Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26
27 /*-------------------------------------------------------------------------*/
28
29 /*
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
33 *
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
38 *
39 * And there might be other descriptors mixed in with those.
40 *
41 * Devices may also have class-specific or vendor-specific descriptors.
42 */
43
44 struct ep_device;
45
46 /**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
55 *
56 * USB requests are always queued to a given endpoint, identified by a
57 * descriptor within an active interface in a given USB configuration.
58 */
59 struct usb_host_endpoint {
60 struct usb_endpoint_descriptor desc;
61 struct list_head urb_list;
62 void *hcpriv;
63 struct ep_device *ep_dev; /* For sysfs info */
64
65 unsigned char *extra; /* Extra descriptors */
66 int extralen;
67 };
68
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71 struct usb_interface_descriptor desc;
72
73 /* array of desc.bNumEndpoint endpoints associated with this
74 * interface setting. these will be in no particular order.
75 */
76 struct usb_host_endpoint *endpoint;
77
78 char *string; /* iInterface string, if present */
79 unsigned char *extra; /* Extra descriptors */
80 int extralen;
81 };
82
83 enum usb_interface_condition {
84 USB_INTERFACE_UNBOUND = 0,
85 USB_INTERFACE_BINDING,
86 USB_INTERFACE_BOUND,
87 USB_INTERFACE_UNBINDING,
88 };
89
90 /**
91 * struct usb_interface - what usb device drivers talk to
92 * @altsetting: array of interface structures, one for each alternate
93 * setting that may be selected. Each one includes a set of
94 * endpoint configurations. They will be in no particular order.
95 * @num_altsetting: number of altsettings defined.
96 * @cur_altsetting: the current altsetting.
97 * @driver: the USB driver that is bound to this interface.
98 * @minor: the minor number assigned to this interface, if this
99 * interface is bound to a driver that uses the USB major number.
100 * If this interface does not use the USB major, this field should
101 * be unused. The driver should set this value in the probe()
102 * function of the driver, after it has been assigned a minor
103 * number from the USB core by calling usb_register_dev().
104 * @condition: binding state of the interface: not bound, binding
105 * (in probe()), bound to a driver, or unbinding (in disconnect())
106 * @is_active: flag set when the interface is bound and not suspended.
107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
108 * capability during autosuspend.
109 * @dev: driver model's view of this device
110 * @usb_dev: if an interface is bound to the USB major, this will point
111 * to the sysfs representation for that device.
112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
113 * allowed unless the counter is 0.
114 *
115 * USB device drivers attach to interfaces on a physical device. Each
116 * interface encapsulates a single high level function, such as feeding
117 * an audio stream to a speaker or reporting a change in a volume control.
118 * Many USB devices only have one interface. The protocol used to talk to
119 * an interface's endpoints can be defined in a usb "class" specification,
120 * or by a product's vendor. The (default) control endpoint is part of
121 * every interface, but is never listed among the interface's descriptors.
122 *
123 * The driver that is bound to the interface can use standard driver model
124 * calls such as dev_get_drvdata() on the dev member of this structure.
125 *
126 * Each interface may have alternate settings. The initial configuration
127 * of a device sets altsetting 0, but the device driver can change
128 * that setting using usb_set_interface(). Alternate settings are often
129 * used to control the use of periodic endpoints, such as by having
130 * different endpoints use different amounts of reserved USB bandwidth.
131 * All standards-conformant USB devices that use isochronous endpoints
132 * will use them in non-default settings.
133 *
134 * The USB specification says that alternate setting numbers must run from
135 * 0 to one less than the total number of alternate settings. But some
136 * devices manage to mess this up, and the structures aren't necessarily
137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
138 * look up an alternate setting in the altsetting array based on its number.
139 */
140 struct usb_interface {
141 /* array of alternate settings for this interface,
142 * stored in no particular order */
143 struct usb_host_interface *altsetting;
144
145 struct usb_host_interface *cur_altsetting; /* the currently
146 * active alternate setting */
147 unsigned num_altsetting; /* number of alternate settings */
148
149 int minor; /* minor number this interface is
150 * bound to */
151 enum usb_interface_condition condition; /* state of binding */
152 unsigned is_active:1; /* the interface is not suspended */
153 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
154
155 struct device dev; /* interface specific device info */
156 struct device *usb_dev; /* pointer to the usb class's device, if any */
157 int pm_usage_cnt; /* usage counter for autosuspend */
158 };
159 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
160 #define interface_to_usbdev(intf) \
161 container_of(intf->dev.parent, struct usb_device, dev)
162
163 static inline void *usb_get_intfdata (struct usb_interface *intf)
164 {
165 return dev_get_drvdata (&intf->dev);
166 }
167
168 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
169 {
170 dev_set_drvdata(&intf->dev, data);
171 }
172
173 struct usb_interface *usb_get_intf(struct usb_interface *intf);
174 void usb_put_intf(struct usb_interface *intf);
175
176 /* this maximum is arbitrary */
177 #define USB_MAXINTERFACES 32
178
179 /**
180 * struct usb_interface_cache - long-term representation of a device interface
181 * @num_altsetting: number of altsettings defined.
182 * @ref: reference counter.
183 * @altsetting: variable-length array of interface structures, one for
184 * each alternate setting that may be selected. Each one includes a
185 * set of endpoint configurations. They will be in no particular order.
186 *
187 * These structures persist for the lifetime of a usb_device, unlike
188 * struct usb_interface (which persists only as long as its configuration
189 * is installed). The altsetting arrays can be accessed through these
190 * structures at any time, permitting comparison of configurations and
191 * providing support for the /proc/bus/usb/devices pseudo-file.
192 */
193 struct usb_interface_cache {
194 unsigned num_altsetting; /* number of alternate settings */
195 struct kref ref; /* reference counter */
196
197 /* variable-length array of alternate settings for this interface,
198 * stored in no particular order */
199 struct usb_host_interface altsetting[0];
200 };
201 #define ref_to_usb_interface_cache(r) \
202 container_of(r, struct usb_interface_cache, ref)
203 #define altsetting_to_usb_interface_cache(a) \
204 container_of(a, struct usb_interface_cache, altsetting[0])
205
206 /**
207 * struct usb_host_config - representation of a device's configuration
208 * @desc: the device's configuration descriptor.
209 * @string: pointer to the cached version of the iConfiguration string, if
210 * present for this configuration.
