.
241 * @intf_assoc: list of any interface association descriptors in this config
242 * @interface: array of pointers to usb_interface structures, one for each
243 * interface in the configuration. The number of interfaces is stored
244 * in desc.bNumInterfaces. These pointers are valid only while the
245 * the configuration is active.
246 * @intf_cache: array of pointers to usb_interface_cache structures, one
247 * for each interface in the configuration. These structures exist
248 * for the entire life of the device.
249 * @extra: pointer to buffer containing all extra descriptors associated
250 * with this configuration (those preceding the first interface
251 * descriptor).
252 * @extralen: length of the extra descriptors buffer.
253 *
254 * USB devices may have multiple configurations, but only one can be active
255 * at any time. Each encapsulates a different operational environment;
256 * for example, a dual-speed device would have separate configurations for
257 * full-speed and high-speed operation. The number of configurations
258 * available is stored in the device descriptor as bNumConfigurations.
259 *
260 * A configuration can contain multiple interfaces. Each corresponds to
261 * a different function of the USB device, and all are available whenever
262 * the configuration is active. The USB standard says that interfaces
263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264 * of devices get this wrong. In addition, the interface array is not
265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
266 * look up an interface entry based on its number.
267 *
268 * Device drivers should not attempt to activate configurations. The choice
269 * of which configuration to install is a policy decision based on such
270 * considerations as available power, functionality provided, and the user's
271 * desires (expressed through userspace tools). However, drivers can call
272 * usb_reset_configuration() to reinitialize the current configuration and
273 * all its interfaces.
274 */
275 struct usb_host_config {
276 struct usb_config_descriptor desc;
277
278 char *string; /* iConfiguration string, if present */
279
280 /* List of any Interface Association Descriptors in this
281 * configuration. */
282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283
284 /* the interfaces associated with this configuration,
285 * stored in no particular order */
286 struct usb_interface *interface[USB_MAXINTERFACES];
287
288 /* Interface information available even when this is not the
289 * active configuration */
290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291
292 unsigned char *extra; /* Extra descriptors */
293 int extralen;
294 };
295
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 struct usb_bos_descriptor *desc;
299
300 /* wireless cap descriptor is handled by wusb */
301 struct usb_ext_cap_descriptor *ext_cap;
302 struct usb_ss_cap_descriptor *ss_cap;
303 struct usb_ss_container_id_descriptor *ss_id;
304 };
305
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 __usb_get_extra_descriptor((ifpoint)->extra, \
310 (ifpoint)->extralen, \
311 type, (void **)ptr)
312
313 /* ----------------------------------------------------------------------- */
314
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319
320 /*
321 * Allocated per bus (tree of devices) we have:
322 */
323 struct usb_bus {
324 struct device *controller; /* host/master side hardware */
325 int busnum; /* Bus number (in order of reg) */
326 const char *bus_name; /* stable id (PCI slot_name etc) */
327 u8 uses_dma; /* Does the host controller use DMA? */
328 u8 uses_pio_for_control; /*
329 * Does the host controller use PIO
330 * for control transfers?
331 */
332 u8 otg_port; /* 0, or number of OTG/HNP port */
333 unsigned is_b_host:1; /* true during some HNP roleswitches */
334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
335 unsigned no_stop_on_short:1; /*
336 * Quirk: some controllers don't stop
337 * the ep queue on a short transfer
338 * with the URB_SHORT_NOT_OK flag set.
339 */
340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
341
342 int devnum_next; /* Next open device number in
343 * round-robin allocation */
344
345 struct usb_devmap devmap; /* device address allocation map */
346 struct usb_device *root_hub; /* Root hub */
347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
348 struct list_head bus_list; /* list of busses */
349
350 int bandwidth_allocated; /* on this bus: how much of the time
351 * reserved for periodic (intr/iso)
352 * requests is used, on average?
353 * Units: microseconds/frame.
354 * Limits: Full/low speed reserve 90%,
355 * while high speed reserves 80%.
356 */
357 int bandwidth_int_reqs; /* number of Interrupt requests */
358 int bandwidth_isoc_reqs; /* number of Isoc. requests */
359
360 unsigned resuming_ports; /* bit array: resuming root-hub ports */
361
362 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
363 struct mon_bus *mon_bus; /* non-null when associated */
364 int monitored; /* non-zero when monitored */
365 #endif
366 };
367
368 /* ----------------------------------------------------------------------- */
369
370 struct usb_tt;
371
372 enum usb_device_removable {
373 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
374 USB_DEVICE_REMOVABLE,
375 USB_DEVICE_FIXED,
376 };
377
378 enum usb_port_connect_type {
379 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
380 USB_PORT_CONNECT_TYPE_HOT_PLUG,
381 USB_PORT_CONNECT_TYPE_HARD_WIRED,
382 USB_PORT_NOT_USED,
383 };
384
385 /*
386 * USB 2.0 Link Power Management (LPM) parameters.
387 */
388 struct usb2_lpm_parameters {
389 /* Best effort service latency indicate how long the host will drive
390 * resume on an exit from L1.
391 */
392 unsigned int besl;
393
394 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
395 * When the timer counts to zero, the parent hub will initiate a LPM
396 * transition to L1.
397 */
398 int timeout;
399 };
400
401 /*
402 * USB 3.0 Link Power Management (LPM) parameters.
403 *
404 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
405 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
406 * All three are stored in nanoseconds.
407 */
408 struct usb3_lpm_parameters {
409 /*
410 * Maximum exit latency (MEL) for the host to send a packet to the
411 * device (either a Ping for isoc endpoints, or a data packet for
412 * interrupt endpoints), the hubs to decode the packet, and for all hubs
413 * in the path to transition the links to U0.
414 */
415 unsigned int mel;
416 /*
417 * Maximum exit latency for a device-initiated LPM transition to bring
418 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
419 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
420 */
421 unsigned int pel;
422
423 /*
424 * The System Exit Latency (SEL) includes PEL, and three other
425 * latencies. After a device initiates a U0 transition, it will take
426 * some time from when the device sends the ERDY to when it will finally
427 * receive the data packet. Basically, SEL should be the worse-case
428 * latency from when a device starts initiating a U0 transition to when
429 * it will get data.
430 */
431 unsigned int sel;
432 /*
433 * The idle timeout value that is currently programmed into the parent
434 * hub for this device. When the timer counts to zero, the parent hub
435 * will initiate an LPM transition to either U1 or U2.
436 */
437 int timeout;
438 };
439
440 /**
441 * struct usb_device - kernel's representation of a USB device
442 * @devnum: device number; address on a USB bus
443 * @devpath: device ID string for use in messages (e.g., /port/...)
444 * @route: tree topology hex string for use with xHCI
445 * @state: device state: configured, not attached, etc.
