5 * Copyright (C) 2005-2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23 * FIXME: doc: overview of the API, different parts and pointers
26 #ifndef __LINUX__UWB_H__
27 #define __LINUX__UWB_H__
29 #include <linux/limits.h>
30 #include <linux/device.h>
31 #include <linux/mutex.h>
32 #include <linux/timer.h>
33 #include <linux/wait.h>
34 #include <linux/workqueue.h>
35 #include <linux/uwb/spec.h>
45 * struct uwb_dev - a UWB Device
46 * @rc: UWB Radio Controller that discovered the device (kind of its
48 * @bce: a beacon cache entry for this device; or NULL if the device
49 * is a local radio controller.
50 * @mac_addr: the EUI-48 address of this device.
51 * @dev_addr: the current DevAddr used by this device.
52 * @beacon_slot: the slot number the beacon is using.
53 * @streams: bitmap of streams allocated to reservations targeted at
54 * this device. For an RC, this is the streams allocated for
55 * reservations targeted at DevAddrs.
57 * A UWB device may either by a neighbor or part of a local radio
62 struct list_head list_node
;
64 struct uwb_rc
*rc
; /* radio controller */
65 struct uwb_beca_e
*bce
; /* Beacon Cache Entry */
67 struct uwb_mac_addr mac_addr
;
68 struct uwb_dev_addr dev_addr
;
70 DECLARE_BITMAP(streams
, UWB_NUM_STREAMS
);
71 DECLARE_BITMAP(last_availability_bm
, UWB_NUM_MAS
);
73 #define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
76 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
78 * RC[CE]Bs have a 'context ID' field that matches the command with
79 * the event received to confirm it.
81 * Maximum number of context IDs
83 enum { UWB_RC_CTX_MAX
= 256 };
86 /** Notification chain head for UWB generated events to listeners */
87 struct uwb_notifs_chain
{
88 struct list_head list
;
92 /* Beacon cache list */
94 struct list_head list
;
99 /* Event handling thread. */
102 struct task_struct
*task
;
103 wait_queue_head_t wq
;
104 struct list_head event_list
;
105 spinlock_t event_list_lock
;
109 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
110 * @bm: a bitmap of length #UWB_NUM_MAS
113 DECLARE_BITMAP(bm
, UWB_NUM_MAS
);
114 DECLARE_BITMAP(unsafe_bm
, UWB_NUM_MAS
);
120 * uwb_rsv_state - UWB Reservation state.
122 * NONE - reservation is not active (no DRP IE being transmitted).
124 * Owner reservation states:
126 * INITIATED - owner has sent an initial DRP request.
127 * PENDING - target responded with pending Reason Code.
128 * MODIFIED - reservation manager is modifying an established
129 * reservation with a different MAS allocation.
130 * ESTABLISHED - the reservation has been successfully negotiated.
132 * Target reservation states:
134 * DENIED - request is denied.
135 * ACCEPTED - request is accepted.
136 * PENDING - PAL has yet to make a decision to whether to accept or
139 * FIXME: further target states TBD.
142 UWB_RSV_STATE_NONE
= 0,
143 UWB_RSV_STATE_O_INITIATED
,
144 UWB_RSV_STATE_O_PENDING
,
145 UWB_RSV_STATE_O_MODIFIED
,
146 UWB_RSV_STATE_O_ESTABLISHED
,
147 UWB_RSV_STATE_O_TO_BE_MOVED
,
148 UWB_RSV_STATE_O_MOVE_EXPANDING
,
149 UWB_RSV_STATE_O_MOVE_COMBINING
,
150 UWB_RSV_STATE_O_MOVE_REDUCING
,
151 UWB_RSV_STATE_T_ACCEPTED
,
152 UWB_RSV_STATE_T_DENIED
,
153 UWB_RSV_STATE_T_CONFLICT
,
154 UWB_RSV_STATE_T_PENDING
,
155 UWB_RSV_STATE_T_EXPANDING_ACCEPTED
,
156 UWB_RSV_STATE_T_EXPANDING_CONFLICT
,
157 UWB_RSV_STATE_T_EXPANDING_PENDING
,
158 UWB_RSV_STATE_T_EXPANDING_DENIED
,
159 UWB_RSV_STATE_T_RESIZED
,
164 enum uwb_rsv_target_type
{
166 UWB_RSV_TARGET_DEVADDR
,
170 * struct uwb_rsv_target - the target of a reservation.
