crypto: engine: fix linux-next merge conflict
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186 #if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189 #endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230 };
231
232 /**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_policy: flow policy
243 * @sk_receive_queue: incoming packets
244 * @sk_wmem_alloc: transmit queue bytes committed
245 * @sk_write_queue: Packet sending queue
246 * @sk_omem_alloc: "o" is "option" or "other"
247 * @sk_wmem_queued: persistent queue size
248 * @sk_forward_alloc: space allocated forward
249 * @sk_napi_id: id of the last napi context to receive data for sk
250 * @sk_ll_usec: usecs to busypoll when there is no data
251 * @sk_allocation: allocation mode
252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254 * @sk_sndbuf: size of send buffer in bytes
255 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
256 * @sk_no_check_rx: allow zero checksum in RX packets
257 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
258 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
259 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
260 * @sk_gso_max_size: Maximum GSO segment size to build
261 * @sk_gso_max_segs: Maximum number of GSO segments
262 * @sk_lingertime: %SO_LINGER l_linger setting
263 * @sk_backlog: always used with the per-socket spinlock held
264 * @sk_callback_lock: used with the callbacks in the end of this struct
265 * @sk_error_queue: rarely used
266 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
267 * IPV6_ADDRFORM for instance)
268 * @sk_err: last error
269 * @sk_err_soft: errors that don't cause failure but are the cause of a
270 * persistent failure not just 'timed out'
271 * @sk_drops: raw/udp drops counter
272 * @sk_ack_backlog: current listen backlog
273 * @sk_max_ack_backlog: listen backlog set in listen()
274 * @sk_priority: %SO_PRIORITY setting
275 * @sk_type: socket type (%SOCK_STREAM, etc)
276 * @sk_protocol: which protocol this socket belongs in this network family
277 * @sk_peer_pid: &struct pid for this socket's peer
278 * @sk_peer_cred: %SO_PEERCRED setting
279 * @sk_rcvlowat: %SO_RCVLOWAT setting
280 * @sk_rcvtimeo: %SO_RCVTIMEO setting
281 * @sk_sndtimeo: %SO_SNDTIMEO setting
282 * @sk_txhash: computed flow hash for use on transmit
283 * @sk_filter: socket filtering instructions
284 * @sk_timer: sock cleanup timer
285 * @sk_stamp: time stamp of last packet received
286 * @sk_tsflags: SO_TIMESTAMPING socket options
287 * @sk_tskey: counter to disambiguate concurrent tstamp requests
288 * @sk_socket: Identd and reporting IO signals
289 * @sk_user_data: RPC layer private data
290 * @sk_frag: cached page frag
291 * @sk_peek_off: current peek_offset value
292 * @sk_send_head: front of stuff to transmit
293 * @sk_security: used by security modules
294 * @sk_mark: generic packet mark
295 * @sk_cgrp_data: cgroup data for this cgroup
296 * @sk_memcg: this socket's memory cgroup association
297 * @sk_write_pending: a write to stream socket waits to start
298 * @sk_state_change: callback to indicate change in the state of the sock
299 * @sk_data_ready: callback to indicate there is data to be processed
300 * @sk_write_space: callback to indicate there is bf sending space available
301 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
302 * @sk_backlog_rcv: callback to process the backlog
303 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
304 * @sk_reuseport_cb: reuseport group container
305 */
306 struct sock {
307 /*
308 * Now struct inet_timewait_sock also uses sock_common, so please just
309 * don't add nothing before this first member (__sk_common) --acme
310 */
311 struct sock_common __sk_common;
312 #define sk_node __sk_common.skc_node
313 #define sk_nulls_node __sk_common.skc_nulls_node
314 #define sk_refcnt __sk_common.skc_refcnt
315 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
316
317 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
318 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
319 #define sk_hash __sk_common.skc_hash
320 #define sk_portpair __sk_common.skc_portpair
321 #define sk_num __sk_common.skc_num
322 #define sk_dport __sk_common.skc_dport
323 #define sk_addrpair __sk_common.skc_addrpair
324 #define sk_daddr __sk_common.skc_daddr
325 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
326 #define sk_family __sk_common.skc_family
327 #define sk_state __sk_common.skc_state
328 #define sk_reuse __sk_common.skc_reuse
329 #define sk_reuseport __sk_common.skc_reuseport
330 #define sk_ipv6only __sk_common.skc_ipv6only
331 #define sk_net_refcnt __sk_common.skc_net_refcnt
332 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
333 #define sk_bind_node __sk_common.skc_bind_node
334 #define sk_prot __sk_common.skc_prot
335 #define sk_net __sk_common.skc_net
336 #define sk_v6_daddr __sk_common.skc_v6_daddr
337 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
338 #define sk_cookie __sk_common.skc_cookie
339 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
340 #define sk_flags __sk_common.skc_flags
341 #define sk_rxhash __sk_common.skc_rxhash
342
343 socket_lock_t sk_lock;
344 struct sk_buff_head sk_receive_queue;
345 /*
346 * The backlog queue is special, it is always used with
347 * the per-socket spinlock held and requires low latency
348 * access. Therefore we special case it's implementation.
349 * Note : rmem_alloc is in this structure to fill a hole
350 * on 64bit arches, not because its logically part of
351 * backlog.
352 */
353 struct {
354 atomic_t rmem_alloc;
355 int len;
356 struct sk_buff *head;
357 struct sk_buff *tail;
358 } sk_backlog;
359 #define sk_rmem_alloc sk_backlog.rmem_alloc
360 int sk_forward_alloc;
361
362 __u32 sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 unsigned int sk_napi_id;
365 unsigned int sk_ll_usec;
366 #endif
367 atomic_t sk_drops;
368 int sk_rcvbuf;
369
370 struct sk_filter __rcu *sk_filter;
371 union {
372 struct socket_wq __rcu *sk_wq;
373 struct socket_wq *sk_wq_raw;
374 };
375 #ifdef CONFIG_XFRM
376 struct xfrm_policy __rcu *sk_policy[2];
377 #endif
378 struct dst_entry *sk_rx_dst;
379 struct dst_entry __rcu *sk_dst_cache;
380 /* Note: 32bit hole on 64bit arches */
381 atomic_t sk_wmem_alloc;
382 atomic_t sk_omem_alloc;
383 int sk_sndbuf;
384 struct sk_buff_head sk_write_queue;
385
386 /*
387 * Because of non atomicity rules, all
388 * changes are protected by socket lock.
