Merge tag 'dmaengine-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw...
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <linux/net_tstamp.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
154 *
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
157 */
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
161 */
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
167 };
168 };
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
172 };
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
179 };
180 };
181
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:1;
186 unsigned char skc_ipv6only:1;
187 int skc_bound_dev_if;
188 union {
189 struct hlist_node skc_bind_node;
190 struct hlist_nulls_node skc_portaddr_node;
191 };
192 struct proto *skc_prot;
193 #ifdef CONFIG_NET_NS
194 struct net *skc_net;
195 #endif
196
197 #if IS_ENABLED(CONFIG_IPV6)
198 struct in6_addr skc_v6_daddr;
199 struct in6_addr skc_v6_rcv_saddr;
200 #endif
201
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 int skc_tx_queue_mapping;
214 atomic_t skc_refcnt;
215 /* private: */
216 int skc_dontcopy_end[0];
217 /* public: */
218 };
219
220 struct cg_proto;
221 /**
222 * struct sock - network layer representation of sockets
223 * @__sk_common: shared layout with inet_timewait_sock
224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226 * @sk_lock: synchronizer
227 * @sk_rcvbuf: size of receive buffer in bytes
228 * @sk_wq: sock wait queue and async head
229 * @sk_rx_dst: receive input route used by early demux
230 * @sk_dst_cache: destination cache
231 * @sk_dst_lock: destination cache lock
232 * @sk_policy: flow policy
233 * @sk_receive_queue: incoming packets
234 * @sk_wmem_alloc: transmit queue bytes committed
235 * @sk_write_queue: Packet sending queue
236 * @sk_omem_alloc: "o" is "option" or "other"
237 * @sk_wmem_queued: persistent queue size
238 * @sk_forward_alloc: space allocated forward
239 * @sk_napi_id: id of the last napi context to receive data for sk
240 * @sk_ll_usec: usecs to busypoll when there is no data
241 * @sk_allocation: allocation mode
242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244 * @sk_sndbuf: size of send buffer in bytes
245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248 * @sk_no_check_rx: allow zero checksum in RX packets
249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252 * @sk_gso_max_size: Maximum GSO segment size to build
253 * @sk_gso_max_segs: Maximum number of GSO segments
254 * @sk_lingertime: %SO_LINGER l_linger setting
255 * @sk_backlog: always used with the per-socket spinlock held
256 * @sk_callback_lock: used with the callbacks in the end of this struct
257 * @sk_error_queue: rarely used
258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259 * IPV6_ADDRFORM for instance)
260 * @sk_err: last error
261 * @sk_err_soft: errors that don't cause failure but are the cause of a
262 * persistent failure not just 'timed out'
263 * @sk_drops: raw/udp drops counter
264 * @sk_ack_backlog: current listen backlog
265 * @sk_max_ack_backlog: listen backlog set in listen()
266 * @sk_priority: %SO_PRIORITY setting
267 * @sk_cgrp_prioidx: socket group's priority map index
268 * @sk_type: socket type (%SOCK_STREAM, etc)
269 * @sk_protocol: which protocol this socket belongs in this network family
270 * @sk_peer_pid: &struct pid for this socket's peer
271 * @sk_peer_cred: %SO_PEERCRED setting
272 * @sk_rcvlowat: %SO_RCVLOWAT setting
273 * @sk_rcvtimeo: %SO_RCVTIMEO setting
274 * @sk_sndtimeo: %SO_SNDTIMEO setting
275 * @sk_rxhash: flow hash received from netif layer
276 * @sk_txhash: computed flow hash for use on transmit
277 * @sk_filter: socket filtering instructions
278 * @sk_protinfo: private area, net family specific, when not using slab
279 * @sk_timer: sock cleanup timer
280 * @sk_stamp: time stamp of last packet received
281 * @sk_tsflags: SO_TIMESTAMPING socket options
282 * @sk_tskey: counter to disambiguate concurrent tstamp requests
283 * @sk_socket: Identd and reporting IO signals
284 * @sk_user_data: RPC layer private data
285 * @sk_frag: cached page frag
286 * @sk_peek_off: current peek_offset value
287 * @sk_send_head: front of stuff to transmit
288 * @sk_security: used by security modules
289 * @sk_mark: generic packet mark
290 * @sk_classid: this socket's cgroup classid
291 * @sk_cgrp: this socket's cgroup-specific proto data
292 * @sk_write_pending: a write to stream socket waits to start
293 * @sk_state_change: callback to indicate change in the state of the sock
294 * @sk_data_ready: callback to indicate there is data to be processed
295 * @sk_write_space: callback to indicate there is bf sending space available
296 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
297 * @sk_backlog_rcv: callback to process the backlog
298 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
299 */
300 struct sock {
301 /*
302 * Now struct inet_timewait_sock also uses sock_common, so please just
303 * don't add nothing before this first member (__sk_common) --acme
304 */
305 struct sock_common __sk_common;
306 #define sk_node __sk_common.skc_node
307 #define sk_nulls_node __sk_common.skc_nulls_node
308 #define sk_refcnt __sk_common.skc_refcnt
309 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
310
311 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
312 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
313 #define sk_hash __sk_common.skc_hash
314 #define sk_portpair __sk_common.skc_portpair
315 #define sk_num __sk_common.skc_num
316 #define sk_dport __sk_common.skc_dport
317 #define sk_addrpair __sk_common.skc_addrpair
318 #define sk_daddr __sk_common.skc_daddr
319 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
320 #define sk_family __sk_common.skc_family
321 #define sk_state __sk_common.skc_state
322 #define sk_reuse __sk_common.skc_reuse
323 #define sk_reuseport __sk_common.skc_reuseport
324 #define sk_ipv6only __sk_common.skc_ipv6only
325 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
326 #define sk_bind_node __sk_common.skc_bind_node
327 #define sk_prot __sk_common.skc_prot
328 #define sk_net __sk_common.skc_net
329 #define sk_v6_daddr __sk_common.skc_v6_daddr
330 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
331
332 socket_lock_t sk_lock;
333 struct sk_buff_head sk_receive_queue;
334 /*
335 * The backlog queue is special, it is always used with
336 * the per-socket spinlock held and requires low latency
337 * access. Therefore we special case it's implementation.
338 * Note : rmem_alloc is in this structure to fill a hole
339 * on 64bit arches, not because its logically part of
340 * backlog.