172 * Reservations unicast and targeted at a single device
173 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
174 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
176 struct uwb_rsv_target
{
177 enum uwb_rsv_target_type type
;
180 struct uwb_dev_addr devaddr
;
184 struct uwb_rsv_move
{
185 struct uwb_mas_bm final_mas
;
186 struct uwb_ie_drp
*companion_drp_ie
;
187 struct uwb_mas_bm companion_mas
;
191 * Number of streams reserved for reservations targeted at DevAddrs.
193 #define UWB_NUM_GLOBAL_STREAMS 1
195 typedef void (*uwb_rsv_cb_f
)(struct uwb_rsv
*rsv
);
198 * struct uwb_rsv - a DRP reservation
200 * Data structure management:
202 * @rc: the radio controller this reservation is for
203 * (as target or owner)
204 * @rc_node: a list node for the RC
205 * @pal_node: a list node for the PAL
207 * Owner and target parameters:
209 * @owner: the UWB device owning this reservation
210 * @target: the target UWB device
211 * @type: reservation type
215 * @max_mas: maxiumum number of MAS
216 * @min_mas: minimum number of MAS
217 * @sparsity: owner selected sparsity
218 * @is_multicast: true iff multicast
220 * @callback: callback function when the reservation completes
221 * @pal_priv: private data for the PAL making the reservation
223 * Reservation status:
225 * @status: negotiation status
226 * @stream: stream index allocated for this reservation
227 * @tiebreaker: conflict tiebreaker for this reservation
229 * @drp_ie: the DRP IE
230 * @ie_valid: true iff the DRP IE matches the reservation parameters
232 * DRP reservations are uniquely identified by the owner, target and
233 * stream index. However, when using a DevAddr as a target (e.g., for
234 * a WUSB cluster reservation) the responses may be received from
235 * devices with different DevAddrs. In this case, reservations are
236 * uniquely identified by just the stream index. A number of stream
237 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
241 struct list_head rc_node
;
242 struct list_head pal_node
;
245 struct uwb_dev
*owner
;
246 struct uwb_rsv_target target
;
247 enum uwb_drp_type type
;
253 uwb_rsv_cb_f callback
;
256 enum uwb_rsv_state state
;
257 bool needs_release_companion_mas
;
260 struct uwb_mas_bm mas
;
261 struct uwb_ie_drp
*drp_ie
;
262 struct uwb_rsv_move mv
;
264 struct timer_list timer
;
265 struct work_struct handle_timeout_work
;
269 struct uwb_mas_bm uwb_mas_bm_zero
= { .bm
= { 0 } };
271 static inline void uwb_mas_bm_copy_le(void *dst
, const struct uwb_mas_bm
*mas
)
273 bitmap_copy_le(dst
, mas
->bm
, UWB_NUM_MAS
);
277 * struct uwb_drp_avail - a radio controller's view of MAS usage
278 * @global: MAS unused by neighbors (excluding reservations targeted
279 * or owned by the local radio controller) or the beaon period
280 * @local: MAS unused by local established reservations
281 * @pending: MAS unused by local pending reservations
282 * @ie: DRP Availability IE to be included in the beacon
283 * @ie_valid: true iff @ie is valid and does not need to regenerated from
286 * Each radio controller maintains a view of MAS usage or
287 * availability. MAS available for a new reservation are determined
288 * from the intersection of @global, @local, and @pending.
290 * The radio controller must transmit a DRP Availability IE that's the
291 * intersection of @global and @local.
293 * A set bit indicates the MAS is unused and available.
295 * rc->rsvs_mutex should be held before accessing this data structure.
297 * [ECMA-368] section 17.4.3.
299 struct uwb_drp_avail
{
300 DECLARE_BITMAP(global
, UWB_NUM_MAS
);
301 DECLARE_BITMAP(local
, UWB_NUM_MAS
);
302 DECLARE_BITMAP(pending
, UWB_NUM_MAS
);
303 struct uwb_ie_drp_avail ie
;
307 struct uwb_drp_backoff_win
{
311 struct timer_list timer
;
312 bool can_reserve_extra_mases
;
315 const char *uwb_rsv_state_str(enum uwb_rsv_state state
);
316 const char *uwb_rsv_type_str(enum uwb_drp_type type
);
318 struct uwb_rsv
*uwb_rsv_create(struct uwb_rc
*rc
, uwb_rsv_cb_f cb
,
320 void uwb_rsv_destroy(struct uwb_rsv
*rsv
);
322 int uwb_rsv_establish(struct uwb_rsv
*rsv
);
323 int uwb_rsv_modify(struct uwb_rsv
*rsv
,
324 int max_mas
, int min_mas
, int sparsity
);
325 void uwb_rsv_terminate(struct uwb_rsv
*rsv
);
327 void uwb_rsv_accept(struct uwb_rsv
*rsv
, uwb_rsv_cb_f cb
, void *pal_priv
);
329 void uwb_rsv_get_usable_mas(struct uwb_rsv
*orig_rsv
, struct uwb_mas_bm
*mas
);
332 * Radio Control Interface instance
335 * Life cycle rules: those of the UWB Device.
