Driver core: internal struct dma_coherent_mem, change type of a member.
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27
28 /*-------------------------------------------------------------------------*/
29
30 /*
31 * Host-side wrappers for standard USB descriptors ... these are parsed
32 * from the data provided by devices. Parsing turns them from a flat
33 * sequence of descriptors into a hierarchy:
34 *
35 * - devices have one (usually) or more configs;
36 * - configs have one (often) or more interfaces;
37 * - interfaces have one (usually) or more settings;
38 * - each interface setting has zero or (usually) more endpoints.
39 * - a SuperSpeed endpoint has a companion descriptor
40 *
41 * And there might be other descriptors mixed in with those.
42 *
43 * Devices may also have class-specific or vendor-specific descriptors.
44 */
45
46 struct ep_device;
47
48 /**
49 * struct usb_host_endpoint - host-side endpoint descriptor and queue
50 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
51 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
52 * @urb_list: urbs queued to this endpoint; maintained by usbcore
53 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
54 * with one or more transfer descriptors (TDs) per urb
55 * @ep_dev: ep_device for sysfs info
56 * @extra: descriptors following this endpoint in the configuration
57 * @extralen: how many bytes of "extra" are valid
58 * @enabled: URBs may be submitted to this endpoint
59 *
60 * USB requests are always queued to a given endpoint, identified by a
61 * descriptor within an active interface in a given USB configuration.
62 */
63 struct usb_host_endpoint {
64 struct usb_endpoint_descriptor desc;
65 struct usb_ss_ep_comp_descriptor ss_ep_comp;
66 struct list_head urb_list;
67 void *hcpriv;
68 struct ep_device *ep_dev; /* For sysfs info */
69
70 unsigned char *extra; /* Extra descriptors */
71 int extralen;
72 int enabled;
73 };
74
75 /* host-side wrapper for one interface setting's parsed descriptors */
76 struct usb_host_interface {
77 struct usb_interface_descriptor desc;
78
79 /* array of desc.bNumEndpoint endpoints associated with this
80 * interface setting. these will be in no particular order.
81 */
82 struct usb_host_endpoint *endpoint;
83
84 char *string; /* iInterface string, if present */
85 unsigned char *extra; /* Extra descriptors */
86 int extralen;
87 };
88
89 enum usb_interface_condition {
90 USB_INTERFACE_UNBOUND = 0,
91 USB_INTERFACE_BINDING,
92 USB_INTERFACE_BOUND,
93 USB_INTERFACE_UNBINDING,
94 };
95
96 /**
97 * struct usb_interface - what usb device drivers talk to
98 * @altsetting: array of interface structures, one for each alternate
99 * setting that may be selected. Each one includes a set of
100 * endpoint configurations. They will be in no particular order.
101 * @cur_altsetting: the current altsetting.
102 * @num_altsetting: number of altsettings defined.
103 * @intf_assoc: interface association descriptor
104 * @minor: the minor number assigned to this interface, if this
105 * interface is bound to a driver that uses the USB major number.
106 * If this interface does not use the USB major, this field should
107 * be unused. The driver should set this value in the probe()
108 * function of the driver, after it has been assigned a minor
109 * number from the USB core by calling usb_register_dev().
110 * @condition: binding state of the interface: not bound, binding
111 * (in probe()), bound to a driver, or unbinding (in disconnect())
112 * @sysfs_files_created: sysfs attributes exist
113 * @ep_devs_created: endpoint child pseudo-devices exist
114 * @unregistering: flag set when the interface is being unregistered
115 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
116 * capability during autosuspend.
117 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
118 * has been deferred.
119 * @needs_binding: flag set when the driver should be re-probed or unbound
120 * following a reset or suspend operation it doesn't support.
121 * @dev: driver model's view of this device
122 * @usb_dev: if an interface is bound to the USB major, this will point
123 * to the sysfs representation for that device.
124 * @pm_usage_cnt: PM usage counter for this interface
125 * @reset_ws: Used for scheduling resets from atomic context.
126 * @reset_running: set to 1 if the interface is currently running a
127 * queued reset so that usb_cancel_queued_reset() doesn't try to
128 * remove from the workqueue when running inside the worker
129 * thread. See __usb_queue_reset_device().
130 *
131 * USB device drivers attach to interfaces on a physical device. Each
132 * interface encapsulates a single high level function, such as feeding
133 * an audio stream to a speaker or reporting a change in a volume control.
134 * Many USB devices only have one interface. The protocol used to talk to
135 * an interface's endpoints can be defined in a usb "class" specification,
136 * or by a product's vendor. The (default) control endpoint is part of
137 * every interface, but is never listed among the interface's descriptors.
138 *
139 * The driver that is bound to the interface can use standard driver model
140 * calls such as dev_get_drvdata() on the dev member of this structure.
141 *
142 * Each interface may have alternate settings. The initial configuration
143 * of a device sets altsetting 0, but the device driver can change
144 * that setting using usb_set_interface(). Alternate settings are often
145 * used to control the use of periodic endpoints, such as by having
146 * different endpoints use different amounts of reserved USB bandwidth.
147 * All standards-conformant USB devices that use isochronous endpoints
148 * will use them in non-default settings.
149 *
150 * The USB specification says that alternate setting numbers must run from
151 * 0 to one less than the total number of alternate settings. But some
152 * devices manage to mess this up, and the structures aren't necessarily
153 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
154 * look up an alternate setting in the altsetting array based on its number.
155 */
156 struct usb_interface {
157 /* array of alternate settings for this interface,
158 * stored in no particular order */
159 struct usb_host_interface *altsetting;
160
161 struct usb_host_interface *cur_altsetting; /* the currently
162 * active alternate setting */
163 unsigned num_altsetting; /* number of alternate settings */
164
165 /* If there is an interface association descriptor then it will list
166 * the associated interfaces */
167 struct usb_interface_assoc_descriptor *intf_assoc;
168
169 int minor; /* minor number this interface is
170 * bound to */
171 enum usb_interface_condition condition; /* state of binding */
172 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
173 unsigned ep_devs_created:1; /* endpoint "devices" exist */
174 unsigned unregistering:1; /* unregistration is in progress */
175 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
176 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
177 unsigned needs_binding:1; /* needs delayed unbind/rebind */
178 unsigned reset_running:1;
179 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
180
181 struct device dev; /* interface specific device info */
182 struct device *usb_dev;
183 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
184 struct work_struct reset_ws; /* for resets in atomic context */
185 };
186 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
187
188 static inline void *usb_get_intfdata(struct usb_interface *intf)
189 {
190 return dev_get_drvdata(&intf->dev);
191 }
192
193 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
194 {
195 dev_set_drvdata(&intf->dev, data);
196 }
197
198 struct usb_interface *usb_get_intf(struct usb_interface *intf);
199 void usb_put_intf(struct usb_interface *intf);
200
201 /* this maximum is arbitrary */
202 #define USB_MAXINTERFACES 32
203 #define USB_MAXIADS (USB_MAXINTERFACES/2)
204
205 /**
206 * struct usb_interface_cache - long-term representation of a device interface
207 * @num_altsetting: number of altsettings defined.