446 * @speed: device speed: high/full/low (or error)
447 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
448 * @ttport: device port on that tt hub
449 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
450 * @parent: our hub, unless we're the root
451 * @bus: bus we're part of
452 * @ep0: endpoint 0 data (default control pipe)
453 * @dev: generic device interface
454 * @descriptor: USB device descriptor
455 * @bos: USB device BOS descriptor set
456 * @config: all of the device's configs
457 * @actconfig: the active configuration
458 * @ep_in: array of IN endpoints
459 * @ep_out: array of OUT endpoints
460 * @rawdescriptors: raw descriptors for each config
461 * @bus_mA: Current available from the bus
462 * @portnum: parent port number (origin 1)
463 * @level: number of USB hub ancestors
464 * @can_submit: URBs may be submitted
465 * @persist_enabled: USB_PERSIST enabled for this device
466 * @have_langid: whether string_langid is valid
467 * @authorized: policy has said we can use it;
468 * (user space) policy determines if we authorize this device to be
469 * used or not. By default, wired USB devices are authorized.
470 * WUSB devices are not, until we authorize them from user space.
471 * FIXME -- complete doc
472 * @authenticated: Crypto authentication passed
473 * @wusb: device is Wireless USB
474 * @lpm_capable: device supports LPM
475 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
476 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
477 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
478 * @usb3_lpm_enabled: USB3 hardware LPM enabled
479 * @string_langid: language ID for strings
480 * @product: iProduct string, if present (static)
481 * @manufacturer: iManufacturer string, if present (static)
482 * @serial: iSerialNumber string, if present (static)
483 * @filelist: usbfs files that are open to this device
484 * @maxchild: number of ports if hub
485 * @quirks: quirks of the whole device
486 * @urbnum: number of URBs submitted for the whole device
487 * @active_duration: total time device is not suspended
488 * @connect_time: time device was first connected
489 * @do_remote_wakeup: remote wakeup should be enabled
490 * @reset_resume: needs reset instead of resume
491 * @port_is_suspended: the upstream port is suspended (L2 or U3)
492 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
493 * specific data for the device.
494 * @slot_id: Slot ID assigned by xHCI
495 * @removable: Device can be physically removed from this port
496 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
497 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
498 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
499 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
500 * to keep track of the number of functions that require USB 3.0 Link Power
501 * Management to be disabled for this usb_device. This count should only
502 * be manipulated by those functions, with the bandwidth_mutex is held.
503 *
504 * Notes:
505 * Usbcore drivers should not set usbdev->state directly. Instead use
506 * usb_set_device_state().
507 */
508 struct usb_device {
509 int devnum;
510 char devpath[16];
511 u32 route;
512 enum usb_device_state state;
513 enum usb_device_speed speed;
514
515 struct usb_tt *tt;
516 int ttport;
517
518 unsigned int toggle[2];
519
520 struct usb_device *parent;
521 struct usb_bus *bus;
522 struct usb_host_endpoint ep0;
523
524 struct device dev;
525
526 struct usb_device_descriptor descriptor;
527 struct usb_host_bos *bos;
528 struct usb_host_config *config;
529
530 struct usb_host_config *actconfig;
531 struct usb_host_endpoint *ep_in[16];
532 struct usb_host_endpoint *ep_out[16];
533
534 char **rawdescriptors;
535
536 unsigned short bus_mA;
537 u8 portnum;
538 u8 level;
539
540 unsigned can_submit:1;
541 unsigned persist_enabled:1;
542 unsigned have_langid:1;
543 unsigned authorized:1;
544 unsigned authenticated:1;
545 unsigned wusb:1;
546 unsigned lpm_capable:1;
547 unsigned usb2_hw_lpm_capable:1;
548 unsigned usb2_hw_lpm_besl_capable:1;
549 unsigned usb2_hw_lpm_enabled:1;
550 unsigned usb3_lpm_enabled:1;
551 int string_langid;
552
553 /* static strings from the device */
554 char *product;
555 char *manufacturer;
556 char *serial;
557
558 struct list_head filelist;
559
560 int maxchild;
561
562 u32 quirks;
563 atomic_t urbnum;
564
565 unsigned long active_duration;
566
567 #ifdef CONFIG_PM
568 unsigned long connect_time;
569
570 unsigned do_remote_wakeup:1;
571 unsigned reset_resume:1;
572 unsigned port_is_suspended:1;
573 #endif
574 struct wusb_dev *wusb_dev;
575 int slot_id;
576 enum usb_device_removable removable;
577 struct usb2_lpm_parameters l1_params;
578 struct usb3_lpm_parameters u1_params;
579 struct usb3_lpm_parameters u2_params;
580 unsigned lpm_disable_count;
581 };
582 #define to_usb_device(d) container_of(d, struct usb_device, dev)
583
584 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
585 {
586 return to_usb_device(intf->dev.parent);
587 }
588
589 extern struct usb_device *usb_get_dev(struct usb_device *dev);
590 extern void usb_put_dev(struct usb_device *dev);
591 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
592 int port1);
593
594 /**
595 * usb_hub_for_each_child - iterate over all child devices on the hub
596 * @hdev: USB device belonging to the usb hub
597 * @port1: portnum associated with child device
598 * @child: child device pointer
599 */
600 #define usb_hub_for_each_child(hdev, port1, child) \
601 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
602 port1 <= hdev->maxchild; \
603 child = usb_hub_find_child(hdev, ++port1)) \
604 if (!child) continue; else
605
606 /* USB device locking */
607 #define usb_lock_device(udev) device_lock(&(udev)->dev)
608 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
609 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
610 extern int usb_lock_device_for_reset(struct usb_device *udev,
611 const struct usb_interface *iface);
612
613 /* USB port reset for device reinitialization */
614 extern int usb_reset_device(struct usb_device *dev);
615 extern void usb_queue_reset_device(struct usb_interface *dev);
616
617 #ifdef CONFIG_ACPI
618 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
619 bool enable);
620 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
621 #else
622 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
623 bool enable) { return 0; }
624 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
625 { return true; }
626 #endif
627
628 /* USB autosuspend and autoresume */
629 #ifdef CONFIG_PM_RUNTIME
630 extern void usb_enable_autosuspend(struct usb_device *udev);
631 extern void usb_disable_autosuspend(struct usb_device *udev);
632
633 extern int usb_autopm_get_interface(struct usb_interface *intf);
634 extern void usb_autopm_put_interface(struct usb_interface *intf);
635 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
636 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
637 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
638 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
639
640 static inline void usb_mark_last_busy(struct usb_device *udev)
641 {
642 pm_runtime_mark_last_busy(&udev->dev);
643 }
644
645 #else
646
647 static inline int usb_enable_autosuspend(struct usb_device *udev)
648 { return 0; }
649 static inline int usb_disable_autosuspend(struct usb_device *udev)
650 { return 0; }
651
652 static inline int usb_autopm_get_interface(struct usb_interface *intf)
653 { return 0; }
654 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
655 { return 0; }
656
657 static inline void usb_autopm_put_interface(struct usb_interface *intf)
658 { }
659 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
660 { }
661 static inline void usb_autopm_get_interface_no_resume(
662 struct usb_interface *intf)
663 { }
664 static inline void usb_autopm_put_interface_no_suspend(
665 struct usb_interface *intf)
666 { }
667 static inline void usb_mark_last_busy(struct usb_device *udev)
668 { }
669 #endif
670
671 extern int usb_disable_lpm(struct usb_device *udev);
672 extern void usb_enable_lpm(struct usb_device *udev);
673 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
674 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
675 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
676
677 extern int usb_disable_ltm(struct usb_device *udev);
678 extern void usb_enable_ltm(struct usb_device *udev);
679
680 static inline bool usb_device_supports_ltm(struct usb_device *udev)
681 {
682 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
683 return false;
684 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
685 }
686
687
688 /*-------------------------------------------------------------------------*/
689
690 /* for drivers using iso endpoints */
691 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
692
693 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
694 extern int usb_alloc_streams(struct usb_interface *interface,
695 struct usb_host_endpoint **eps, unsigned int num_eps,
696 unsigned int num_streams, gfp_t mem_flags);
697
698 /* Reverts a group of bulk endpoints back to not using stream IDs. */
699 extern void usb_free_streams(struct usb_interface *interface,
700 struct usb_host_endpoint **eps, unsigned int num_eps,
701 gfp_t mem_flags);
702
703 /* used these for multi-interface device registration */
704 extern int usb_driver_claim_interface(struct usb_driver *driver,
705 struct usb_interface *iface, void *priv);
706
707 /**
708 * usb_interface_claimed - returns true iff an interface is claimed
709 * @iface: the interface being checked
710 *
711 * Returns true (nonzero) iff the interface is claimed, else false (zero).