211 * @interface: array of pointers to usb_interface structures, one for each
212 * interface in the configuration. The number of interfaces is stored
213 * in desc.bNumInterfaces. These pointers are valid only while the
214 * the configuration is active.
215 * @intf_cache: array of pointers to usb_interface_cache structures, one
216 * for each interface in the configuration. These structures exist
217 * for the entire life of the device.
218 * @extra: pointer to buffer containing all extra descriptors associated
219 * with this configuration (those preceding the first interface
220 * descriptor).
221 * @extralen: length of the extra descriptors buffer.
222 *
223 * USB devices may have multiple configurations, but only one can be active
224 * at any time. Each encapsulates a different operational environment;
225 * for example, a dual-speed device would have separate configurations for
226 * full-speed and high-speed operation. The number of configurations
227 * available is stored in the device descriptor as bNumConfigurations.
228 *
229 * A configuration can contain multiple interfaces. Each corresponds to
230 * a different function of the USB device, and all are available whenever
231 * the configuration is active. The USB standard says that interfaces
232 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
233 * of devices get this wrong. In addition, the interface array is not
234 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
235 * look up an interface entry based on its number.
236 *
237 * Device drivers should not attempt to activate configurations. The choice
238 * of which configuration to install is a policy decision based on such
239 * considerations as available power, functionality provided, and the user's
240 * desires (expressed through userspace tools). However, drivers can call
241 * usb_reset_configuration() to reinitialize the current configuration and
242 * all its interfaces.
243 */
244 struct usb_host_config {
245 struct usb_config_descriptor desc;
246
247 char *string; /* iConfiguration string, if present */
248 /* the interfaces associated with this configuration,
249 * stored in no particular order */
250 struct usb_interface *interface[USB_MAXINTERFACES];
251
252 /* Interface information available even when this is not the
253 * active configuration */
254 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
255
256 unsigned char *extra; /* Extra descriptors */
257 int extralen;
258 };
259
260 int __usb_get_extra_descriptor(char *buffer, unsigned size,
261 unsigned char type, void **ptr);
262 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
263 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
264 type,(void**)ptr)
265
266 /* ----------------------------------------------------------------------- */
267
268 /* USB device number allocation bitmap */
269 struct usb_devmap {
270 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
271 };
272
273 /*
274 * Allocated per bus (tree of devices) we have:
275 */
276 struct usb_bus {
277 struct device *controller; /* host/master side hardware */
278 int busnum; /* Bus number (in order of reg) */
279 char *bus_name; /* stable id (PCI slot_name etc) */
280 u8 uses_dma; /* Does the host controller use DMA? */
281 u8 otg_port; /* 0, or number of OTG/HNP port */
282 unsigned is_b_host:1; /* true during some HNP roleswitches */
283 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
284
285 int devnum_next; /* Next open device number in
286 * round-robin allocation */
287
288 struct usb_devmap devmap; /* device address allocation map */
289 struct usb_device *root_hub; /* Root hub */
290 struct list_head bus_list; /* list of busses */
291
292 int bandwidth_allocated; /* on this bus: how much of the time
293 * reserved for periodic (intr/iso)
294 * requests is used, on average?
295 * Units: microseconds/frame.
296 * Limits: Full/low speed reserve 90%,
297 * while high speed reserves 80%.
298 */
299 int bandwidth_int_reqs; /* number of Interrupt requests */
300 int bandwidth_isoc_reqs; /* number of Isoc. requests */
301
302 #ifdef CONFIG_USB_DEVICEFS
303 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
304 #endif
305 struct class_device *class_dev; /* class device for this bus */
306
307 #if defined(CONFIG_USB_MON)
308 struct mon_bus *mon_bus; /* non-null when associated */
309 int monitored; /* non-zero when monitored */
310 #endif
311 };
312
313 /* ----------------------------------------------------------------------- */
314
315 /* This is arbitrary.
316 * From USB 2.0 spec Table 11-13, offset 7, a hub can
317 * have up to 255 ports. The most yet reported is 10.
318 *
319 * Current Wireless USB host hardware (Intel i1480 for example) allows
320 * up to 22 devices to connect. Upcoming hardware might raise that
321 * limit. Because the arrays need to add a bit for hub status data, we
322 * do 31, so plus one evens out to four bytes.
323 */
324 #define USB_MAXCHILDREN (31)
325
326 struct usb_tt;
327
328 /*
329 * struct usb_device - kernel's representation of a USB device
330 *
331 * FIXME: Write the kerneldoc!
332 *
333 * Usbcore drivers should not set usbdev->state directly. Instead use
334 * usb_set_device_state().
335 */
336 struct usb_device {
337 int devnum; /* Address on USB bus */
338 char devpath [16]; /* Use in messages: /port/port/... */
339 enum usb_device_state state; /* configured, not attached, etc */
340 enum usb_device_speed speed; /* high/full/low (or error) */
341
342 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
343 int ttport; /* device port on that tt hub */
344
345 unsigned int toggle[2]; /* one bit for each endpoint
346 * ([0] = IN, [1] = OUT) */
347
348 struct usb_device *parent; /* our hub, unless we're the root */
349 struct usb_bus *bus; /* Bus we're part of */
350 struct usb_host_endpoint ep0;
351
352 struct device dev; /* Generic device interface */
353
354 struct usb_device_descriptor descriptor;/* Descriptor */
355 struct usb_host_config *config; /* All of the configs */
356
357 struct usb_host_config *actconfig;/* the active configuration */
358 struct usb_host_endpoint *ep_in[16];
359 struct usb_host_endpoint *ep_out[16];
360
361 char **rawdescriptors; /* Raw descriptors for each config */
362
363 unsigned short bus_mA; /* Current available from the bus */
364 u8 portnum; /* Parent port number (origin 1) */
365 u8 level; /* Number of USB hub ancestors */
366
367 unsigned discon_suspended:1; /* Disconnected while suspended */
368 unsigned have_langid:1; /* whether string_langid is valid */
369 int string_langid; /* language ID for strings */
370
371 /* static strings from the device */
372 char *product; /* iProduct string, if present */
373 char *manufacturer; /* iManufacturer string, if present */
374 char *serial; /* iSerialNumber string, if present */
375
376 struct list_head filelist;
377 #ifdef CONFIG_USB_DEVICE_CLASS
378 struct device *usb_classdev;
379 #endif
380 #ifdef CONFIG_USB_DEVICEFS
381 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
382 #endif
383 /*
384 * Child devices - these can be either new devices
385 * (if this is a hub device), or different instances
386 * of this same device.