208 * @ref: reference counter.
209 * @altsetting: variable-length array of interface structures, one for
210 * each alternate setting that may be selected. Each one includes a
211 * set of endpoint configurations. They will be in no particular order.
212 *
213 * These structures persist for the lifetime of a usb_device, unlike
214 * struct usb_interface (which persists only as long as its configuration
215 * is installed). The altsetting arrays can be accessed through these
216 * structures at any time, permitting comparison of configurations and
217 * providing support for the /proc/bus/usb/devices pseudo-file.
218 */
219 struct usb_interface_cache {
220 unsigned num_altsetting; /* number of alternate settings */
221 struct kref ref; /* reference counter */
222
223 /* variable-length array of alternate settings for this interface,
224 * stored in no particular order */
225 struct usb_host_interface altsetting[0];
226 };
227 #define ref_to_usb_interface_cache(r) \
228 container_of(r, struct usb_interface_cache, ref)
229 #define altsetting_to_usb_interface_cache(a) \
230 container_of(a, struct usb_interface_cache, altsetting[0])
231
232 /**
233 * struct usb_host_config - representation of a device's configuration
234 * @desc: the device's configuration descriptor.
235 * @string: pointer to the cached version of the iConfiguration string, if
236 * present for this configuration.
237 * @intf_assoc: list of any interface association descriptors in this config
238 * @interface: array of pointers to usb_interface structures, one for each
239 * interface in the configuration. The number of interfaces is stored
240 * in desc.bNumInterfaces. These pointers are valid only while the
241 * the configuration is active.
242 * @intf_cache: array of pointers to usb_interface_cache structures, one
243 * for each interface in the configuration. These structures exist
244 * for the entire life of the device.
245 * @extra: pointer to buffer containing all extra descriptors associated
246 * with this configuration (those preceding the first interface
247 * descriptor).
248 * @extralen: length of the extra descriptors buffer.
249 *
250 * USB devices may have multiple configurations, but only one can be active
251 * at any time. Each encapsulates a different operational environment;
252 * for example, a dual-speed device would have separate configurations for
253 * full-speed and high-speed operation. The number of configurations
254 * available is stored in the device descriptor as bNumConfigurations.
255 *
256 * A configuration can contain multiple interfaces. Each corresponds to
257 * a different function of the USB device, and all are available whenever
258 * the configuration is active. The USB standard says that interfaces
259 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
260 * of devices get this wrong. In addition, the interface array is not
261 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
262 * look up an interface entry based on its number.
263 *
264 * Device drivers should not attempt to activate configurations. The choice
265 * of which configuration to install is a policy decision based on such
266 * considerations as available power, functionality provided, and the user's
267 * desires (expressed through userspace tools). However, drivers can call
268 * usb_reset_configuration() to reinitialize the current configuration and
269 * all its interfaces.
270 */
271 struct usb_host_config {
272 struct usb_config_descriptor desc;
273
274 char *string; /* iConfiguration string, if present */
275
276 /* List of any Interface Association Descriptors in this
277 * configuration. */
278 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
279
280 /* the interfaces associated with this configuration,
281 * stored in no particular order */
282 struct usb_interface *interface[USB_MAXINTERFACES];
283
284 /* Interface information available even when this is not the
285 * active configuration */
286 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
287
288 unsigned char *extra; /* Extra descriptors */
289 int extralen;
290 };
291
292 int __usb_get_extra_descriptor(char *buffer, unsigned size,
293 unsigned char type, void **ptr);
294 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
295 __usb_get_extra_descriptor((ifpoint)->extra, \
296 (ifpoint)->extralen, \
297 type, (void **)ptr)
298
299 /* ----------------------------------------------------------------------- */
300
301 /* USB device number allocation bitmap */
302 struct usb_devmap {
303 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
304 };
305
306 /*
307 * Allocated per bus (tree of devices) we have:
308 */
309 struct usb_bus {
310 struct device *controller; /* host/master side hardware */
311 int busnum; /* Bus number (in order of reg) */
312 const char *bus_name; /* stable id (PCI slot_name etc) */
313 u8 uses_dma; /* Does the host controller use DMA? */
314 u8 otg_port; /* 0, or number of OTG/HNP port */
315 unsigned is_b_host:1; /* true during some HNP roleswitches */
316 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
317 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
318
319 int devnum_next; /* Next open device number in
320 * round-robin allocation */
321
322 struct usb_devmap devmap; /* device address allocation map */
323 struct usb_device *root_hub; /* Root hub */
324 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
325 struct list_head bus_list; /* list of busses */
326
327 int bandwidth_allocated; /* on this bus: how much of the time
328 * reserved for periodic (intr/iso)
329 * requests is used, on average?
330 * Units: microseconds/frame.
331 * Limits: Full/low speed reserve 90%,
332 * while high speed reserves 80%.
333 */
334 int bandwidth_int_reqs; /* number of Interrupt requests */
335 int bandwidth_isoc_reqs; /* number of Isoc. requests */
336
337 #ifdef CONFIG_USB_DEVICEFS
338 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
339 #endif
340
341 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
342 struct mon_bus *mon_bus; /* non-null when associated */
343 int monitored; /* non-zero when monitored */
344 #endif
345 };
346
347 /* ----------------------------------------------------------------------- */
348
349 /* This is arbitrary.
350 * From USB 2.0 spec Table 11-13, offset 7, a hub can
351 * have up to 255 ports. The most yet reported is 10.
352 *
353 * Current Wireless USB host hardware (Intel i1480 for example) allows
354 * up to 22 devices to connect. Upcoming hardware might raise that
355 * limit. Because the arrays need to add a bit for hub status data, we
356 * do 31, so plus one evens out to four bytes.
357 */
358 #define USB_MAXCHILDREN (31)
359
360 struct usb_tt;
361
362 /**
363 * struct usb_device - kernel's representation of a USB device
364 * @devnum: device number; address on a USB bus
365 * @devpath: device ID string for use in messages (e.g., /port/...)
366 * @route: tree topology hex string for use with xHCI
367 * @state: device state: configured, not attached, etc.
368 * @speed: device speed: high/full/low (or error)
369 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
370 * @ttport: device port on that tt hub
371 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
372 * @parent: our hub, unless we're the root
373 * @bus: bus we're part of
374 * @ep0: endpoint 0 data (default control pipe)
375 * @dev: generic device interface
376 * @descriptor: USB device descriptor
377 * @config: all of the device's configs
378 * @actconfig: the active configuration
379 * @ep_in: array of IN endpoints
380 * @ep_out: array of OUT endpoints
381 * @rawdescriptors: raw descriptors for each config
382 * @bus_mA: Current available from the bus
383 * @portnum: parent port number (origin 1)
384 * @level: number of USB hub ancestors
385 * @can_submit: URBs may be submitted
386 * @persist_enabled: USB_PERSIST enabled for this device
387 * @have_langid: whether string_langid is valid
388 * @authorized: policy has said we can use it;
389 * (user space) policy determines if we authorize this device to be
390 * used or not. By default, wired USB devices are authorized.