389 */
390 kmemcheck_bitfield_begin(flags);
391 unsigned int sk_padding : 2,
392 sk_no_check_tx : 1,
393 sk_no_check_rx : 1,
394 sk_userlocks : 4,
395 sk_protocol : 8,
396 sk_type : 16;
397 #define SK_PROTOCOL_MAX U8_MAX
398 kmemcheck_bitfield_end(flags);
399
400 int sk_wmem_queued;
401 gfp_t sk_allocation;
402 u32 sk_pacing_rate; /* bytes per second */
403 u32 sk_max_pacing_rate;
404 netdev_features_t sk_route_caps;
405 netdev_features_t sk_route_nocaps;
406 int sk_gso_type;
407 unsigned int sk_gso_max_size;
408 u16 sk_gso_max_segs;
409 int sk_rcvlowat;
410 unsigned long sk_lingertime;
411 struct sk_buff_head sk_error_queue;
412 struct proto *sk_prot_creator;
413 rwlock_t sk_callback_lock;
414 int sk_err,
415 sk_err_soft;
416 u32 sk_ack_backlog;
417 u32 sk_max_ack_backlog;
418 __u32 sk_priority;
419 __u32 sk_mark;
420 struct pid *sk_peer_pid;
421 const struct cred *sk_peer_cred;
422 long sk_rcvtimeo;
423 long sk_sndtimeo;
424 struct timer_list sk_timer;
425 ktime_t sk_stamp;
426 u16 sk_tsflags;
427 u8 sk_shutdown;
428 u32 sk_tskey;
429 struct socket *sk_socket;
430 void *sk_user_data;
431 struct page_frag sk_frag;
432 struct sk_buff *sk_send_head;
433 __s32 sk_peek_off;
434 int sk_write_pending;
435 #ifdef CONFIG_SECURITY
436 void *sk_security;
437 #endif
438 struct sock_cgroup_data sk_cgrp_data;
439 struct mem_cgroup *sk_memcg;
440 void (*sk_state_change)(struct sock *sk);
441 void (*sk_data_ready)(struct sock *sk);
442 void (*sk_write_space)(struct sock *sk);
443 void (*sk_error_report)(struct sock *sk);
444 int (*sk_backlog_rcv)(struct sock *sk,
445 struct sk_buff *skb);
446 void (*sk_destruct)(struct sock *sk);
447 struct sock_reuseport __rcu *sk_reuseport_cb;
448 struct rcu_head sk_rcu;
449 };
450
451 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
452
453 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
454 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
455
456 /*
457 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
458 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
459 * on a socket means that the socket will reuse everybody else's port
460 * without looking at the other's sk_reuse value.
461 */
462
463 #define SK_NO_REUSE 0
464 #define SK_CAN_REUSE 1
465 #define SK_FORCE_REUSE 2
466
467 int sk_set_peek_off(struct sock *sk, int val);
468
469 static inline int sk_peek_offset(struct sock *sk, int flags)
470 {
471 if (unlikely(flags & MSG_PEEK)) {
472 s32 off = READ_ONCE(sk->sk_peek_off);
473 if (off >= 0)
474 return off;
475 }
476
477 return 0;
478 }
479
480 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
481 {
482 s32 off = READ_ONCE(sk->sk_peek_off);
483
484 if (unlikely(off >= 0)) {
485 off = max_t(s32, off - val, 0);
486 WRITE_ONCE(sk->sk_peek_off, off);
487 }
488 }
489
490 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
491 {
492 sk_peek_offset_bwd(sk, -val);
493 }
494
495 /*
496 * Hashed lists helper routines
497 */
498 static inline struct sock *sk_entry(const struct hlist_node *node)
499 {
500 return hlist_entry(node, struct sock, sk_node);
501 }
502
503 static inline struct sock *__sk_head(const struct hlist_head *head)
504 {
505 return hlist_entry(head->first, struct sock, sk_node);
506 }
507
508 static inline struct sock *sk_head(const struct hlist_head *head)
509 {
510 return hlist_empty(head) ? NULL : __sk_head(head);
511 }
512
513 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
514 {
515 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
516 }
517
518 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
519 {
520 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
521 }
522
523 static inline struct sock *sk_next(const struct sock *sk)
524 {
525 return sk->sk_node.next ?
526 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
527 }
528
529 static inline struct sock *sk_nulls_next(const struct sock *sk)
530 {
531 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
532 hlist_nulls_entry(sk->sk_nulls_node.next,
533 struct sock, sk_nulls_node) :
534 NULL;
535 }
536
537 static inline bool sk_unhashed(const struct sock *sk)
538 {
539 return hlist_unhashed(&sk->sk_node);
540 }
541
542 static inline bool sk_hashed(const struct sock *sk)
543 {
544 return !sk_unhashed(sk);
545 }
546
547 static inline void sk_node_init(struct hlist_node *node)
548 {
549 node->pprev = NULL;
550 }
551
552 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
553 {
554 node->pprev = NULL;
555 }
556
557 static inline void __sk_del_node(struct sock *sk)
558 {
559 __hlist_del(&sk->sk_node);
560 }
561
562 /* NB: equivalent to hlist_del_init_rcu */
563 static inline bool __sk_del_node_init(struct sock *sk)
564 {
565 if (sk_hashed(sk)) {
566 __sk_del_node(sk);
567 sk_node_init(&sk->sk_node);
568 return true;
569 }
570 return false;
571 }
572
573 /* Grab socket reference count. This operation is valid only
574 when sk is ALREADY grabbed f.e. it is found in hash table
575 or a list and the lookup is made under lock preventing hash table
576 modifications.
577 */
578
579 static __always_inline void sock_hold(struct sock *sk)
580 {
581 atomic_inc(&sk->sk_refcnt);
582 }
583
584 /* Ungrab socket in the context, which assumes that socket refcnt
585 cannot hit zero, f.e. it is true in context of any socketcall.
586 */
587 static __always_inline void __sock_put(struct sock *sk)
588 {
589 atomic_dec(&sk->sk_refcnt);
590 }
591
592 static inline bool sk_del_node_init(struct sock *sk)
593 {
594 bool rc = __sk_del_node_init(sk);
595
596 if (rc) {
597 /* paranoid for a while -acme */
598 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
599 __sock_put(sk);
600 }
601 return rc;
602 }
603 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
604
605 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
606 {
607 if (sk_hashed(sk)) {
608 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
609 return true;
610 }
611 return false;
612 }
613
614 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
615 {
616 bool rc = __sk_nulls_del_node_init_rcu(sk);
617
618 if (rc) {
619 /* paranoid for a while -acme */
620 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
621 __sock_put(sk);
622 }
623 return rc;
624 }
625
626 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
627 {
628 hlist_add_head(&sk->sk_node, list);
629 }
630
631 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
632 {
633 sock_hold(sk);
634 __sk_add_node(sk, list);
635 }
636
637 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
638 {
639 sock_hold(sk);
640 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
641 sk->sk_family == AF_INET6)
642 hlist_add_tail_rcu(&sk->sk_node, list);
643 else
644 hlist_add_head_rcu(&sk->sk_node, list);
645 }
646
647 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
648 {
649 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
650 sk->sk_family == AF_INET6)
651 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
652 else
653 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
654 }
655
656 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
657 {
658 sock_hold(sk);
659 __sk_nulls_add_node_rcu(sk, list);
660 }
661
662 static inline void __sk_del_bind_node(struct sock *sk)
663 {
664 __hlist_del(&sk->sk_bind_node);
665 }
666
667 static inline void sk_add_bind_node(struct sock *sk,
668 struct hlist_head *list)
669 {
670 hlist_add_head(&sk->sk_bind_node, list);
671 }
672
673 #define sk_for_each(__sk, list) \
674 hlist_for_each_entry(__sk, list, sk_node)
675 #define sk_for_each_rcu(__sk, list) \
676 hlist_for_each_entry_rcu(__sk, list, sk_node)
677 #define sk_nulls_for_each(__sk, node, list) \
678 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
679 #define sk_nulls_for_each_rcu(__sk, node, list) \
680 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
681 #define sk_for_each_from(__sk) \
682 hlist_for_each_entry_from(__sk, sk_node)
683 #define sk_nulls_for_each_from(__sk, node) \
684 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
685 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
686 #define sk_for_each_safe(__sk, tmp, list) \
687 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
688 #define sk_for_each_bound(__sk, list) \
689 hlist_for_each_entry(__sk, list, sk_bind_node)
690
691 /**
692 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
693 * @tpos: the type * to use as a loop cursor.