387 *
388 * Each instance needs its own set of data structures.
389 */
390
391 int maxchild; /* Number of ports if hub */
392 struct usb_device *children[USB_MAXCHILDREN];
393
394 int pm_usage_cnt; /* usage counter for autosuspend */
395 u32 quirks; /* quirks of the whole device */
396
397 #ifdef CONFIG_PM
398 struct delayed_work autosuspend; /* for delayed autosuspends */
399 struct mutex pm_mutex; /* protects PM operations */
400
401 unsigned long last_busy; /* time of last use */
402 int autosuspend_delay; /* in jiffies */
403
404 unsigned auto_pm:1; /* autosuspend/resume in progress */
405 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
406 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
407 unsigned autoresume_disabled:1; /* disabled by the user */
408 #endif
409 };
410 #define to_usb_device(d) container_of(d, struct usb_device, dev)
411
412 extern struct usb_device *usb_get_dev(struct usb_device *dev);
413 extern void usb_put_dev(struct usb_device *dev);
414
415 /* USB device locking */
416 #define usb_lock_device(udev) down(&(udev)->dev.sem)
417 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
418 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
419 extern int usb_lock_device_for_reset(struct usb_device *udev,
420 const struct usb_interface *iface);
421
422 /* USB port reset for device reinitialization */
423 extern int usb_reset_device(struct usb_device *dev);
424 extern int usb_reset_composite_device(struct usb_device *dev,
425 struct usb_interface *iface);
426
427 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
428
429 /* USB autosuspend and autoresume */
430 #ifdef CONFIG_USB_SUSPEND
431 extern int usb_autopm_set_interface(struct usb_interface *intf);
432 extern int usb_autopm_get_interface(struct usb_interface *intf);
433 extern void usb_autopm_put_interface(struct usb_interface *intf);
434
435 static inline void usb_autopm_enable(struct usb_interface *intf)
436 {
437 intf->pm_usage_cnt = 0;
438 usb_autopm_set_interface(intf);
439 }
440
441 static inline void usb_autopm_disable(struct usb_interface *intf)
442 {
443 intf->pm_usage_cnt = 1;
444 usb_autopm_set_interface(intf);
445 }
446
447 static inline void usb_mark_last_busy(struct usb_device *udev)
448 {
449 udev->last_busy = jiffies;
450 }
451
452 #else
453
454 static inline int usb_autopm_set_interface(struct usb_interface *intf)
455 { return 0; }
456
457 static inline int usb_autopm_get_interface(struct usb_interface *intf)
458 { return 0; }
459
460 static inline void usb_autopm_put_interface(struct usb_interface *intf)
461 { }
462 static inline void usb_autopm_enable(struct usb_interface *intf)
463 { }
464 static inline void usb_autopm_disable(struct usb_interface *intf)
465 { }
466 static inline void usb_mark_last_busy(struct usb_device *udev)
467 { }
468 #endif
469
470 /*-------------------------------------------------------------------------*/
471
472 /* for drivers using iso endpoints */
473 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
474
475 /* used these for multi-interface device registration */
476 extern int usb_driver_claim_interface(struct usb_driver *driver,
477 struct usb_interface *iface, void* priv);
478
479 /**
480 * usb_interface_claimed - returns true iff an interface is claimed
481 * @iface: the interface being checked
482 *
483 * Returns true (nonzero) iff the interface is claimed, else false (zero).
484 * Callers must own the driver model's usb bus readlock. So driver
485 * probe() entries don't need extra locking, but other call contexts
486 * may need to explicitly claim that lock.
487 *
488 */
489 static inline int usb_interface_claimed(struct usb_interface *iface) {
490 return (iface->dev.driver != NULL);
491 }
492
493 extern void usb_driver_release_interface(struct usb_driver *driver,
494 struct usb_interface *iface);
495 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
496 const struct usb_device_id *id);
497 extern int usb_match_one_id(struct usb_interface *interface,
498 const struct usb_device_id *id);
499
500 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
501 int minor);
502 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
503 unsigned ifnum);
504 extern struct usb_host_interface *usb_altnum_to_altsetting(
505 const struct usb_interface *intf, unsigned int altnum);
506
507
508 /**
509 * usb_make_path - returns stable device path in the usb tree
510 * @dev: the device whose path is being constructed
511 * @buf: where to put the string
512 * @size: how big is "buf"?
513 *
514 * Returns length of the string (> 0) or negative if size was too small.
515 *
516 * This identifier is intended to be "stable", reflecting physical paths in
517 * hardware such as physical bus addresses for host controllers or ports on
518 * USB hubs. That makes it stay the same until systems are physically
519 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
520 * controllers. Adding and removing devices, including virtual root hubs
521 * in host controller driver modules, does not change these path identifers;
522 * neither does rebooting or re-enumerating. These are more useful identifiers
523 * than changeable ("unstable") ones like bus numbers or device addresses.
524 *
525 * With a partial exception for devices connected to USB 2.0 root hubs, these
526 * identifiers are also predictable. So long as the device tree isn't changed,
527 * plugging any USB device into a given hub port always gives it the same path.
528 * Because of the use of "companion" controllers, devices connected to ports on
529 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
530 * high speed, and a different one if they are full or low speed.
531 */
532 static inline int usb_make_path (struct usb_device *dev, char *buf,
533 size_t size)
534 {
535 int actual;
536 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
537 dev->devpath);
538 return (actual >= (int)size) ? -1 : actual;
539 }
540
541 /*-------------------------------------------------------------------------*/
542
543 /**
544 * usb_endpoint_dir_in - check if the endpoint has IN direction
545 * @epd: endpoint to be checked
546 *
547 * Returns true if the endpoint is of type IN, otherwise it returns false.
548 */
549 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
550 {
551 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
552 }
553
554 /**
555 * usb_endpoint_dir_out - check if the endpoint has OUT direction
556 * @epd: endpoint to be checked
557 *
558 * Returns true if the endpoint is of type OUT, otherwise it returns false.
559 */
560 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
561 {
562 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
563 }
564
565 /**
566 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
567 * @epd: endpoint to be checked
568 *
569 * Returns true if the endpoint is of type bulk, otherwise it returns false.