391 * WUSB devices are not, until we authorize them from user space.
392 * FIXME -- complete doc
393 * @authenticated: Crypto authentication passed
394 * @wusb: device is Wireless USB
395 * @string_langid: language ID for strings
396 * @product: iProduct string, if present (static)
397 * @manufacturer: iManufacturer string, if present (static)
398 * @serial: iSerialNumber string, if present (static)
399 * @filelist: usbfs files that are open to this device
400 * @usb_classdev: USB class device that was created for usbfs device
401 * access from userspace
402 * @usbfs_dentry: usbfs dentry entry for the device
403 * @maxchild: number of ports if hub
404 * @children: child devices - USB devices that are attached to this hub
405 * @quirks: quirks of the whole device
406 * @urbnum: number of URBs submitted for the whole device
407 * @active_duration: total time device is not suspended
408 * @last_busy: time of last use
409 * @autosuspend_delay: in jiffies
410 * @connect_time: time device was first connected
411 * @do_remote_wakeup: remote wakeup should be enabled
412 * @reset_resume: needs reset instead of resume
413 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
414 * specific data for the device.
415 * @slot_id: Slot ID assigned by xHCI
416 *
417 * Notes:
418 * Usbcore drivers should not set usbdev->state directly. Instead use
419 * usb_set_device_state().
420 */
421 struct usb_device {
422 int devnum;
423 char devpath[16];
424 u32 route;
425 enum usb_device_state state;
426 enum usb_device_speed speed;
427
428 struct usb_tt *tt;
429 int ttport;
430
431 unsigned int toggle[2];
432
433 struct usb_device *parent;
434 struct usb_bus *bus;
435 struct usb_host_endpoint ep0;
436
437 struct device dev;
438
439 struct usb_device_descriptor descriptor;
440 struct usb_host_config *config;
441
442 struct usb_host_config *actconfig;
443 struct usb_host_endpoint *ep_in[16];
444 struct usb_host_endpoint *ep_out[16];
445
446 char **rawdescriptors;
447
448 unsigned short bus_mA;
449 u8 portnum;
450 u8 level;
451
452 unsigned can_submit:1;
453 unsigned persist_enabled:1;
454 unsigned have_langid:1;
455 unsigned authorized:1;
456 unsigned authenticated:1;
457 unsigned wusb:1;
458 int string_langid;
459
460 /* static strings from the device */
461 char *product;
462 char *manufacturer;
463 char *serial;
464
465 struct list_head filelist;
466 #ifdef CONFIG_USB_DEVICE_CLASS
467 struct device *usb_classdev;
468 #endif
469 #ifdef CONFIG_USB_DEVICEFS
470 struct dentry *usbfs_dentry;
471 #endif
472
473 int maxchild;
474 struct usb_device *children[USB_MAXCHILDREN];
475
476 u32 quirks;
477 atomic_t urbnum;
478
479 unsigned long active_duration;
480
481 #ifdef CONFIG_PM
482 unsigned long last_busy;
483 int autosuspend_delay;
484 unsigned long connect_time;
485
486 unsigned do_remote_wakeup:1;
487 unsigned reset_resume:1;
488 #endif
489 struct wusb_dev *wusb_dev;
490 int slot_id;
491 };
492 #define to_usb_device(d) container_of(d, struct usb_device, dev)
493
494 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
495 {
496 return to_usb_device(intf->dev.parent);
497 }
498
499 extern struct usb_device *usb_get_dev(struct usb_device *dev);
500 extern void usb_put_dev(struct usb_device *dev);
501
502 /* USB device locking */
503 #define usb_lock_device(udev) device_lock(&(udev)->dev)
504 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
505 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
506 extern int usb_lock_device_for_reset(struct usb_device *udev,
507 const struct usb_interface *iface);
508
509 /* USB port reset for device reinitialization */
510 extern int usb_reset_device(struct usb_device *dev);
511 extern void usb_queue_reset_device(struct usb_interface *dev);
512
513
514 /* USB autosuspend and autoresume */
515 #ifdef CONFIG_USB_SUSPEND
516 extern void usb_enable_autosuspend(struct usb_device *udev);
517 extern void usb_disable_autosuspend(struct usb_device *udev);
518
519 extern int usb_autopm_get_interface(struct usb_interface *intf);
520 extern void usb_autopm_put_interface(struct usb_interface *intf);
521 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
522 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
523 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
524 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
525
526 static inline void usb_mark_last_busy(struct usb_device *udev)
527 {
528 udev->last_busy = jiffies;
529 }
530
531 #else
532
533 static inline int usb_enable_autosuspend(struct usb_device *udev)
534 { return 0; }
535 static inline int usb_disable_autosuspend(struct usb_device *udev)
536 { return 0; }
537
538 static inline int usb_autopm_get_interface(struct usb_interface *intf)
539 { return 0; }
540 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
541 { return 0; }
542
543 static inline void usb_autopm_put_interface(struct usb_interface *intf)
544 { }
545 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
546 { }
547 static inline void usb_autopm_get_interface_no_resume(
548 struct usb_interface *intf)
549 { }
550 static inline void usb_autopm_put_interface_no_suspend(
551 struct usb_interface *intf)
552 { }
553 static inline void usb_mark_last_busy(struct usb_device *udev)
554 { }
555 #endif
556
557 /*-------------------------------------------------------------------------*/
558
559 /* for drivers using iso endpoints */
560 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
561
562 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
563 extern int usb_alloc_streams(struct usb_interface *interface,
564 struct usb_host_endpoint **eps, unsigned int num_eps,
565 unsigned int num_streams, gfp_t mem_flags);
566
567 /* Reverts a group of bulk endpoints back to not using stream IDs. */
568 extern void usb_free_streams(struct usb_interface *interface,
569 struct usb_host_endpoint **eps, unsigned int num_eps,
570 gfp_t mem_flags);
571
572 /* used these for multi-interface device registration */
573 extern int usb_driver_claim_interface(struct usb_driver *driver,
574 struct usb_interface *iface, void *priv);
575
576 /**
577 * usb_interface_claimed - returns true iff an interface is claimed
578 * @iface: the interface being checked
579 *
580 * Returns true (nonzero) iff the interface is claimed, else false (zero).
581 * Callers must own the driver model's usb bus readlock. So driver
582 * probe() entries don't need extra locking, but other call contexts
583 * may need to explicitly claim that lock.
584 *
585 */
586 static inline int usb_interface_claimed(struct usb_interface *iface)
587 {
588 return (iface->dev.driver != NULL);
589 }
590
591 extern void usb_driver_release_interface(struct usb_driver *driver,
592 struct usb_interface *iface);
593 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
594 const struct usb_device_id *id);
595 extern int usb_match_one_id(struct usb_interface *interface,
596 const struct usb_device_id *id);
597
598 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
599 int minor);
600 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
601 unsigned ifnum);
602 extern struct usb_host_interface *usb_altnum_to_altsetting(
603 const struct usb_interface *intf, unsigned int altnum);
604 extern struct usb_host_interface *usb_find_alt_setting(
605 struct usb_host_config *config,
606 unsigned int iface_num,
607 unsigned int alt_num);
608
609
610 /**
611 * usb_make_path - returns stable device path in the usb tree
612 * @dev: the device whose path is being constructed
613 * @buf: where to put the string
614 * @size: how big is "buf"?