712 * Callers must own the driver model's usb bus readlock. So driver
713 * probe() entries don't need extra locking, but other call contexts
714 * may need to explicitly claim that lock.
715 *
716 */
717 static inline int usb_interface_claimed(struct usb_interface *iface)
718 {
719 return (iface->dev.driver != NULL);
720 }
721
722 extern void usb_driver_release_interface(struct usb_driver *driver,
723 struct usb_interface *iface);
724 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
725 const struct usb_device_id *id);
726 extern int usb_match_one_id(struct usb_interface *interface,
727 const struct usb_device_id *id);
728
729 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
730 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
731 int minor);
732 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
733 unsigned ifnum);
734 extern struct usb_host_interface *usb_altnum_to_altsetting(
735 const struct usb_interface *intf, unsigned int altnum);
736 extern struct usb_host_interface *usb_find_alt_setting(
737 struct usb_host_config *config,
738 unsigned int iface_num,
739 unsigned int alt_num);
740
741
742 /**
743 * usb_make_path - returns stable device path in the usb tree
744 * @dev: the device whose path is being constructed
745 * @buf: where to put the string
746 * @size: how big is "buf"?
747 *
748 * Returns length of the string (> 0) or negative if size was too small.
749 *
750 * This identifier is intended to be "stable", reflecting physical paths in
751 * hardware such as physical bus addresses for host controllers or ports on
752 * USB hubs. That makes it stay the same until systems are physically
753 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
754 * controllers. Adding and removing devices, including virtual root hubs
755 * in host controller driver modules, does not change these path identifiers;
756 * neither does rebooting or re-enumerating. These are more useful identifiers
757 * than changeable ("unstable") ones like bus numbers or device addresses.
758 *
759 * With a partial exception for devices connected to USB 2.0 root hubs, these
760 * identifiers are also predictable. So long as the device tree isn't changed,
761 * plugging any USB device into a given hub port always gives it the same path.
762 * Because of the use of "companion" controllers, devices connected to ports on
763 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
764 * high speed, and a different one if they are full or low speed.
765 */
766 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
767 {
768 int actual;
769 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
770 dev->devpath);
771 return (actual >= (int)size) ? -1 : actual;
772 }
773
774 /*-------------------------------------------------------------------------*/
775
776 #define USB_DEVICE_ID_MATCH_DEVICE \
777 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
778 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
779 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
780 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
781 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
782 #define USB_DEVICE_ID_MATCH_DEV_INFO \
783 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
784 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
785 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
786 #define USB_DEVICE_ID_MATCH_INT_INFO \
787 (USB_DEVICE_ID_MATCH_INT_CLASS | \
788 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
789 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
790
791 /**
792 * USB_DEVICE - macro used to describe a specific usb device
793 * @vend: the 16 bit USB Vendor ID
794 * @prod: the 16 bit USB Product ID
795 *
796 * This macro is used to create a struct usb_device_id that matches a
797 * specific device.
798 */
799 #define USB_DEVICE(vend, prod) \
800 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
801 .idVendor = (vend), \
802 .idProduct = (prod)
803 /**
804 * USB_DEVICE_VER - describe a specific usb device with a version range
805 * @vend: the 16 bit USB Vendor ID
806 * @prod: the 16 bit USB Product ID
807 * @lo: the bcdDevice_lo value
808 * @hi: the bcdDevice_hi value
809 *
810 * This macro is used to create a struct usb_device_id that matches a
811 * specific device, with a version range.
812 */
813 #define USB_DEVICE_VER(vend, prod, lo, hi) \
814 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
815 .idVendor = (vend), \
816 .idProduct = (prod), \
817 .bcdDevice_lo = (lo), \
818 .bcdDevice_hi = (hi)
819
820 /**
821 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
822 * @vend: the 16 bit USB Vendor ID
823 * @prod: the 16 bit USB Product ID
824 * @cl: bInterfaceClass value
825 *
826 * This macro is used to create a struct usb_device_id that matches a
827 * specific interface class of devices.
828 */
829 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
830 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
831 USB_DEVICE_ID_MATCH_INT_CLASS, \
832 .idVendor = (vend), \
833 .idProduct = (prod), \
834 .bInterfaceClass = (cl)
835
836 /**
837 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
838 * @vend: the 16 bit USB Vendor ID
839 * @prod: the 16 bit USB Product ID
840 * @pr: bInterfaceProtocol value
841 *
842 * This macro is used to create a struct usb_device_id that matches a
843 * specific interface protocol of devices.
844 */
845 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
846 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
847 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
848 .idVendor = (vend), \
849 .idProduct = (prod), \
850 .bInterfaceProtocol = (pr)
851
852 /**
853 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
854 * @vend: the 16 bit USB Vendor ID
855 * @prod: the 16 bit USB Product ID
856 * @num: bInterfaceNumber value
857 *
858 * This macro is used to create a struct usb_device_id that matches a
859 * specific interface number of devices.
860 */
861 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
862 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
863 USB_DEVICE_ID_MATCH_INT_NUMBER, \
864 .idVendor = (vend), \
865 .idProduct = (prod), \
866 .bInterfaceNumber = (num)
867
868 /**
869 * USB_DEVICE_INFO - macro used to describe a class of usb devices
870 * @cl: bDeviceClass value
871 * @sc: bDeviceSubClass value
872 * @pr: bDeviceProtocol value
873 *
874 * This macro is used to create a struct usb_device_id that matches a
875 * specific class of devices.
