USB: add USB-Persist facility
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26
27 /*-------------------------------------------------------------------------*/
28
29 /*
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
33 *
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
38 *
39 * And there might be other descriptors mixed in with those.
40 *
41 * Devices may also have class-specific or vendor-specific descriptors.
42 */
43
44 struct ep_device;
45
46 /**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
55 *
56 * USB requests are always queued to a given endpoint, identified by a
57 * descriptor within an active interface in a given USB configuration.
58 */
59 struct usb_host_endpoint {
60 struct usb_endpoint_descriptor desc;
61 struct list_head urb_list;
62 void *hcpriv;
63 struct ep_device *ep_dev; /* For sysfs info */
64
65 unsigned char *extra; /* Extra descriptors */
66 int extralen;
67 };
68
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71 struct usb_interface_descriptor desc;
72
73 /* array of desc.bNumEndpoint endpoints associated with this
74 * interface setting. these will be in no particular order.
75 */
76 struct usb_host_endpoint *endpoint;
77
78 char *string; /* iInterface string, if present */
79 unsigned char *extra; /* Extra descriptors */
80 int extralen;
81 };
82
83 enum usb_interface_condition {
84 USB_INTERFACE_UNBOUND = 0,
85 USB_INTERFACE_BINDING,
86 USB_INTERFACE_BOUND,
87 USB_INTERFACE_UNBINDING,
88 };
89
90 /**
91 * struct usb_interface - what usb device drivers talk to
92 * @altsetting: array of interface structures, one for each alternate
93 * setting that may be selected. Each one includes a set of
94 * endpoint configurations. They will be in no particular order.
95 * @num_altsetting: number of altsettings defined.
96 * @cur_altsetting: the current altsetting.
97 * @driver: the USB driver that is bound to this interface.
98 * @minor: the minor number assigned to this interface, if this
99 * interface is bound to a driver that uses the USB major number.
100 * If this interface does not use the USB major, this field should
101 * be unused. The driver should set this value in the probe()
102 * function of the driver, after it has been assigned a minor
103 * number from the USB core by calling usb_register_dev().
104 * @condition: binding state of the interface: not bound, binding
105 * (in probe()), bound to a driver, or unbinding (in disconnect())
106 * @is_active: flag set when the interface is bound and not suspended.
107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
108 * capability during autosuspend.
109 * @dev: driver model's view of this device
110 * @usb_dev: if an interface is bound to the USB major, this will point
111 * to the sysfs representation for that device.
112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
113 * allowed unless the counter is 0.
114 *
115 * USB device drivers attach to interfaces on a physical device. Each
116 * interface encapsulates a single high level function, such as feeding
117 * an audio stream to a speaker or reporting a change in a volume control.
118 * Many USB devices only have one interface. The protocol used to talk to
119 * an interface's endpoints can be defined in a usb "class" specification,
120 * or by a product's vendor. The (default) control endpoint is part of
121 * every interface, but is never listed among the interface's descriptors.
122 *
123 * The driver that is bound to the interface can use standard driver model
124 * calls such as dev_get_drvdata() on the dev member of this structure.
125 *
126 * Each interface may have alternate settings. The initial configuration
127 * of a device sets altsetting 0, but the device driver can change
128 * that setting using usb_set_interface(). Alternate settings are often
129 * used to control the use of periodic endpoints, such as by having
130 * different endpoints use different amounts of reserved USB bandwidth.
131 * All standards-conformant USB devices that use isochronous endpoints
132 * will use them in non-default settings.
133 *
134 * The USB specification says that alternate setting numbers must run from
135 * 0 to one less than the total number of alternate settings. But some
136 * devices manage to mess this up, and the structures aren't necessarily
137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
138 * look up an alternate setting in the altsetting array based on its number.
139 */
140 struct usb_interface {
141 /* array of alternate settings for this interface,
142 * stored in no particular order */
143 struct usb_host_interface *altsetting;
144
145 struct usb_host_interface *cur_altsetting; /* the currently
146 * active alternate setting */
147 unsigned num_altsetting; /* number of alternate settings */
148
149 int minor; /* minor number this interface is
150 * bound to */
151 enum usb_interface_condition condition; /* state of binding */
152 unsigned is_active:1; /* the interface is not suspended */
153 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
154
155 struct device dev; /* interface specific device info */
156 struct device *usb_dev; /* pointer to the usb class's device, if any */
157 int pm_usage_cnt; /* usage counter for autosuspend */
158 };
159 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
160 #define interface_to_usbdev(intf) \
161 container_of(intf->dev.parent, struct usb_device, dev)
162
163 static inline void *usb_get_intfdata (struct usb_interface *intf)
164 {
165 return dev_get_drvdata (&intf->dev);
166 }
167
168 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
169 {
170 dev_set_drvdata(&intf->dev, data);
171 }
172
173 struct usb_interface *usb_get_intf(struct usb_interface *intf);
174 void usb_put_intf(struct usb_interface *intf);
175
176 /* this maximum is arbitrary */
177 #define USB_MAXINTERFACES 32
178
179 /**
180 * struct usb_interface_cache - long-term representation of a device interface
181 * @num_altsetting: number of altsettings defined.
182 * @ref: reference counter.
183 * @altsetting: variable-length array of interface structures, one for
184 * each alternate setting that may be selected. Each one includes a
185 * set of endpoint configurations. They will be in no particular order.
186 *
187 * These structures persist for the lifetime of a usb_device, unlike
188 * struct usb_interface (which persists only as long as its configuration
189 * is installed). The altsetting arrays can be accessed through these
190 * structures at any time, permitting comparison of configurations and
191 * providing support for the /proc/bus/usb/devices pseudo-file.
192 */
193 struct usb_interface_cache {
194 unsigned num_altsetting; /* number of alternate settings */
195 struct kref ref; /* reference counter */
196
197 /* variable-length array of alternate settings for this interface,
198 * stored in no particular order */
199 struct usb_host_interface altsetting[0];
200 };
201 #define ref_to_usb_interface_cache(r) \
202 container_of(r, struct usb_interface_cache, ref)
203 #define altsetting_to_usb_interface_cache(a) \
204 container_of(a, struct usb_interface_cache, altsetting[0])
205
206 /**
207 * struct usb_host_config - representation of a device's configuration
208 * @desc: the device's configuration descriptor.
209 * @string: pointer to the cached version of the iConfiguration string, if
210 * present for this configuration.