694 * @pos: the &struct hlist_node to use as a loop cursor.
695 * @head: the head for your list.
696 * @offset: offset of hlist_node within the struct.
697 *
698 */
699 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
700 for (pos = rcu_dereference((head)->first); \
701 pos != NULL && \
702 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
703 pos = rcu_dereference(pos->next))
704
705 static inline struct user_namespace *sk_user_ns(struct sock *sk)
706 {
707 /* Careful only use this in a context where these parameters
708 * can not change and must all be valid, such as recvmsg from
709 * userspace.
710 */
711 return sk->sk_socket->file->f_cred->user_ns;
712 }
713
714 /* Sock flags */
715 enum sock_flags {
716 SOCK_DEAD,
717 SOCK_DONE,
718 SOCK_URGINLINE,
719 SOCK_KEEPOPEN,
720 SOCK_LINGER,
721 SOCK_DESTROY,
722 SOCK_BROADCAST,
723 SOCK_TIMESTAMP,
724 SOCK_ZAPPED,
725 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
726 SOCK_DBG, /* %SO_DEBUG setting */
727 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
728 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
729 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
730 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
731 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
732 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
733 SOCK_FASYNC, /* fasync() active */
734 SOCK_RXQ_OVFL,
735 SOCK_ZEROCOPY, /* buffers from userspace */
736 SOCK_WIFI_STATUS, /* push wifi status to userspace */
737 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
738 * Will use last 4 bytes of packet sent from
739 * user-space instead.
740 */
741 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
742 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
743 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
744 };
745
746 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
747
748 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
749 {
750 nsk->sk_flags = osk->sk_flags;
751 }
752
753 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
754 {
755 __set_bit(flag, &sk->sk_flags);
756 }
757
758 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
759 {
760 __clear_bit(flag, &sk->sk_flags);
761 }
762
763 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
764 {
765 return test_bit(flag, &sk->sk_flags);
766 }
767
768 #ifdef CONFIG_NET
769 extern struct static_key memalloc_socks;
770 static inline int sk_memalloc_socks(void)
771 {
772 return static_key_false(&memalloc_socks);
773 }
774 #else
775
776 static inline int sk_memalloc_socks(void)
777 {
778 return 0;
779 }
780
781 #endif
782
783 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
784 {
785 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
786 }
787
788 static inline void sk_acceptq_removed(struct sock *sk)
789 {
790 sk->sk_ack_backlog--;
791 }
792
793 static inline void sk_acceptq_added(struct sock *sk)
794 {
795 sk->sk_ack_backlog++;
796 }
797
798 static inline bool sk_acceptq_is_full(const struct sock *sk)
799 {
800 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
801 }
802
803 /*
804 * Compute minimal free write space needed to queue new packets.
805 */
806 static inline int sk_stream_min_wspace(const struct sock *sk)
807 {
808 return sk->sk_wmem_queued >> 1;
809 }
810
811 static inline int sk_stream_wspace(const struct sock *sk)
812 {
813 return sk->sk_sndbuf - sk->sk_wmem_queued;
814 }
815
816 void sk_stream_write_space(struct sock *sk);
817
818 /* OOB backlog add */
819 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
820 {
821 /* dont let skb dst not refcounted, we are going to leave rcu lock */
822 skb_dst_force_safe(skb);
823
824 if (!sk->sk_backlog.tail)
825 sk->sk_backlog.head = skb;
826 else
827 sk->sk_backlog.tail->next = skb;
828
829 sk->sk_backlog.tail = skb;
830 skb->next = NULL;
831 }
832
833 /*
834 * Take into account size of receive queue and backlog queue
835 * Do not take into account this skb truesize,
836 * to allow even a single big packet to come.
837 */
838 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
839 {
840 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
841
842 return qsize > limit;
843 }
844
845 /* The per-socket spinlock must be held here. */
846 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
847 unsigned int limit)
848 {
849 if (sk_rcvqueues_full(sk, limit))
850 return -ENOBUFS;
851
852 /*
853 * If the skb was allocated from pfmemalloc reserves, only
854 * allow SOCK_MEMALLOC sockets to use it as this socket is
855 * helping free memory
856 */
857 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
858 return -ENOMEM;
859
860 __sk_add_backlog(sk, skb);
861 sk->sk_backlog.len += skb->truesize;
862 return 0;
863 }
864
865 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
866
867 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
868 {
869 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
870 return __sk_backlog_rcv(sk, skb);
871
872 return sk->sk_backlog_rcv(sk, skb);
873 }
874
875 static inline void sk_incoming_cpu_update(struct sock *sk)
876 {
877 sk->sk_incoming_cpu = raw_smp_processor_id();
878 }
879
880 static inline void sock_rps_record_flow_hash(__u32 hash)
881 {
882 #ifdef CONFIG_RPS
883 struct rps_sock_flow_table *sock_flow_table;
884
885 rcu_read_lock();
886 sock_flow_table = rcu_dereference(rps_sock_flow_table);
887 rps_record_sock_flow(sock_flow_table, hash);
888 rcu_read_unlock();
889 #endif
890 }
891
892 static inline void sock_rps_record_flow(const struct sock *sk)
893 {
894 #ifdef CONFIG_RPS
895 sock_rps_record_flow_hash(sk->sk_rxhash);
896 #endif
897 }
898
899 static inline void sock_rps_save_rxhash(struct sock *sk,
900 const struct sk_buff *skb)
901 {
902 #ifdef CONFIG_RPS
903 if (unlikely(sk->sk_rxhash != skb->hash))
904 sk->sk_rxhash = skb->hash;
905 #endif
906 }
907
908 static inline void sock_rps_reset_rxhash(struct sock *sk)
909 {
910 #ifdef CONFIG_RPS
911 sk->sk_rxhash = 0;
912 #endif
913 }
914
915 #define sk_wait_event(__sk, __timeo, __condition) \
916 ({ int __rc; \
917 release_sock(__sk); \
918 __rc = __condition; \
919 if (!__rc) { \
920 *(__timeo) = schedule_timeout(*(__timeo)); \
921 } \
922 sched_annotate_sleep(); \
923 lock_sock(__sk); \
924 __rc = __condition; \
925 __rc; \
926 })
927
928 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
929 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
930 void sk_stream_wait_close(struct sock *sk, long timeo_p);
931 int sk_stream_error(struct sock *sk, int flags, int err);
932 void sk_stream_kill_queues(struct sock *sk);
933 void sk_set_memalloc(struct sock *sk);
934 void sk_clear_memalloc(struct sock *sk);
935
936 void __sk_flush_backlog(struct sock *sk);
937
938 static inline bool sk_flush_backlog(struct sock *sk)
939 {
940 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
941 __sk_flush_backlog(sk);
942 return true;
943 }
944 return false;
945 }
946
947 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
948
949 struct request_sock_ops;
950 struct timewait_sock_ops;
951 struct inet_hashinfo;
952 struct raw_hashinfo;
953 struct module;
954
955 /*
956 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
957 * un-modified. Special care is taken when initializing object to zero.