876 */
877 #define USB_DEVICE_INFO(cl, sc, pr) \
878 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
879 .bDeviceClass = (cl), \
880 .bDeviceSubClass = (sc), \
881 .bDeviceProtocol = (pr)
882
883 /**
884 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
885 * @cl: bInterfaceClass value
886 * @sc: bInterfaceSubClass value
887 * @pr: bInterfaceProtocol value
888 *
889 * This macro is used to create a struct usb_device_id that matches a
890 * specific class of interfaces.
891 */
892 #define USB_INTERFACE_INFO(cl, sc, pr) \
893 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
894 .bInterfaceClass = (cl), \
895 .bInterfaceSubClass = (sc), \
896 .bInterfaceProtocol = (pr)
897
898 /**
899 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
900 * @vend: the 16 bit USB Vendor ID
901 * @prod: the 16 bit USB Product ID
902 * @cl: bInterfaceClass value
903 * @sc: bInterfaceSubClass value
904 * @pr: bInterfaceProtocol value
905 *
906 * This macro is used to create a struct usb_device_id that matches a
907 * specific device with a specific class of interfaces.
908 *
909 * This is especially useful when explicitly matching devices that have
910 * vendor specific bDeviceClass values, but standards-compliant interfaces.
911 */
912 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
913 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
914 | USB_DEVICE_ID_MATCH_DEVICE, \
915 .idVendor = (vend), \
916 .idProduct = (prod), \
917 .bInterfaceClass = (cl), \
918 .bInterfaceSubClass = (sc), \
919 .bInterfaceProtocol = (pr)
920
921 /**
922 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
923 * @vend: the 16 bit USB Vendor ID
924 * @cl: bInterfaceClass value
925 * @sc: bInterfaceSubClass value
926 * @pr: bInterfaceProtocol value
927 *
928 * This macro is used to create a struct usb_device_id that matches a
929 * specific vendor with a specific class of interfaces.
930 *
931 * This is especially useful when explicitly matching devices that have
932 * vendor specific bDeviceClass values, but standards-compliant interfaces.
933 */
934 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
935 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
936 | USB_DEVICE_ID_MATCH_VENDOR, \
937 .idVendor = (vend), \
938 .bInterfaceClass = (cl), \
939 .bInterfaceSubClass = (sc), \
940 .bInterfaceProtocol = (pr)
941
942 /* ----------------------------------------------------------------------- */
943
944 /* Stuff for dynamic usb ids */
945 struct usb_dynids {
946 spinlock_t lock;
947 struct list_head list;
948 };
949
950 struct usb_dynid {
951 struct list_head node;
952 struct usb_device_id id;
953 };
954
955 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
956 struct device_driver *driver,
957 const char *buf, size_t count);
958
959 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
960
961 /**
962 * struct usbdrv_wrap - wrapper for driver-model structure
963 * @driver: The driver-model core driver structure.
964 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
965 */
966 struct usbdrv_wrap {
967 struct device_driver driver;
968 int for_devices;
969 };
970
971 /**
972 * struct usb_driver - identifies USB interface driver to usbcore
973 * @name: The driver name should be unique among USB drivers,
974 * and should normally be the same as the module name.
975 * @probe: Called to see if the driver is willing to manage a particular
976 * interface on a device. If it is, probe returns zero and uses
977 * usb_set_intfdata() to associate driver-specific data with the
978 * interface. It may also use usb_set_interface() to specify the
979 * appropriate altsetting. If unwilling to manage the interface,
980 * return -ENODEV, if genuine IO errors occurred, an appropriate
981 * negative errno value.
982 * @disconnect: Called when the interface is no longer accessible, usually
983 * because its device has been (or is being) disconnected or the
984 * driver module is being unloaded.
985 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
986 * the "usbfs" filesystem. This lets devices provide ways to
987 * expose information to user space regardless of where they
988 * do (or don't) show up otherwise in the filesystem.
989 * @suspend: Called when the device is going to be suspended by the
990 * system either from system sleep or runtime suspend context. The
991 * return value will be ignored in system sleep context, so do NOT
992 * try to continue using the device if suspend fails in this case.
993 * Instead, let the resume or reset-resume routine recover from
994 * the failure.
995 * @resume: Called when the device is being resumed by the system.
996 * @reset_resume: Called when the suspended device has been reset instead
997 * of being resumed.
998 * @pre_reset: Called by usb_reset_device() when the device is about to be
999 * reset. This routine must not return until the driver has no active
1000 * URBs for the device, and no more URBs may be submitted until the
1001 * post_reset method is called.
1002 * @post_reset: Called by usb_reset_device() after the device
1003 * has been reset
1004 * @id_table: USB drivers use ID table to support hotplugging.
1005 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1006 * or your driver's probe function will never get called.
1007 * @dynids: used internally to hold the list of dynamically added device
1008 * ids for this driver.
1009 * @drvwrap: Driver-model core structure wrapper.
1010 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1011 * added to this driver by preventing the sysfs file from being created.
1012 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1013 * for interfaces bound to this driver.
1014 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1015 * endpoints before calling the driver's disconnect method.
1016 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1017 * to initiate lower power link state transitions when an idle timeout
1018 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1019 *
1020 * USB interface drivers must provide a name, probe() and disconnect()
1021 * methods, and an id_table. Other driver fields are optional.
1022 *
1023 * The id_table is used in hotplugging. It holds a set of descriptors,
1024 * and specialized data may be associated with each entry. That table
1025 * is used by both user and kernel mode hotplugging support.
1026 *
1027 * The probe() and disconnect() methods are called in a context where
1028 * they can sleep, but they should avoid abusing the privilege. Most
1029 * work to connect to a device should be done when the device is opened,
1030 * and undone at the last close. The disconnect code needs to address
1031 * concurrency issues with respect to open() and close() methods, as
1032 * well as forcing all pending I/O requests to complete (by unlinking
1033 * them as necessary, and blocking until the unlinks complete).
1034 */
1035 struct usb_driver {
1036 const char *name;
1037
1038 int (*probe) (struct usb_interface *intf,
1039 const struct usb_device_id *id);
1040
1041 void (*disconnect) (struct usb_interface *intf);
1042
1043 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1044 void *buf);
1045
1046 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1047 int (*resume) (struct usb_interface *intf);
1048 int (*reset_resume)(struct usb_interface *intf);
1049
1050 int (*pre_reset)(struct usb_interface *intf);
1051 int (*post_reset)(struct usb_interface *intf);
1052
1053 const struct usb_device_id *id_table;
1054
1055 struct usb_dynids dynids;
1056 struct usbdrv_wrap drvwrap;
1057 unsigned int no_dynamic_id:1;
1058 unsigned int supports_autosuspend:1;
1059 unsigned int disable_hub_initiated_lpm:1;
1060 unsigned int soft_unbind:1;
1061 };
1062 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1063
1064 /**
1065 * struct usb_device_driver - identifies USB device driver to usbcore
1066 * @name: The driver name should be unique among USB drivers,
1067 * and should normally be the same as the module name.