211 * @interface: array of pointers to usb_interface structures, one for each
212 * interface in the configuration. The number of interfaces is stored
213 * in desc.bNumInterfaces. These pointers are valid only while the
214 * the configuration is active.
215 * @intf_cache: array of pointers to usb_interface_cache structures, one
216 * for each interface in the configuration. These structures exist
217 * for the entire life of the device.
218 * @extra: pointer to buffer containing all extra descriptors associated
219 * with this configuration (those preceding the first interface
220 * descriptor).
221 * @extralen: length of the extra descriptors buffer.
222 *
223 * USB devices may have multiple configurations, but only one can be active
224 * at any time. Each encapsulates a different operational environment;
225 * for example, a dual-speed device would have separate configurations for
226 * full-speed and high-speed operation. The number of configurations
227 * available is stored in the device descriptor as bNumConfigurations.
228 *
229 * A configuration can contain multiple interfaces. Each corresponds to
230 * a different function of the USB device, and all are available whenever
231 * the configuration is active. The USB standard says that interfaces
232 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
233 * of devices get this wrong. In addition, the interface array is not
234 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
235 * look up an interface entry based on its number.
236 *
237 * Device drivers should not attempt to activate configurations. The choice
238 * of which configuration to install is a policy decision based on such
239 * considerations as available power, functionality provided, and the user's
240 * desires (expressed through userspace tools). However, drivers can call
241 * usb_reset_configuration() to reinitialize the current configuration and
242 * all its interfaces.
243 */
244 struct usb_host_config {
245 struct usb_config_descriptor desc;
246
247 char *string; /* iConfiguration string, if present */
248 /* the interfaces associated with this configuration,
249 * stored in no particular order */
250 struct usb_interface *interface[USB_MAXINTERFACES];
251
252 /* Interface information available even when this is not the
253 * active configuration */
254 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
255
256 unsigned char *extra; /* Extra descriptors */
257 int extralen;
258 };
259
260 int __usb_get_extra_descriptor(char *buffer, unsigned size,
261 unsigned char type, void **ptr);
262 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
263 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
264 type,(void**)ptr)
265
266 /* ----------------------------------------------------------------------- */
267
268 /* USB device number allocation bitmap */
269 struct usb_devmap {
270 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
271 };
272
273 /*
274 * Allocated per bus (tree of devices) we have:
275 */
276 struct usb_bus {
277 struct device *controller; /* host/master side hardware */
278 int busnum; /* Bus number (in order of reg) */
279 char *bus_name; /* stable id (PCI slot_name etc) */
280 u8 uses_dma; /* Does the host controller use DMA? */
281 u8 otg_port; /* 0, or number of OTG/HNP port */
282 unsigned is_b_host:1; /* true during some HNP roleswitches */
283 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
284
285 int devnum_next; /* Next open device number in
286 * round-robin allocation */
287
288 struct usb_devmap devmap; /* device address allocation map */
289 struct usb_device *root_hub; /* Root hub */
290 struct list_head bus_list; /* list of busses */
291
292 int bandwidth_allocated; /* on this bus: how much of the time
293 * reserved for periodic (intr/iso)
294 * requests is used, on average?
295 * Units: microseconds/frame.
296 * Limits: Full/low speed reserve 90%,
297 * while high speed reserves 80%.
298 */
299 int bandwidth_int_reqs; /* number of Interrupt requests */
300 int bandwidth_isoc_reqs; /* number of Isoc. requests */
301
302 #ifdef CONFIG_USB_DEVICEFS
303 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
304 #endif
305 struct class_device *class_dev; /* class device for this bus */
306
307 #if defined(CONFIG_USB_MON)
308 struct mon_bus *mon_bus; /* non-null when associated */
309 int monitored; /* non-zero when monitored */
310 #endif
311 };
312
313 /* ----------------------------------------------------------------------- */
314
315 /* This is arbitrary.
316 * From USB 2.0 spec Table 11-13, offset 7, a hub can
317 * have up to 255 ports. The most yet reported is 10.
318 *
319 * Current Wireless USB host hardware (Intel i1480 for example) allows
320 * up to 22 devices to connect. Upcoming hardware might raise that
321 * limit. Because the arrays need to add a bit for hub status data, we
322 * do 31, so plus one evens out to four bytes.
323 */
324 #define USB_MAXCHILDREN (31)
325
326 struct usb_tt;
327
328 /*
329 * struct usb_device - kernel's representation of a USB device
330 *
331 * FIXME: Write the kerneldoc!
332 *
333 * Usbcore drivers should not set usbdev->state directly. Instead use
334 * usb_set_device_state().
335 */
336 struct usb_device {
337 int devnum; /* Address on USB bus */
338 char devpath [16]; /* Use in messages: /port/port/... */
339 enum usb_device_state state; /* configured, not attached, etc */
340 enum usb_device_speed speed; /* high/full/low (or error) */
341
342 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
343 int ttport; /* device port on that tt hub */
344
345 unsigned int toggle[2]; /* one bit for each endpoint
346 * ([0] = IN, [1] = OUT) */
347
348 struct usb_device *parent; /* our hub, unless we're the root */
349 struct usb_bus *bus; /* Bus we're part of */
350 struct usb_host_endpoint ep0;
351
352 struct device dev; /* Generic device interface */
353
354 struct usb_device_descriptor descriptor;/* Descriptor */
355 struct usb_host_config *config; /* All of the configs */
356
357 struct usb_host_config *actconfig;/* the active configuration */
358 struct usb_host_endpoint *ep_in[16];
359 struct usb_host_endpoint *ep_out[16];
360
361 char **rawdescriptors; /* Raw descriptors for each config */
362
363 unsigned short bus_mA; /* Current available from the bus */
364 u8 portnum; /* Parent port number (origin 1) */
365 u8 level; /* Number of USB hub ancestors */
366
367 unsigned discon_suspended:1; /* Disconnected while suspended */
368 unsigned have_langid:1; /* whether string_langid is valid */
369 int string_langid; /* language ID for strings */
370
371 /* static strings from the device */
372 char *product; /* iProduct string, if present */
373 char *manufacturer; /* iManufacturer string, if present */
374 char *serial; /* iSerialNumber string, if present */
375
376 struct list_head filelist;
377 #ifdef CONFIG_USB_DEVICE_CLASS
378 struct device *usb_classdev;
379 #endif
380 #ifdef CONFIG_USB_DEVICEFS
381 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
382 #endif
383 /*
384 * Child devices - these can be either new devices
385 * (if this is a hub device), or different instances
386 * of this same device.