958 */
959 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
960 {
961 if (offsetof(struct sock, sk_node.next) != 0)
962 memset(sk, 0, offsetof(struct sock, sk_node.next));
963 memset(&sk->sk_node.pprev, 0,
964 size - offsetof(struct sock, sk_node.pprev));
965 }
966
967 /* Networking protocol blocks we attach to sockets.
968 * socket layer -> transport layer interface
969 */
970 struct proto {
971 void (*close)(struct sock *sk,
972 long timeout);
973 int (*connect)(struct sock *sk,
974 struct sockaddr *uaddr,
975 int addr_len);
976 int (*disconnect)(struct sock *sk, int flags);
977
978 struct sock * (*accept)(struct sock *sk, int flags, int *err);
979
980 int (*ioctl)(struct sock *sk, int cmd,
981 unsigned long arg);
982 int (*init)(struct sock *sk);
983 void (*destroy)(struct sock *sk);
984 void (*shutdown)(struct sock *sk, int how);
985 int (*setsockopt)(struct sock *sk, int level,
986 int optname, char __user *optval,
987 unsigned int optlen);
988 int (*getsockopt)(struct sock *sk, int level,
989 int optname, char __user *optval,
990 int __user *option);
991 #ifdef CONFIG_COMPAT
992 int (*compat_setsockopt)(struct sock *sk,
993 int level,
994 int optname, char __user *optval,
995 unsigned int optlen);
996 int (*compat_getsockopt)(struct sock *sk,
997 int level,
998 int optname, char __user *optval,
999 int __user *option);
1000 int (*compat_ioctl)(struct sock *sk,
1001 unsigned int cmd, unsigned long arg);
1002 #endif
1003 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1004 size_t len);
1005 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1006 size_t len, int noblock, int flags,
1007 int *addr_len);
1008 int (*sendpage)(struct sock *sk, struct page *page,
1009 int offset, size_t size, int flags);
1010 int (*bind)(struct sock *sk,
1011 struct sockaddr *uaddr, int addr_len);
1012
1013 int (*backlog_rcv) (struct sock *sk,
1014 struct sk_buff *skb);
1015
1016 void (*release_cb)(struct sock *sk);
1017
1018 /* Keeping track of sk's, looking them up, and port selection methods. */
1019 int (*hash)(struct sock *sk);
1020 void (*unhash)(struct sock *sk);
1021 void (*rehash)(struct sock *sk);
1022 int (*get_port)(struct sock *sk, unsigned short snum);
1023
1024 /* Keeping track of sockets in use */
1025 #ifdef CONFIG_PROC_FS
1026 unsigned int inuse_idx;
1027 #endif
1028
1029 bool (*stream_memory_free)(const struct sock *sk);
1030 /* Memory pressure */
1031 void (*enter_memory_pressure)(struct sock *sk);
1032 atomic_long_t *memory_allocated; /* Current allocated memory. */
1033 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1034 /*
1035 * Pressure flag: try to collapse.
1036 * Technical note: it is used by multiple contexts non atomically.
1037 * All the __sk_mem_schedule() is of this nature: accounting
1038 * is strict, actions are advisory and have some latency.
1039 */
1040 int *memory_pressure;
1041 long *sysctl_mem;
1042 int *sysctl_wmem;
1043 int *sysctl_rmem;
1044 int max_header;
1045 bool no_autobind;
1046
1047 struct kmem_cache *slab;
1048 unsigned int obj_size;
1049 int slab_flags;
1050
1051 struct percpu_counter *orphan_count;
1052
1053 struct request_sock_ops *rsk_prot;
1054 struct timewait_sock_ops *twsk_prot;
1055
1056 union {
1057 struct inet_hashinfo *hashinfo;
1058 struct udp_table *udp_table;
1059 struct raw_hashinfo *raw_hash;
1060 } h;
1061
1062 struct module *owner;
1063
1064 char name[32];
1065
1066 struct list_head node;
1067 #ifdef SOCK_REFCNT_DEBUG
1068 atomic_t socks;
1069 #endif
1070 int (*diag_destroy)(struct sock *sk, int err);
1071 };
1072
1073 int proto_register(struct proto *prot, int alloc_slab);
1074 void proto_unregister(struct proto *prot);
1075
1076 #ifdef SOCK_REFCNT_DEBUG
1077 static inline void sk_refcnt_debug_inc(struct sock *sk)
1078 {
1079 atomic_inc(&sk->sk_prot->socks);
1080 }
1081
1082 static inline void sk_refcnt_debug_dec(struct sock *sk)
1083 {
1084 atomic_dec(&sk->sk_prot->socks);
1085 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1086 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1087 }
1088
1089 static inline void sk_refcnt_debug_release(const struct sock *sk)
1090 {
1091 if (atomic_read(&sk->sk_refcnt) != 1)
1092 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1093 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1094 }
1095 #else /* SOCK_REFCNT_DEBUG */
1096 #define sk_refcnt_debug_inc(sk) do { } while (0)
1097 #define sk_refcnt_debug_dec(sk) do { } while (0)
1098 #define sk_refcnt_debug_release(sk) do { } while (0)
1099 #endif /* SOCK_REFCNT_DEBUG */
1100
1101 static inline bool sk_stream_memory_free(const struct sock *sk)
1102 {
1103 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1104 return false;
1105
1106 return sk->sk_prot->stream_memory_free ?