570 */
571 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
572 {
573 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
574 USB_ENDPOINT_XFER_BULK);
575 }
576
577 /**
578 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
579 * @epd: endpoint to be checked
580 *
581 * Returns true if the endpoint is of type control, otherwise it returns false.
582 */
583 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
584 {
585 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
586 USB_ENDPOINT_XFER_CONTROL);
587 }
588
589 /**
590 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
591 * @epd: endpoint to be checked
592 *
593 * Returns true if the endpoint is of type interrupt, otherwise it returns
594 * false.
595 */
596 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
597 {
598 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
599 USB_ENDPOINT_XFER_INT);
600 }
601
602 /**
603 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
604 * @epd: endpoint to be checked
605 *
606 * Returns true if the endpoint is of type isochronous, otherwise it returns
607 * false.
608 */
609 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
610 {
611 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
612 USB_ENDPOINT_XFER_ISOC);
613 }
614
615 /**
616 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
617 * @epd: endpoint to be checked
618 *
619 * Returns true if the endpoint has bulk transfer type and IN direction,
620 * otherwise it returns false.
621 */
622 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
623 {
624 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
625 }
626
627 /**
628 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
629 * @epd: endpoint to be checked
630 *
631 * Returns true if the endpoint has bulk transfer type and OUT direction,
632 * otherwise it returns false.
633 */
634 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
635 {
636 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
637 }
638
639 /**
640 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
641 * @epd: endpoint to be checked
642 *
643 * Returns true if the endpoint has interrupt transfer type and IN direction,
644 * otherwise it returns false.
645 */
646 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
647 {
648 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
649 }
650
651 /**
652 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
653 * @epd: endpoint to be checked
654 *
655 * Returns true if the endpoint has interrupt transfer type and OUT direction,
656 * otherwise it returns false.
657 */
658 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
659 {
660 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
661 }
662
663 /**
664 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
665 * @epd: endpoint to be checked
666 *
667 * Returns true if the endpoint has isochronous transfer type and IN direction,
668 * otherwise it returns false.
669 */
670 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
671 {
672 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
673 }
674
675 /**
676 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
677 * @epd: endpoint to be checked
678 *
679 * Returns true if the endpoint has isochronous transfer type and OUT direction,
680 * otherwise it returns false.
681 */
682 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
683 {
684 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
685 }
686
687 /*-------------------------------------------------------------------------*/
688
689 #define USB_DEVICE_ID_MATCH_DEVICE \
690 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
691 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
692 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
693 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
694 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
695 #define USB_DEVICE_ID_MATCH_DEV_INFO \
696 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
697 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
698 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
699 #define USB_DEVICE_ID_MATCH_INT_INFO \
700 (USB_DEVICE_ID_MATCH_INT_CLASS | \
701 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
702 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
703
704 /**
705 * USB_DEVICE - macro used to describe a specific usb device
706 * @vend: the 16 bit USB Vendor ID
707 * @prod: the 16 bit USB Product ID
708 *
709 * This macro is used to create a struct usb_device_id that matches a
710 * specific device.
711 */
712 #define USB_DEVICE(vend,prod) \
713 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
714 .idProduct = (prod)
715 /**
716 * USB_DEVICE_VER - macro used to describe a specific usb device with a
717 * version range
718 * @vend: the 16 bit USB Vendor ID
719 * @prod: the 16 bit USB Product ID
720 * @lo: the bcdDevice_lo value
721 * @hi: the bcdDevice_hi value
722 *
723 * This macro is used to create a struct usb_device_id that matches a
724 * specific device, with a version range.
725 */
726 #define USB_DEVICE_VER(vend,prod,lo,hi) \
727 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
728 .idVendor = (vend), .idProduct = (prod), \
729 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
730
731 /**
732 * USB_DEVICE_INFO - macro used to describe a class of usb devices
733 * @cl: bDeviceClass value
734 * @sc: bDeviceSubClass value
735 * @pr: bDeviceProtocol value
736 *
737 * This macro is used to create a struct usb_device_id that matches a
738 * specific class of devices.
739 */
740 #define USB_DEVICE_INFO(cl,sc,pr) \
741 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
742 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
743
744 /**
745 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
746 * @cl: bInterfaceClass value
747 * @sc: bInterfaceSubClass value
748 * @pr: bInterfaceProtocol value
749 *
750 * This macro is used to create a struct usb_device_id that matches a
751 * specific class of interfaces.
752 */
753 #define USB_INTERFACE_INFO(cl,sc,pr) \
754 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
755 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
756
757 /* ----------------------------------------------------------------------- */
758
759 /* Stuff for dynamic usb ids */
760 struct usb_dynids {
761 spinlock_t lock;
762 struct list_head list;
763 };
764
765 struct usb_dynid {
766 struct list_head node;
767 struct usb_device_id id;
768 };
769
770 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
771 struct device_driver *driver,
772 const char *buf, size_t count);
773
774 /**
775 * struct usbdrv_wrap - wrapper for driver-model structure
776 * @driver: The driver-model core driver structure.
777 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
778 */
779 struct usbdrv_wrap {
780 struct device_driver driver;
781 int for_devices;
782 };
783
784 /**
785 * struct usb_driver - identifies USB interface driver to usbcore
786 * @name: The driver name should be unique among USB drivers,
787 * and should normally be the same as the module name.
788 * @probe: Called to see if the driver is willing to manage a particular
789 * interface on a device. If it is, probe returns zero and uses
790 * dev_set_drvdata() to associate driver-specific data with the
791 * interface. It may also use usb_set_interface() to specify the
792 * appropriate altsetting. If unwilling to manage the interface,
793 * return a negative errno value.
794 * @disconnect: Called when the interface is no longer accessible, usually
795 * because its device has been (or is being) disconnected or the
796 * driver module is being unloaded.
797 * @ioctl: Used for drivers that want to talk to userspace through
798 * the "usbfs" filesystem. This lets devices provide ways to
799 * expose information to user space regardless of where they
800 * do (or don't) show up otherwise in the filesystem.
801 * @suspend: Called when the device is going to be suspended by the system.
802 * @resume: Called when the device is being resumed by the system.
803 * @pre_reset: Called by usb_reset_composite_device() when the device
804 * is about to be reset.
805 * @post_reset: Called by usb_reset_composite_device() after the device
806 * has been reset.
807 * @id_table: USB drivers use ID table to support hotplugging.