1068 * @probe: Called to see if the driver is willing to manage a particular
1069 * device. If it is, probe returns zero and uses dev_set_drvdata()
1070 * to associate driver-specific data with the device. If unwilling
1071 * to manage the device, return a negative errno value.
1072 * @disconnect: Called when the device is no longer accessible, usually
1073 * because it has been (or is being) disconnected or the driver's
1074 * module is being unloaded.
1075 * @suspend: Called when the device is going to be suspended by the system.
1076 * @resume: Called when the device is being resumed by the system.
1077 * @drvwrap: Driver-model core structure wrapper.
1078 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1079 * for devices bound to this driver.
1080 *
1081 * USB drivers must provide all the fields listed above except drvwrap.
1082 */
1083 struct usb_device_driver {
1084 const char *name;
1085
1086 int (*probe) (struct usb_device *udev);
1087 void (*disconnect) (struct usb_device *udev);
1088
1089 int (*suspend) (struct usb_device *udev, pm_message_t message);
1090 int (*resume) (struct usb_device *udev, pm_message_t message);
1091 struct usbdrv_wrap drvwrap;
1092 unsigned int supports_autosuspend:1;
1093 };
1094 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1095 drvwrap.driver)
1096
1097 extern struct bus_type usb_bus_type;
1098
1099 /**
1100 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1101 * @name: the usb class device name for this driver. Will show up in sysfs.
1102 * @devnode: Callback to provide a naming hint for a possible
1103 * device node to create.
1104 * @fops: pointer to the struct file_operations of this driver.
1105 * @minor_base: the start of the minor range for this driver.
1106 *
1107 * This structure is used for the usb_register_dev() and
1108 * usb_unregister_dev() functions, to consolidate a number of the
1109 * parameters used for them.
1110 */
1111 struct usb_class_driver {
1112 char *name;
1113 char *(*devnode)(struct device *dev, umode_t *mode);
1114 const struct file_operations *fops;
1115 int minor_base;
1116 };
1117
1118 /*
1119 * use these in module_init()/module_exit()
1120 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1121 */
1122 extern int usb_register_driver(struct usb_driver *, struct module *,
1123 const char *);
1124
1125 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1126 #define usb_register(driver) \
1127 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1128
1129 extern void usb_deregister(struct usb_driver *);
1130
1131 /**
1132 * module_usb_driver() - Helper macro for registering a USB driver
1133 * @__usb_driver: usb_driver struct
1134 *
1135 * Helper macro for USB drivers which do not do anything special in module
1136 * init/exit. This eliminates a lot of boilerplate. Each module may only
1137 * use this macro once, and calling it replaces module_init() and module_exit()
1138 */
1139 #define module_usb_driver(__usb_driver) \
1140 module_driver(__usb_driver, usb_register, \
1141 usb_deregister)
1142
1143 extern int usb_register_device_driver(struct usb_device_driver *,
1144 struct module *);
1145 extern void usb_deregister_device_driver(struct usb_device_driver *);
1146
1147 extern int usb_register_dev(struct usb_interface *intf,
1148 struct usb_class_driver *class_driver);
1149 extern void usb_deregister_dev(struct usb_interface *intf,
1150 struct usb_class_driver *class_driver);
1151
1152 extern int usb_disabled(void);
1153
1154 /* ----------------------------------------------------------------------- */
1155
1156 /*
1157 * URB support, for asynchronous request completions
1158 */
1159
1160 /*
1161 * urb->transfer_flags:
1162 *
1163 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1164 */
1165 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1166 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1167 * slot in the schedule */
1168 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1169 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1170 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1171 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1172 * needed */
1173 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1174
1175 /* The following flags are used internally by usbcore and HCDs */
1176 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1177 #define URB_DIR_OUT 0
1178 #define URB_DIR_MASK URB_DIR_IN
1179
1180 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1181 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1182 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1183 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1184 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1185 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1186 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1187 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1188
1189 struct usb_iso_packet_descriptor {
1190 unsigned int offset;
1191 unsigned int length; /* expected length */
1192 unsigned int actual_length;
1193 int status;
1194 };
1195
1196 struct urb;
1197
1198 struct usb_anchor {
1199 struct list_head urb_list;
1200 wait_queue_head_t wait;
1201 spinlock_t lock;
1202 unsigned int poisoned:1;
1203 };
1204
1205 static inline void init_usb_anchor(struct usb_anchor *anchor)
1206 {
1207 INIT_LIST_HEAD(&anchor->urb_list);
1208 init_waitqueue_head(&anchor->wait);
1209 spin_lock_init(&anchor->lock);
1210 }
1211
1212 typedef void (*usb_complete_t)(struct urb *);
1213
1214 /**
1215 * struct urb - USB Request Block
1216 * @urb_list: For use by current owner of the URB.
1217 * @anchor_list: membership in the list of an anchor
1218 * @anchor: to anchor URBs to a common mooring
1219 * @ep: Points to the endpoint's data structure. Will eventually
1220 * replace @pipe.
1221 * @pipe: Holds endpoint number, direction, type, and more.
1222 * Create these values with the eight macros available;
1223 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1224 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1225 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1226 * numbers range from zero to fifteen. Note that "in" endpoint two
1227 * is a different endpoint (and pipe) from "out" endpoint two.
1228 * The current configuration controls the existence, type, and
1229 * maximum packet size of any given endpoint.
1230 * @stream_id: the endpoint's stream ID for bulk streams
1231 * @dev: Identifies the USB device to perform the request.
1232 * @status: This is read in non-iso completion functions to get the
1233 * status of the particular request. ISO requests only use it
1234 * to tell whether the URB was unlinked; detailed status for
1235 * each frame is in the fields of the iso_frame-desc.
1236 * @transfer_flags: A variety of flags may be used to affect how URB
1237 * submission, unlinking, or operation are handled. Different
1238 * kinds of URB can use different flags.
1239 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1240 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1241 * (however, do not leave garbage in transfer_buffer even then).
1242 * This buffer must be suitable for DMA; allocate it with
1243 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1244 * of this buffer will be modified. This buffer is used for the data
1245 * stage of control transfers.
1246 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1247 * the device driver is saying that it provided this DMA address,
1248 * which the host controller driver should use in preference to the
1249 * transfer_buffer.
1250 * @sg: scatter gather buffer list
1251 * @num_mapped_sgs: (internal) number of mapped sg entries
1252 * @num_sgs: number of entries in the sg list
1253 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1254 * be broken up into chunks according to the current maximum packet
1255 * size for the endpoint, which is a function of the configuration
1256 * and is encoded in the pipe. When the length is zero, neither
1257 * transfer_buffer nor transfer_dma is used.
1258 * @actual_length: This is read in non-iso completion functions, and
1259 * it tells how many bytes (out of transfer_buffer_length) were
1260 * transferred. It will normally be the same as requested, unless
1261 * either an error was reported or a short read was performed.