341 */
342 struct {
343 atomic_t rmem_alloc;
344 int len;
345 struct sk_buff *head;
346 struct sk_buff *tail;
347 } sk_backlog;
348 #define sk_rmem_alloc sk_backlog.rmem_alloc
349 int sk_forward_alloc;
350 #ifdef CONFIG_RPS
351 __u32 sk_rxhash;
352 #endif
353 __u32 sk_txhash;
354 #ifdef CONFIG_NET_RX_BUSY_POLL
355 unsigned int sk_napi_id;
356 unsigned int sk_ll_usec;
357 #endif
358 atomic_t sk_drops;
359 int sk_rcvbuf;
360
361 struct sk_filter __rcu *sk_filter;
362 struct socket_wq __rcu *sk_wq;
363
364 #ifdef CONFIG_XFRM
365 struct xfrm_policy *sk_policy[2];
366 #endif
367 unsigned long sk_flags;
368 struct dst_entry *sk_rx_dst;
369 struct dst_entry __rcu *sk_dst_cache;
370 spinlock_t sk_dst_lock;
371 atomic_t sk_wmem_alloc;
372 atomic_t sk_omem_alloc;
373 int sk_sndbuf;
374 struct sk_buff_head sk_write_queue;
375 kmemcheck_bitfield_begin(flags);
376 unsigned int sk_shutdown : 2,
377 sk_no_check_tx : 1,
378 sk_no_check_rx : 1,
379 sk_userlocks : 4,
380 sk_protocol : 8,
381 sk_type : 16;
382 kmemcheck_bitfield_end(flags);
383 int sk_wmem_queued;
384 gfp_t sk_allocation;
385 u32 sk_pacing_rate; /* bytes per second */
386 u32 sk_max_pacing_rate;
387 netdev_features_t sk_route_caps;
388 netdev_features_t sk_route_nocaps;
389 int sk_gso_type;
390 unsigned int sk_gso_max_size;
391 u16 sk_gso_max_segs;
392 int sk_rcvlowat;
393 unsigned long sk_lingertime;
394 struct sk_buff_head sk_error_queue;
395 struct proto *sk_prot_creator;
396 rwlock_t sk_callback_lock;
397 int sk_err,
398 sk_err_soft;
399 unsigned short sk_ack_backlog;
400 unsigned short sk_max_ack_backlog;
401 __u32 sk_priority;
402 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
403 __u32 sk_cgrp_prioidx;
404 #endif
405 struct pid *sk_peer_pid;
406 const struct cred *sk_peer_cred;
407 long sk_rcvtimeo;
408 long sk_sndtimeo;
409 void *sk_protinfo;
410 struct timer_list sk_timer;
411 ktime_t sk_stamp;
412 u16 sk_tsflags;
413 u32 sk_tskey;
414 struct socket *sk_socket;
415 void *sk_user_data;
416 struct page_frag sk_frag;
417 struct sk_buff *sk_send_head;
418 __s32 sk_peek_off;
419 int sk_write_pending;
420 #ifdef CONFIG_SECURITY
421 void *sk_security;
422 #endif
423 __u32 sk_mark;
424 u32 sk_classid;
425 struct cg_proto *sk_cgrp;
426 void (*sk_state_change)(struct sock *sk);
427 void (*sk_data_ready)(struct sock *sk);
428 void (*sk_write_space)(struct sock *sk);
429 void (*sk_error_report)(struct sock *sk);
430 int (*sk_backlog_rcv)(struct sock *sk,
431 struct sk_buff *skb);
432 void (*sk_destruct)(struct sock *sk);
433 };
434
435 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
436
437 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
438 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
439
440 /*
441 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
442 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
443 * on a socket means that the socket will reuse everybody else's port
444 * without looking at the other's sk_reuse value.
445 */
446
447 #define SK_NO_REUSE 0
448 #define SK_CAN_REUSE 1
449 #define SK_FORCE_REUSE 2
450
451 static inline int sk_peek_offset(struct sock *sk, int flags)
452 {
453 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
454 return sk->sk_peek_off;
455 else
456 return 0;
457 }
458
459 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
460 {
461 if (sk->sk_peek_off >= 0) {
462 if (sk->sk_peek_off >= val)
463 sk->sk_peek_off -= val;
464 else
465 sk->sk_peek_off = 0;
466 }
467 }
468
469 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
470 {
471 if (sk->sk_peek_off >= 0)
472 sk->sk_peek_off += val;
473 }
474
475 /*
476 * Hashed lists helper routines
477 */
478 static inline struct sock *sk_entry(const struct hlist_node *node)
479 {
480 return hlist_entry(node, struct sock, sk_node);
481 }
482
483 static inline struct sock *__sk_head(const struct hlist_head *head)
484 {
485 return hlist_entry(head->first, struct sock, sk_node);
486 }
487
488 static inline struct sock *sk_head(const struct hlist_head *head)
489 {
490 return hlist_empty(head) ? NULL : __sk_head(head);
491 }
492
493 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
494 {
495 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
496 }
497
498 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
499 {
500 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
501 }
502
503 static inline struct sock *sk_next(const struct sock *sk)
504 {
505 return sk->sk_node.next ?
506 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
507 }
508
509 static inline struct sock *sk_nulls_next(const struct sock *sk)
510 {
511 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
512 hlist_nulls_entry(sk->sk_nulls_node.next,
513 struct sock, sk_nulls_node) :
514 NULL;
515 }
516
517 static inline bool sk_unhashed(const struct sock *sk)
518 {
519 return hlist_unhashed(&sk->sk_node);
520 }
521
522 static inline bool sk_hashed(const struct sock *sk)
523 {
524 return !sk_unhashed(sk);
525 }
526
527 static inline void sk_node_init(struct hlist_node *node)
528 {
529 node->pprev = NULL;
530 }
531
532 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
533 {
534 node->pprev = NULL;
535 }
536
537 static inline void __sk_del_node(struct sock *sk)
538 {
539 __hlist_del(&sk->sk_node);
540 }
541
542 /* NB: equivalent to hlist_del_init_rcu */
543 static inline bool __sk_del_node_init(struct sock *sk)
544 {
545 if (sk_hashed(sk)) {
546 __sk_del_node(sk);
547 sk_node_init(&sk->sk_node);
548 return true;
549 }
550 return false;
551 }
552
553 /* Grab socket reference count. This operation is valid only
554 when sk is ALREADY grabbed f.e. it is found in hash table
555 or a list and the lookup is made under lock preventing hash table
556 modifications.
557 */
558
559 static inline void sock_hold(struct sock *sk)
560 {
561 atomic_inc(&sk->sk_refcnt);
562 }
563
564 /* Ungrab socket in the context, which assumes that socket refcnt
565 cannot hit zero, f.e. it is true in context of any socketcall.
566 */
567 static inline void __sock_put(struct sock *sk)
568 {
569 atomic_dec(&sk->sk_refcnt);
570 }
571
572 static inline bool sk_del_node_init(struct sock *sk)
573 {
574 bool rc = __sk_del_node_init(sk);
575
576 if (rc) {
577 /* paranoid for a while -acme */
578 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
579 __sock_put(sk);
580 }
581 return rc;
582 }
583 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
584
585 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
586 {
587 if (sk_hashed(sk)) {
588 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
589 return true;
590 }
591 return false;
592 }
593
594 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
595 {
596 bool rc = __sk_nulls_del_node_init_rcu(sk);
597
598 if (rc) {
599 /* paranoid for a while -acme */
600 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
601 __sock_put(sk);
602 }
603 return rc;
604 }
605
606 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
607 {
608 hlist_add_head(&sk->sk_node, list);
609 }
610
611 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
612 {
613 sock_hold(sk);
614 __sk_add_node(sk, list);
615 }
616
617 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
618 {
619 sock_hold(sk);
620 hlist_add_head_rcu(&sk->sk_node, list);
621 }
622
623 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
624 {
625 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
626 }
627
628 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
629 {
630 sock_hold(sk);
631 __sk_nulls_add_node_rcu(sk, list);
632 }
633
634 static inline void __sk_del_bind_node(struct sock *sk)
635 {
636 __hlist_del(&sk->sk_bind_node);
637 }
638
639 static inline void sk_add_bind_node(struct sock *sk,
640 struct hlist_head *list)
641 {
642 hlist_add_head(&sk->sk_bind_node, list);
643 }
644
645 #define sk_for_each(__sk, list) \
646 hlist_for_each_entry(__sk, list, sk_node)
647 #define sk_for_each_rcu(__sk, list) \
648 hlist_for_each_entry_rcu(__sk, list, sk_node)
649 #define sk_nulls_for_each(__sk, node, list) \
650 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
651 #define sk_nulls_for_each_rcu(__sk, node, list) \
652 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
653 #define sk_for_each_from(__sk) \
654 hlist_for_each_entry_from(__sk, sk_node)
655 #define sk_nulls_for_each_from(__sk, node) \
656 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
657 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
658 #define sk_for_each_safe(__sk, tmp, list) \
659 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
660 #define sk_for_each_bound(__sk, list) \
661 hlist_for_each_entry(__sk, list, sk_bind_node)
662
663 /**
664 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
665 * @tpos: the type * to use as a loop cursor.
666 * @pos: the &struct hlist_node to use as a loop cursor.