387 *
388 * Each instance needs its own set of data structures.
389 */
390
391 int maxchild; /* Number of ports if hub */
392 struct usb_device *children[USB_MAXCHILDREN];
393
394 int pm_usage_cnt; /* usage counter for autosuspend */
395 u32 quirks; /* quirks of the whole device */
396
397 #ifdef CONFIG_PM
398 struct delayed_work autosuspend; /* for delayed autosuspends */
399 struct mutex pm_mutex; /* protects PM operations */
400
401 unsigned long last_busy; /* time of last use */
402 int autosuspend_delay; /* in jiffies */
403
404 unsigned auto_pm:1; /* autosuspend/resume in progress */
405 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
406 unsigned reset_resume:1; /* needs reset instead of resume */
407 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
408 unsigned autoresume_disabled:1; /* disabled by the user */
409 #endif
410 };
411 #define to_usb_device(d) container_of(d, struct usb_device, dev)
412
413 extern struct usb_device *usb_get_dev(struct usb_device *dev);
414 extern void usb_put_dev(struct usb_device *dev);
415
416 /* USB device locking */
417 #define usb_lock_device(udev) down(&(udev)->dev.sem)
418 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
419 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
420 extern int usb_lock_device_for_reset(struct usb_device *udev,
421 const struct usb_interface *iface);
422
423 /* USB port reset for device reinitialization */
424 extern int usb_reset_device(struct usb_device *dev);
425 extern int usb_reset_composite_device(struct usb_device *dev,
426 struct usb_interface *iface);
427
428 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
429
430 /* USB autosuspend and autoresume */
431 #ifdef CONFIG_USB_SUSPEND
432 extern int usb_autopm_set_interface(struct usb_interface *intf);
433 extern int usb_autopm_get_interface(struct usb_interface *intf);
434 extern void usb_autopm_put_interface(struct usb_interface *intf);
435
436 static inline void usb_autopm_enable(struct usb_interface *intf)
437 {
438 intf->pm_usage_cnt = 0;
439 usb_autopm_set_interface(intf);
440 }
441
442 static inline void usb_autopm_disable(struct usb_interface *intf)
443 {
444 intf->pm_usage_cnt = 1;
445 usb_autopm_set_interface(intf);
446 }
447
448 static inline void usb_mark_last_busy(struct usb_device *udev)
449 {
450 udev->last_busy = jiffies;
451 }
452
453 #else
454
455 static inline int usb_autopm_set_interface(struct usb_interface *intf)
456 { return 0; }
457
458 static inline int usb_autopm_get_interface(struct usb_interface *intf)
459 { return 0; }
460
461 static inline void usb_autopm_put_interface(struct usb_interface *intf)
462 { }
463 static inline void usb_autopm_enable(struct usb_interface *intf)
464 { }
465 static inline void usb_autopm_disable(struct usb_interface *intf)
466 { }
467 static inline void usb_mark_last_busy(struct usb_device *udev)
468 { }
469 #endif
470
471 /*-------------------------------------------------------------------------*/
472
473 /* for drivers using iso endpoints */
474 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
475
476 /* used these for multi-interface device registration */
477 extern int usb_driver_claim_interface(struct usb_driver *driver,
478 struct usb_interface *iface, void* priv);
479
480 /**
481 * usb_interface_claimed - returns true iff an interface is claimed
482 * @iface: the interface being checked
483 *
484 * Returns true (nonzero) iff the interface is claimed, else false (zero).
485 * Callers must own the driver model's usb bus readlock. So driver
486 * probe() entries don't need extra locking, but other call contexts
487 * may need to explicitly claim that lock.
488 *
489 */
490 static inline int usb_interface_claimed(struct usb_interface *iface) {
491 return (iface->dev.driver != NULL);
492 }
493
494 extern void usb_driver_release_interface(struct usb_driver *driver,
495 struct usb_interface *iface);
496 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
497 const struct usb_device_id *id);
498 extern int usb_match_one_id(struct usb_interface *interface,
499 const struct usb_device_id *id);
500
501 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
502 int minor);
503 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
504 unsigned ifnum);
505 extern struct usb_host_interface *usb_altnum_to_altsetting(
506 const struct usb_interface *intf, unsigned int altnum);
507
508
509 /**
510 * usb_make_path - returns stable device path in the usb tree
511 * @dev: the device whose path is being constructed
512 * @buf: where to put the string
513 * @size: how big is "buf"?
514 *
515 * Returns length of the string (> 0) or negative if size was too small.
516 *
517 * This identifier is intended to be "stable", reflecting physical paths in
518 * hardware such as physical bus addresses for host controllers or ports on
519 * USB hubs. That makes it stay the same until systems are physically
520 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
521 * controllers. Adding and removing devices, including virtual root hubs
522 * in host controller driver modules, does not change these path identifers;
523 * neither does rebooting or re-enumerating. These are more useful identifiers
524 * than changeable ("unstable") ones like bus numbers or device addresses.
525 *
526 * With a partial exception for devices connected to USB 2.0 root hubs, these
527 * identifiers are also predictable. So long as the device tree isn't changed,
528 * plugging any USB device into a given hub port always gives it the same path.
529 * Because of the use of "companion" controllers, devices connected to ports on
530 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
531 * high speed, and a different one if they are full or low speed.
532 */
533 static inline int usb_make_path (struct usb_device *dev, char *buf,
534 size_t size)
535 {
536 int actual;
537 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
538 dev->devpath);
539 return (actual >= (int)size) ? -1 : actual;
540 }
541
542 /*-------------------------------------------------------------------------*/
543
544 /**
545 * usb_endpoint_dir_in - check if the endpoint has IN direction
546 * @epd: endpoint to be checked
547 *
548 * Returns true if the endpoint is of type IN, otherwise it returns false.
549 */
550 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
551 {
552 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
553 }
554
555 /**
556 * usb_endpoint_dir_out - check if the endpoint has OUT direction
557 * @epd: endpoint to be checked
558 *
559 * Returns true if the endpoint is of type OUT, otherwise it returns false.
560 */
561 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
562 {
563 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
564 }
565
566 /**
567 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
568 * @epd: endpoint to be checked
569 *
570 * Returns true if the endpoint is of type bulk, otherwise it returns false.
571 */
572 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
573 {
574 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
575 USB_ENDPOINT_XFER_BULK);
576 }
577
578 /**
579 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
580 * @epd: endpoint to be checked
581 *
582 * Returns true if the endpoint is of type control, otherwise it returns false.