615 *
616 * Returns length of the string (> 0) or negative if size was too small.
617 *
618 * This identifier is intended to be "stable", reflecting physical paths in
619 * hardware such as physical bus addresses for host controllers or ports on
620 * USB hubs. That makes it stay the same until systems are physically
621 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
622 * controllers. Adding and removing devices, including virtual root hubs
623 * in host controller driver modules, does not change these path identifers;
624 * neither does rebooting or re-enumerating. These are more useful identifiers
625 * than changeable ("unstable") ones like bus numbers or device addresses.
626 *
627 * With a partial exception for devices connected to USB 2.0 root hubs, these
628 * identifiers are also predictable. So long as the device tree isn't changed,
629 * plugging any USB device into a given hub port always gives it the same path.
630 * Because of the use of "companion" controllers, devices connected to ports on
631 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
632 * high speed, and a different one if they are full or low speed.
633 */
634 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
635 {
636 int actual;
637 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
638 dev->devpath);
639 return (actual >= (int)size) ? -1 : actual;
640 }
641
642 /*-------------------------------------------------------------------------*/
643
644 #define USB_DEVICE_ID_MATCH_DEVICE \
645 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
646 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
647 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
648 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
649 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
650 #define USB_DEVICE_ID_MATCH_DEV_INFO \
651 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
652 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
653 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
654 #define USB_DEVICE_ID_MATCH_INT_INFO \
655 (USB_DEVICE_ID_MATCH_INT_CLASS | \
656 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
657 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
658
659 /**
660 * USB_DEVICE - macro used to describe a specific usb device
661 * @vend: the 16 bit USB Vendor ID
662 * @prod: the 16 bit USB Product ID
663 *
664 * This macro is used to create a struct usb_device_id that matches a
665 * specific device.
666 */
667 #define USB_DEVICE(vend, prod) \
668 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
669 .idVendor = (vend), \
670 .idProduct = (prod)
671 /**
672 * USB_DEVICE_VER - describe a specific usb device with a version range
673 * @vend: the 16 bit USB Vendor ID
674 * @prod: the 16 bit USB Product ID
675 * @lo: the bcdDevice_lo value
676 * @hi: the bcdDevice_hi value
677 *
678 * This macro is used to create a struct usb_device_id that matches a
679 * specific device, with a version range.
680 */
681 #define USB_DEVICE_VER(vend, prod, lo, hi) \
682 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
683 .idVendor = (vend), \
684 .idProduct = (prod), \
685 .bcdDevice_lo = (lo), \
686 .bcdDevice_hi = (hi)
687
688 /**
689 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
690 * @vend: the 16 bit USB Vendor ID
691 * @prod: the 16 bit USB Product ID
692 * @pr: bInterfaceProtocol value
693 *
694 * This macro is used to create a struct usb_device_id that matches a
695 * specific interface protocol of devices.
696 */
697 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
698 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
699 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
700 .idVendor = (vend), \
701 .idProduct = (prod), \
702 .bInterfaceProtocol = (pr)
703
704 /**
705 * USB_DEVICE_INFO - macro used to describe a class of usb devices
706 * @cl: bDeviceClass value
707 * @sc: bDeviceSubClass value
708 * @pr: bDeviceProtocol value
709 *
710 * This macro is used to create a struct usb_device_id that matches a
711 * specific class of devices.
712 */
713 #define USB_DEVICE_INFO(cl, sc, pr) \
714 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
715 .bDeviceClass = (cl), \
716 .bDeviceSubClass = (sc), \
717 .bDeviceProtocol = (pr)
718
719 /**
720 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
721 * @cl: bInterfaceClass value
722 * @sc: bInterfaceSubClass value
723 * @pr: bInterfaceProtocol value
724 *
725 * This macro is used to create a struct usb_device_id that matches a
726 * specific class of interfaces.
727 */
728 #define USB_INTERFACE_INFO(cl, sc, pr) \
729 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
730 .bInterfaceClass = (cl), \
731 .bInterfaceSubClass = (sc), \
732 .bInterfaceProtocol = (pr)
733
734 /**
735 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
736 * @vend: the 16 bit USB Vendor ID
737 * @prod: the 16 bit USB Product ID
738 * @cl: bInterfaceClass value
739 * @sc: bInterfaceSubClass value
740 * @pr: bInterfaceProtocol value
741 *
742 * This macro is used to create a struct usb_device_id that matches a
743 * specific device with a specific class of interfaces.
744 *
745 * This is especially useful when explicitly matching devices that have
746 * vendor specific bDeviceClass values, but standards-compliant interfaces.
747 */
748 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
749 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
750 | USB_DEVICE_ID_MATCH_DEVICE, \
751 .idVendor = (vend), \
752 .idProduct = (prod), \
753 .bInterfaceClass = (cl), \
754 .bInterfaceSubClass = (sc), \
755 .bInterfaceProtocol = (pr)
756
757 /* ----------------------------------------------------------------------- */
758
759 /* Stuff for dynamic usb ids */
760 struct usb_dynids {
761 spinlock_t lock;
762 struct list_head list;
763 };
764
765 struct usb_dynid {
766 struct list_head node;
767 struct usb_device_id id;
768 };
769
770 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
771 struct device_driver *driver,
772 const char *buf, size_t count);
773
774 /**
775 * struct usbdrv_wrap - wrapper for driver-model structure
776 * @driver: The driver-model core driver structure.
777 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
778 */
779 struct usbdrv_wrap {
780 struct device_driver driver;
781 int for_devices;
782 };
783
784 /**
785 * struct usb_driver - identifies USB interface driver to usbcore
786 * @name: The driver name should be unique among USB drivers,
787 * and should normally be the same as the module name.
788 * @probe: Called to see if the driver is willing to manage a particular
789 * interface on a device. If it is, probe returns zero and uses
790 * usb_set_intfdata() to associate driver-specific data with the
791 * interface. It may also use usb_set_interface() to specify the
792 * appropriate altsetting. If unwilling to manage the interface,
793 * return -ENODEV, if genuine IO errors occured, an appropriate
794 * negative errno value.
795 * @disconnect: Called when the interface is no longer accessible, usually
796 * because its device has been (or is being) disconnected or the
797 * driver module is being unloaded.
798 * @ioctl: Used for drivers that want to talk to userspace through
799 * the "usbfs" filesystem. This lets devices provide ways to
800 * expose information to user space regardless of where they
801 * do (or don't) show up otherwise in the filesystem.
802 * @suspend: Called when the device is going to be suspended by the system.
803 * @resume: Called when the device is being resumed by the system.
804 * @reset_resume: Called when the suspended device has been reset instead
805 * of being resumed.
806 * @pre_reset: Called by usb_reset_device() when the device
807 * is about to be reset.
808 * @post_reset: Called by usb_reset_device() after the device
809 * has been reset
810 * @id_table: USB drivers use ID table to support hotplugging.