667 * @head: the head for your list.
668 * @offset: offset of hlist_node within the struct.
669 *
670 */
671 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
672 for (pos = (head)->first; \
673 (!is_a_nulls(pos)) && \
674 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
675 pos = pos->next)
676
677 static inline struct user_namespace *sk_user_ns(struct sock *sk)
678 {
679 /* Careful only use this in a context where these parameters
680 * can not change and must all be valid, such as recvmsg from
681 * userspace.
682 */
683 return sk->sk_socket->file->f_cred->user_ns;
684 }
685
686 /* Sock flags */
687 enum sock_flags {
688 SOCK_DEAD,
689 SOCK_DONE,
690 SOCK_URGINLINE,
691 SOCK_KEEPOPEN,
692 SOCK_LINGER,
693 SOCK_DESTROY,
694 SOCK_BROADCAST,
695 SOCK_TIMESTAMP,
696 SOCK_ZAPPED,
697 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
698 SOCK_DBG, /* %SO_DEBUG setting */
699 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
700 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
701 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
702 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
703 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
704 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
705 SOCK_FASYNC, /* fasync() active */
706 SOCK_RXQ_OVFL,
707 SOCK_ZEROCOPY, /* buffers from userspace */
708 SOCK_WIFI_STATUS, /* push wifi status to userspace */
709 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
710 * Will use last 4 bytes of packet sent from
711 * user-space instead.
712 */
713 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
714 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
715 };
716
717 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
718 {
719 nsk->sk_flags = osk->sk_flags;
720 }
721
722 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
723 {
724 __set_bit(flag, &sk->sk_flags);
725 }
726
727 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
728 {
729 __clear_bit(flag, &sk->sk_flags);
730 }
731
732 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
733 {
734 return test_bit(flag, &sk->sk_flags);
735 }
736
737 #ifdef CONFIG_NET
738 extern struct static_key memalloc_socks;
739 static inline int sk_memalloc_socks(void)
740 {
741 return static_key_false(&memalloc_socks);
742 }
743 #else
744
745 static inline int sk_memalloc_socks(void)
746 {
747 return 0;
748 }
749
750 #endif
751
752 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
753 {
754 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
755 }
756
757 static inline void sk_acceptq_removed(struct sock *sk)
758 {
759 sk->sk_ack_backlog--;
760 }
761
762 static inline void sk_acceptq_added(struct sock *sk)
763 {
764 sk->sk_ack_backlog++;
765 }
766
767 static inline bool sk_acceptq_is_full(const struct sock *sk)
768 {
769 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
770 }
771
772 /*
773 * Compute minimal free write space needed to queue new packets.
774 */
775 static inline int sk_stream_min_wspace(const struct sock *sk)
776 {
777 return sk->sk_wmem_queued >> 1;
778 }
779
780 static inline int sk_stream_wspace(const struct sock *sk)
781 {
782 return sk->sk_sndbuf - sk->sk_wmem_queued;
783 }
784
785 void sk_stream_write_space(struct sock *sk);
786
787 /* OOB backlog add */
788 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
789 {
790 /* dont let skb dst not refcounted, we are going to leave rcu lock */
791 skb_dst_force(skb);
792
793 if (!sk->sk_backlog.tail)
794 sk->sk_backlog.head = skb;
795 else
796 sk->sk_backlog.tail->next = skb;
797
798 sk->sk_backlog.tail = skb;
799 skb->next = NULL;
800 }
801
802 /*
803 * Take into account size of receive queue and backlog queue
804 * Do not take into account this skb truesize,
805 * to allow even a single big packet to come.
806 */
807 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
808 {
809 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
810
811 return qsize > limit;
812 }
813
814 /* The per-socket spinlock must be held here. */
815 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
816 unsigned int limit)
817 {
818 if (sk_rcvqueues_full(sk, limit))
819 return -ENOBUFS;
820
821 __sk_add_backlog(sk, skb);
822 sk->sk_backlog.len += skb->truesize;
823 return 0;
824 }
825
826 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
827
828 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
829 {
830 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
831 return __sk_backlog_rcv(sk, skb);
832
833 return sk->sk_backlog_rcv(sk, skb);
834 }
835
836 static inline void sock_rps_record_flow_hash(__u32 hash)
837 {
838 #ifdef CONFIG_RPS
839 struct rps_sock_flow_table *sock_flow_table;
840
841 rcu_read_lock();
842 sock_flow_table = rcu_dereference(rps_sock_flow_table);
843 rps_record_sock_flow(sock_flow_table, hash);
844 rcu_read_unlock();
845 #endif
846 }
847
848 static inline void sock_rps_reset_flow_hash(__u32 hash)
849 {
850 #ifdef CONFIG_RPS
851 struct rps_sock_flow_table *sock_flow_table;
852
853 rcu_read_lock();
854 sock_flow_table = rcu_dereference(rps_sock_flow_table);
855 rps_reset_sock_flow(sock_flow_table, hash);
856 rcu_read_unlock();
857 #endif
858 }
859
860 static inline void sock_rps_record_flow(const struct sock *sk)
861 {
862 #ifdef CONFIG_RPS
863 sock_rps_record_flow_hash(sk->sk_rxhash);
864 #endif
865 }
866
867 static inline void sock_rps_reset_flow(const struct sock *sk)
868 {
869 #ifdef CONFIG_RPS
870 sock_rps_reset_flow_hash(sk->sk_rxhash);
871 #endif
872 }
873
874 static inline void sock_rps_save_rxhash(struct sock *sk,
875 const struct sk_buff *skb)
876 {
877 #ifdef CONFIG_RPS
878 if (unlikely(sk->sk_rxhash != skb->hash)) {
879 sock_rps_reset_flow(sk);
880 sk->sk_rxhash = skb->hash;
881 }
882 #endif
883 }
884
885 static inline void sock_rps_reset_rxhash(struct sock *sk)
886 {
887 #ifdef CONFIG_RPS
888 sock_rps_reset_flow(sk);
889 sk->sk_rxhash = 0;
890 #endif
891 }
892
893 #define sk_wait_event(__sk, __timeo, __condition) \
894 ({ int __rc; \
895 release_sock(__sk); \
896 __rc = __condition; \
897 if (!__rc) { \
898 *(__timeo) = schedule_timeout(*(__timeo)); \
899 } \
900 lock_sock(__sk); \
901 __rc = __condition; \
902 __rc; \
903 })
904
905 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
906 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
907 void sk_stream_wait_close(struct sock *sk, long timeo_p);
908 int sk_stream_error(struct sock *sk, int flags, int err);
909 void sk_stream_kill_queues(struct sock *sk);
910 void sk_set_memalloc(struct sock *sk);
911 void sk_clear_memalloc(struct sock *sk);
912
913 int sk_wait_data(struct sock *sk, long *timeo);
914
915 struct request_sock_ops;
916 struct timewait_sock_ops;
917 struct inet_hashinfo;
918 struct raw_hashinfo;
919 struct module;
920
921 /*
922 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
923 * un-modified. Special care is taken when initializing object to zero.
924 */
925 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
926 {
927 if (offsetof(struct sock, sk_node.next) != 0)
928 memset(sk, 0, offsetof(struct sock, sk_node.next));
929 memset(&sk->sk_node.pprev, 0,
930 size - offsetof(struct sock, sk_node.pprev));
931 }
932
933 /* Networking protocol blocks we attach to sockets.