1107 sk->sk_prot->stream_memory_free(sk) : true;
1108 }
1109
1110 static inline bool sk_stream_is_writeable(const struct sock *sk)
1111 {
1112 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1113 sk_stream_memory_free(sk);
1114 }
1115
1116 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1117 struct cgroup *ancestor)
1118 {
1119 #ifdef CONFIG_SOCK_CGROUP_DATA
1120 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1121 ancestor);
1122 #else
1123 return -ENOTSUPP;
1124 #endif
1125 }
1126
1127 static inline bool sk_has_memory_pressure(const struct sock *sk)
1128 {
1129 return sk->sk_prot->memory_pressure != NULL;
1130 }
1131
1132 static inline bool sk_under_memory_pressure(const struct sock *sk)
1133 {
1134 if (!sk->sk_prot->memory_pressure)
1135 return false;
1136
1137 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1138 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1139 return true;
1140
1141 return !!*sk->sk_prot->memory_pressure;
1142 }
1143
1144 static inline void sk_leave_memory_pressure(struct sock *sk)
1145 {
1146 int *memory_pressure = sk->sk_prot->memory_pressure;
1147
1148 if (!memory_pressure)
1149 return;
1150
1151 if (*memory_pressure)
1152 *memory_pressure = 0;
1153 }
1154
1155 static inline void sk_enter_memory_pressure(struct sock *sk)
1156 {
1157 if (!sk->sk_prot->enter_memory_pressure)
1158 return;
1159
1160 sk->sk_prot->enter_memory_pressure(sk);
1161 }
1162
1163 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1164 {
1165 return sk->sk_prot->sysctl_mem[index];
1166 }
1167
1168 static inline long
1169 sk_memory_allocated(const struct sock *sk)
1170 {
1171 return atomic_long_read(sk->sk_prot->memory_allocated);
1172 }
1173
1174 static inline long
1175 sk_memory_allocated_add(struct sock *sk, int amt)
1176 {
1177 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1178 }
1179
1180 static inline void
1181 sk_memory_allocated_sub(struct sock *sk, int amt)
1182 {
1183 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1184 }
1185
1186 static inline void sk_sockets_allocated_dec(struct sock *sk)
1187 {
1188 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1189 }
1190
1191 static inline void sk_sockets_allocated_inc(struct sock *sk)
1192 {
1193 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1194 }
1195
1196 static inline int
1197 sk_sockets_allocated_read_positive(struct sock *sk)
1198 {
1199 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1200 }
1201
1202 static inline int
1203 proto_sockets_allocated_sum_positive(struct proto *prot)
1204 {
1205 return percpu_counter_sum_positive(prot->sockets_allocated);
1206 }
1207
1208 static inline long
1209 proto_memory_allocated(struct proto *prot)
1210 {
1211 return atomic_long_read(prot->memory_allocated);
1212 }
1213
1214 static inline bool
1215 proto_memory_pressure(struct proto *prot)
1216 {
1217 if (!prot->memory_pressure)
1218 return false;
1219 return !!*prot->memory_pressure;
1220 }
1221
1222
1223 #ifdef CONFIG_PROC_FS
1224 /* Called with local bh disabled */
1225 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1226 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1227 #else
1228 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1229 int inc)
1230 {
1231 }
1232 #endif
1233
1234
1235 /* With per-bucket locks this operation is not-atomic, so that
1236 * this version is not worse.
1237 */
1238 static inline int __sk_prot_rehash(struct sock *sk)
1239 {
1240 sk->sk_prot->unhash(sk);
1241 return sk->sk_prot->hash(sk);
1242 }
1243
1244 /* About 10 seconds */
1245 #define SOCK_DESTROY_TIME (10*HZ)
1246
1247 /* Sockets 0-1023 can't be bound to unless you are superuser */
1248 #define PROT_SOCK 1024
1249
1250 #define SHUTDOWN_MASK 3
1251 #define RCV_SHUTDOWN 1
1252 #define SEND_SHUTDOWN 2
1253
1254 #define SOCK_SNDBUF_LOCK 1
1255 #define SOCK_RCVBUF_LOCK 2
1256 #define SOCK_BINDADDR_LOCK 4
1257 #define SOCK_BINDPORT_LOCK 8
1258
1259 struct socket_alloc {
1260 struct socket socket;
1261 struct inode vfs_inode;
1262 };
1263
1264 static inline struct socket *SOCKET_I(struct inode *inode)
1265 {
1266 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1267 }
1268
1269 static inline struct inode *SOCK_INODE(struct socket *socket)
1270 {
1271 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1272 }
1273
1274 /*
1275 * Functions for memory accounting
1276 */
1277 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1278 void __sk_mem_reclaim(struct sock *sk, int amount);
1279
1280 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1281 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1282 #define SK_MEM_SEND 0
1283 #define SK_MEM_RECV 1
1284
1285 static inline int sk_mem_pages(int amt)
1286 {
1287 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1288 }
1289
1290 static inline bool sk_has_account(struct sock *sk)
1291 {
1292 /* return true if protocol supports memory accounting */
1293 return !!sk->sk_prot->memory_allocated;
1294 }
1295
1296 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1297 {
1298 if (!sk_has_account(sk))
1299 return true;
1300 return size <= sk->sk_forward_alloc ||
1301 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1302 }
1303
1304 static inline bool
1305 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1306 {
1307 if (!sk_has_account(sk))
1308 return true;
1309 return size<= sk->sk_forward_alloc ||
1310 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1311 skb_pfmemalloc(skb);
1312 }
1313
1314 static inline void sk_mem_reclaim(struct sock *sk)
1315 {
1316 if (!sk_has_account(sk))
1317 return;
1318 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1319 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1320 }
1321
1322 static inline void sk_mem_reclaim_partial(struct sock *sk)
1323 {
1324 if (!sk_has_account(sk))
1325 return;
1326 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1327 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1328 }
1329
1330 static inline void sk_mem_charge(struct sock *sk, int size)
1331 {
1332 if (!sk_has_account(sk))
1333 return;
1334 sk->sk_forward_alloc -= size;
1335 }
1336
1337 static inline void sk_mem_uncharge(struct sock *sk, int size)
1338 {
1339 if (!sk_has_account(sk))
1340 return;
1341 sk->sk_forward_alloc += size;
1342 }
1343
1344 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1345 {
1346 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1347 sk->sk_wmem_queued -= skb->truesize;
1348 sk_mem_uncharge(sk, skb->truesize);
1349 __kfree_skb(skb);
1350 }
1351
1352 static inline void sock_release_ownership(struct sock *sk)
1353 {
1354 if (sk->sk_lock.owned) {
1355 sk->sk_lock.owned = 0;
1356
1357 /* The sk_lock has mutex_unlock() semantics: */
1358 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1359 }
1360 }
1361
1362 /*
1363 * Macro so as to not evaluate some arguments when
1364 * lockdep is not enabled.
1365 *
1366 * Mark both the sk_lock and the sk_lock.slock as a
1367 * per-address-family lock class.