811 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
812 * or your driver's probe function will never get called.
813 * @dynids: used internally to hold the list of dynamically added device
814 * ids for this driver.
815 * @drvwrap: Driver-model core structure wrapper.
816 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
817 * added to this driver by preventing the sysfs file from being created.
818 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
819 * for interfaces bound to this driver.
820 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
821 * endpoints before calling the driver's disconnect method.
822 *
823 * USB interface drivers must provide a name, probe() and disconnect()
824 * methods, and an id_table. Other driver fields are optional.
825 *
826 * The id_table is used in hotplugging. It holds a set of descriptors,
827 * and specialized data may be associated with each entry. That table
828 * is used by both user and kernel mode hotplugging support.
829 *
830 * The probe() and disconnect() methods are called in a context where
831 * they can sleep, but they should avoid abusing the privilege. Most
832 * work to connect to a device should be done when the device is opened,
833 * and undone at the last close. The disconnect code needs to address
834 * concurrency issues with respect to open() and close() methods, as
835 * well as forcing all pending I/O requests to complete (by unlinking
836 * them as necessary, and blocking until the unlinks complete).
837 */
838 struct usb_driver {
839 const char *name;
840
841 int (*probe) (struct usb_interface *intf,
842 const struct usb_device_id *id);
843
844 void (*disconnect) (struct usb_interface *intf);
845
846 int (*ioctl) (struct usb_interface *intf, unsigned int code,
847 void *buf);
848
849 int (*suspend) (struct usb_interface *intf, pm_message_t message);
850 int (*resume) (struct usb_interface *intf);
851 int (*reset_resume)(struct usb_interface *intf);
852
853 int (*pre_reset)(struct usb_interface *intf);
854 int (*post_reset)(struct usb_interface *intf);
855
856 const struct usb_device_id *id_table;
857
858 struct usb_dynids dynids;
859 struct usbdrv_wrap drvwrap;
860 unsigned int no_dynamic_id:1;
861 unsigned int supports_autosuspend:1;
862 unsigned int soft_unbind:1;
863 };
864 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
865
866 /**
867 * struct usb_device_driver - identifies USB device driver to usbcore
868 * @name: The driver name should be unique among USB drivers,
869 * and should normally be the same as the module name.
870 * @probe: Called to see if the driver is willing to manage a particular
871 * device. If it is, probe returns zero and uses dev_set_drvdata()
872 * to associate driver-specific data with the device. If unwilling
873 * to manage the device, return a negative errno value.
874 * @disconnect: Called when the device is no longer accessible, usually
875 * because it has been (or is being) disconnected or the driver's
876 * module is being unloaded.
877 * @suspend: Called when the device is going to be suspended by the system.
878 * @resume: Called when the device is being resumed by the system.
879 * @drvwrap: Driver-model core structure wrapper.
880 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
881 * for devices bound to this driver.
882 *
883 * USB drivers must provide all the fields listed above except drvwrap.
884 */
885 struct usb_device_driver {
886 const char *name;
887
888 int (*probe) (struct usb_device *udev);
889 void (*disconnect) (struct usb_device *udev);
890
891 int (*suspend) (struct usb_device *udev, pm_message_t message);
892 int (*resume) (struct usb_device *udev, pm_message_t message);
893 struct usbdrv_wrap drvwrap;
894 unsigned int supports_autosuspend:1;
895 };
896 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
897 drvwrap.driver)
898
899 extern struct bus_type usb_bus_type;
900
901 /**
902 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
903 * @name: the usb class device name for this driver. Will show up in sysfs.
904 * @devnode: Callback to provide a naming hint for a possible
905 * device node to create.
906 * @fops: pointer to the struct file_operations of this driver.
907 * @minor_base: the start of the minor range for this driver.
908 *
909 * This structure is used for the usb_register_dev() and
910 * usb_unregister_dev() functions, to consolidate a number of the
911 * parameters used for them.
912 */
913 struct usb_class_driver {
914 char *name;
915 char *(*devnode)(struct device *dev, mode_t *mode);
916 const struct file_operations *fops;
917 int minor_base;
918 };
919
920 /*
921 * use these in module_init()/module_exit()
922 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
923 */
924 extern int usb_register_driver(struct usb_driver *, struct module *,
925 const char *);
926 static inline int usb_register(struct usb_driver *driver)
927 {
928 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
929 }
930 extern void usb_deregister(struct usb_driver *);
931
932 extern int usb_register_device_driver(struct usb_device_driver *,
933 struct module *);
934 extern void usb_deregister_device_driver(struct usb_device_driver *);
935
936 extern int usb_register_dev(struct usb_interface *intf,
937 struct usb_class_driver *class_driver);
938 extern void usb_deregister_dev(struct usb_interface *intf,
939 struct usb_class_driver *class_driver);
940
941 extern int usb_disabled(void);
942
943 /* ----------------------------------------------------------------------- */
944
945 /*
946 * URB support, for asynchronous request completions
947 */
948
949 /*
950 * urb->transfer_flags:
951 *
952 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
953 */
954 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
955 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
956 * ignored */
957 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
958 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
959 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
960 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
961 * needed */
962 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
963
964 /* The following flags are used internally by usbcore and HCDs */
965 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
966 #define URB_DIR_OUT 0
967 #define URB_DIR_MASK URB_DIR_IN
968
969 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
970 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
971 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
972 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
973 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
974 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
975 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
976
977 struct usb_iso_packet_descriptor {
978 unsigned int offset;
979 unsigned int length; /* expected length */
980 unsigned int actual_length;
981 int status;
982 };
983
984 struct urb;
985
986 struct usb_anchor {
987 struct list_head urb_list;
988 wait_queue_head_t wait;
989 spinlock_t lock;
990 unsigned int poisoned:1;
991 };
992
993 static inline void init_usb_anchor(struct usb_anchor *anchor)
994 {
995 INIT_LIST_HEAD(&anchor->urb_list);
996 init_waitqueue_head(&anchor->wait);
997 spin_lock_init(&anchor->lock);
998 }
999
1000 typedef void (*usb_complete_t)(struct urb *);
1001
1002 /**
1003 * struct urb - USB Request Block
1004 * @urb_list: For use by current owner of the URB.
1005 * @anchor_list: membership in the list of an anchor
1006 * @anchor: to anchor URBs to a common mooring
1007 * @ep: Points to the endpoint's data structure. Will eventually
1008 * replace @pipe.
1009 * @pipe: Holds endpoint number, direction, type, and more.
1010 * Create these values with the eight macros available;
1011 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1012 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1013 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1014 * numbers range from zero to fifteen. Note that "in" endpoint two
1015 * is a different endpoint (and pipe) from "out" endpoint two.
1016 * The current configuration controls the existence, type, and
1017 * maximum packet size of any given endpoint.
1018 * @dev: Identifies the USB device to perform the request.
1019 * @status: This is read in non-iso completion functions to get the
1020 * status of the particular request. ISO requests only use it
1021 * to tell whether the URB was unlinked; detailed status for
1022 * each frame is in the fields of the iso_frame-desc.