934 * socket layer -> transport layer interface
935 * transport -> network interface is defined by struct inet_proto
936 */
937 struct proto {
938 void (*close)(struct sock *sk,
939 long timeout);
940 int (*connect)(struct sock *sk,
941 struct sockaddr *uaddr,
942 int addr_len);
943 int (*disconnect)(struct sock *sk, int flags);
944
945 struct sock * (*accept)(struct sock *sk, int flags, int *err);
946
947 int (*ioctl)(struct sock *sk, int cmd,
948 unsigned long arg);
949 int (*init)(struct sock *sk);
950 void (*destroy)(struct sock *sk);
951 void (*shutdown)(struct sock *sk, int how);
952 int (*setsockopt)(struct sock *sk, int level,
953 int optname, char __user *optval,
954 unsigned int optlen);
955 int (*getsockopt)(struct sock *sk, int level,
956 int optname, char __user *optval,
957 int __user *option);
958 #ifdef CONFIG_COMPAT
959 int (*compat_setsockopt)(struct sock *sk,
960 int level,
961 int optname, char __user *optval,
962 unsigned int optlen);
963 int (*compat_getsockopt)(struct sock *sk,
964 int level,
965 int optname, char __user *optval,
966 int __user *option);
967 int (*compat_ioctl)(struct sock *sk,
968 unsigned int cmd, unsigned long arg);
969 #endif
970 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
971 struct msghdr *msg, size_t len);
972 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
973 struct msghdr *msg,
974 size_t len, int noblock, int flags,
975 int *addr_len);
976 int (*sendpage)(struct sock *sk, struct page *page,
977 int offset, size_t size, int flags);
978 int (*bind)(struct sock *sk,
979 struct sockaddr *uaddr, int addr_len);
980
981 int (*backlog_rcv) (struct sock *sk,
982 struct sk_buff *skb);
983
984 void (*release_cb)(struct sock *sk);
985
986 /* Keeping track of sk's, looking them up, and port selection methods. */
987 void (*hash)(struct sock *sk);
988 void (*unhash)(struct sock *sk);
989 void (*rehash)(struct sock *sk);
990 int (*get_port)(struct sock *sk, unsigned short snum);
991 void (*clear_sk)(struct sock *sk, int size);
992
993 /* Keeping track of sockets in use */
994 #ifdef CONFIG_PROC_FS
995 unsigned int inuse_idx;
996 #endif
997
998 bool (*stream_memory_free)(const struct sock *sk);
999 /* Memory pressure */
1000 void (*enter_memory_pressure)(struct sock *sk);
1001 atomic_long_t *memory_allocated; /* Current allocated memory. */
1002 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1003 /*
1004 * Pressure flag: try to collapse.
1005 * Technical note: it is used by multiple contexts non atomically.
1006 * All the __sk_mem_schedule() is of this nature: accounting
1007 * is strict, actions are advisory and have some latency.
1008 */
1009 int *memory_pressure;
1010 long *sysctl_mem;
1011 int *sysctl_wmem;
1012 int *sysctl_rmem;
1013 int max_header;
1014 bool no_autobind;
1015
1016 struct kmem_cache *slab;
1017 unsigned int obj_size;
1018 int slab_flags;
1019
1020 struct percpu_counter *orphan_count;
1021
1022 struct request_sock_ops *rsk_prot;
1023 struct timewait_sock_ops *twsk_prot;
1024
1025 union {
1026 struct inet_hashinfo *hashinfo;
1027 struct udp_table *udp_table;
1028 struct raw_hashinfo *raw_hash;
1029 } h;
1030
1031 struct module *owner;
1032
1033 char name[32];
1034
1035 struct list_head node;
1036 #ifdef SOCK_REFCNT_DEBUG
1037 atomic_t socks;
1038 #endif
1039 #ifdef CONFIG_MEMCG_KMEM
1040 /*
1041 * cgroup specific init/deinit functions. Called once for all
1042 * protocols that implement it, from cgroups populate function.
1043 * This function has to setup any files the protocol want to
1044 * appear in the kmem cgroup filesystem.
1045 */
1046 int (*init_cgroup)(struct mem_cgroup *memcg,
1047 struct cgroup_subsys *ss);
1048 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1049 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1050 #endif
1051 };
1052
1053 /*
1054 * Bits in struct cg_proto.flags
1055 */
1056 enum cg_proto_flags {
1057 /* Currently active and new sockets should be assigned to cgroups */
1058 MEMCG_SOCK_ACTIVE,
1059 /* It was ever activated; we must disarm static keys on destruction */
1060 MEMCG_SOCK_ACTIVATED,
1061 };
1062
1063 struct cg_proto {
1064 struct res_counter memory_allocated; /* Current allocated memory. */
1065 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1066 int memory_pressure;
1067 long sysctl_mem[3];
1068 unsigned long flags;
1069 /*
1070 * memcg field is used to find which memcg we belong directly
1071 * Each memcg struct can hold more than one cg_proto, so container_of
1072 * won't really cut.
1073 *
1074 * The elegant solution would be having an inverse function to
1075 * proto_cgroup in struct proto, but that means polluting the structure
1076 * for everybody, instead of just for memcg users.
1077 */
1078 struct mem_cgroup *memcg;
1079 };
1080
1081 int proto_register(struct proto *prot, int alloc_slab);
1082 void proto_unregister(struct proto *prot);
1083
1084 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1085 {
1086 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1087 }
1088
1089 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1090 {
1091 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1092 }
1093
1094 #ifdef SOCK_REFCNT_DEBUG
1095 static inline void sk_refcnt_debug_inc(struct sock *sk)
1096 {
1097 atomic_inc(&sk->sk_prot->socks);
1098 }
1099
1100 static inline void sk_refcnt_debug_dec(struct sock *sk)
1101 {
1102 atomic_dec(&sk->sk_prot->socks);
1103 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1104 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1105 }
1106
1107 static inline void sk_refcnt_debug_release(const struct sock *sk)
1108 {
1109 if (atomic_read(&sk->sk_refcnt) != 1)
1110 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1111 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1112 }
1113 #else /* SOCK_REFCNT_DEBUG */
1114 #define sk_refcnt_debug_inc(sk) do { } while (0)
1115 #define sk_refcnt_debug_dec(sk) do { } while (0)
1116 #define sk_refcnt_debug_release(sk) do { } while (0)
1117 #endif /* SOCK_REFCNT_DEBUG */
1118
1119 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1120 extern struct static_key memcg_socket_limit_enabled;
1121 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1122 struct cg_proto *cg_proto)
1123 {
1124 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1125 }
1126 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1127 #else
1128 #define mem_cgroup_sockets_enabled 0
1129 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1130 struct cg_proto *cg_proto)
1131 {
1132 return NULL;
1133 }
1134 #endif
1135
1136 static inline bool sk_stream_memory_free(const struct sock *sk)
1137 {
1138 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1139 return false;
1140
1141 return sk->sk_prot->stream_memory_free ?