1368 */
1369 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1370 do { \
1371 sk->sk_lock.owned = 0; \
1372 init_waitqueue_head(&sk->sk_lock.wq); \
1373 spin_lock_init(&(sk)->sk_lock.slock); \
1374 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1375 sizeof((sk)->sk_lock)); \
1376 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1377 (skey), (sname)); \
1378 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1379 } while (0)
1380
1381 #ifdef CONFIG_LOCKDEP
1382 static inline bool lockdep_sock_is_held(const struct sock *csk)
1383 {
1384 struct sock *sk = (struct sock *)csk;
1385
1386 return lockdep_is_held(&sk->sk_lock) ||
1387 lockdep_is_held(&sk->sk_lock.slock);
1388 }
1389 #endif
1390
1391 void lock_sock_nested(struct sock *sk, int subclass);
1392
1393 static inline void lock_sock(struct sock *sk)
1394 {
1395 lock_sock_nested(sk, 0);
1396 }
1397
1398 void release_sock(struct sock *sk);
1399
1400 /* BH context may only use the following locking interface. */
1401 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1402 #define bh_lock_sock_nested(__sk) \
1403 spin_lock_nested(&((__sk)->sk_lock.slock), \
1404 SINGLE_DEPTH_NESTING)
1405 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1406
1407 bool lock_sock_fast(struct sock *sk);
1408 /**
1409 * unlock_sock_fast - complement of lock_sock_fast
1410 * @sk: socket
1411 * @slow: slow mode
1412 *
1413 * fast unlock socket for user context.
1414 * If slow mode is on, we call regular release_sock()
1415 */
1416 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1417 {
1418 if (slow)
1419 release_sock(sk);
1420 else
1421 spin_unlock_bh(&sk->sk_lock.slock);
1422 }
1423
1424 /* Used by processes to "lock" a socket state, so that
1425 * interrupts and bottom half handlers won't change it
1426 * from under us. It essentially blocks any incoming
1427 * packets, so that we won't get any new data or any
1428 * packets that change the state of the socket.
1429 *
1430 * While locked, BH processing will add new packets to
1431 * the backlog queue. This queue is processed by the
1432 * owner of the socket lock right before it is released.
1433 *
1434 * Since ~2.3.5 it is also exclusive sleep lock serializing
1435 * accesses from user process context.
1436 */
1437
1438 static inline void sock_owned_by_me(const struct sock *sk)
1439 {
1440 #ifdef CONFIG_LOCKDEP
1441 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1442 #endif
1443 }
1444
1445 static inline bool sock_owned_by_user(const struct sock *sk)
1446 {
1447 sock_owned_by_me(sk);
1448 return sk->sk_lock.owned;
1449 }
1450
1451 /* no reclassification while locks are held */
1452 static inline bool sock_allow_reclassification(const struct sock *csk)
1453 {
1454 struct sock *sk = (struct sock *)csk;
1455
1456 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1457 }
1458
1459 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1460 struct proto *prot, int kern);
1461 void sk_free(struct sock *sk);
1462 void sk_destruct(struct sock *sk);
1463 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1464
1465 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1466 gfp_t priority);
1467 void __sock_wfree(struct sk_buff *skb);
1468 void sock_wfree(struct sk_buff *skb);
1469 void skb_orphan_partial(struct sk_buff *skb);
1470 void sock_rfree(struct sk_buff *skb);
1471 void sock_efree(struct sk_buff *skb);
1472 #ifdef CONFIG_INET
1473 void sock_edemux(struct sk_buff *skb);
1474 #else
1475 #define sock_edemux(skb) sock_efree(skb)
1476 #endif
1477
1478 int sock_setsockopt(struct socket *sock, int level, int op,
1479 char __user *optval, unsigned int optlen);
1480
1481 int sock_getsockopt(struct socket *sock, int level, int op,
1482 char __user *optval, int __user *optlen);
1483 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1484 int noblock, int *errcode);
1485 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1486 unsigned long data_len, int noblock,
1487 int *errcode, int max_page_order);
1488 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1489 void sock_kfree_s(struct sock *sk, void *mem, int size);
1490 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1491 void sk_send_sigurg(struct sock *sk);
1492
1493 struct sockcm_cookie {
1494 u32 mark;
1495 u16 tsflags;
1496 };
1497
1498 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1499 struct sockcm_cookie *sockc);
1500 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1501 struct sockcm_cookie *sockc);
1502
1503 /*
1504 * Functions to fill in entries in struct proto_ops when a protocol
1505 * does not implement a particular function.
1506 */
1507 int sock_no_bind(struct socket *, struct sockaddr *, int);
1508 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1509 int sock_no_socketpair(struct socket *, struct socket *);
1510 int sock_no_accept(struct socket *, struct socket *, int);
1511 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1512 unsigned int sock_no_poll(struct file *, struct socket *,
1513 struct poll_table_struct *);
1514 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1515 int sock_no_listen(struct socket *, int);
1516 int sock_no_shutdown(struct socket *, int);
1517 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1518 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1519 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1520 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1521 int sock_no_mmap(struct file *file, struct socket *sock,
1522 struct vm_area_struct *vma);
1523 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1524 size_t size, int flags);
1525
1526 /*
1527 * Functions to fill in entries in struct proto_ops when a protocol
1528 * uses the inet style.
1529 */
1530 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1531 char __user *optval, int __user *optlen);
1532 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1533 int flags);
1534 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1535 char __user *optval, unsigned int optlen);
1536 int compat_sock_common_getsockopt(struct socket *sock, int level,
1537 int optname, char __user *optval, int __user *optlen);
1538 int compat_sock_common_setsockopt(struct socket *sock, int level,
1539 int optname, char __user *optval, unsigned int optlen);
1540
1541 void sk_common_release(struct sock *sk);
1542
1543 /*
1544 * Default socket callbacks and setup code
1545 */
1546
1547 /* Initialise core socket variables */
1548 void sock_init_data(struct socket *sock, struct sock *sk);
1549
1550 /*
1551 * Socket reference counting postulates.
1552 *
1553 * * Each user of socket SHOULD hold a reference count.
1554 * * Each access point to socket (an hash table bucket, reference from a list,
1555 * running timer, skb in flight MUST hold a reference count.
1556 * * When reference count hits 0, it means it will never increase back.
1557 * * When reference count hits 0, it means that no references from
1558 * outside exist to this socket and current process on current CPU
1559 * is last user and may/should destroy this socket.
1560 * * sk_free is called from any context: process, BH, IRQ. When
1561 * it is called, socket has no references from outside -> sk_free
1562 * may release descendant resources allocated by the socket, but
1563 * to the time when it is called, socket is NOT referenced by any
1564 * hash tables, lists etc.
1565 * * Packets, delivered from outside (from network or from another process)
1566 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1567 * when they sit in queue. Otherwise, packets will leak to hole, when
1568 * socket is looked up by one cpu and unhasing is made by another CPU.
1569 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1570 * (leak to backlog). Packet socket does all the processing inside
1571 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1572 * use separate SMP lock, so that they are prone too.
1573 */
1574
1575 /* Ungrab socket and destroy it, if it was the last reference. */
1576 static inline void sock_put(struct sock *sk)
1577 {
1578 if (atomic_dec_and_test(&sk->sk_refcnt))
1579 sk_free(sk);
1580 }
1581 /* Generic version of sock_put(), dealing with all sockets
1582 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1583 */
1584 void sock_gen_put(struct sock *sk);
1585
1586 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1587 unsigned int trim_cap);
1588 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1589 const int nested)
1590 {
1591 return __sk_receive_skb(sk, skb, nested, 1);
1592 }
1593
1594 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1595 {
1596 sk->sk_tx_queue_mapping = tx_queue;
1597 }
1598
1599 static inline void sk_tx_queue_clear(struct sock *sk)
1600 {
1601 sk->sk_tx_queue_mapping = -1;
1602 }
1603
1604 static inline int sk_tx_queue_get(const struct sock *sk)
1605 {
1606 return sk ? sk->sk_tx_queue_mapping : -1;
1607 }
1608
1609 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1610 {
1611 sk_tx_queue_clear(sk);
1612 sk->sk_socket = sock;
1613 }
1614
1615 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1616 {
1617 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1618 return &rcu_dereference_raw(sk->sk_wq)->wait;
1619 }
1620 /* Detach socket from process context.