808 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
809 * or your driver's probe function will never get called.
810 * @dynids: used internally to hold the list of dynamically added device
811 * ids for this driver.
812 * @drvwrap: Driver-model core structure wrapper.
813 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
814 * added to this driver by preventing the sysfs file from being created.
815 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
816 * for interfaces bound to this driver.
817 *
818 * USB interface drivers must provide a name, probe() and disconnect()
819 * methods, and an id_table. Other driver fields are optional.
820 *
821 * The id_table is used in hotplugging. It holds a set of descriptors,
822 * and specialized data may be associated with each entry. That table
823 * is used by both user and kernel mode hotplugging support.
824 *
825 * The probe() and disconnect() methods are called in a context where
826 * they can sleep, but they should avoid abusing the privilege. Most
827 * work to connect to a device should be done when the device is opened,
828 * and undone at the last close. The disconnect code needs to address
829 * concurrency issues with respect to open() and close() methods, as
830 * well as forcing all pending I/O requests to complete (by unlinking
831 * them as necessary, and blocking until the unlinks complete).
832 */
833 struct usb_driver {
834 const char *name;
835
836 int (*probe) (struct usb_interface *intf,
837 const struct usb_device_id *id);
838
839 void (*disconnect) (struct usb_interface *intf);
840
841 int (*ioctl) (struct usb_interface *intf, unsigned int code,
842 void *buf);
843
844 int (*suspend) (struct usb_interface *intf, pm_message_t message);
845 int (*resume) (struct usb_interface *intf);
846
847 void (*pre_reset) (struct usb_interface *intf);
848 void (*post_reset) (struct usb_interface *intf);
849
850 const struct usb_device_id *id_table;
851
852 struct usb_dynids dynids;
853 struct usbdrv_wrap drvwrap;
854 unsigned int no_dynamic_id:1;
855 unsigned int supports_autosuspend:1;
856 };
857 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
858
859 /**
860 * struct usb_device_driver - identifies USB device driver to usbcore
861 * @name: The driver name should be unique among USB drivers,
862 * and should normally be the same as the module name.
863 * @probe: Called to see if the driver is willing to manage a particular
864 * device. If it is, probe returns zero and uses dev_set_drvdata()
865 * to associate driver-specific data with the device. If unwilling
866 * to manage the device, return a negative errno value.
867 * @disconnect: Called when the device is no longer accessible, usually
868 * because it has been (or is being) disconnected or the driver's
869 * module is being unloaded.
870 * @suspend: Called when the device is going to be suspended by the system.
871 * @resume: Called when the device is being resumed by the system.
872 * @drvwrap: Driver-model core structure wrapper.
873 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
874 * for devices bound to this driver.
875 *
876 * USB drivers must provide all the fields listed above except drvwrap.
877 */
878 struct usb_device_driver {
879 const char *name;
880
881 int (*probe) (struct usb_device *udev);
882 void (*disconnect) (struct usb_device *udev);
883
884 int (*suspend) (struct usb_device *udev, pm_message_t message);
885 int (*resume) (struct usb_device *udev);
886 struct usbdrv_wrap drvwrap;
887 unsigned int supports_autosuspend:1;
888 };
889 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
890 drvwrap.driver)
891
892 extern struct bus_type usb_bus_type;
893
894 /**
895 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
896 * @name: the usb class device name for this driver. Will show up in sysfs.
897 * @fops: pointer to the struct file_operations of this driver.
898 * @minor_base: the start of the minor range for this driver.
899 *
900 * This structure is used for the usb_register_dev() and
901 * usb_unregister_dev() functions, to consolidate a number of the
902 * parameters used for them.
903 */
904 struct usb_class_driver {
905 char *name;
906 const struct file_operations *fops;
907 int minor_base;
908 };
909
910 /*
911 * use these in module_init()/module_exit()
912 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
913 */
914 extern int usb_register_driver(struct usb_driver *, struct module *,
915 const char *);
916 static inline int usb_register(struct usb_driver *driver)
917 {
918 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
919 }
920 extern void usb_deregister(struct usb_driver *);
921
922 extern int usb_register_device_driver(struct usb_device_driver *,
923 struct module *);
924 extern void usb_deregister_device_driver(struct usb_device_driver *);
925
926 extern int usb_register_dev(struct usb_interface *intf,
927 struct usb_class_driver *class_driver);
928 extern void usb_deregister_dev(struct usb_interface *intf,
929 struct usb_class_driver *class_driver);
930
931 extern int usb_disabled(void);
932
933 /* ----------------------------------------------------------------------- */
934
935 /*
936 * URB support, for asynchronous request completions
937 */
938
939 /*
940 * urb->transfer_flags:
941 */
942 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
943 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
944 * ignored */
945 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
946 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
947 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
948 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
949 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
950 * needed */
951
952 struct usb_iso_packet_descriptor {
953 unsigned int offset;
954 unsigned int length; /* expected length */
955 unsigned int actual_length;
956 int status;
957 };
958
959 struct urb;
960
961 typedef void (*usb_complete_t)(struct urb *);
962
963 /**
964 * struct urb - USB Request Block
965 * @urb_list: For use by current owner of the URB.
966 * @pipe: Holds endpoint number, direction, type, and more.
967 * Create these values with the eight macros available;
968 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
969 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
970 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
971 * numbers range from zero to fifteen. Note that "in" endpoint two
972 * is a different endpoint (and pipe) from "out" endpoint two.
973 * The current configuration controls the existence, type, and
974 * maximum packet size of any given endpoint.
975 * @dev: Identifies the USB device to perform the request.
976 * @status: This is read in non-iso completion functions to get the
977 * status of the particular request. ISO requests only use it
978 * to tell whether the URB was unlinked; detailed status for
979 * each frame is in the fields of the iso_frame-desc.
980 * @transfer_flags: A variety of flags may be used to affect how URB
981 * submission, unlinking, or operation are handled. Different
982 * kinds of URB can use different flags.
983 * @transfer_buffer: This identifies the buffer to (or from) which
984 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
985 * is set). This buffer must be suitable for DMA; allocate it with
986 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
987 * of this buffer will be modified. This buffer is used for the data
988 * stage of control transfers.
989 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
990 * the device driver is saying that it provided this DMA address,
991 * which the host controller driver should use in preference to the
992 * transfer_buffer.