1142 sk->sk_prot->stream_memory_free(sk) : true;
1143 }
1144
1145 static inline bool sk_stream_is_writeable(const struct sock *sk)
1146 {
1147 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1148 sk_stream_memory_free(sk);
1149 }
1150
1151
1152 static inline bool sk_has_memory_pressure(const struct sock *sk)
1153 {
1154 return sk->sk_prot->memory_pressure != NULL;
1155 }
1156
1157 static inline bool sk_under_memory_pressure(const struct sock *sk)
1158 {
1159 if (!sk->sk_prot->memory_pressure)
1160 return false;
1161
1162 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1163 return !!sk->sk_cgrp->memory_pressure;
1164
1165 return !!*sk->sk_prot->memory_pressure;
1166 }
1167
1168 static inline void sk_leave_memory_pressure(struct sock *sk)
1169 {
1170 int *memory_pressure = sk->sk_prot->memory_pressure;
1171
1172 if (!memory_pressure)
1173 return;
1174
1175 if (*memory_pressure)
1176 *memory_pressure = 0;
1177
1178 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1179 struct cg_proto *cg_proto = sk->sk_cgrp;
1180 struct proto *prot = sk->sk_prot;
1181
1182 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1183 cg_proto->memory_pressure = 0;
1184 }
1185
1186 }
1187
1188 static inline void sk_enter_memory_pressure(struct sock *sk)
1189 {
1190 if (!sk->sk_prot->enter_memory_pressure)
1191 return;
1192
1193 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1194 struct cg_proto *cg_proto = sk->sk_cgrp;
1195 struct proto *prot = sk->sk_prot;
1196
1197 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1198 cg_proto->memory_pressure = 1;
1199 }
1200
1201 sk->sk_prot->enter_memory_pressure(sk);
1202 }
1203
1204 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1205 {
1206 long *prot = sk->sk_prot->sysctl_mem;
1207 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1208 prot = sk->sk_cgrp->sysctl_mem;
1209 return prot[index];
1210 }
1211
1212 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1213 unsigned long amt,
1214 int *parent_status)
1215 {
1216 struct res_counter *fail;
1217 int ret;
1218
1219 ret = res_counter_charge_nofail(&prot->memory_allocated,
1220 amt << PAGE_SHIFT, &fail);
1221 if (ret < 0)
1222 *parent_status = OVER_LIMIT;
1223 }
1224
1225 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1226 unsigned long amt)
1227 {
1228 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1229 }
1230
1231 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1232 {
1233 u64 ret;
1234 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1235 return ret >> PAGE_SHIFT;
1236 }
1237
1238 static inline long
1239 sk_memory_allocated(const struct sock *sk)
1240 {
1241 struct proto *prot = sk->sk_prot;
1242 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1243 return memcg_memory_allocated_read(sk->sk_cgrp);
1244
1245 return atomic_long_read(prot->memory_allocated);
1246 }
1247
1248 static inline long
1249 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1250 {
1251 struct proto *prot = sk->sk_prot;
1252
1253 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1254 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1255 /* update the root cgroup regardless */
1256 atomic_long_add_return(amt, prot->memory_allocated);
1257 return memcg_memory_allocated_read(sk->sk_cgrp);
1258 }
1259
1260 return atomic_long_add_return(amt, prot->memory_allocated);
1261 }
1262
1263 static inline void
1264 sk_memory_allocated_sub(struct sock *sk, int amt)
1265 {
1266 struct proto *prot = sk->sk_prot;
1267
1268 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1269 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1270
1271 atomic_long_sub(amt, prot->memory_allocated);
1272 }
1273
1274 static inline void sk_sockets_allocated_dec(struct sock *sk)
1275 {
1276 struct proto *prot = sk->sk_prot;
1277
1278 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1279 struct cg_proto *cg_proto = sk->sk_cgrp;
1280
1281 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1282 percpu_counter_dec(&cg_proto->sockets_allocated);
1283 }
1284
1285 percpu_counter_dec(prot->sockets_allocated);
1286 }
1287
1288 static inline void sk_sockets_allocated_inc(struct sock *sk)
1289 {
1290 struct proto *prot = sk->sk_prot;
1291
1292 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1293 struct cg_proto *cg_proto = sk->sk_cgrp;
1294
1295 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1296 percpu_counter_inc(&cg_proto->sockets_allocated);
1297 }
1298
1299 percpu_counter_inc(prot->sockets_allocated);
1300 }
1301
1302 static inline int
1303 sk_sockets_allocated_read_positive(struct sock *sk)
1304 {
1305 struct proto *prot = sk->sk_prot;
1306
1307 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1308 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1309
1310 return percpu_counter_read_positive(prot->sockets_allocated);
1311 }
1312
1313 static inline int
1314 proto_sockets_allocated_sum_positive(struct proto *prot)
1315 {
1316 return percpu_counter_sum_positive(prot->sockets_allocated);
1317 }
1318
1319 static inline long
1320 proto_memory_allocated(struct proto *prot)
1321 {
1322 return atomic_long_read(prot->memory_allocated);
1323 }
1324
1325 static inline bool
1326 proto_memory_pressure(struct proto *prot)
1327 {
1328 if (!prot->memory_pressure)
1329 return false;
1330 return !!*prot->memory_pressure;
1331 }
1332
1333
1334 #ifdef CONFIG_PROC_FS
1335 /* Called with local bh disabled */
1336 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1337 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1338 #else
1339 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1340 int inc)
1341 {
1342 }
1343 #endif
1344
1345
1346 /* With per-bucket locks this operation is not-atomic, so that
1347 * this version is not worse.
1348 */
1349 static inline void __sk_prot_rehash(struct sock *sk)
1350 {
1351 sk->sk_prot->unhash(sk);
1352 sk->sk_prot->hash(sk);
1353 }
1354
1355 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1356
1357 /* About 10 seconds */
1358 #define SOCK_DESTROY_TIME (10*HZ)
1359
1360 /* Sockets 0-1023 can't be bound to unless you are superuser */
1361 #define PROT_SOCK 1024
1362
1363 #define SHUTDOWN_MASK 3
1364 #define RCV_SHUTDOWN 1
1365 #define SEND_SHUTDOWN 2
1366
1367 #define SOCK_SNDBUF_LOCK 1
1368 #define SOCK_RCVBUF_LOCK 2
1369 #define SOCK_BINDADDR_LOCK 4
1370 #define SOCK_BINDPORT_LOCK 8
1371
1372 /* sock_iocb: used to kick off async processing of socket ios */
1373 struct sock_iocb {
1374 struct list_head list;
1375
1376 int flags;
1377 int size;
1378 struct socket *sock;
1379 struct sock *sk;
1380 struct scm_cookie *scm;
1381 struct msghdr *msg, async_msg;
1382 struct kiocb *kiocb;
1383 };
1384
1385 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1386 {
1387 return (struct sock_iocb *)iocb->private;
1388 }
1389
1390 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1391 {
1392 return si->kiocb;
1393 }
1394
1395 struct socket_alloc {
1396 struct socket socket;
1397 struct inode vfs_inode;
1398 };
1399
1400 static inline struct socket *SOCKET_I(struct inode *inode)
1401 {
1402 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1403 }
1404
1405 static inline struct inode *SOCK_INODE(struct socket *socket)
1406 {
1407 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1408 }
1409
1410 /*
1411 * Functions for memory accounting
1412 */
1413 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1414 void __sk_mem_reclaim(struct sock *sk);
1415
1416 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1417 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1418 #define SK_MEM_SEND 0
1419 #define SK_MEM_RECV 1
1420
1421 static inline int sk_mem_pages(int amt)
1422 {
1423 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1424 }
1425
1426 static inline bool sk_has_account(struct sock *sk)
1427 {
1428 /* return true if protocol supports memory accounting */
1429 return !!sk->sk_prot->memory_allocated;
1430 }
1431
1432 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1433 {
1434 if (!sk_has_account(sk))
1435 return true;
1436 return size <= sk->sk_forward_alloc ||
1437 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1438 }
1439
1440 static inline bool
1441 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1442 {
1443 if (!sk_has_account(sk))
1444 return true;
1445 return size<= sk->sk_forward_alloc ||
1446 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1447 skb_pfmemalloc(skb);
1448 }
1449
1450 static inline void sk_mem_reclaim(struct sock *sk)
1451 {
1452 if (!sk_has_account(sk))
1453 return;
1454 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1455 __sk_mem_reclaim(sk);
1456 }
1457
1458 static inline void sk_mem_reclaim_partial(struct sock *sk)
1459 {
1460 if (!sk_has_account(sk))
1461 return;
1462 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1463 __sk_mem_reclaim(sk);
1464 }
1465
1466 static inline void sk_mem_charge(struct sock *sk, int size)
1467 {
1468 if (!sk_has_account(sk))
1469 return;
1470 sk->sk_forward_alloc -= size;
1471 }
1472
1473 static inline void sk_mem_uncharge(struct sock *sk, int size)
1474 {
1475 if (!sk_has_account(sk))
1476 return;
1477 sk->sk_forward_alloc += size;
1478 }
1479
1480 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1481 {
1482 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1483 sk->sk_wmem_queued -= skb->truesize;
1484 sk_mem_uncharge(sk, skb->truesize);
1485 __kfree_skb(skb);
1486 }
1487
1488 /* Used by processes to "lock" a socket state, so that
1489 * interrupts and bottom half handlers won't change it
1490 * from under us. It essentially blocks any incoming
1491 * packets, so that we won't get any new data or any
1492 * packets that change the state of the socket.