337 * @index: an index number for this radio controller, as used in the
339 * @version: version of protocol supported by this device
340 * @priv: Backend implementation; rw with uwb_dev.dev.sem taken.
341 * @cmd: Backend implementation to execute commands; rw and call
342 * only with uwb_dev.dev.sem taken.
343 * @reset: Hardware reset of radio controller and any PAL controllers.
344 * @filter: Backend implementation to manipulate data to and from device
345 * to be compliant to specification assumed by driver (WHCI
348 * uwb_dev.dev.mutex is used to execute commands and update
349 * the corresponding structures; can't use a spinlock
350 * because rc->cmd() can sleep.
351 * @ies: This is a dynamically allocated array cacheing the
352 * IEs (settable by the host) that the beacon of this
353 * radio controller is currently sending.
355 * In reality, we store here the full command we set to
356 * the radio controller (which is basically a command
357 * prefix followed by all the IEs the beacon currently
358 * contains). This way we don't have to realloc and
359 * memcpy when setting it.
361 * We set this up in uwb_rc_ie_setup(), where we alloc
362 * this struct, call get_ie() [so we know which IEs are
363 * currently being sent, if any].
365 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
366 * amount used is given by sizeof(*ies) plus ies->wIELength
367 * (which is a little endian quantity all the time).
368 * @ies_mutex: protect the IE cache
369 * @dbg: information for the debug interface
372 struct uwb_dev uwb_dev
;
376 struct module
*owner
;
378 int (*start
)(struct uwb_rc
*rc
);
379 void (*stop
)(struct uwb_rc
*rc
);
380 int (*cmd
)(struct uwb_rc
*, const struct uwb_rccb
*, size_t);
381 int (*reset
)(struct uwb_rc
*rc
);
382 int (*filter_cmd
)(struct uwb_rc
*, struct uwb_rccb
**, size_t *);
383 int (*filter_event
)(struct uwb_rc
*, struct uwb_rceb
**, const size_t,
386 spinlock_t neh_lock
; /* protects neh_* and ctx_* */
387 struct list_head neh_list
; /* Open NE handles */
388 unsigned long ctx_bm
[UWB_RC_CTX_MAX
/ 8 / sizeof(unsigned long)];
391 int beaconing
; /* Beaconing state [channel number] */
392 int beaconing_forced
;
394 enum uwb_scan_type scan_type
:3;
396 struct uwb_notifs_chain notifs_chain
;
397 struct uwb_beca uwb_beca
;
401 struct uwb_drp_backoff_win bow
;
402 struct uwb_drp_avail drp_avail
;
403 struct list_head reservations
;
404 struct list_head cnflt_alien_list
;
405 struct uwb_mas_bm cnflt_alien_bitmap
;
406 struct mutex rsvs_mutex
;
407 spinlock_t rsvs_lock
;
408 struct workqueue_struct
*rsv_workq
;
410 struct delayed_work rsv_update_work
;
411 struct delayed_work rsv_alien_bp_work
;
412 int set_drp_ie_pending
;
413 struct mutex ies_mutex
;
414 struct uwb_rc_cmd_set_ie
*ies
;
417 struct list_head pals
;
425 * struct uwb_pal - a UWB PAL
426 * @name: descriptive name for this PAL (wusbhc, wlp, etc.).
427 * @device: a device for the PAL. Used to link the PAL and the radio
428 * controller in sysfs.
429 * @rc: the radio controller the PAL uses.
430 * @channel_changed: called when the channel used by the radio changes.
431 * A channel of -1 means the channel has been stopped.
432 * @new_rsv: called when a peer requests a reservation (may be NULL if
433 * the PAL cannot accept reservation requests).