1621 * Announce socket dead, detach it from wait queue and inode.
1622 * Note that parent inode held reference count on this struct sock,
1623 * we do not release it in this function, because protocol
1624 * probably wants some additional cleanups or even continuing
1625 * to work with this socket (TCP).
1626 */
1627 static inline void sock_orphan(struct sock *sk)
1628 {
1629 write_lock_bh(&sk->sk_callback_lock);
1630 sock_set_flag(sk, SOCK_DEAD);
1631 sk_set_socket(sk, NULL);
1632 sk->sk_wq = NULL;
1633 write_unlock_bh(&sk->sk_callback_lock);
1634 }
1635
1636 static inline void sock_graft(struct sock *sk, struct socket *parent)
1637 {
1638 write_lock_bh(&sk->sk_callback_lock);
1639 sk->sk_wq = parent->wq;
1640 parent->sk = sk;
1641 sk_set_socket(sk, parent);
1642 security_sock_graft(sk, parent);
1643 write_unlock_bh(&sk->sk_callback_lock);
1644 }
1645
1646 kuid_t sock_i_uid(struct sock *sk);
1647 unsigned long sock_i_ino(struct sock *sk);
1648
1649 static inline u32 net_tx_rndhash(void)
1650 {
1651 u32 v = prandom_u32();
1652
1653 return v ?: 1;
1654 }
1655
1656 static inline void sk_set_txhash(struct sock *sk)
1657 {
1658 sk->sk_txhash = net_tx_rndhash();
1659 }
1660
1661 static inline void sk_rethink_txhash(struct sock *sk)
1662 {
1663 if (sk->sk_txhash)
1664 sk_set_txhash(sk);
1665 }
1666
1667 static inline struct dst_entry *
1668 __sk_dst_get(struct sock *sk)
1669 {
1670 return rcu_dereference_check(sk->sk_dst_cache,
1671 lockdep_sock_is_held(sk));
1672 }
1673
1674 static inline struct dst_entry *
1675 sk_dst_get(struct sock *sk)
1676 {
1677 struct dst_entry *dst;
1678
1679 rcu_read_lock();
1680 dst = rcu_dereference(sk->sk_dst_cache);
1681 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1682 dst = NULL;
1683 rcu_read_unlock();
1684 return dst;
1685 }
1686
1687 static inline void dst_negative_advice(struct sock *sk)
1688 {
1689 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1690
1691 sk_rethink_txhash(sk);
1692
1693 if (dst && dst->ops->negative_advice) {
1694 ndst = dst->ops->negative_advice(dst);
1695
1696 if (ndst != dst) {
1697 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1698 sk_tx_queue_clear(sk);
1699 }
1700 }
1701 }
1702
1703 static inline void
1704 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1705 {
1706 struct dst_entry *old_dst;
1707
1708 sk_tx_queue_clear(sk);
1709 /*
1710 * This can be called while sk is owned by the caller only,
1711 * with no state that can be checked in a rcu_dereference_check() cond
1712 */
1713 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1714 rcu_assign_pointer(sk->sk_dst_cache, dst);
1715 dst_release(old_dst);
1716 }
1717
1718 static inline void
1719 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1720 {
1721 struct dst_entry *old_dst;
1722
1723 sk_tx_queue_clear(sk);
1724 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1725 dst_release(old_dst);
1726 }
1727
1728 static inline void
1729 __sk_dst_reset(struct sock *sk)
1730 {
1731 __sk_dst_set(sk, NULL);
1732 }
1733
1734 static inline void
1735 sk_dst_reset(struct sock *sk)
1736 {
1737 sk_dst_set(sk, NULL);
1738 }
1739
1740 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1741
1742 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1743
1744 bool sk_mc_loop(struct sock *sk);
1745
1746 static inline bool sk_can_gso(const struct sock *sk)
1747 {
1748 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1749 }
1750
1751 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1752
1753 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1754 {
1755 sk->sk_route_nocaps |= flags;
1756 sk->sk_route_caps &= ~flags;
1757 }
1758
1759 static inline bool sk_check_csum_caps(struct sock *sk)
1760 {
1761 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1762 (sk->sk_family == PF_INET &&
1763 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1764 (sk->sk_family == PF_INET6 &&
1765 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1766 }
1767
1768 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1769 struct iov_iter *from, char *to,
1770 int copy, int offset)
1771 {
1772 if (skb->ip_summed == CHECKSUM_NONE) {
1773 __wsum csum = 0;
1774 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1775 return -EFAULT;
1776 skb->csum = csum_block_add(skb->csum, csum, offset);
1777 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1778 if (copy_from_iter_nocache(to, copy, from) != copy)
1779 return -EFAULT;
1780 } else if (copy_from_iter(to, copy, from) != copy)
1781 return -EFAULT;
1782
1783 return 0;
1784 }
1785
1786 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1787 struct iov_iter *from, int copy)
1788 {
1789 int err, offset = skb->len;
1790
1791 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1792 copy, offset);
1793 if (err)
1794 __skb_trim(skb, offset);
1795
1796 return err;
1797 }
1798
1799 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1800 struct sk_buff *skb,
1801 struct page *page,
1802 int off, int copy)
1803 {
1804 int err;
1805
1806 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1807 copy, skb->len);
1808 if (err)
1809 return err;
1810
1811 skb->len += copy;
1812 skb->data_len += copy;
1813 skb->truesize += copy;
1814 sk->sk_wmem_queued += copy;
1815 sk_mem_charge(sk, copy);
1816 return 0;
1817 }
1818
1819 /**
1820 * sk_wmem_alloc_get - returns write allocations
1821 * @sk: socket
1822 *
1823 * Returns sk_wmem_alloc minus initial offset of one
1824 */
1825 static inline int sk_wmem_alloc_get(const struct sock *sk)
1826 {
1827 return atomic_read(&sk->sk_wmem_alloc) - 1;
1828 }
1829
1830 /**
1831 * sk_rmem_alloc_get - returns read allocations
1832 * @sk: socket
1833 *
1834 * Returns sk_rmem_alloc
1835 */
1836 static inline int sk_rmem_alloc_get(const struct sock *sk)
1837 {
1838 return atomic_read(&sk->sk_rmem_alloc);
1839 }
1840
1841 /**
1842 * sk_has_allocations - check if allocations are outstanding
1843 * @sk: socket
1844 *
1845 * Returns true if socket has write or read allocations
1846 */
1847 static inline bool sk_has_allocations(const struct sock *sk)
1848 {
1849 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1850 }
1851
1852 /**
1853 * skwq_has_sleeper - check if there are any waiting processes
1854 * @wq: struct socket_wq
1855 *
1856 * Returns true if socket_wq has waiting processes
1857 *
1858 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1859 * barrier call. They were added due to the race found within the tcp code.