993 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
994 * be broken up into chunks according to the current maximum packet
995 * size for the endpoint, which is a function of the configuration
996 * and is encoded in the pipe. When the length is zero, neither
997 * transfer_buffer nor transfer_dma is used.
998 * @actual_length: This is read in non-iso completion functions, and
999 * it tells how many bytes (out of transfer_buffer_length) were
1000 * transferred. It will normally be the same as requested, unless
1001 * either an error was reported or a short read was performed.
1002 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1003 * short reads be reported as errors.
1004 * @setup_packet: Only used for control transfers, this points to eight bytes
1005 * of setup data. Control transfers always start by sending this data
1006 * to the device. Then transfer_buffer is read or written, if needed.
1007 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1008 * device driver has provided this DMA address for the setup packet.
1009 * The host controller driver should use this in preference to
1010 * setup_packet.
1011 * @start_frame: Returns the initial frame for isochronous transfers.
1012 * @number_of_packets: Lists the number of ISO transfer buffers.
1013 * @interval: Specifies the polling interval for interrupt or isochronous
1014 * transfers. The units are frames (milliseconds) for for full and low
1015 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1016 * @error_count: Returns the number of ISO transfers that reported errors.
1017 * @context: For use in completion functions. This normally points to
1018 * request-specific driver context.
1019 * @complete: Completion handler. This URB is passed as the parameter to the
1020 * completion function. The completion function may then do what
1021 * it likes with the URB, including resubmitting or freeing it.
1022 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1023 * collect the transfer status for each buffer.
1024 *
1025 * This structure identifies USB transfer requests. URBs must be allocated by
1026 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1027 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1028 * are submitted using usb_submit_urb(), and pending requests may be canceled
1029 * using usb_unlink_urb() or usb_kill_urb().
1030 *
1031 * Data Transfer Buffers:
1032 *
1033 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1034 * taken from the general page pool. That is provided by transfer_buffer
1035 * (control requests also use setup_packet), and host controller drivers
1036 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1037 * mapping operations can be expensive on some platforms (perhaps using a dma
1038 * bounce buffer or talking to an IOMMU),
1039 * although they're cheap on commodity x86 and ppc hardware.
1040 *
1041 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1042 * which tell the host controller driver that no such mapping is needed since
1043 * the device driver is DMA-aware. For example, a device driver might
1044 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1045 * When these transfer flags are provided, host controller drivers will
1046 * attempt to use the dma addresses found in the transfer_dma and/or
1047 * setup_dma fields rather than determining a dma address themselves. (Note
1048 * that transfer_buffer and setup_packet must still be set because not all
1049 * host controllers use DMA, nor do virtual root hubs).
1050 *
1051 * Initialization:
1052 *
1053 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1054 * zero), and complete fields. All URBs must also initialize
1055 * transfer_buffer and transfer_buffer_length. They may provide the
1056 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1057 * to be treated as errors; that flag is invalid for write requests.
1058 *
1059 * Bulk URBs may
1060 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1061 * should always terminate with a short packet, even if it means adding an
1062 * extra zero length packet.
1063 *
1064 * Control URBs must provide a setup_packet. The setup_packet and
1065 * transfer_buffer may each be mapped for DMA or not, independently of
1066 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1067 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1068 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1069 *
1070 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1071 * or, for highspeed devices, 125 microsecond units)
1072 * to poll for transfers. After the URB has been submitted, the interval
1073 * field reflects how the transfer was actually scheduled.
1074 * The polling interval may be more frequent than requested.
1075 * For example, some controllers have a maximum interval of 32 milliseconds,
1076 * while others support intervals of up to 1024 milliseconds.
1077 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1078 * endpoints, as well as high speed interrupt endpoints, the encoding of
1079 * the transfer interval in the endpoint descriptor is logarithmic.
1080 * Device drivers must convert that value to linear units themselves.)
1081 *
1082 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1083 * the host controller to schedule the transfer as soon as bandwidth
1084 * utilization allows, and then set start_frame to reflect the actual frame
1085 * selected during submission. Otherwise drivers must specify the start_frame
1086 * and handle the case where the transfer can't begin then. However, drivers
1087 * won't know how bandwidth is currently allocated, and while they can
1088 * find the current frame using usb_get_current_frame_number () they can't
1089 * know the range for that frame number. (Ranges for frame counter values
1090 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1091 *
1092 * Isochronous URBs have a different data transfer model, in part because
1093 * the quality of service is only "best effort". Callers provide specially
1094 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1095 * at the end. Each such packet is an individual ISO transfer. Isochronous
1096 * URBs are normally queued, submitted by drivers to arrange that
1097 * transfers are at least double buffered, and then explicitly resubmitted
1098 * in completion handlers, so
1099 * that data (such as audio or video) streams at as constant a rate as the
1100 * host controller scheduler can support.
1101 *
1102 * Completion Callbacks:
1103 *
1104 * The completion callback is made in_interrupt(), and one of the first
1105 * things that a completion handler should do is check the status field.
1106 * The status field is provided for all URBs. It is used to report
1107 * unlinked URBs, and status for all non-ISO transfers. It should not
1108 * be examined before the URB is returned to the completion handler.
1109 *
1110 * The context field is normally used to link URBs back to the relevant
1111 * driver or request state.
1112 *
1113 * When the completion callback is invoked for non-isochronous URBs, the
1114 * actual_length field tells how many bytes were transferred. This field
1115 * is updated even when the URB terminated with an error or was unlinked.
1116 *
1117 * ISO transfer status is reported in the status and actual_length fields
1118 * of the iso_frame_desc array, and the number of errors is reported in
1119 * error_count. Completion callbacks for ISO transfers will normally
1120 * (re)submit URBs to ensure a constant transfer rate.
1121 *
1122 * Note that even fields marked "public" should not be touched by the driver
1123 * when the urb is owned by the hcd, that is, since the call to
1124 * usb_submit_urb() till the entry into the completion routine.