434 * @channel: channel being used by the PAL; 0 if the PAL isn't using
435 * the radio; -1 if the PAL wishes to use the radio but
437 * @debugfs_dir: a debugfs directory which the PAL can use for its own
440 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
441 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
443 * The PALs using a radio controller must register themselves to
444 * permit the UWB stack to coordinate usage of the radio between the
445 * various PALs or to allow PALs to response to certain requests from
448 * A struct uwb_pal should be embedded in a containing structure
449 * belonging to the PAL and initialized with uwb_pal_init()). Fields
450 * should be set appropriately by the PAL before registering the PAL
451 * with uwb_pal_register().
454 struct list_head node
;
456 struct device
*device
;
459 void (*channel_changed
)(struct uwb_pal
*pal
, int channel
);
460 void (*new_rsv
)(struct uwb_pal
*pal
, struct uwb_rsv
*rsv
);
463 struct dentry
*debugfs_dir
;
466 void uwb_pal_init(struct uwb_pal
*pal
);
467 int uwb_pal_register(struct uwb_pal
*pal
);
468 void uwb_pal_unregister(struct uwb_pal
*pal
);
470 int uwb_radio_start(struct uwb_pal
*pal
);
471 void uwb_radio_stop(struct uwb_pal
*pal
);
476 * This API can be used by UWB device drivers or by those implementing
477 * UWB Radio Controllers
479 struct uwb_dev
*uwb_dev_get_by_devaddr(struct uwb_rc
*rc
,
480 const struct uwb_dev_addr
*devaddr
);
481 struct uwb_dev
*uwb_dev_get_by_rc(struct uwb_dev
*, struct uwb_rc
*);
482 static inline void uwb_dev_get(struct uwb_dev
*uwb_dev
)
484 get_device(&uwb_dev
->dev
);
486 static inline void uwb_dev_put(struct uwb_dev
*uwb_dev
)
488 put_device(&uwb_dev
->dev
);
490 struct uwb_dev
*uwb_dev_try_get(struct uwb_rc
*rc
, struct uwb_dev
*uwb_dev
);
493 * Callback function for 'uwb_{dev,rc}_foreach()'.
495 * @dev: Linux device instance
496 * 'uwb_dev = container_of(dev, struct uwb_dev, dev)'
497 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
499 * @returns: 0 to continue the iterations, any other val to stop
500 * iterating and return the value to the caller of
503 typedef int (*uwb_dev_for_each_f
)(struct device
*dev
, void *priv
);
504 int uwb_dev_for_each(struct uwb_rc
*rc
, uwb_dev_for_each_f func
, void *priv
);
506 struct uwb_rc
*uwb_rc_alloc(void);
507 struct uwb_rc
*uwb_rc_get_by_dev(const struct uwb_dev_addr
*);
508 struct uwb_rc
*uwb_rc_get_by_grandpa(const struct device
*);
509 void uwb_rc_put(struct uwb_rc
*rc
);
511 typedef void (*uwb_rc_cmd_cb_f
)(struct uwb_rc
*rc
, void *arg
,
512 struct uwb_rceb
*reply
, ssize_t reply_size
);
514 int uwb_rc_cmd_async(struct uwb_rc
*rc
, const char *cmd_name
,
515 struct uwb_rccb
*cmd
, size_t cmd_size
,
516 u8 expected_type
, u16 expected_event
,
517 uwb_rc_cmd_cb_f cb
, void *arg
);
518 ssize_t
uwb_rc_cmd(struct uwb_rc
*rc
, const char *cmd_name
,
519 struct uwb_rccb
*cmd
, size_t cmd_size
,
520 struct uwb_rceb
*reply
, size_t reply_size
);
521 ssize_t
uwb_rc_vcmd(struct uwb_rc
*rc
, const char *cmd_name
,
522 struct uwb_rccb
*cmd
, size_t cmd_size
,
523 u8 expected_type
, u16 expected_event
,
524 struct uwb_rceb
**preply
);
526 size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
528 int uwb_rc_dev_addr_set(struct uwb_rc
*, const struct uwb_dev_addr
*);
529 int uwb_rc_dev_addr_get(struct uwb_rc
*, struct uwb_dev_addr
*);
530 int uwb_rc_mac_addr_set(struct uwb_rc
*, const struct uwb_mac_addr
*);
531 int uwb_rc_mac_addr_get(struct uwb_rc
*, struct uwb_mac_addr
*);
532 int __uwb_mac_addr_assigned_check(struct device
*, void *);
533 int __uwb_dev_addr_assigned_check(struct device
*, void *);
535 /* Print in @buf a pretty repr of @addr */
536 static inline size_t uwb_dev_addr_print(char *buf
, size_t buf_size
,
537 const struct uwb_dev_addr
*addr
)
539 return __uwb_addr_print(buf
, buf_size
, addr
->data
, 0);
542 /* Print in @buf a pretty repr of @addr */
543 static inline size_t uwb_mac_addr_print(char *buf
, size_t buf_size
,
544 const struct uwb_mac_addr
*addr
)
546 return __uwb_addr_print(buf
, buf_size
, addr
->data
, 1);
549 /* @returns 0 if device addresses @addr2 and @addr1 are equal */