1023 * @transfer_flags: A variety of flags may be used to affect how URB
1024 * submission, unlinking, or operation are handled. Different
1025 * kinds of URB can use different flags.
1026 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1027 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1028 * (however, do not leave garbage in transfer_buffer even then).
1029 * This buffer must be suitable for DMA; allocate it with
1030 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1031 * of this buffer will be modified. This buffer is used for the data
1032 * stage of control transfers.
1033 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1034 * the device driver is saying that it provided this DMA address,
1035 * which the host controller driver should use in preference to the
1036 * transfer_buffer.
1037 * @sg: scatter gather buffer list
1038 * @num_sgs: number of entries in the sg list
1039 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1040 * be broken up into chunks according to the current maximum packet
1041 * size for the endpoint, which is a function of the configuration
1042 * and is encoded in the pipe. When the length is zero, neither
1043 * transfer_buffer nor transfer_dma is used.
1044 * @actual_length: This is read in non-iso completion functions, and
1045 * it tells how many bytes (out of transfer_buffer_length) were
1046 * transferred. It will normally be the same as requested, unless
1047 * either an error was reported or a short read was performed.
1048 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1049 * short reads be reported as errors.
1050 * @setup_packet: Only used for control transfers, this points to eight bytes
1051 * of setup data. Control transfers always start by sending this data
1052 * to the device. Then transfer_buffer is read or written, if needed.
1053 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1054 * this field; setup_packet must point to a valid buffer.
1055 * @start_frame: Returns the initial frame for isochronous transfers.
1056 * @number_of_packets: Lists the number of ISO transfer buffers.
1057 * @interval: Specifies the polling interval for interrupt or isochronous
1058 * transfers. The units are frames (milliseconds) for full and low
1059 * speed devices, and microframes (1/8 millisecond) for highspeed
1060 * and SuperSpeed devices.
1061 * @error_count: Returns the number of ISO transfers that reported errors.
1062 * @context: For use in completion functions. This normally points to
1063 * request-specific driver context.
1064 * @complete: Completion handler. This URB is passed as the parameter to the
1065 * completion function. The completion function may then do what
1066 * it likes with the URB, including resubmitting or freeing it.
1067 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1068 * collect the transfer status for each buffer.
1069 *
1070 * This structure identifies USB transfer requests. URBs must be allocated by
1071 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1072 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1073 * are submitted using usb_submit_urb(), and pending requests may be canceled
1074 * using usb_unlink_urb() or usb_kill_urb().
1075 *
1076 * Data Transfer Buffers:
1077 *
1078 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1079 * taken from the general page pool. That is provided by transfer_buffer
1080 * (control requests also use setup_packet), and host controller drivers
1081 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1082 * mapping operations can be expensive on some platforms (perhaps using a dma
1083 * bounce buffer or talking to an IOMMU),
1084 * although they're cheap on commodity x86 and ppc hardware.
1085 *
1086 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1087 * which tells the host controller driver that no such mapping is needed for
1088 * the transfer_buffer since
1089 * the device driver is DMA-aware. For example, a device driver might
1090 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1091 * When this transfer flag is provided, host controller drivers will
1092 * attempt to use the dma address found in the transfer_dma
1093 * field rather than determining a dma address themselves.
1094 *
1095 * Note that transfer_buffer must still be set if the controller
1096 * does not support DMA (as indicated by bus.uses_dma) and when talking
1097 * to root hub. If you have to trasfer between highmem zone and the device
1098 * on such controller, create a bounce buffer or bail out with an error.
1099 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1100 * capable, assign NULL to it, so that usbmon knows not to use the value.
1101 * The setup_packet must always be set, so it cannot be located in highmem.
1102 *
1103 * Initialization:
1104 *
1105 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1106 * zero), and complete fields. All URBs must also initialize
1107 * transfer_buffer and transfer_buffer_length. They may provide the
1108 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1109 * to be treated as errors; that flag is invalid for write requests.
1110 *
1111 * Bulk URBs may
1112 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1113 * should always terminate with a short packet, even if it means adding an
1114 * extra zero length packet.
1115 *
1116 * Control URBs must provide a valid pointer in the setup_packet field.
1117 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1118 * beforehand.
1119 *
1120 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1121 * or, for highspeed devices, 125 microsecond units)
1122 * to poll for transfers. After the URB has been submitted, the interval
1123 * field reflects how the transfer was actually scheduled.
1124 * The polling interval may be more frequent than requested.
1125 * For example, some controllers have a maximum interval of 32 milliseconds,
1126 * while others support intervals of up to 1024 milliseconds.
1127 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1128 * endpoints, as well as high speed interrupt endpoints, the encoding of
1129 * the transfer interval in the endpoint descriptor is logarithmic.
1130 * Device drivers must convert that value to linear units themselves.)
1131 *
1132 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1133 * the host controller to schedule the transfer as soon as bandwidth
1134 * utilization allows, and then set start_frame to reflect the actual frame
1135 * selected during submission. Otherwise drivers must specify the start_frame
1136 * and handle the case where the transfer can't begin then. However, drivers
1137 * won't know how bandwidth is currently allocated, and while they can
1138 * find the current frame using usb_get_current_frame_number () they can't
1139 * know the range for that frame number. (Ranges for frame counter values
1140 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1141 *
1142 * Isochronous URBs have a different data transfer model, in part because
1143 * the quality of service is only "best effort". Callers provide specially
1144 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1145 * at the end. Each such packet is an individual ISO transfer. Isochronous
1146 * URBs are normally queued, submitted by drivers to arrange that
1147 * transfers are at least double buffered, and then explicitly resubmitted
1148 * in completion handlers, so
1149 * that data (such as audio or video) streams at as constant a rate as the
1150 * host controller scheduler can support.
1151 *
1152 * Completion Callbacks:
1153 *
1154 * The completion callback is made in_interrupt(), and one of the first
1155 * things that a completion handler should do is check the status field.
1156 * The status field is provided for all URBs. It is used to report
1157 * unlinked URBs, and status for all non-ISO transfers. It should not
1158 * be examined before the URB is returned to the completion handler.
1159 *
1160 * The context field is normally used to link URBs back to the relevant
1161 * driver or request state.
1162 *
1163 * When the completion callback is invoked for non-isochronous URBs, the
1164 * actual_length field tells how many bytes were transferred. This field
1165 * is updated even when the URB terminated with an error or was unlinked.
1166 *
1167 * ISO transfer status is reported in the status and actual_length fields
1168 * of the iso_frame_desc array, and the number of errors is reported in
1169 * error_count. Completion callbacks for ISO transfers will normally
1170 * (re)submit URBs to ensure a constant transfer rate.
1171 *
1172 * Note that even fields marked "public" should not be touched by the driver
1173 * when the urb is owned by the hcd, that is, since the call to
1174 * usb_submit_urb() till the entry into the completion routine.