583 */
584 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
585 {
586 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
587 USB_ENDPOINT_XFER_CONTROL);
588 }
589
590 /**
591 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
592 * @epd: endpoint to be checked
593 *
594 * Returns true if the endpoint is of type interrupt, otherwise it returns
595 * false.
596 */
597 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
598 {
599 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
600 USB_ENDPOINT_XFER_INT);
601 }
602
603 /**
604 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
605 * @epd: endpoint to be checked
606 *
607 * Returns true if the endpoint is of type isochronous, otherwise it returns
608 * false.
609 */
610 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
611 {
612 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
613 USB_ENDPOINT_XFER_ISOC);
614 }
615
616 /**
617 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
618 * @epd: endpoint to be checked
619 *
620 * Returns true if the endpoint has bulk transfer type and IN direction,
621 * otherwise it returns false.
622 */
623 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
624 {
625 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
626 }
627
628 /**
629 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
630 * @epd: endpoint to be checked
631 *
632 * Returns true if the endpoint has bulk transfer type and OUT direction,
633 * otherwise it returns false.
634 */
635 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
636 {
637 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
638 }
639
640 /**
641 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
642 * @epd: endpoint to be checked
643 *
644 * Returns true if the endpoint has interrupt transfer type and IN direction,
645 * otherwise it returns false.
646 */
647 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
648 {
649 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
650 }
651
652 /**
653 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
654 * @epd: endpoint to be checked
655 *
656 * Returns true if the endpoint has interrupt transfer type and OUT direction,
657 * otherwise it returns false.
658 */
659 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
660 {
661 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
662 }
663
664 /**
665 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
666 * @epd: endpoint to be checked
667 *
668 * Returns true if the endpoint has isochronous transfer type and IN direction,
669 * otherwise it returns false.
670 */
671 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
672 {
673 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
674 }
675
676 /**
677 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
678 * @epd: endpoint to be checked
679 *
680 * Returns true if the endpoint has isochronous transfer type and OUT direction,
681 * otherwise it returns false.
682 */
683 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
684 {
685 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
686 }
687
688 /*-------------------------------------------------------------------------*/
689
690 #define USB_DEVICE_ID_MATCH_DEVICE \
691 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
692 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
693 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
694 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
695 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
696 #define USB_DEVICE_ID_MATCH_DEV_INFO \
697 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
698 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
699 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
700 #define USB_DEVICE_ID_MATCH_INT_INFO \
701 (USB_DEVICE_ID_MATCH_INT_CLASS | \
702 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
703 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
704
705 /**
706 * USB_DEVICE - macro used to describe a specific usb device
707 * @vend: the 16 bit USB Vendor ID
708 * @prod: the 16 bit USB Product ID
709 *
710 * This macro is used to create a struct usb_device_id that matches a
711 * specific device.
712 */
713 #define USB_DEVICE(vend,prod) \
714 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
715 .idProduct = (prod)
716 /**
717 * USB_DEVICE_VER - macro used to describe a specific usb device with a
718 * version range
719 * @vend: the 16 bit USB Vendor ID
720 * @prod: the 16 bit USB Product ID
721 * @lo: the bcdDevice_lo value
722 * @hi: the bcdDevice_hi value
723 *
724 * This macro is used to create a struct usb_device_id that matches a
725 * specific device, with a version range.
726 */
727 #define USB_DEVICE_VER(vend,prod,lo,hi) \
728 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
729 .idVendor = (vend), .idProduct = (prod), \
730 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
731
732 /**
733 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
734 * device with a specific interface protocol
735 * @vend: the 16 bit USB Vendor ID
736 * @prod: the 16 bit USB Product ID
737 * @pr: bInterfaceProtocol value
738 *
739 * This macro is used to create a struct usb_device_id that matches a
740 * specific interface protocol of devices.
741 */
742 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \
743 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
744 .idVendor = (vend), \
745 .idProduct = (prod), \
746 .bInterfaceProtocol = (pr)
747
748 /**
749 * USB_DEVICE_INFO - macro used to describe a class of usb devices
750 * @cl: bDeviceClass value
751 * @sc: bDeviceSubClass value
752 * @pr: bDeviceProtocol value
753 *
754 * This macro is used to create a struct usb_device_id that matches a
755 * specific class of devices.
756 */
757 #define USB_DEVICE_INFO(cl,sc,pr) \
758 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
759 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
760
761 /**
762 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
763 * @cl: bInterfaceClass value
764 * @sc: bInterfaceSubClass value
765 * @pr: bInterfaceProtocol value
766 *
767 * This macro is used to create a struct usb_device_id that matches a
768 * specific class of interfaces.
769 */
770 #define USB_INTERFACE_INFO(cl,sc,pr) \
771 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
772 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
773
774 /* ----------------------------------------------------------------------- */
775
776 /* Stuff for dynamic usb ids */
777 struct usb_dynids {
778 spinlock_t lock;
779 struct list_head list;
780 };
781
782 struct usb_dynid {
783 struct list_head node;
784 struct usb_device_id id;
785 };
786
787 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
788 struct device_driver *driver,
789 const char *buf, size_t count);
790
791 /**
792 * struct usbdrv_wrap - wrapper for driver-model structure
793 * @driver: The driver-model core driver structure.
794 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
795 */
796 struct usbdrv_wrap {
797 struct device_driver driver;
798 int for_devices;
799 };
800
801 /**
802 * struct usb_driver - identifies USB interface driver to usbcore
803 * @name: The driver name should be unique among USB drivers,
804 * and should normally be the same as the module name.
805 * @probe: Called to see if the driver is willing to manage a particular
806 * interface on a device. If it is, probe returns zero and uses
807 * dev_set_drvdata() to associate driver-specific data with the
808 * interface. It may also use usb_set_interface() to specify the
809 * appropriate altsetting. If unwilling to manage the interface,
810 * return a negative errno value.
811 * @disconnect: Called when the interface is no longer accessible, usually
812 * because its device has been (or is being) disconnected or the
813 * driver module is being unloaded.
814 * @ioctl: Used for drivers that want to talk to userspace through
815 * the "usbfs" filesystem. This lets devices provide ways to
816 * expose information to user space regardless of where they
817 * do (or don't) show up otherwise in the filesystem.
818 * @suspend: Called when the device is going to be suspended by the system.
819 * @resume: Called when the device is being resumed by the system.
820 * @pre_reset: Called by usb_reset_composite_device() when the device
821 * is about to be reset.