1493 *
1494 * While locked, BH processing will add new packets to
1495 * the backlog queue. This queue is processed by the
1496 * owner of the socket lock right before it is released.
1497 *
1498 * Since ~2.3.5 it is also exclusive sleep lock serializing
1499 * accesses from user process context.
1500 */
1501 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1502
1503 static inline void sock_release_ownership(struct sock *sk)
1504 {
1505 sk->sk_lock.owned = 0;
1506 }
1507
1508 /*
1509 * Macro so as to not evaluate some arguments when
1510 * lockdep is not enabled.
1511 *
1512 * Mark both the sk_lock and the sk_lock.slock as a
1513 * per-address-family lock class.
1514 */
1515 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1516 do { \
1517 sk->sk_lock.owned = 0; \
1518 init_waitqueue_head(&sk->sk_lock.wq); \
1519 spin_lock_init(&(sk)->sk_lock.slock); \
1520 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1521 sizeof((sk)->sk_lock)); \
1522 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1523 (skey), (sname)); \
1524 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1525 } while (0)
1526
1527 void lock_sock_nested(struct sock *sk, int subclass);
1528
1529 static inline void lock_sock(struct sock *sk)
1530 {
1531 lock_sock_nested(sk, 0);
1532 }
1533
1534 void release_sock(struct sock *sk);
1535
1536 /* BH context may only use the following locking interface. */
1537 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1538 #define bh_lock_sock_nested(__sk) \
1539 spin_lock_nested(&((__sk)->sk_lock.slock), \
1540 SINGLE_DEPTH_NESTING)
1541 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1542
1543 bool lock_sock_fast(struct sock *sk);
1544 /**
1545 * unlock_sock_fast - complement of lock_sock_fast
1546 * @sk: socket
1547 * @slow: slow mode
1548 *
1549 * fast unlock socket for user context.
1550 * If slow mode is on, we call regular release_sock()
1551 */
1552 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1553 {
1554 if (slow)
1555 release_sock(sk);
1556 else
1557 spin_unlock_bh(&sk->sk_lock.slock);
1558 }
1559
1560
1561 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1562 struct proto *prot);
1563 void sk_free(struct sock *sk);
1564 void sk_release_kernel(struct sock *sk);
1565 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1566
1567 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1568 gfp_t priority);
1569 void sock_wfree(struct sk_buff *skb);
1570 void skb_orphan_partial(struct sk_buff *skb);
1571 void sock_rfree(struct sk_buff *skb);
1572 void sock_edemux(struct sk_buff *skb);
1573
1574 int sock_setsockopt(struct socket *sock, int level, int op,
1575 char __user *optval, unsigned int optlen);
1576
1577 int sock_getsockopt(struct socket *sock, int level, int op,
1578 char __user *optval, int __user *optlen);
1579 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1580 int noblock, int *errcode);
1581 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1582 unsigned long data_len, int noblock,
1583 int *errcode, int max_page_order);
1584 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1585 void sock_kfree_s(struct sock *sk, void *mem, int size);
1586 void sk_send_sigurg(struct sock *sk);
1587
1588 /*
1589 * Functions to fill in entries in struct proto_ops when a protocol
1590 * does not implement a particular function.
1591 */
1592 int sock_no_bind(struct socket *, struct sockaddr *, int);
1593 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1594 int sock_no_socketpair(struct socket *, struct socket *);
1595 int sock_no_accept(struct socket *, struct socket *, int);
1596 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1597 unsigned int sock_no_poll(struct file *, struct socket *,
1598 struct poll_table_struct *);
1599 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1600 int sock_no_listen(struct socket *, int);
1601 int sock_no_shutdown(struct socket *, int);
1602 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1603 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1604 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1605 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1606 int);
1607 int sock_no_mmap(struct file *file, struct socket *sock,
1608 struct vm_area_struct *vma);
1609 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1610 size_t size, int flags);
1611
1612 /*
1613 * Functions to fill in entries in struct proto_ops when a protocol
1614 * uses the inet style.
1615 */
1616 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1617 char __user *optval, int __user *optlen);
1618 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1619 struct msghdr *msg, size_t size, int flags);
1620 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1621 char __user *optval, unsigned int optlen);
1622 int compat_sock_common_getsockopt(struct socket *sock, int level,
1623 int optname, char __user *optval, int __user *optlen);
1624 int compat_sock_common_setsockopt(struct socket *sock, int level,
1625 int optname, char __user *optval, unsigned int optlen);
1626
1627 void sk_common_release(struct sock *sk);
1628
1629 /*
1630 * Default socket callbacks and setup code
1631 */
1632
1633 /* Initialise core socket variables */
1634 void sock_init_data(struct socket *sock, struct sock *sk);
1635
1636 /*
1637 * Socket reference counting postulates.
1638 *
1639 * * Each user of socket SHOULD hold a reference count.
1640 * * Each access point to socket (an hash table bucket, reference from a list,
1641 * running timer, skb in flight MUST hold a reference count.
1642 * * When reference count hits 0, it means it will never increase back.
1643 * * When reference count hits 0, it means that no references from
1644 * outside exist to this socket and current process on current CPU
1645 * is last user and may/should destroy this socket.
1646 * * sk_free is called from any context: process, BH, IRQ. When
1647 * it is called, socket has no references from outside -> sk_free
1648 * may release descendant resources allocated by the socket, but
1649 * to the time when it is called, socket is NOT referenced by any
1650 * hash tables, lists etc.
1651 * * Packets, delivered from outside (from network or from another process)
1652 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1653 * when they sit in queue. Otherwise, packets will leak to hole, when
1654 * socket is looked up by one cpu and unhasing is made by another CPU.
1655 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1656 * (leak to backlog). Packet socket does all the processing inside
1657 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1658 * use separate SMP lock, so that they are prone too.
1659 */
1660
1661 /* Ungrab socket and destroy it, if it was the last reference. */
1662 static inline void sock_put(struct sock *sk)
1663 {
1664 if (atomic_dec_and_test(&sk->sk_refcnt))
1665 sk_free(sk);
1666 }
1667 /* Generic version of sock_put(), dealing with all sockets
1668 * (TCP_TIMEWAIT, ESTABLISHED...)
1669 */
1670 void sock_gen_put(struct sock *sk);
1671
1672 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1673
1674 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1675 {
1676 sk->sk_tx_queue_mapping = tx_queue;
1677 }
1678
1679 static inline void sk_tx_queue_clear(struct sock *sk)
1680 {
1681 sk->sk_tx_queue_mapping = -1;
1682 }
1683
1684 static inline int sk_tx_queue_get(const struct sock *sk)
1685 {
1686 return sk ? sk->sk_tx_queue_mapping : -1;
1687 }
1688
1689 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1690 {
1691 sk_tx_queue_clear(sk);
1692 sk->sk_socket = sock;
1693 }
1694
1695 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1696 {
1697 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1698 return &rcu_dereference_raw(sk->sk_wq)->wait;
1699 }
1700 /* Detach socket from process context.
1701 * Announce socket dead, detach it from wait queue and inode.
1702 * Note that parent inode held reference count on this struct sock,
1703 * we do not release it in this function, because protocol
1704 * probably wants some additional cleanups or even continuing
1705 * to work with this socket (TCP).