1262 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1263 * short reads be reported as errors.
1264 * @setup_packet: Only used for control transfers, this points to eight bytes
1265 * of setup data. Control transfers always start by sending this data
1266 * to the device. Then transfer_buffer is read or written, if needed.
1267 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1268 * this field; setup_packet must point to a valid buffer.
1269 * @start_frame: Returns the initial frame for isochronous transfers.
1270 * @number_of_packets: Lists the number of ISO transfer buffers.
1271 * @interval: Specifies the polling interval for interrupt or isochronous
1272 * transfers. The units are frames (milliseconds) for full and low
1273 * speed devices, and microframes (1/8 millisecond) for highspeed
1274 * and SuperSpeed devices.
1275 * @error_count: Returns the number of ISO transfers that reported errors.
1276 * @context: For use in completion functions. This normally points to
1277 * request-specific driver context.
1278 * @complete: Completion handler. This URB is passed as the parameter to the
1279 * completion function. The completion function may then do what
1280 * it likes with the URB, including resubmitting or freeing it.
1281 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1282 * collect the transfer status for each buffer.
1283 *
1284 * This structure identifies USB transfer requests. URBs must be allocated by
1285 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1286 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1287 * are submitted using usb_submit_urb(), and pending requests may be canceled
1288 * using usb_unlink_urb() or usb_kill_urb().
1289 *
1290 * Data Transfer Buffers:
1291 *
1292 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1293 * taken from the general page pool. That is provided by transfer_buffer
1294 * (control requests also use setup_packet), and host controller drivers
1295 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1296 * mapping operations can be expensive on some platforms (perhaps using a dma
1297 * bounce buffer or talking to an IOMMU),
1298 * although they're cheap on commodity x86 and ppc hardware.
1299 *
1300 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1301 * which tells the host controller driver that no such mapping is needed for
1302 * the transfer_buffer since
1303 * the device driver is DMA-aware. For example, a device driver might
1304 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1305 * When this transfer flag is provided, host controller drivers will
1306 * attempt to use the dma address found in the transfer_dma
1307 * field rather than determining a dma address themselves.
1308 *
1309 * Note that transfer_buffer must still be set if the controller
1310 * does not support DMA (as indicated by bus.uses_dma) and when talking
1311 * to root hub. If you have to trasfer between highmem zone and the device
1312 * on such controller, create a bounce buffer or bail out with an error.
1313 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1314 * capable, assign NULL to it, so that usbmon knows not to use the value.
1315 * The setup_packet must always be set, so it cannot be located in highmem.
1316 *
1317 * Initialization:
1318 *
1319 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1320 * zero), and complete fields. All URBs must also initialize
1321 * transfer_buffer and transfer_buffer_length. They may provide the
1322 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1323 * to be treated as errors; that flag is invalid for write requests.
1324 *
1325 * Bulk URBs may
1326 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1327 * should always terminate with a short packet, even if it means adding an
1328 * extra zero length packet.
1329 *
1330 * Control URBs must provide a valid pointer in the setup_packet field.
1331 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1332 * beforehand.
1333 *
1334 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1335 * or, for highspeed devices, 125 microsecond units)
1336 * to poll for transfers. After the URB has been submitted, the interval
1337 * field reflects how the transfer was actually scheduled.
1338 * The polling interval may be more frequent than requested.
1339 * For example, some controllers have a maximum interval of 32 milliseconds,
1340 * while others support intervals of up to 1024 milliseconds.
1341 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1342 * endpoints, as well as high speed interrupt endpoints, the encoding of
1343 * the transfer interval in the endpoint descriptor is logarithmic.
1344 * Device drivers must convert that value to linear units themselves.)
1345 *
1346 * If an isochronous endpoint queue isn't already running, the host
1347 * controller will schedule a new URB to start as soon as bandwidth
1348 * utilization allows. If the queue is running then a new URB will be
1349 * scheduled to start in the first transfer slot following the end of the
1350 * preceding URB, if that slot has not already expired. If the slot has
1351 * expired (which can happen when IRQ delivery is delayed for a long time),
1352 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1353 * is clear then the URB will be scheduled to start in the expired slot,
1354 * implying that some of its packets will not be transferred; if the flag
1355 * is set then the URB will be scheduled in the first unexpired slot,
1356 * breaking the queue's synchronization. Upon URB completion, the
1357 * start_frame field will be set to the (micro)frame number in which the
1358 * transfer was scheduled. Ranges for frame counter values are HC-specific
1359 * and can go from as low as 256 to as high as 65536 frames.
1360 *
1361 * Isochronous URBs have a different data transfer model, in part because
1362 * the quality of service is only "best effort". Callers provide specially
1363 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1364 * at the end. Each such packet is an individual ISO transfer. Isochronous
1365 * URBs are normally queued, submitted by drivers to arrange that
1366 * transfers are at least double buffered, and then explicitly resubmitted
1367 * in completion handlers, so
1368 * that data (such as audio or video) streams at as constant a rate as the
1369 * host controller scheduler can support.
1370 *
1371 * Completion Callbacks:
1372 *
1373 * The completion callback is made in_interrupt(), and one of the first
1374 * things that a completion handler should do is check the status field.
1375 * The status field is provided for all URBs. It is used to report
1376 * unlinked URBs, and status for all non-ISO transfers. It should not
1377 * be examined before the URB is returned to the completion handler.
1378 *
1379 * The context field is normally used to link URBs back to the relevant
1380 * driver or request state.
1381 *
1382 * When the completion callback is invoked for non-isochronous URBs, the
1383 * actual_length field tells how many bytes were transferred. This field
1384 * is updated even when the URB terminated with an error or was unlinked.
1385 *
1386 * ISO transfer status is reported in the status and actual_length fields
1387 * of the iso_frame_desc array, and the number of errors is reported in
1388 * error_count. Completion callbacks for ISO transfers will normally
1389 * (re)submit URBs to ensure a constant transfer rate.
1390 *
1391 * Note that even fields marked "public" should not be touched by the driver
1392 * when the urb is owned by the hcd, that is, since the call to
1393 * usb_submit_urb() till the entry into the completion routine.