822 * @post_reset: Called by usb_reset_composite_device() after the device
823 * has been reset, or in lieu of @resume following a reset-resume
824 * (i.e., the device is reset instead of being resumed, as might
825 * happen if power was lost). The second argument tells which is
826 * the reason.
827 * @id_table: USB drivers use ID table to support hotplugging.
828 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
829 * or your driver's probe function will never get called.
830 * @dynids: used internally to hold the list of dynamically added device
831 * ids for this driver.
832 * @drvwrap: Driver-model core structure wrapper.
833 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
834 * added to this driver by preventing the sysfs file from being created.
835 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
836 * for interfaces bound to this driver.
837 *
838 * USB interface drivers must provide a name, probe() and disconnect()
839 * methods, and an id_table. Other driver fields are optional.
840 *
841 * The id_table is used in hotplugging. It holds a set of descriptors,
842 * and specialized data may be associated with each entry. That table
843 * is used by both user and kernel mode hotplugging support.
844 *
845 * The probe() and disconnect() methods are called in a context where
846 * they can sleep, but they should avoid abusing the privilege. Most
847 * work to connect to a device should be done when the device is opened,
848 * and undone at the last close. The disconnect code needs to address
849 * concurrency issues with respect to open() and close() methods, as
850 * well as forcing all pending I/O requests to complete (by unlinking
851 * them as necessary, and blocking until the unlinks complete).
852 */
853 struct usb_driver {
854 const char *name;
855
856 int (*probe) (struct usb_interface *intf,
857 const struct usb_device_id *id);
858
859 void (*disconnect) (struct usb_interface *intf);
860
861 int (*ioctl) (struct usb_interface *intf, unsigned int code,
862 void *buf);
863
864 int (*suspend) (struct usb_interface *intf, pm_message_t message);
865 int (*resume) (struct usb_interface *intf);
866
867 void (*pre_reset) (struct usb_interface *intf);
868 void (*post_reset) (struct usb_interface *intf, int reset_resume);
869
870 const struct usb_device_id *id_table;
871
872 struct usb_dynids dynids;
873 struct usbdrv_wrap drvwrap;
874 unsigned int no_dynamic_id:1;
875 unsigned int supports_autosuspend:1;
876 };
877 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
878
879 /**
880 * struct usb_device_driver - identifies USB device driver to usbcore
881 * @name: The driver name should be unique among USB drivers,
882 * and should normally be the same as the module name.
883 * @probe: Called to see if the driver is willing to manage a particular
884 * device. If it is, probe returns zero and uses dev_set_drvdata()
885 * to associate driver-specific data with the device. If unwilling
886 * to manage the device, return a negative errno value.
887 * @disconnect: Called when the device is no longer accessible, usually
888 * because it has been (or is being) disconnected or the driver's
889 * module is being unloaded.
890 * @suspend: Called when the device is going to be suspended by the system.
891 * @resume: Called when the device is being resumed by the system.
892 * @drvwrap: Driver-model core structure wrapper.
893 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
894 * for devices bound to this driver.
895 *
896 * USB drivers must provide all the fields listed above except drvwrap.
897 */
898 struct usb_device_driver {
899 const char *name;
900
901 int (*probe) (struct usb_device *udev);
902 void (*disconnect) (struct usb_device *udev);
903
904 int (*suspend) (struct usb_device *udev, pm_message_t message);
905 int (*resume) (struct usb_device *udev);
906 struct usbdrv_wrap drvwrap;
907 unsigned int supports_autosuspend:1;
908 };
909 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
910 drvwrap.driver)
911
912 extern struct bus_type usb_bus_type;
913
914 /**
915 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
916 * @name: the usb class device name for this driver. Will show up in sysfs.
917 * @fops: pointer to the struct file_operations of this driver.
918 * @minor_base: the start of the minor range for this driver.
919 *
920 * This structure is used for the usb_register_dev() and
921 * usb_unregister_dev() functions, to consolidate a number of the
922 * parameters used for them.
923 */
924 struct usb_class_driver {
925 char *name;
926 const struct file_operations *fops;
927 int minor_base;
928 };
929
930 /*
931 * use these in module_init()/module_exit()
932 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
933 */
934 extern int usb_register_driver(struct usb_driver *, struct module *,
935 const char *);
936 static inline int usb_register(struct usb_driver *driver)
937 {
938 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
939 }
940 extern void usb_deregister(struct usb_driver *);
941
942 extern int usb_register_device_driver(struct usb_device_driver *,
943 struct module *);
944 extern void usb_deregister_device_driver(struct usb_device_driver *);
945
946 extern int usb_register_dev(struct usb_interface *intf,
947 struct usb_class_driver *class_driver);
948 extern void usb_deregister_dev(struct usb_interface *intf,
949 struct usb_class_driver *class_driver);
950
951 extern int usb_disabled(void);
952
953 /* ----------------------------------------------------------------------- */
954
955 /*
956 * URB support, for asynchronous request completions
957 */
958
959 /*
960 * urb->transfer_flags:
961 */
962 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
963 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
964 * ignored */
965 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
966 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
967 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
968 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
969 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
970 * needed */
971
972 struct usb_iso_packet_descriptor {
973 unsigned int offset;
974 unsigned int length; /* expected length */
975 unsigned int actual_length;
976 int status;
977 };
978
979 struct urb;
980
981 typedef void (*usb_complete_t)(struct urb *);
982
983 /**
984 * struct urb - USB Request Block
985 * @urb_list: For use by current owner of the URB.
986 * @pipe: Holds endpoint number, direction, type, and more.
987 * Create these values with the eight macros available;
988 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
989 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
990 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
991 * numbers range from zero to fifteen. Note that "in" endpoint two
992 * is a different endpoint (and pipe) from "out" endpoint two.
993 * The current configuration controls the existence, type, and
994 * maximum packet size of any given endpoint.
995 * @dev: Identifies the USB device to perform the request.
996 * @status: This is read in non-iso completion functions to get the
997 * status of the particular request. ISO requests only use it
998 * to tell whether the URB was unlinked; detailed status for
999 * each frame is in the fields of the iso_frame-desc.
1000 * @transfer_flags: A variety of flags may be used to affect how URB
1001 * submission, unlinking, or operation are handled. Different
1002 * kinds of URB can use different flags.
1003 * @transfer_buffer: This identifies the buffer to (or from) which
1004 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1005 * is set). This buffer must be suitable for DMA; allocate it with
1006 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1007 * of this buffer will be modified. This buffer is used for the data
1008 * stage of control transfers.