1706 */
1707 static inline void sock_orphan(struct sock *sk)
1708 {
1709 write_lock_bh(&sk->sk_callback_lock);
1710 sock_set_flag(sk, SOCK_DEAD);
1711 sk_set_socket(sk, NULL);
1712 sk->sk_wq = NULL;
1713 write_unlock_bh(&sk->sk_callback_lock);
1714 }
1715
1716 static inline void sock_graft(struct sock *sk, struct socket *parent)
1717 {
1718 write_lock_bh(&sk->sk_callback_lock);
1719 sk->sk_wq = parent->wq;
1720 parent->sk = sk;
1721 sk_set_socket(sk, parent);
1722 security_sock_graft(sk, parent);
1723 write_unlock_bh(&sk->sk_callback_lock);
1724 }
1725
1726 kuid_t sock_i_uid(struct sock *sk);
1727 unsigned long sock_i_ino(struct sock *sk);
1728
1729 static inline struct dst_entry *
1730 __sk_dst_get(struct sock *sk)
1731 {
1732 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1733 lockdep_is_held(&sk->sk_lock.slock));
1734 }
1735
1736 static inline struct dst_entry *
1737 sk_dst_get(struct sock *sk)
1738 {
1739 struct dst_entry *dst;
1740
1741 rcu_read_lock();
1742 dst = rcu_dereference(sk->sk_dst_cache);
1743 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1744 dst = NULL;
1745 rcu_read_unlock();
1746 return dst;
1747 }
1748
1749 static inline void dst_negative_advice(struct sock *sk)
1750 {
1751 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1752
1753 if (dst && dst->ops->negative_advice) {
1754 ndst = dst->ops->negative_advice(dst);
1755
1756 if (ndst != dst) {
1757 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1758 sk_tx_queue_clear(sk);
1759 }
1760 }
1761 }
1762
1763 static inline void
1764 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1765 {
1766 struct dst_entry *old_dst;
1767
1768 sk_tx_queue_clear(sk);
1769 /*
1770 * This can be called while sk is owned by the caller only,
1771 * with no state that can be checked in a rcu_dereference_check() cond
1772 */
1773 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1774 rcu_assign_pointer(sk->sk_dst_cache, dst);
1775 dst_release(old_dst);
1776 }
1777
1778 static inline void
1779 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1780 {
1781 struct dst_entry *old_dst;
1782
1783 sk_tx_queue_clear(sk);
1784 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1785 dst_release(old_dst);
1786 }
1787
1788 static inline void
1789 __sk_dst_reset(struct sock *sk)
1790 {
1791 __sk_dst_set(sk, NULL);
1792 }
1793
1794 static inline void
1795 sk_dst_reset(struct sock *sk)
1796 {
1797 sk_dst_set(sk, NULL);
1798 }
1799
1800 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1801
1802 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1803
1804 static inline bool sk_can_gso(const struct sock *sk)
1805 {
1806 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1807 }
1808
1809 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1810
1811 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1812 {
1813 sk->sk_route_nocaps |= flags;
1814 sk->sk_route_caps &= ~flags;
1815 }
1816
1817 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1818 char __user *from, char *to,
1819 int copy, int offset)
1820 {
1821 if (skb->ip_summed == CHECKSUM_NONE) {
1822 int err = 0;
1823 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1824 if (err)
1825 return err;
1826 skb->csum = csum_block_add(skb->csum, csum, offset);
1827 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1828 if (!access_ok(VERIFY_READ, from, copy) ||
1829 __copy_from_user_nocache(to, from, copy))
1830 return -EFAULT;
1831 } else if (copy_from_user(to, from, copy))
1832 return -EFAULT;
1833
1834 return 0;
1835 }
1836
1837 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1838 char __user *from, int copy)
1839 {
1840 int err, offset = skb->len;
1841
1842 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1843 copy, offset);
1844 if (err)
1845 __skb_trim(skb, offset);
1846
1847 return err;
1848 }
1849
1850 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1851 struct sk_buff *skb,
1852 struct page *page,
1853 int off, int copy)
1854 {
1855 int err;
1856
1857 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1858 copy, skb->len);
1859 if (err)
1860 return err;
1861
1862 skb->len += copy;
1863 skb->data_len += copy;
1864 skb->truesize += copy;
1865 sk->sk_wmem_queued += copy;
1866 sk_mem_charge(sk, copy);
1867 return 0;
1868 }
1869
1870 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1871 struct sk_buff *skb, struct page *page,
1872 int off, int copy)
1873 {
1874 if (skb->ip_summed == CHECKSUM_NONE) {
1875 int err = 0;
1876 __wsum csum = csum_and_copy_from_user(from,
1877 page_address(page) + off,
1878 copy, 0, &err);
1879 if (err)
1880 return err;
1881 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1882 } else if (copy_from_user(page_address(page) + off, from, copy))
1883 return -EFAULT;
1884
1885 skb->len += copy;
1886 skb->data_len += copy;
1887 skb->truesize += copy;
1888 sk->sk_wmem_queued += copy;
1889 sk_mem_charge(sk, copy);
1890 return 0;
1891 }
1892
1893 /**
1894 * sk_wmem_alloc_get - returns write allocations
1895 * @sk: socket
1896 *
1897 * Returns sk_wmem_alloc minus initial offset of one
1898 */
1899 static inline int sk_wmem_alloc_get(const struct sock *sk)
1900 {
1901 return atomic_read(&sk->sk_wmem_alloc) - 1;
1902 }
1903
1904 /**
1905 * sk_rmem_alloc_get - returns read allocations
1906 * @sk: socket
1907 *
1908 * Returns sk_rmem_alloc
1909 */
1910 static inline int sk_rmem_alloc_get(const struct sock *sk)
1911 {
1912 return atomic_read(&sk->sk_rmem_alloc);
1913 }
1914
1915 /**
1916 * sk_has_allocations - check if allocations are outstanding
1917 * @sk: socket
1918 *
1919 * Returns true if socket has write or read allocations
1920 */
1921 static inline bool sk_has_allocations(const struct sock *sk)
1922 {
1923 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1924 }
1925
1926 /**
1927 * wq_has_sleeper - check if there are any waiting processes
1928 * @wq: struct socket_wq
1929 *
1930 * Returns true if socket_wq has waiting processes
1931 *
1932 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1933 * barrier call. They were added due to the race found within the tcp code.
1934 *
1935 * Consider following tcp code paths:
1936 *
1937 * CPU1 CPU2
1938 *
1939 * sys_select receive packet
1940 * ... ...
1941 * __add_wait_queue update tp->rcv_nxt
1942 * ... ...
1943 * tp->rcv_nxt check sock_def_readable
1944 * ... {
1945 * schedule rcu_read_lock();
1946 * wq = rcu_dereference(sk->sk_wq);
1947 * if (wq && waitqueue_active(&wq->wait))
1948 * wake_up_interruptible(&wq->wait)
1949 * ...
1950 * }
1951 *
1952 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1953 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1954 * could then endup calling schedule and sleep forever if there are no more
1955 * data on the socket.
1956 *
1957 */
1958 static inline bool wq_has_sleeper(struct socket_wq *wq)
1959 {
1960 /* We need to be sure we are in sync with the
1961 * add_wait_queue modifications to the wait queue.
1962 *
1963 * This memory barrier is paired in the sock_poll_wait.
1964 */
1965 smp_mb();
1966 return wq && waitqueue_active(&wq->wait);
1967 }
1968
1969 /**
1970 * sock_poll_wait - place memory barrier behind the poll_wait call.
1971 * @filp: file
1972 * @wait_address: socket wait queue
1973 * @p: poll_table
1974 *
1975 * See the comments in the wq_has_sleeper function.
1976 */
1977 static inline void sock_poll_wait(struct file *filp,
1978 wait_queue_head_t *wait_address, poll_table *p)
1979 {
1980 if (!poll_does_not_wait(p) && wait_address) {
1981 poll_wait(filp, wait_address, p);
1982 /* We need to be sure we are in sync with the
1983 * socket flags modification.