550 static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr
*addr1
,
551 const struct uwb_dev_addr
*addr2
)
553 return memcmp(addr1
, addr2
, sizeof(*addr1
));
556 /* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
557 static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr
*addr1
,
558 const struct uwb_mac_addr
*addr2
)
560 return memcmp(addr1
, addr2
, sizeof(*addr1
));
563 /* @returns !0 if a MAC @addr is a broadcast address */
564 static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr
*addr
)
566 struct uwb_mac_addr bcast
= {
567 .data
= { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
569 return !uwb_mac_addr_cmp(addr
, &bcast
);
572 /* @returns !0 if a MAC @addr is all zeroes*/
573 static inline int uwb_mac_addr_unset(const struct uwb_mac_addr
*addr
)
575 struct uwb_mac_addr unset
= {
576 .data
= { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
578 return !uwb_mac_addr_cmp(addr
, &unset
);
581 /* @returns !0 if the address is in use. */
582 static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc
*rc
,
583 struct uwb_dev_addr
*addr
)
585 return uwb_dev_for_each(rc
, __uwb_dev_addr_assigned_check
, addr
);
589 * UWB Radio Controller API
591 * This API is used (in addition to the general API) to implement UWB
594 void uwb_rc_init(struct uwb_rc
*);
595 int uwb_rc_add(struct uwb_rc
*, struct device
*dev
, void *rc_priv
);
596 void uwb_rc_rm(struct uwb_rc
*);
597 void uwb_rc_neh_grok(struct uwb_rc
*, void *, size_t);
598 void uwb_rc_neh_error(struct uwb_rc
*, int);
599 void uwb_rc_reset_all(struct uwb_rc
*rc
);
600 void uwb_rc_pre_reset(struct uwb_rc
*rc
);
601 int uwb_rc_post_reset(struct uwb_rc
*rc
);
604 * uwb_rsv_is_owner - is the owner of this reservation the RC?
605 * @rsv: the reservation
607 static inline bool uwb_rsv_is_owner(struct uwb_rsv
*rsv
)
609 return rsv
->owner
== &rsv
->rc
->uwb_dev
;
613 * enum uwb_notifs - UWB events that can be passed to any listeners
614 * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
615 * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
617 * Higher layers can register callback functions with the radio
618 * controller using uwb_notifs_register(). The radio controller
619 * maintains a list of all registered handlers and will notify all
620 * nodes when an event occurs.
627 /* Callback function registered with UWB */
628 struct uwb_notifs_handler
{
629 struct list_head list_node
;
630 void (*cb
)(void *, struct uwb_dev
*, enum uwb_notifs
);
634 int uwb_notifs_register(struct uwb_rc
*, struct uwb_notifs_handler
*);
635 int uwb_notifs_deregister(struct uwb_rc
*, struct uwb_notifs_handler
*);
639 * UWB radio controller Event Size Entry (for creating entry tables)
641 * WUSB and WHCI define events and notifications, and they might have
642 * fixed or variable size.
644 * Each event/notification has a size which is not necessarily known
645 * in advance based on the event code. As well, vendor specific
646 * events/notifications will have a size impossible to determine
647 * unless we know about the device's specific details.
649 * It was way too smart of the spec writers not to think that it would
650 * be impossible for a generic driver to skip over vendor specific
651 * events/notifications if there are no LENGTH fields in the HEADER of
652 * each message...the transaction size cannot be counted on as the
653 * spec does not forbid to pack more than one event in a single
656 * Thus, we guess sizes with tables (or for events, when you know the
657 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
658 * register tables with the known events and their sizes, and then we
659 * traverse those tables. For those with variable length, we provide a
660 * way to lookup the size inside the event/notification's
661 * payload. This allows device-specific event size tables to be
664 * @size: Size of the payload
666 * @offset: if != 0, at offset @offset-1 starts a field with a length
667 * that has to be added to @size. The format of the field is
670 * @type: Type and length of the offset field. Most common is LE 16
671 * bits (that's why that is zero); others are there mostly to
672 * cover for bugs and weirdos.