1009 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1010 * the device driver is saying that it provided this DMA address,
1011 * which the host controller driver should use in preference to the
1012 * transfer_buffer.
1013 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1014 * be broken up into chunks according to the current maximum packet
1015 * size for the endpoint, which is a function of the configuration
1016 * and is encoded in the pipe. When the length is zero, neither
1017 * transfer_buffer nor transfer_dma is used.
1018 * @actual_length: This is read in non-iso completion functions, and
1019 * it tells how many bytes (out of transfer_buffer_length) were
1020 * transferred. It will normally be the same as requested, unless
1021 * either an error was reported or a short read was performed.
1022 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1023 * short reads be reported as errors.
1024 * @setup_packet: Only used for control transfers, this points to eight bytes
1025 * of setup data. Control transfers always start by sending this data
1026 * to the device. Then transfer_buffer is read or written, if needed.
1027 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1028 * device driver has provided this DMA address for the setup packet.
1029 * The host controller driver should use this in preference to
1030 * setup_packet.
1031 * @start_frame: Returns the initial frame for isochronous transfers.
1032 * @number_of_packets: Lists the number of ISO transfer buffers.
1033 * @interval: Specifies the polling interval for interrupt or isochronous
1034 * transfers. The units are frames (milliseconds) for for full and low
1035 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1036 * @error_count: Returns the number of ISO transfers that reported errors.
1037 * @context: For use in completion functions. This normally points to
1038 * request-specific driver context.
1039 * @complete: Completion handler. This URB is passed as the parameter to the
1040 * completion function. The completion function may then do what
1041 * it likes with the URB, including resubmitting or freeing it.
1042 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1043 * collect the transfer status for each buffer.
1044 *
1045 * This structure identifies USB transfer requests. URBs must be allocated by
1046 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1047 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1048 * are submitted using usb_submit_urb(), and pending requests may be canceled
1049 * using usb_unlink_urb() or usb_kill_urb().
1050 *
1051 * Data Transfer Buffers:
1052 *
1053 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1054 * taken from the general page pool. That is provided by transfer_buffer
1055 * (control requests also use setup_packet), and host controller drivers
1056 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1057 * mapping operations can be expensive on some platforms (perhaps using a dma
1058 * bounce buffer or talking to an IOMMU),
1059 * although they're cheap on commodity x86 and ppc hardware.
1060 *
1061 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1062 * which tell the host controller driver that no such mapping is needed since
1063 * the device driver is DMA-aware. For example, a device driver might
1064 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1065 * When these transfer flags are provided, host controller drivers will
1066 * attempt to use the dma addresses found in the transfer_dma and/or
1067 * setup_dma fields rather than determining a dma address themselves. (Note
1068 * that transfer_buffer and setup_packet must still be set because not all
1069 * host controllers use DMA, nor do virtual root hubs).
1070 *
1071 * Initialization:
1072 *
1073 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1074 * zero), and complete fields. All URBs must also initialize
1075 * transfer_buffer and transfer_buffer_length. They may provide the
1076 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1077 * to be treated as errors; that flag is invalid for write requests.
1078 *
1079 * Bulk URBs may
1080 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1081 * should always terminate with a short packet, even if it means adding an
1082 * extra zero length packet.
1083 *
1084 * Control URBs must provide a setup_packet. The setup_packet and
1085 * transfer_buffer may each be mapped for DMA or not, independently of
1086 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1087 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1088 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1089 *
1090 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1091 * or, for highspeed devices, 125 microsecond units)
1092 * to poll for transfers. After the URB has been submitted, the interval
1093 * field reflects how the transfer was actually scheduled.
1094 * The polling interval may be more frequent than requested.
1095 * For example, some controllers have a maximum interval of 32 milliseconds,
1096 * while others support intervals of up to 1024 milliseconds.
1097 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1098 * endpoints, as well as high speed interrupt endpoints, the encoding of
1099 * the transfer interval in the endpoint descriptor is logarithmic.
1100 * Device drivers must convert that value to linear units themselves.)
1101 *
1102 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1103 * the host controller to schedule the transfer as soon as bandwidth
1104 * utilization allows, and then set start_frame to reflect the actual frame
1105 * selected during submission. Otherwise drivers must specify the start_frame
1106 * and handle the case where the transfer can't begin then. However, drivers
1107 * won't know how bandwidth is currently allocated, and while they can
1108 * find the current frame using usb_get_current_frame_number () they can't
1109 * know the range for that frame number. (Ranges for frame counter values
1110 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1111 *
1112 * Isochronous URBs have a different data transfer model, in part because
1113 * the quality of service is only "best effort". Callers provide specially
1114 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1115 * at the end. Each such packet is an individual ISO transfer. Isochronous
1116 * URBs are normally queued, submitted by drivers to arrange that
1117 * transfers are at least double buffered, and then explicitly resubmitted
1118 * in completion handlers, so
1119 * that data (such as audio or video) streams at as constant a rate as the
1120 * host controller scheduler can support.
1121 *
1122 * Completion Callbacks:
1123 *
1124 * The completion callback is made in_interrupt(), and one of the first
1125 * things that a completion handler should do is check the status field.
1126 * The status field is provided for all URBs. It is used to report
1127 * unlinked URBs, and status for all non-ISO transfers. It should not
1128 * be examined before the URB is returned to the completion handler.
1129 *
1130 * The context field is normally used to link URBs back to the relevant
1131 * driver or request state.
1132 *
1133 * When the completion callback is invoked for non-isochronous URBs, the
1134 * actual_length field tells how many bytes were transferred. This field
1135 * is updated even when the URB terminated with an error or was unlinked.
1136 *
1137 * ISO transfer status is reported in the status and actual_length fields
1138 * of the iso_frame_desc array, and the number of errors is reported in
1139 * error_count. Completion callbacks for ISO transfers will normally
1140 * (re)submit URBs to ensure a constant transfer rate.
1141 *
1142 * Note that even fields marked "public" should not be touched by the driver
1143 * when the urb is owned by the hcd, that is, since the call to
1144 * usb_submit_urb() till the entry into the completion routine.