1394 */
1395 struct urb {
1396 /* private: usb core and host controller only fields in the urb */
1397 struct kref kref; /* reference count of the URB */
1398 void *hcpriv; /* private data for host controller */
1399 atomic_t use_count; /* concurrent submissions counter */
1400 atomic_t reject; /* submissions will fail */
1401 int unlinked; /* unlink error code */
1402
1403 /* public: documented fields in the urb that can be used by drivers */
1404 struct list_head urb_list; /* list head for use by the urb's
1405 * current owner */
1406 struct list_head anchor_list; /* the URB may be anchored */
1407 struct usb_anchor *anchor;
1408 struct usb_device *dev; /* (in) pointer to associated device */
1409 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1410 unsigned int pipe; /* (in) pipe information */
1411 unsigned int stream_id; /* (in) stream ID */
1412 int status; /* (return) non-ISO status */
1413 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1414 void *transfer_buffer; /* (in) associated data buffer */
1415 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1416 struct scatterlist *sg; /* (in) scatter gather buffer list */
1417 int num_mapped_sgs; /* (internal) mapped sg entries */
1418 int num_sgs; /* (in) number of entries in the sg list */
1419 u32 transfer_buffer_length; /* (in) data buffer length */
1420 u32 actual_length; /* (return) actual transfer length */
1421 unsigned char *setup_packet; /* (in) setup packet (control only) */
1422 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1423 int start_frame; /* (modify) start frame (ISO) */
1424 int number_of_packets; /* (in) number of ISO packets */
1425 int interval; /* (modify) transfer interval
1426 * (INT/ISO) */
1427 int error_count; /* (return) number of ISO errors */
1428 void *context; /* (in) context for completion */
1429 usb_complete_t complete; /* (in) completion routine */
1430 struct usb_iso_packet_descriptor iso_frame_desc[0];
1431 /* (in) ISO ONLY */
1432 };
1433
1434 /* ----------------------------------------------------------------------- */
1435
1436 /**
1437 * usb_fill_control_urb - initializes a control urb
1438 * @urb: pointer to the urb to initialize.
1439 * @dev: pointer to the struct usb_device for this urb.
1440 * @pipe: the endpoint pipe
1441 * @setup_packet: pointer to the setup_packet buffer
1442 * @transfer_buffer: pointer to the transfer buffer
1443 * @buffer_length: length of the transfer buffer
1444 * @complete_fn: pointer to the usb_complete_t function
1445 * @context: what to set the urb context to.
1446 *
1447 * Initializes a control urb with the proper information needed to submit
1448 * it to a device.
1449 */
1450 static inline void usb_fill_control_urb(struct urb *urb,
1451 struct usb_device *dev,
1452 unsigned int pipe,
1453 unsigned char *setup_packet,
1454 void *transfer_buffer,
1455 int buffer_length,
1456 usb_complete_t complete_fn,
1457 void *context)
1458 {
1459 urb->dev = dev;
1460 urb->pipe = pipe;
1461 urb->setup_packet = setup_packet;
1462 urb->transfer_buffer = transfer_buffer;
1463 urb->transfer_buffer_length = buffer_length;
1464 urb->complete = complete_fn;
1465 urb->context = context;
1466 }
1467
1468 /**
1469 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1470 * @urb: pointer to the urb to initialize.
1471 * @dev: pointer to the struct usb_device for this urb.
1472 * @pipe: the endpoint pipe
1473 * @transfer_buffer: pointer to the transfer buffer
1474 * @buffer_length: length of the transfer buffer
1475 * @complete_fn: pointer to the usb_complete_t function
1476 * @context: what to set the urb context to.
1477 *
1478 * Initializes a bulk urb with the proper information needed to submit it
1479 * to a device.
1480 */
1481 static inline void usb_fill_bulk_urb(struct urb *urb,
1482 struct usb_device *dev,
1483 unsigned int pipe,
1484 void *transfer_buffer,
1485 int buffer_length,
1486 usb_complete_t complete_fn,
1487 void *context)
1488 {
1489 urb->dev = dev;
1490 urb->pipe = pipe;
1491 urb->transfer_buffer = transfer_buffer;
1492 urb->transfer_buffer_length = buffer_length;
1493 urb->complete = complete_fn;
1494 urb->context = context;
1495 }
1496
1497 /**
1498 * usb_fill_int_urb - macro to help initialize a interrupt urb
1499 * @urb: pointer to the urb to initialize.
1500 * @dev: pointer to the struct usb_device for this urb.
1501 * @pipe: the endpoint pipe
1502 * @transfer_buffer: pointer to the transfer buffer
1503 * @buffer_length: length of the transfer buffer
1504 * @complete_fn: pointer to the usb_complete_t function
1505 * @context: what to set the urb context to.
1506 * @interval: what to set the urb interval to, encoded like
1507 * the endpoint descriptor's bInterval value.
1508 *
1509 * Initializes a interrupt urb with the proper information needed to submit
1510 * it to a device.
1511 *
1512 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1513 * encoding of the endpoint interval, and express polling intervals in
1514 * microframes (eight per millisecond) rather than in frames (one per
1515 * millisecond).
1516 *
1517 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1518 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1519 * through to the host controller, rather than being translated into microframe
1520 * units.
1521 */
1522 static inline void usb_fill_int_urb(struct urb *urb,
1523 struct usb_device *dev,
1524 unsigned int pipe,
1525 void *transfer_buffer,
1526 int buffer_length,
1527 usb_complete_t complete_fn,
1528 void *context,
1529 int interval)
1530 {
1531 urb->dev = dev;
1532 urb->pipe = pipe;
1533 urb->transfer_buffer = transfer_buffer;
1534 urb->transfer_buffer_length = buffer_length;
1535 urb->complete = complete_fn;
1536 urb->context = context;
1537 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1538 urb->interval = 1 << (interval - 1);
1539 else
1540 urb->interval = interval;
1541 urb->start_frame = -1;
1542 }
1543
1544 extern void usb_init_urb(struct urb *urb);
1545 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1546 extern void usb_free_urb(struct urb *urb);
1547 #define usb_put_urb usb_free_urb
1548 extern struct urb *usb_get_urb(struct urb *urb);
1549 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1550 extern int usb_unlink_urb(struct urb *urb);
1551 extern void usb_kill_urb(struct urb *urb);
1552 extern void usb_poison_urb(struct urb *urb);
1553 extern void usb_unpoison_urb(struct urb *urb);
1554 extern void usb_block_urb(struct urb *urb);
1555 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1556 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1557 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1558 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1559 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1560 extern void usb_unanchor_urb(struct urb *urb);
1561 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1562 unsigned int timeout);
1563 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1564 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1565 extern int usb_anchor_empty(struct usb_anchor *anchor);
1566
1567 #define usb_unblock_urb usb_unpoison_urb
1568
1569 /**
1570 * usb_urb_dir_in - check if an URB describes an IN transfer
1571 * @urb: URB to be checked
1572 *
1573 * Returns 1 if @urb describes an IN transfer (device-to-host),
1574 * otherwise 0.
1575 */
1576 static inline int usb_urb_dir_in(struct urb *urb)
1577 {
1578 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1579 }
1580
1581 /**
1582 * usb_urb_dir_out - check if an URB describes an OUT transfer
1583 * @urb: URB to be checked
1584 *
1585 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1586 * otherwise 0.