1125 */
1126 struct urb
1127 {
1128 /* private: usb core and host controller only fields in the urb */
1129 struct kref kref; /* reference count of the URB */
1130 spinlock_t lock; /* lock for the URB */
1131 void *hcpriv; /* private data for host controller */
1132 atomic_t use_count; /* concurrent submissions counter */
1133 u8 reject; /* submissions will fail */
1134
1135 /* public: documented fields in the urb that can be used by drivers */
1136 struct list_head urb_list; /* list head for use by the urb's
1137 * current owner */
1138 struct usb_device *dev; /* (in) pointer to associated device */
1139 unsigned int pipe; /* (in) pipe information */
1140 int status; /* (return) non-ISO status */
1141 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1142 void *transfer_buffer; /* (in) associated data buffer */
1143 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1144 int transfer_buffer_length; /* (in) data buffer length */
1145 int actual_length; /* (return) actual transfer length */
1146 unsigned char *setup_packet; /* (in) setup packet (control only) */
1147 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1148 int start_frame; /* (modify) start frame (ISO) */
1149 int number_of_packets; /* (in) number of ISO packets */
1150 int interval; /* (modify) transfer interval
1151 * (INT/ISO) */
1152 int error_count; /* (return) number of ISO errors */
1153 void *context; /* (in) context for completion */
1154 usb_complete_t complete; /* (in) completion routine */
1155 struct usb_iso_packet_descriptor iso_frame_desc[0];
1156 /* (in) ISO ONLY */
1157 };
1158
1159 /* ----------------------------------------------------------------------- */
1160
1161 /**
1162 * usb_fill_control_urb - initializes a control urb
1163 * @urb: pointer to the urb to initialize.
1164 * @dev: pointer to the struct usb_device for this urb.
1165 * @pipe: the endpoint pipe
1166 * @setup_packet: pointer to the setup_packet buffer
1167 * @transfer_buffer: pointer to the transfer buffer
1168 * @buffer_length: length of the transfer buffer
1169 * @complete_fn: pointer to the usb_complete_t function
1170 * @context: what to set the urb context to.
1171 *
1172 * Initializes a control urb with the proper information needed to submit
1173 * it to a device.
1174 */
1175 static inline void usb_fill_control_urb (struct urb *urb,
1176 struct usb_device *dev,
1177 unsigned int pipe,
1178 unsigned char *setup_packet,
1179 void *transfer_buffer,
1180 int buffer_length,
1181 usb_complete_t complete_fn,
1182 void *context)
1183 {
1184 spin_lock_init(&urb->lock);
1185 urb->dev = dev;
1186 urb->pipe = pipe;
1187 urb->setup_packet = setup_packet;
1188 urb->transfer_buffer = transfer_buffer;
1189 urb->transfer_buffer_length = buffer_length;
1190 urb->complete = complete_fn;
1191 urb->context = context;
1192 }
1193
1194 /**
1195 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1196 * @urb: pointer to the urb to initialize.
1197 * @dev: pointer to the struct usb_device for this urb.
1198 * @pipe: the endpoint pipe
1199 * @transfer_buffer: pointer to the transfer buffer
1200 * @buffer_length: length of the transfer buffer
1201 * @complete_fn: pointer to the usb_complete_t function
1202 * @context: what to set the urb context to.
1203 *
1204 * Initializes a bulk urb with the proper information needed to submit it
1205 * to a device.
1206 */
1207 static inline void usb_fill_bulk_urb (struct urb *urb,
1208 struct usb_device *dev,
1209 unsigned int pipe,
1210 void *transfer_buffer,
1211 int buffer_length,
1212 usb_complete_t complete_fn,
1213 void *context)
1214 {
1215 spin_lock_init(&urb->lock);
1216 urb->dev = dev;
1217 urb->pipe = pipe;
1218 urb->transfer_buffer = transfer_buffer;
1219 urb->transfer_buffer_length = buffer_length;
1220 urb->complete = complete_fn;
1221 urb->context = context;
1222 }
1223
1224 /**
1225 * usb_fill_int_urb - macro to help initialize a interrupt urb
1226 * @urb: pointer to the urb to initialize.
1227 * @dev: pointer to the struct usb_device for this urb.
1228 * @pipe: the endpoint pipe
1229 * @transfer_buffer: pointer to the transfer buffer
1230 * @buffer_length: length of the transfer buffer
1231 * @complete_fn: pointer to the usb_complete_t function
1232 * @context: what to set the urb context to.
1233 * @interval: what to set the urb interval to, encoded like
1234 * the endpoint descriptor's bInterval value.
1235 *
1236 * Initializes a interrupt urb with the proper information needed to submit
1237 * it to a device.
1238 * Note that high speed interrupt endpoints use a logarithmic encoding of
1239 * the endpoint interval, and express polling intervals in microframes
1240 * (eight per millisecond) rather than in frames (one per millisecond).
1241 */
1242 static inline void usb_fill_int_urb (struct urb *urb,
1243 struct usb_device *dev,
1244 unsigned int pipe,
1245 void *transfer_buffer,
1246 int buffer_length,
1247 usb_complete_t complete_fn,
1248 void *context,
1249 int interval)
1250 {
1251 spin_lock_init(&urb->lock);
1252 urb->dev = dev;
1253 urb->pipe = pipe;
1254 urb->transfer_buffer = transfer_buffer;
1255 urb->transfer_buffer_length = buffer_length;
1256 urb->complete = complete_fn;
1257 urb->context = context;
1258 if (dev->speed == USB_SPEED_HIGH)
1259 urb->interval = 1 << (interval - 1);
1260 else
1261 urb->interval = interval;
1262 urb->start_frame = -1;
1263 }
1264
1265 extern void usb_init_urb(struct urb *urb);
1266 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1267 extern void usb_free_urb(struct urb *urb);
1268 #define usb_put_urb usb_free_urb
1269 extern struct urb *usb_get_urb(struct urb *urb);
1270 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1271 extern int usb_unlink_urb(struct urb *urb);
1272 extern void usb_kill_urb(struct urb *urb);
1273
1274 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1275 gfp_t mem_flags, dma_addr_t *dma);
1276 void usb_buffer_free (struct usb_device *dev, size_t size,
1277 void *addr, dma_addr_t dma);
1278
1279 #if 0
1280 struct urb *usb_buffer_map (struct urb *urb);
1281 void usb_buffer_dmasync (struct urb *urb);
1282 void usb_buffer_unmap (struct urb *urb);
1283 #endif
1284
1285 struct scatterlist;
1286 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1287 struct scatterlist *sg, int nents);
1288 #if 0
1289 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1290 struct scatterlist *sg, int n_hw_ents);
1291 #endif
1292 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1293 struct scatterlist *sg, int n_hw_ents);
1294
1295 /*-------------------------------------------------------------------*
1296 * SYNCHRONOUS CALL SUPPORT *
1297 *-------------------------------------------------------------------*/
1298
1299 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1300 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1301 void *data, __u16 size, int timeout);
1302 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1303 void *data, int len, int *actual_length, int timeout);
1304 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1305 void *data, int len, int *actual_length,
1306 int timeout);
1307
1308 /* wrappers around usb_control_msg() for the most common standard requests */
1309 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1310 unsigned char descindex, void *buf, int size);
1311 extern int usb_get_status(struct usb_device *dev,
1312 int type, int target, void *data);
1313 extern int usb_string(struct usb_device *dev, int index,
1314 char *buf, size_t size);
1315
1316 /* wrappers that also update important state inside usbcore */
1317 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1318 extern int usb_reset_configuration(struct usb_device *dev);
1319 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1320
1321 /* this request isn't really synchronous, but it belongs with the others */
1322 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1323
1324 /*
1325 * timeouts, in milliseconds, used for sending/receiving control messages
1326 * they typically complete within a few frames (msec) after they're issued
1327 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1328 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1329 */
1330 #define USB_CTRL_GET_TIMEOUT 5000
1331 #define USB_CTRL_SET_TIMEOUT 5000
1332
1333
1334 /**
1335 * struct usb_sg_request - support for scatter/gather I/O
1336 * @status: zero indicates success, else negative errno
1337 * @bytes: counts bytes transferred.