1175 */
1176 struct urb {
1177 /* private: usb core and host controller only fields in the urb */
1178 struct kref kref; /* reference count of the URB */
1179 void *hcpriv; /* private data for host controller */
1180 atomic_t use_count; /* concurrent submissions counter */
1181 atomic_t reject; /* submissions will fail */
1182 int unlinked; /* unlink error code */
1183
1184 /* public: documented fields in the urb that can be used by drivers */
1185 struct list_head urb_list; /* list head for use by the urb's
1186 * current owner */
1187 struct list_head anchor_list; /* the URB may be anchored */
1188 struct usb_anchor *anchor;
1189 struct usb_device *dev; /* (in) pointer to associated device */
1190 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1191 unsigned int pipe; /* (in) pipe information */
1192 unsigned int stream_id; /* (in) stream ID */
1193 int status; /* (return) non-ISO status */
1194 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1195 void *transfer_buffer; /* (in) associated data buffer */
1196 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1197 struct scatterlist *sg; /* (in) scatter gather buffer list */
1198 int num_sgs; /* (in) number of entries in the sg list */
1199 u32 transfer_buffer_length; /* (in) data buffer length */
1200 u32 actual_length; /* (return) actual transfer length */
1201 unsigned char *setup_packet; /* (in) setup packet (control only) */
1202 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1203 int start_frame; /* (modify) start frame (ISO) */
1204 int number_of_packets; /* (in) number of ISO packets */
1205 int interval; /* (modify) transfer interval
1206 * (INT/ISO) */
1207 int error_count; /* (return) number of ISO errors */
1208 void *context; /* (in) context for completion */
1209 usb_complete_t complete; /* (in) completion routine */
1210 struct usb_iso_packet_descriptor iso_frame_desc[0];
1211 /* (in) ISO ONLY */
1212 };
1213
1214 /* ----------------------------------------------------------------------- */
1215
1216 /**
1217 * usb_fill_control_urb - initializes a control urb
1218 * @urb: pointer to the urb to initialize.
1219 * @dev: pointer to the struct usb_device for this urb.
1220 * @pipe: the endpoint pipe
1221 * @setup_packet: pointer to the setup_packet buffer
1222 * @transfer_buffer: pointer to the transfer buffer
1223 * @buffer_length: length of the transfer buffer
1224 * @complete_fn: pointer to the usb_complete_t function
1225 * @context: what to set the urb context to.
1226 *
1227 * Initializes a control urb with the proper information needed to submit
1228 * it to a device.
1229 */
1230 static inline void usb_fill_control_urb(struct urb *urb,
1231 struct usb_device *dev,
1232 unsigned int pipe,
1233 unsigned char *setup_packet,
1234 void *transfer_buffer,
1235 int buffer_length,
1236 usb_complete_t complete_fn,
1237 void *context)
1238 {
1239 urb->dev = dev;
1240 urb->pipe = pipe;
1241 urb->setup_packet = setup_packet;
1242 urb->transfer_buffer = transfer_buffer;
1243 urb->transfer_buffer_length = buffer_length;
1244 urb->complete = complete_fn;
1245 urb->context = context;
1246 }
1247
1248 /**
1249 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1250 * @urb: pointer to the urb to initialize.
1251 * @dev: pointer to the struct usb_device for this urb.
1252 * @pipe: the endpoint pipe
1253 * @transfer_buffer: pointer to the transfer buffer
1254 * @buffer_length: length of the transfer buffer
1255 * @complete_fn: pointer to the usb_complete_t function
1256 * @context: what to set the urb context to.
1257 *
1258 * Initializes a bulk urb with the proper information needed to submit it
1259 * to a device.
1260 */
1261 static inline void usb_fill_bulk_urb(struct urb *urb,
1262 struct usb_device *dev,
1263 unsigned int pipe,
1264 void *transfer_buffer,
1265 int buffer_length,
1266 usb_complete_t complete_fn,
1267 void *context)
1268 {
1269 urb->dev = dev;
1270 urb->pipe = pipe;
1271 urb->transfer_buffer = transfer_buffer;
1272 urb->transfer_buffer_length = buffer_length;
1273 urb->complete = complete_fn;
1274 urb->context = context;
1275 }
1276
1277 /**
1278 * usb_fill_int_urb - macro to help initialize a interrupt urb
1279 * @urb: pointer to the urb to initialize.
1280 * @dev: pointer to the struct usb_device for this urb.
1281 * @pipe: the endpoint pipe
1282 * @transfer_buffer: pointer to the transfer buffer
1283 * @buffer_length: length of the transfer buffer
1284 * @complete_fn: pointer to the usb_complete_t function
1285 * @context: what to set the urb context to.
1286 * @interval: what to set the urb interval to, encoded like
1287 * the endpoint descriptor's bInterval value.
1288 *
1289 * Initializes a interrupt urb with the proper information needed to submit
1290 * it to a device.
1291 *
1292 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1293 * encoding of the endpoint interval, and express polling intervals in
1294 * microframes (eight per millisecond) rather than in frames (one per
1295 * millisecond).
1296 *
1297 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1298 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1299 * through to the host controller, rather than being translated into microframe
1300 * units.
1301 */
1302 static inline void usb_fill_int_urb(struct urb *urb,
1303 struct usb_device *dev,
1304 unsigned int pipe,
1305 void *transfer_buffer,
1306 int buffer_length,
1307 usb_complete_t complete_fn,
1308 void *context,
1309 int interval)
1310 {
1311 urb->dev = dev;
1312 urb->pipe = pipe;
1313 urb->transfer_buffer = transfer_buffer;
1314 urb->transfer_buffer_length = buffer_length;
1315 urb->complete = complete_fn;
1316 urb->context = context;
1317 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1318 urb->interval = 1 << (interval - 1);
1319 else
1320 urb->interval = interval;
1321 urb->start_frame = -1;
1322 }
1323
1324 extern void usb_init_urb(struct urb *urb);
1325 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1326 extern void usb_free_urb(struct urb *urb);
1327 #define usb_put_urb usb_free_urb
1328 extern struct urb *usb_get_urb(struct urb *urb);
1329 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1330 extern int usb_unlink_urb(struct urb *urb);
1331 extern void usb_kill_urb(struct urb *urb);
1332 extern void usb_poison_urb(struct urb *urb);
1333 extern void usb_unpoison_urb(struct urb *urb);
1334 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1335 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1336 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1337 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1338 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1339 extern void usb_unanchor_urb(struct urb *urb);
1340 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1341 unsigned int timeout);
1342 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1343 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1344 extern int usb_anchor_empty(struct usb_anchor *anchor);
1345
1346 /**
1347 * usb_urb_dir_in - check if an URB describes an IN transfer
1348 * @urb: URB to be checked
1349 *
1350 * Returns 1 if @urb describes an IN transfer (device-to-host),
1351 * otherwise 0.
1352 */
1353 static inline int usb_urb_dir_in(struct urb *urb)
1354 {
1355 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1356 }
1357
1358 /**
1359 * usb_urb_dir_out - check if an URB describes an OUT transfer
1360 * @urb: URB to be checked
1361 *
1362 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1363 * otherwise 0.