1587 */
1588 static inline int usb_urb_dir_out(struct urb *urb)
1589 {
1590 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1591 }
1592
1593 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1594 gfp_t mem_flags, dma_addr_t *dma);
1595 void usb_free_coherent(struct usb_device *dev, size_t size,
1596 void *addr, dma_addr_t dma);
1597
1598 #if 0
1599 struct urb *usb_buffer_map(struct urb *urb);
1600 void usb_buffer_dmasync(struct urb *urb);
1601 void usb_buffer_unmap(struct urb *urb);
1602 #endif
1603
1604 struct scatterlist;
1605 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1606 struct scatterlist *sg, int nents);
1607 #if 0
1608 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1609 struct scatterlist *sg, int n_hw_ents);
1610 #endif
1611 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1612 struct scatterlist *sg, int n_hw_ents);
1613
1614 /*-------------------------------------------------------------------*
1615 * SYNCHRONOUS CALL SUPPORT *
1616 *-------------------------------------------------------------------*/
1617
1618 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1619 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1620 void *data, __u16 size, int timeout);
1621 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1622 void *data, int len, int *actual_length, int timeout);
1623 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1624 void *data, int len, int *actual_length,
1625 int timeout);
1626
1627 /* wrappers around usb_control_msg() for the most common standard requests */
1628 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1629 unsigned char descindex, void *buf, int size);
1630 extern int usb_get_status(struct usb_device *dev,
1631 int type, int target, void *data);
1632 extern int usb_string(struct usb_device *dev, int index,
1633 char *buf, size_t size);
1634
1635 /* wrappers that also update important state inside usbcore */
1636 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1637 extern int usb_reset_configuration(struct usb_device *dev);
1638 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1639 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1640
1641 /* this request isn't really synchronous, but it belongs with the others */
1642 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1643
1644 /*
1645 * timeouts, in milliseconds, used for sending/receiving control messages
1646 * they typically complete within a few frames (msec) after they're issued
1647 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1648 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1649 */
1650 #define USB_CTRL_GET_TIMEOUT 5000
1651 #define USB_CTRL_SET_TIMEOUT 5000
1652
1653
1654 /**
1655 * struct usb_sg_request - support for scatter/gather I/O
1656 * @status: zero indicates success, else negative errno
1657 * @bytes: counts bytes transferred.
1658 *
1659 * These requests are initialized using usb_sg_init(), and then are used
1660 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1661 * members of the request object aren't for driver access.
1662 *
1663 * The status and bytecount values are valid only after usb_sg_wait()
1664 * returns. If the status is zero, then the bytecount matches the total
1665 * from the request.
1666 *
1667 * After an error completion, drivers may need to clear a halt condition
1668 * on the endpoint.
1669 */
1670 struct usb_sg_request {
1671 int status;
1672 size_t bytes;
1673
1674 /* private:
1675 * members below are private to usbcore,
1676 * and are not provided for driver access!
1677 */
1678 spinlock_t lock;
1679
1680 struct usb_device *dev;
1681 int pipe;
1682
1683 int entries;
1684 struct urb **urbs;
1685
1686 int count;
1687 struct completion complete;
1688 };
1689
1690 int usb_sg_init(
1691 struct usb_sg_request *io,
1692 struct usb_device *dev,
1693 unsigned pipe,
1694 unsigned period,
1695 struct scatterlist *sg,
1696 int nents,
1697 size_t length,
1698 gfp_t mem_flags
1699 );
1700 void usb_sg_cancel(struct usb_sg_request *io);
1701 void usb_sg_wait(struct usb_sg_request *io);
1702
1703
1704 /* ----------------------------------------------------------------------- */
1705
1706 /*
1707 * For various legacy reasons, Linux has a small cookie that's paired with
1708 * a struct usb_device to identify an endpoint queue. Queue characteristics
1709 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1710 * an unsigned int encoded as:
1711 *
1712 * - direction: bit 7 (0 = Host-to-Device [Out],
1713 * 1 = Device-to-Host [In] ...
1714 * like endpoint bEndpointAddress)
1715 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1716 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1717 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1718 * 10 = control, 11 = bulk)
1719 *
1720 * Given the device address and endpoint descriptor, pipes are redundant.
1721 */
1722
1723 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1724 /* (yet ... they're the values used by usbfs) */
1725 #define PIPE_ISOCHRONOUS 0
1726 #define PIPE_INTERRUPT 1
1727 #define PIPE_CONTROL 2
1728 #define PIPE_BULK 3
1729
1730 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1731 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1732
1733 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1734 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1735
1736 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1737 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1738 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1739 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1740 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1741
1742 static inline unsigned int __create_pipe(struct usb_device *dev,
1743 unsigned int endpoint)
1744 {
1745 return (dev->devnum << 8) | (endpoint << 15);
1746 }
1747
1748 /* Create various pipes... */
1749 #define usb_sndctrlpipe(dev, endpoint) \
1750 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1751 #define usb_rcvctrlpipe(dev, endpoint) \
1752 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1753 #define usb_sndisocpipe(dev, endpoint) \
1754 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1755 #define usb_rcvisocpipe(dev, endpoint) \
1756 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1757 #define usb_sndbulkpipe(dev, endpoint) \
1758 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1759 #define usb_rcvbulkpipe(dev, endpoint) \
1760 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1761 #define usb_sndintpipe(dev, endpoint) \
1762 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1763 #define usb_rcvintpipe(dev, endpoint) \
1764 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1765
1766 static inline struct usb_host_endpoint *
1767 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1768 {
1769 struct usb_host_endpoint **eps;
1770 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1771 return eps[usb_pipeendpoint(pipe)];
1772 }
1773
1774 /*-------------------------------------------------------------------------*/
1775
1776 static inline __u16
1777 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1778 {
1779 struct usb_host_endpoint *ep;
1780 unsigned epnum = usb_pipeendpoint(pipe);
1781
1782 if (is_out) {
1783 WARN_ON(usb_pipein(pipe));
1784 ep = udev->ep_out[epnum];
1785 } else {
1786 WARN_ON(usb_pipeout(pipe));
1787 ep = udev->ep_in[epnum];
1788 }
1789 if (!ep)
1790 return 0;
1791
1792 /* NOTE: only 0x07ff bits are for packet size... */
1793 return usb_endpoint_maxp(&ep->desc);
1794 }
1795
1796 /* ----------------------------------------------------------------------- */
1797
1798 /* translate USB error codes to codes user space understands */
1799 static inline int usb_translate_errors(int error_code)
1800 {
1801 switch (error_code) {
1802 case 0:
1803 case -ENOMEM:
1804 case -ENODEV:
1805 case -EOPNOTSUPP:
1806 return error_code;
1807 default:
1808 return -EIO;
1809 }
1810 }
1811
1812 /* Events from the usb core */
1813 #define USB_DEVICE_ADD 0x0001
1814 #define USB_DEVICE_REMOVE 0x0002
1815 #define USB_BUS_ADD 0x0003
1816 #define USB_BUS_REMOVE 0x0004
1817 extern void usb_register_notify(struct notifier_block *nb);
1818 extern void usb_unregister_notify(struct notifier_block *nb);
1819
1820 /* debugfs stuff */
1821 extern struct dentry *usb_debug_root;
1822
1823 #endif /* __KERNEL__ */
1824
1825 #endif
This page took 0.068539 seconds and 5 git commands to generate.