1338 *
1339 * These requests are initialized using usb_sg_init(), and then are used
1340 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1341 * members of the request object aren't for driver access.
1342 *
1343 * The status and bytecount values are valid only after usb_sg_wait()
1344 * returns. If the status is zero, then the bytecount matches the total
1345 * from the request.
1346 *
1347 * After an error completion, drivers may need to clear a halt condition
1348 * on the endpoint.
1349 */
1350 struct usb_sg_request {
1351 int status;
1352 size_t bytes;
1353
1354 /*
1355 * members below are private: to usbcore,
1356 * and are not provided for driver access!
1357 */
1358 spinlock_t lock;
1359
1360 struct usb_device *dev;
1361 int pipe;
1362 struct scatterlist *sg;
1363 int nents;
1364
1365 int entries;
1366 struct urb **urbs;
1367
1368 int count;
1369 struct completion complete;
1370 };
1371
1372 int usb_sg_init (
1373 struct usb_sg_request *io,
1374 struct usb_device *dev,
1375 unsigned pipe,
1376 unsigned period,
1377 struct scatterlist *sg,
1378 int nents,
1379 size_t length,
1380 gfp_t mem_flags
1381 );
1382 void usb_sg_cancel (struct usb_sg_request *io);
1383 void usb_sg_wait (struct usb_sg_request *io);
1384
1385
1386 /* ----------------------------------------------------------------------- */
1387
1388 /*
1389 * For various legacy reasons, Linux has a small cookie that's paired with
1390 * a struct usb_device to identify an endpoint queue. Queue characteristics
1391 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1392 * an unsigned int encoded as:
1393 *
1394 * - direction: bit 7 (0 = Host-to-Device [Out],
1395 * 1 = Device-to-Host [In] ...
1396 * like endpoint bEndpointAddress)
1397 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1398 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1399 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1400 * 10 = control, 11 = bulk)
1401 *
1402 * Given the device address and endpoint descriptor, pipes are redundant.
1403 */
1404
1405 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1406 /* (yet ... they're the values used by usbfs) */
1407 #define PIPE_ISOCHRONOUS 0
1408 #define PIPE_INTERRUPT 1
1409 #define PIPE_CONTROL 2
1410 #define PIPE_BULK 3
1411
1412 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1413 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1414
1415 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1416 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1417
1418 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1419 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1420 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1421 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1422 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1423
1424 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1425 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1426 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1427 #define usb_settoggle(dev, ep, out, bit) \
1428 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1429 ((bit) << (ep)))
1430
1431
1432 static inline unsigned int __create_pipe(struct usb_device *dev,
1433 unsigned int endpoint)
1434 {
1435 return (dev->devnum << 8) | (endpoint << 15);
1436 }
1437
1438 /* Create various pipes... */
1439 #define usb_sndctrlpipe(dev,endpoint) \
1440 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1441 #define usb_rcvctrlpipe(dev,endpoint) \
1442 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1443 #define usb_sndisocpipe(dev,endpoint) \
1444 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1445 #define usb_rcvisocpipe(dev,endpoint) \
1446 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1447 #define usb_sndbulkpipe(dev,endpoint) \
1448 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1449 #define usb_rcvbulkpipe(dev,endpoint) \
1450 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1451 #define usb_sndintpipe(dev,endpoint) \
1452 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1453 #define usb_rcvintpipe(dev,endpoint) \
1454 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1455
1456 /*-------------------------------------------------------------------------*/
1457
1458 static inline __u16
1459 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1460 {
1461 struct usb_host_endpoint *ep;
1462 unsigned epnum = usb_pipeendpoint(pipe);
1463
1464 if (is_out) {
1465 WARN_ON(usb_pipein(pipe));
1466 ep = udev->ep_out[epnum];
1467 } else {
1468 WARN_ON(usb_pipeout(pipe));
1469 ep = udev->ep_in[epnum];
1470 }
1471 if (!ep)
1472 return 0;
1473
1474 /* NOTE: only 0x07ff bits are for packet size... */
1475 return le16_to_cpu(ep->desc.wMaxPacketSize);
1476 }
1477
1478 /* ----------------------------------------------------------------------- */
1479
1480 /* Events from the usb core */
1481 #define USB_DEVICE_ADD 0x0001
1482 #define USB_DEVICE_REMOVE 0x0002
1483 #define USB_BUS_ADD 0x0003
1484 #define USB_BUS_REMOVE 0x0004
1485 extern void usb_register_notify(struct notifier_block *nb);
1486 extern void usb_unregister_notify(struct notifier_block *nb);
1487
1488 #ifdef DEBUG
1489 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1490 __FILE__ , ## arg)
1491 #else
1492 #define dbg(format, arg...) do {} while (0)
1493 #endif
1494
1495 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1496 __FILE__ , ## arg)
1497 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1498 __FILE__ , ## arg)
1499 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1500 __FILE__ , ## arg)
1501
1502
1503 #endif /* __KERNEL__ */
1504
1505 #endif
This page took 0.08647 seconds and 5 git commands to generate.