1364 */
1365 static inline int usb_urb_dir_out(struct urb *urb)
1366 {
1367 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1368 }
1369
1370 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1371 gfp_t mem_flags, dma_addr_t *dma);
1372 void usb_free_coherent(struct usb_device *dev, size_t size,
1373 void *addr, dma_addr_t dma);
1374
1375 #if 0
1376 struct urb *usb_buffer_map(struct urb *urb);
1377 void usb_buffer_dmasync(struct urb *urb);
1378 void usb_buffer_unmap(struct urb *urb);
1379 #endif
1380
1381 struct scatterlist;
1382 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1383 struct scatterlist *sg, int nents);
1384 #if 0
1385 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1386 struct scatterlist *sg, int n_hw_ents);
1387 #endif
1388 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1389 struct scatterlist *sg, int n_hw_ents);
1390
1391 /*-------------------------------------------------------------------*
1392 * SYNCHRONOUS CALL SUPPORT *
1393 *-------------------------------------------------------------------*/
1394
1395 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1396 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1397 void *data, __u16 size, int timeout);
1398 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1399 void *data, int len, int *actual_length, int timeout);
1400 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1401 void *data, int len, int *actual_length,
1402 int timeout);
1403
1404 /* wrappers around usb_control_msg() for the most common standard requests */
1405 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1406 unsigned char descindex, void *buf, int size);
1407 extern int usb_get_status(struct usb_device *dev,
1408 int type, int target, void *data);
1409 extern int usb_string(struct usb_device *dev, int index,
1410 char *buf, size_t size);
1411
1412 /* wrappers that also update important state inside usbcore */
1413 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1414 extern int usb_reset_configuration(struct usb_device *dev);
1415 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1416 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1417
1418 /* this request isn't really synchronous, but it belongs with the others */
1419 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1420
1421 /*
1422 * timeouts, in milliseconds, used for sending/receiving control messages
1423 * they typically complete within a few frames (msec) after they're issued
1424 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1425 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1426 */
1427 #define USB_CTRL_GET_TIMEOUT 5000
1428 #define USB_CTRL_SET_TIMEOUT 5000
1429
1430
1431 /**
1432 * struct usb_sg_request - support for scatter/gather I/O
1433 * @status: zero indicates success, else negative errno
1434 * @bytes: counts bytes transferred.
1435 *
1436 * These requests are initialized using usb_sg_init(), and then are used
1437 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1438 * members of the request object aren't for driver access.
1439 *
1440 * The status and bytecount values are valid only after usb_sg_wait()
1441 * returns. If the status is zero, then the bytecount matches the total
1442 * from the request.
1443 *
1444 * After an error completion, drivers may need to clear a halt condition
1445 * on the endpoint.
1446 */
1447 struct usb_sg_request {
1448 int status;
1449 size_t bytes;
1450
1451 /* private:
1452 * members below are private to usbcore,
1453 * and are not provided for driver access!
1454 */
1455 spinlock_t lock;
1456
1457 struct usb_device *dev;
1458 int pipe;
1459
1460 int entries;
1461 struct urb **urbs;
1462
1463 int count;
1464 struct completion complete;
1465 };
1466
1467 int usb_sg_init(
1468 struct usb_sg_request *io,
1469 struct usb_device *dev,
1470 unsigned pipe,
1471 unsigned period,
1472 struct scatterlist *sg,
1473 int nents,
1474 size_t length,
1475 gfp_t mem_flags
1476 );
1477 void usb_sg_cancel(struct usb_sg_request *io);
1478 void usb_sg_wait(struct usb_sg_request *io);
1479
1480
1481 /* ----------------------------------------------------------------------- */
1482
1483 /*
1484 * For various legacy reasons, Linux has a small cookie that's paired with
1485 * a struct usb_device to identify an endpoint queue. Queue characteristics
1486 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1487 * an unsigned int encoded as:
1488 *
1489 * - direction: bit 7 (0 = Host-to-Device [Out],
1490 * 1 = Device-to-Host [In] ...
1491 * like endpoint bEndpointAddress)
1492 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1493 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1494 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1495 * 10 = control, 11 = bulk)
1496 *
1497 * Given the device address and endpoint descriptor, pipes are redundant.
1498 */
1499
1500 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1501 /* (yet ... they're the values used by usbfs) */
1502 #define PIPE_ISOCHRONOUS 0
1503 #define PIPE_INTERRUPT 1
1504 #define PIPE_CONTROL 2
1505 #define PIPE_BULK 3
1506
1507 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1508 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1509
1510 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1511 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1512
1513 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1514 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1515 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1516 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1517 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1518
1519 static inline unsigned int __create_pipe(struct usb_device *dev,
1520 unsigned int endpoint)
1521 {
1522 return (dev->devnum << 8) | (endpoint << 15);
1523 }
1524
1525 /* Create various pipes... */
1526 #define usb_sndctrlpipe(dev, endpoint) \
1527 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1528 #define usb_rcvctrlpipe(dev, endpoint) \
1529 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1530 #define usb_sndisocpipe(dev, endpoint) \
1531 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1532 #define usb_rcvisocpipe(dev, endpoint) \
1533 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1534 #define usb_sndbulkpipe(dev, endpoint) \
1535 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1536 #define usb_rcvbulkpipe(dev, endpoint) \
1537 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1538 #define usb_sndintpipe(dev, endpoint) \
1539 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1540 #define usb_rcvintpipe(dev, endpoint) \
1541 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1542
1543 static inline struct usb_host_endpoint *
1544 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1545 {
1546 struct usb_host_endpoint **eps;
1547 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1548 return eps[usb_pipeendpoint(pipe)];
1549 }
1550
1551 /*-------------------------------------------------------------------------*/
1552
1553 static inline __u16
1554 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1555 {
1556 struct usb_host_endpoint *ep;
1557 unsigned epnum = usb_pipeendpoint(pipe);
1558
1559 if (is_out) {
1560 WARN_ON(usb_pipein(pipe));
1561 ep = udev->ep_out[epnum];
1562 } else {
1563 WARN_ON(usb_pipeout(pipe));
1564 ep = udev->ep_in[epnum];
1565 }
1566 if (!ep)
1567 return 0;
1568
1569 /* NOTE: only 0x07ff bits are for packet size... */
1570 return le16_to_cpu(ep->desc.wMaxPacketSize);
1571 }
1572
1573 /* ----------------------------------------------------------------------- */
1574
1575 /* Events from the usb core */
1576 #define USB_DEVICE_ADD 0x0001
1577 #define USB_DEVICE_REMOVE 0x0002
1578 #define USB_BUS_ADD 0x0003
1579 #define USB_BUS_REMOVE 0x0004
1580 extern void usb_register_notify(struct notifier_block *nb);
1581 extern void usb_unregister_notify(struct notifier_block *nb);
1582
1583 #ifdef DEBUG
1584 #define dbg(format, arg...) \
1585 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1586 #else
1587 #define dbg(format, arg...) \
1588 do { \
1589 if (0) \
1590 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1591 } while (0)
1592 #endif
1593
1594 #define err(format, arg...) \
1595 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1596
1597 /* debugfs stuff */
1598 extern struct dentry *usb_debug_root;
1599
1600 #endif /* __KERNEL__ */
1601
1602 #endif
This page took 0.062828 seconds and 5 git commands to generate.