1145 */
1146 struct urb
1147 {
1148 /* private: usb core and host controller only fields in the urb */
1149 struct kref kref; /* reference count of the URB */
1150 spinlock_t lock; /* lock for the URB */
1151 void *hcpriv; /* private data for host controller */
1152 atomic_t use_count; /* concurrent submissions counter */
1153 u8 reject; /* submissions will fail */
1154
1155 /* public: documented fields in the urb that can be used by drivers */
1156 struct list_head urb_list; /* list head for use by the urb's
1157 * current owner */
1158 struct usb_device *dev; /* (in) pointer to associated device */
1159 unsigned int pipe; /* (in) pipe information */
1160 int status; /* (return) non-ISO status */
1161 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1162 void *transfer_buffer; /* (in) associated data buffer */
1163 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1164 int transfer_buffer_length; /* (in) data buffer length */
1165 int actual_length; /* (return) actual transfer length */
1166 unsigned char *setup_packet; /* (in) setup packet (control only) */
1167 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1168 int start_frame; /* (modify) start frame (ISO) */
1169 int number_of_packets; /* (in) number of ISO packets */
1170 int interval; /* (modify) transfer interval
1171 * (INT/ISO) */
1172 int error_count; /* (return) number of ISO errors */
1173 void *context; /* (in) context for completion */
1174 usb_complete_t complete; /* (in) completion routine */
1175 struct usb_iso_packet_descriptor iso_frame_desc[0];
1176 /* (in) ISO ONLY */
1177 };
1178
1179 /* ----------------------------------------------------------------------- */
1180
1181 /**
1182 * usb_fill_control_urb - initializes a control urb
1183 * @urb: pointer to the urb to initialize.
1184 * @dev: pointer to the struct usb_device for this urb.
1185 * @pipe: the endpoint pipe
1186 * @setup_packet: pointer to the setup_packet buffer
1187 * @transfer_buffer: pointer to the transfer buffer
1188 * @buffer_length: length of the transfer buffer
1189 * @complete_fn: pointer to the usb_complete_t function
1190 * @context: what to set the urb context to.
1191 *
1192 * Initializes a control urb with the proper information needed to submit
1193 * it to a device.
1194 */
1195 static inline void usb_fill_control_urb (struct urb *urb,
1196 struct usb_device *dev,
1197 unsigned int pipe,
1198 unsigned char *setup_packet,
1199 void *transfer_buffer,
1200 int buffer_length,
1201 usb_complete_t complete_fn,
1202 void *context)
1203 {
1204 spin_lock_init(&urb->lock);
1205 urb->dev = dev;
1206 urb->pipe = pipe;
1207 urb->setup_packet = setup_packet;
1208 urb->transfer_buffer = transfer_buffer;
1209 urb->transfer_buffer_length = buffer_length;
1210 urb->complete = complete_fn;
1211 urb->context = context;
1212 }
1213
1214 /**
1215 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1216 * @urb: pointer to the urb to initialize.
1217 * @dev: pointer to the struct usb_device for this urb.
1218 * @pipe: the endpoint pipe
1219 * @transfer_buffer: pointer to the transfer buffer
1220 * @buffer_length: length of the transfer buffer
1221 * @complete_fn: pointer to the usb_complete_t function
1222 * @context: what to set the urb context to.
1223 *
1224 * Initializes a bulk urb with the proper information needed to submit it
1225 * to a device.
1226 */
1227 static inline void usb_fill_bulk_urb (struct urb *urb,
1228 struct usb_device *dev,
1229 unsigned int pipe,
1230 void *transfer_buffer,
1231 int buffer_length,
1232 usb_complete_t complete_fn,
1233 void *context)
1234 {
1235 spin_lock_init(&urb->lock);
1236 urb->dev = dev;
1237 urb->pipe = pipe;
1238 urb->transfer_buffer = transfer_buffer;
1239 urb->transfer_buffer_length = buffer_length;
1240 urb->complete = complete_fn;
1241 urb->context = context;
1242 }
1243
1244 /**
1245 * usb_fill_int_urb - macro to help initialize a interrupt urb
1246 * @urb: pointer to the urb to initialize.
1247 * @dev: pointer to the struct usb_device for this urb.
1248 * @pipe: the endpoint pipe
1249 * @transfer_buffer: pointer to the transfer buffer
1250 * @buffer_length: length of the transfer buffer
1251 * @complete_fn: pointer to the usb_complete_t function
1252 * @context: what to set the urb context to.
1253 * @interval: what to set the urb interval to, encoded like
1254 * the endpoint descriptor's bInterval value.
1255 *
1256 * Initializes a interrupt urb with the proper information needed to submit
1257 * it to a device.
1258 * Note that high speed interrupt endpoints use a logarithmic encoding of
1259 * the endpoint interval, and express polling intervals in microframes
1260 * (eight per millisecond) rather than in frames (one per millisecond).
1261 */
1262 static inline void usb_fill_int_urb (struct urb *urb,
1263 struct usb_device *dev,
1264 unsigned int pipe,
1265 void *transfer_buffer,
1266 int buffer_length,
1267 usb_complete_t complete_fn,
1268 void *context,
1269 int interval)
1270 {
1271 spin_lock_init(&urb->lock);
1272 urb->dev = dev;
1273 urb->pipe = pipe;
1274 urb->transfer_buffer = transfer_buffer;
1275 urb->transfer_buffer_length = buffer_length;
1276 urb->complete = complete_fn;
1277 urb->context = context;
1278 if (dev->speed == USB_SPEED_HIGH)
1279 urb->interval = 1 << (interval - 1);
1280 else
1281 urb->interval = interval;
1282 urb->start_frame = -1;
1283 }
1284
1285 extern void usb_init_urb(struct urb *urb);
1286 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1287 extern void usb_free_urb(struct urb *urb);
1288 #define usb_put_urb usb_free_urb
1289 extern struct urb *usb_get_urb(struct urb *urb);
1290 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1291 extern int usb_unlink_urb(struct urb *urb);
1292 extern void usb_kill_urb(struct urb *urb);
1293
1294 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1295 gfp_t mem_flags, dma_addr_t *dma);
1296 void usb_buffer_free (struct usb_device *dev, size_t size,
1297 void *addr, dma_addr_t dma);
1298
1299 #if 0
1300 struct urb *usb_buffer_map (struct urb *urb);
1301 void usb_buffer_dmasync (struct urb *urb);
1302 void usb_buffer_unmap (struct urb *urb);
1303 #endif
1304
1305 struct scatterlist;
1306 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1307 struct scatterlist *sg, int nents);
1308 #if 0
1309 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1310 struct scatterlist *sg, int n_hw_ents);
1311 #endif
1312 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1313 struct scatterlist *sg, int n_hw_ents);
1314
1315 /*-------------------------------------------------------------------*
1316 * SYNCHRONOUS CALL SUPPORT *
1317 *-------------------------------------------------------------------*/
1318
1319 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1320 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1321 void *data, __u16 size, int timeout);
1322 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1323 void *data, int len, int *actual_length, int timeout);
1324 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1325 void *data, int len, int *actual_length,
1326 int timeout);
1327
1328 /* wrappers around usb_control_msg() for the most common standard requests */
1329 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1330 unsigned char descindex, void *buf, int size);
1331 extern int usb_get_status(struct usb_device *dev,
1332 int type, int target, void *data);
1333 extern int usb_string(struct usb_device *dev, int index,
1334 char *buf, size_t size);
1335
1336 /* wrappers that also update important state inside usbcore */
1337 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1338 extern int usb_reset_configuration(struct usb_device *dev);
1339 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1340
1341 /* this request isn't really synchronous, but it belongs with the others */
1342 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1343
1344 /*
1345 * timeouts, in milliseconds, used for sending/receiving control messages
1346 * they typically complete within a few frames (msec) after they're issued
1347 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1348 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1349 */
1350 #define USB_CTRL_GET_TIMEOUT 5000
1351 #define USB_CTRL_SET_TIMEOUT 5000
1352
1353
1354 /**
1355 * struct usb_sg_request - support for scatter/gather I/O
1356 * @status: zero indicates success, else negative errno
1357 * @bytes: counts bytes transferred.