674 struct uwb_est_entry
{
677 enum { UWB_EST_16
= 0, UWB_EST_8
= 1 } type
;
680 int uwb_est_register(u8 type
, u8 code_high
, u16 vendor
, u16 product
,
681 const struct uwb_est_entry
*, size_t entries
);
682 int uwb_est_unregister(u8 type
, u8 code_high
, u16 vendor
, u16 product
,
683 const struct uwb_est_entry
*, size_t entries
);
684 ssize_t
uwb_est_find_size(struct uwb_rc
*rc
, const struct uwb_rceb
*rceb
,
691 EDC_ERROR_TIMEFRAME
= HZ
,
694 /* error density counter */
696 unsigned long timestart
;
701 void edc_init(struct edc
*edc
)
703 edc
->timestart
= jiffies
;
706 /* Called when an error occurred.
707 * This is way to determine if the number of acceptable errors per time
708 * period has been exceeded. It is not accurate as there are cases in which
709 * this scheme will not work, for example if there are periodic occurrences
710 * of errors that straddle updates to the start time. This scheme is
711 * sufficient for our usage.
713 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
715 static inline int edc_inc(struct edc
*err_hist
, u16 max_err
, u16 timeframe
)
720 if (now
- err_hist
->timestart
> timeframe
) {
721 err_hist
->errorcount
= 1;
722 err_hist
->timestart
= now
;
723 } else if (++err_hist
->errorcount
> max_err
) {
724 err_hist
->errorcount
= 0;
725 err_hist
->timestart
= now
;
732 /* Information Element handling */
734 struct uwb_ie_hdr
*uwb_ie_next(void **ptr
, size_t *len
);
735 int uwb_rc_ie_add(struct uwb_rc
*uwb_rc
, const struct uwb_ie_hdr
*ies
, size_t size
);
736 int uwb_rc_ie_rm(struct uwb_rc
*uwb_rc
, enum uwb_ie element_id
);
739 * Transmission statistics
741 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
742 * strength and line quality indication. We do quick and dirty
743 * averages of those. They are signed values, btw.
745 * For 8 bit quantities, we keep the min, the max, an accumulator
746 * (@sigma) and a # of samples. When @samples gets to 255, we compute
747 * the average (@sigma / @samples), place it in @sigma and reset
748 * @samples to 1 (so we use it as the first sample).
750 * Now, statistically speaking, probably I am kicking the kidneys of
751 * some books I have in my shelves collecting dust, but I just want to
752 * get an approx, not the Nobel.
754 * LOCKING: there is no locking per se, but we try to keep a lockless
755 * schema. Only _add_samples() modifies the values--as long as you
756 * have other locking on top that makes sure that no two calls of
757 * _add_sample() happen at the same time, then we are fine. Now, for
758 * resetting the values we just set @samples to 0 and that makes the
759 * next _add_sample() to start with defaults. Reading the values in
760 * _show() currently can race, so you need to make sure the calls are
761 * under the same lock that protects calls to _add_sample(). FIXME:
762 * currently unlocked (It is not ultraprecise but does the trick. Bite
772 void stats_init(struct stats
*stats
)
774 atomic_set(&stats
->samples
, 0);
779 void stats_add_sample(struct stats
*stats
, s8 sample
)
783 unsigned samples
= atomic_read(&stats
->samples
);
784 if (samples
== 0) { /* it was zero before, so we initialize */
791 sigma
= stats
->sigma
;
794 if (sample
< min
) /* compute new values */
796 else if (sample
> max
)
800 stats
->min
= min
; /* commit */
802 stats
->sigma
= sigma
;
803 if (atomic_add_return(1, &stats
->samples
) > 255) {
804 /* wrapped around! reset */
805 stats
->sigma
= sigma
/ 256;
806 atomic_set(&stats
->samples
, 1);
810 static inline ssize_t
stats_show(struct stats
*stats
, char *buf
)
813 int samples
= atomic_read(&stats
->samples
);
819 avg
= stats
->sigma
/ samples
;
821 return scnprintf(buf
, PAGE_SIZE
, "%d %d %d\n", min
, max
, avg
);
824 static inline ssize_t
stats_store(struct stats
*stats
, const char *buf
,
831 #endif /* #ifndef __LINUX__UWB_H__ */