1984 *
1985 * This memory barrier is paired in the wq_has_sleeper.
1986 */
1987 smp_mb();
1988 }
1989 }
1990
1991 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1992 {
1993 if (sk->sk_txhash) {
1994 skb->l4_hash = 1;
1995 skb->hash = sk->sk_txhash;
1996 }
1997 }
1998
1999 /*
2000 * Queue a received datagram if it will fit. Stream and sequenced
2001 * protocols can't normally use this as they need to fit buffers in
2002 * and play with them.
2003 *
2004 * Inlined as it's very short and called for pretty much every
2005 * packet ever received.
2006 */
2007
2008 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2009 {
2010 skb_orphan(skb);
2011 skb->sk = sk;
2012 skb->destructor = sock_wfree;
2013 skb_set_hash_from_sk(skb, sk);
2014 /*
2015 * We used to take a refcount on sk, but following operation
2016 * is enough to guarantee sk_free() wont free this sock until
2017 * all in-flight packets are completed
2018 */
2019 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2020 }
2021
2022 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2023 {
2024 skb_orphan(skb);
2025 skb->sk = sk;
2026 skb->destructor = sock_rfree;
2027 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2028 sk_mem_charge(sk, skb->truesize);
2029 }
2030
2031 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2032 unsigned long expires);
2033
2034 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2035
2036 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2037
2038 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2039
2040 /*
2041 * Recover an error report and clear atomically
2042 */
2043
2044 static inline int sock_error(struct sock *sk)
2045 {
2046 int err;
2047 if (likely(!sk->sk_err))
2048 return 0;
2049 err = xchg(&sk->sk_err, 0);
2050 return -err;
2051 }
2052
2053 static inline unsigned long sock_wspace(struct sock *sk)
2054 {
2055 int amt = 0;
2056
2057 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2058 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2059 if (amt < 0)
2060 amt = 0;
2061 }
2062 return amt;
2063 }
2064
2065 static inline void sk_wake_async(struct sock *sk, int how, int band)
2066 {
2067 if (sock_flag(sk, SOCK_FASYNC))
2068 sock_wake_async(sk->sk_socket, how, band);
2069 }
2070
2071 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2072 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2073 * Note: for send buffers, TCP works better if we can build two skbs at
2074 * minimum.
2075 */
2076 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2077
2078 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2079 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2080
2081 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2082 {
2083 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2084 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2085 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2086 }
2087 }
2088
2089 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2090
2091 /**
2092 * sk_page_frag - return an appropriate page_frag
2093 * @sk: socket
2094 *
2095 * If socket allocation mode allows current thread to sleep, it means its
2096 * safe to use the per task page_frag instead of the per socket one.
2097 */
2098 static inline struct page_frag *sk_page_frag(struct sock *sk)
2099 {
2100 if (sk->sk_allocation & __GFP_WAIT)
2101 return &current->task_frag;
2102
2103 return &sk->sk_frag;
2104 }
2105
2106 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2107
2108 /*
2109 * Default write policy as shown to user space via poll/select/SIGIO
2110 */
2111 static inline bool sock_writeable(const struct sock *sk)
2112 {
2113 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2114 }
2115
2116 static inline gfp_t gfp_any(void)
2117 {
2118 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2119 }
2120
2121 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2122 {
2123 return noblock ? 0 : sk->sk_rcvtimeo;
2124 }
2125
2126 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2127 {
2128 return noblock ? 0 : sk->sk_sndtimeo;
2129 }
2130
2131 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2132 {
2133 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2134 }
2135
2136 /* Alas, with timeout socket operations are not restartable.
2137 * Compare this to poll().
2138 */
2139 static inline int sock_intr_errno(long timeo)
2140 {
2141 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2142 }
2143
2144 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2145 struct sk_buff *skb);
2146 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2147 struct sk_buff *skb);
2148
2149 static inline void
2150 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2151 {
2152 ktime_t kt = skb->tstamp;
2153 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2154
2155 /*
2156 * generate control messages if
2157 * - receive time stamping in software requested
2158 * - software time stamp available and wanted
2159 * - hardware time stamps available and wanted
2160 */
2161 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2162 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2163 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2164 (hwtstamps->hwtstamp.tv64 &&
2165 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2166 __sock_recv_timestamp(msg, sk, skb);
2167 else
2168 sk->sk_stamp = kt;
2169
2170 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2171 __sock_recv_wifi_status(msg, sk, skb);
2172 }
2173
2174 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2175 struct sk_buff *skb);
2176
2177 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2178 struct sk_buff *skb)
2179 {
2180 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2181 (1UL << SOCK_RCVTSTAMP))
2182 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2183 SOF_TIMESTAMPING_RAW_HARDWARE)
2184
2185 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2186 __sock_recv_ts_and_drops(msg, sk, skb);
2187 else
2188 sk->sk_stamp = skb->tstamp;
2189 }
2190
2191 /**
2192 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2193 * @sk: socket sending this packet
2194 * @tx_flags: completed with instructions for time stamping
2195 *
2196 * Note : callers should take care of initial *tx_flags value (usually 0)
2197 */
2198 void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2199
2200 /**
2201 * sk_eat_skb - Release a skb if it is no longer needed
2202 * @sk: socket to eat this skb from
2203 * @skb: socket buffer to eat
2204 *
2205 * This routine must be called with interrupts disabled or with the socket
2206 * locked so that the sk_buff queue operation is ok.
2207 */
2208 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2209 {
2210 __skb_unlink(skb, &sk->sk_receive_queue);
2211 __kfree_skb(skb);
2212 }
2213
2214 static inline
2215 struct net *sock_net(const struct sock *sk)
2216 {
2217 return read_pnet(&sk->sk_net);
2218 }
2219
2220 static inline
2221 void sock_net_set(struct sock *sk, struct net *net)
2222 {
2223 write_pnet(&sk->sk_net, net);
2224 }
2225
2226 /*
2227 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2228 * They should not hold a reference to a namespace in order to allow
2229 * to stop it.
2230 * Sockets after sk_change_net should be released using sk_release_kernel
2231 */
2232 static inline void sk_change_net(struct sock *sk, struct net *net)
2233 {
2234 struct net *current_net = sock_net(sk);
2235
2236 if (!net_eq(current_net, net)) {
2237 put_net(current_net);
2238 sock_net_set(sk, hold_net(net));
2239 }
2240 }
2241
2242 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2243 {
2244 if (skb->sk) {
2245 struct sock *sk = skb->sk;
2246
2247 skb->destructor = NULL;
2248 skb->sk = NULL;
2249 return sk;
2250 }
2251 return NULL;
2252 }
2253
2254 void sock_enable_timestamp(struct sock *sk, int flag);
2255 int sock_get_timestamp(struct sock *, struct timeval __user *);
2256 int sock_get_timestampns(struct sock *, struct timespec __user *);
2257 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2258 int type);
2259
2260 bool sk_ns_capable(const struct sock *sk,
2261 struct user_namespace *user_ns, int cap);
2262 bool sk_capable(const struct sock *sk, int cap);
2263 bool sk_net_capable(const struct sock *sk, int cap);
2264
2265 /*
2266 * Enable debug/info messages
2267 */
2268 extern int net_msg_warn;
2269 #define NETDEBUG(fmt, args...) \
2270 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2271
2272 #define LIMIT_NETDEBUG(fmt, args...) \
2273 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2274
2275 extern __u32 sysctl_wmem_max;
2276 extern __u32 sysctl_rmem_max;
2277
2278 extern int sysctl_optmem_max;
2279
2280 extern __u32 sysctl_wmem_default;
2281 extern __u32 sysctl_rmem_default;
2282
2283 #endif /* _SOCK_H */
This page took 0.093552 seconds and 5 git commands to generate.