1358 *
1359 * These requests are initialized using usb_sg_init(), and then are used
1360 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1361 * members of the request object aren't for driver access.
1362 *
1363 * The status and bytecount values are valid only after usb_sg_wait()
1364 * returns. If the status is zero, then the bytecount matches the total
1365 * from the request.
1366 *
1367 * After an error completion, drivers may need to clear a halt condition
1368 * on the endpoint.
1369 */
1370 struct usb_sg_request {
1371 int status;
1372 size_t bytes;
1373
1374 /*
1375 * members below are private: to usbcore,
1376 * and are not provided for driver access!
1377 */
1378 spinlock_t lock;
1379
1380 struct usb_device *dev;
1381 int pipe;
1382 struct scatterlist *sg;
1383 int nents;
1384
1385 int entries;
1386 struct urb **urbs;
1387
1388 int count;
1389 struct completion complete;
1390 };
1391
1392 int usb_sg_init (
1393 struct usb_sg_request *io,
1394 struct usb_device *dev,
1395 unsigned pipe,
1396 unsigned period,
1397 struct scatterlist *sg,
1398 int nents,
1399 size_t length,
1400 gfp_t mem_flags
1401 );
1402 void usb_sg_cancel (struct usb_sg_request *io);
1403 void usb_sg_wait (struct usb_sg_request *io);
1404
1405
1406 /* ----------------------------------------------------------------------- */
1407
1408 /*
1409 * For various legacy reasons, Linux has a small cookie that's paired with
1410 * a struct usb_device to identify an endpoint queue. Queue characteristics
1411 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1412 * an unsigned int encoded as:
1413 *
1414 * - direction: bit 7 (0 = Host-to-Device [Out],
1415 * 1 = Device-to-Host [In] ...
1416 * like endpoint bEndpointAddress)
1417 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1418 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1419 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1420 * 10 = control, 11 = bulk)
1421 *
1422 * Given the device address and endpoint descriptor, pipes are redundant.
1423 */
1424
1425 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1426 /* (yet ... they're the values used by usbfs) */
1427 #define PIPE_ISOCHRONOUS 0
1428 #define PIPE_INTERRUPT 1
1429 #define PIPE_CONTROL 2
1430 #define PIPE_BULK 3
1431
1432 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1433 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1434
1435 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1436 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1437
1438 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1439 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1440 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1441 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1442 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1443
1444 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1445 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1446 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1447 #define usb_settoggle(dev, ep, out, bit) \
1448 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1449 ((bit) << (ep)))
1450
1451
1452 static inline unsigned int __create_pipe(struct usb_device *dev,
1453 unsigned int endpoint)
1454 {
1455 return (dev->devnum << 8) | (endpoint << 15);
1456 }
1457
1458 /* Create various pipes... */
1459 #define usb_sndctrlpipe(dev,endpoint) \
1460 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1461 #define usb_rcvctrlpipe(dev,endpoint) \
1462 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1463 #define usb_sndisocpipe(dev,endpoint) \
1464 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1465 #define usb_rcvisocpipe(dev,endpoint) \
1466 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1467 #define usb_sndbulkpipe(dev,endpoint) \
1468 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1469 #define usb_rcvbulkpipe(dev,endpoint) \
1470 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1471 #define usb_sndintpipe(dev,endpoint) \
1472 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1473 #define usb_rcvintpipe(dev,endpoint) \
1474 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1475
1476 /*-------------------------------------------------------------------------*/
1477
1478 static inline __u16
1479 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1480 {
1481 struct usb_host_endpoint *ep;
1482 unsigned epnum = usb_pipeendpoint(pipe);
1483
1484 if (is_out) {
1485 WARN_ON(usb_pipein(pipe));
1486 ep = udev->ep_out[epnum];
1487 } else {
1488 WARN_ON(usb_pipeout(pipe));
1489 ep = udev->ep_in[epnum];
1490 }
1491 if (!ep)
1492 return 0;
1493
1494 /* NOTE: only 0x07ff bits are for packet size... */
1495 return le16_to_cpu(ep->desc.wMaxPacketSize);
1496 }
1497
1498 /* ----------------------------------------------------------------------- */
1499
1500 /* Events from the usb core */
1501 #define USB_DEVICE_ADD 0x0001
1502 #define USB_DEVICE_REMOVE 0x0002
1503 #define USB_BUS_ADD 0x0003
1504 #define USB_BUS_REMOVE 0x0004
1505 extern void usb_register_notify(struct notifier_block *nb);
1506 extern void usb_unregister_notify(struct notifier_block *nb);
1507
1508 #ifdef DEBUG
1509 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1510 __FILE__ , ## arg)
1511 #else
1512 #define dbg(format, arg...) do {} while (0)
1513 #endif
1514
1515 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1516 __FILE__ , ## arg)
1517 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1518 __FILE__ , ## arg)
1519 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1520 __FILE__ , ## arg)
1521
1522
1523 #endif /* __KERNEL__ */
1524
1525 #endif
This page took 0.060788 seconds and 5 git commands to generate.