1860 *
1861 * Consider following tcp code paths:
1862 *
1863 * CPU1 CPU2
1864 *
1865 * sys_select receive packet
1866 * ... ...
1867 * __add_wait_queue update tp->rcv_nxt
1868 * ... ...
1869 * tp->rcv_nxt check sock_def_readable
1870 * ... {
1871 * schedule rcu_read_lock();
1872 * wq = rcu_dereference(sk->sk_wq);
1873 * if (wq && waitqueue_active(&wq->wait))
1874 * wake_up_interruptible(&wq->wait)
1875 * ...
1876 * }
1877 *
1878 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1879 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1880 * could then endup calling schedule and sleep forever if there are no more
1881 * data on the socket.
1882 *
1883 */
1884 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1885 {
1886 return wq && wq_has_sleeper(&wq->wait);
1887 }
1888
1889 /**
1890 * sock_poll_wait - place memory barrier behind the poll_wait call.
1891 * @filp: file
1892 * @wait_address: socket wait queue
1893 * @p: poll_table
1894 *
1895 * See the comments in the wq_has_sleeper function.
1896 */
1897 static inline void sock_poll_wait(struct file *filp,
1898 wait_queue_head_t *wait_address, poll_table *p)
1899 {
1900 if (!poll_does_not_wait(p) && wait_address) {
1901 poll_wait(filp, wait_address, p);
1902 /* We need to be sure we are in sync with the
1903 * socket flags modification.
1904 *
1905 * This memory barrier is paired in the wq_has_sleeper.
1906 */
1907 smp_mb();
1908 }
1909 }
1910
1911 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1912 {
1913 if (sk->sk_txhash) {
1914 skb->l4_hash = 1;
1915 skb->hash = sk->sk_txhash;
1916 }
1917 }
1918
1919 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1920
1921 /*
1922 * Queue a received datagram if it will fit. Stream and sequenced
1923 * protocols can't normally use this as they need to fit buffers in
1924 * and play with them.
1925 *
1926 * Inlined as it's very short and called for pretty much every
1927 * packet ever received.
1928 */
1929 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1930 {
1931 skb_orphan(skb);
1932 skb->sk = sk;
1933 skb->destructor = sock_rfree;
1934 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1935 sk_mem_charge(sk, skb->truesize);
1936 }
1937
1938 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1939 unsigned long expires);
1940
1941 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1942
1943 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1944 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1945
1946 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1947 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1948
1949 /*
1950 * Recover an error report and clear atomically
1951 */
1952
1953 static inline int sock_error(struct sock *sk)
1954 {
1955 int err;
1956 if (likely(!sk->sk_err))
1957 return 0;
1958 err = xchg(&sk->sk_err, 0);
1959 return -err;
1960 }
1961
1962 static inline unsigned long sock_wspace(struct sock *sk)
1963 {
1964 int amt = 0;
1965
1966 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1967 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1968 if (amt < 0)
1969 amt = 0;
1970 }
1971 return amt;
1972 }
1973
1974 /* Note:
1975 * We use sk->sk_wq_raw, from contexts knowing this
1976 * pointer is not NULL and cannot disappear/change.
1977 */
1978 static inline void sk_set_bit(int nr, struct sock *sk)
1979 {
1980 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1981 !sock_flag(sk, SOCK_FASYNC))
1982 return;
1983
1984 set_bit(nr, &sk->sk_wq_raw->flags);
1985 }
1986
1987 static inline void sk_clear_bit(int nr, struct sock *sk)
1988 {
1989 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1990 !sock_flag(sk, SOCK_FASYNC))
1991 return;
1992
1993 clear_bit(nr, &sk->sk_wq_raw->flags);
1994 }
1995
1996 static inline void sk_wake_async(const struct sock *sk, int how, int band)
1997 {
1998 if (sock_flag(sk, SOCK_FASYNC)) {
1999 rcu_read_lock();
2000 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2001 rcu_read_unlock();
2002 }
2003 }
2004
2005 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2006 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2007 * Note: for send buffers, TCP works better if we can build two skbs at
2008 * minimum.
2009 */
2010 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2011
2012 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2013 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2014
2015 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2016 {
2017 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2018 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2019 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2020 }
2021 }
2022
2023 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2024 bool force_schedule);
2025
2026 /**
2027 * sk_page_frag - return an appropriate page_frag
2028 * @sk: socket
2029 *
2030 * If socket allocation mode allows current thread to sleep, it means its
2031 * safe to use the per task page_frag instead of the per socket one.
2032 */
2033 static inline struct page_frag *sk_page_frag(struct sock *sk)
2034 {
2035 if (gfpflags_allow_blocking(sk->sk_allocation))
2036 return &current->task_frag;
2037
2038 return &sk->sk_frag;
2039 }
2040
2041 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2042
2043 /*
2044 * Default write policy as shown to user space via poll/select/SIGIO
2045 */
2046 static inline bool sock_writeable(const struct sock *sk)
2047 {
2048 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2049 }
2050
2051 static inline gfp_t gfp_any(void)
2052 {
2053 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2054 }
2055
2056 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2057 {
2058 return noblock ? 0 : sk->sk_rcvtimeo;
2059 }
2060
2061 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2062 {
2063 return noblock ? 0 : sk->sk_sndtimeo;
2064 }
2065
2066 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2067 {
2068 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2069 }
2070
2071 /* Alas, with timeout socket operations are not restartable.
2072 * Compare this to poll().
2073 */
2074 static inline int sock_intr_errno(long timeo)
2075 {
2076 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2077 }
2078
2079 struct sock_skb_cb {
2080 u32 dropcount;
2081 };
2082
2083 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2084 * using skb->cb[] would keep using it directly and utilize its
2085 * alignement guarantee.
2086 */
2087 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2088 sizeof(struct sock_skb_cb)))
2089
2090 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2091 SOCK_SKB_CB_OFFSET))
2092
2093 #define sock_skb_cb_check_size(size) \
2094 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2095
2096 static inline void
2097 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2098 {
2099 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2100 }
2101
2102 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2103 {
2104 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2105
2106 atomic_add(segs, &sk->sk_drops);
2107 }
2108
2109 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2110 struct sk_buff *skb);
2111 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2112 struct sk_buff *skb);
2113
2114 static inline void
2115 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2116 {
2117 ktime_t kt = skb->tstamp;
2118 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2119
2120 /*
2121 * generate control messages if
2122 * - receive time stamping in software requested
2123 * - software time stamp available and wanted
2124 * - hardware time stamps available and wanted
2125 */
2126 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2127 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2128 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2129 (hwtstamps->hwtstamp.tv64 &&
2130 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2131 __sock_recv_timestamp(msg, sk, skb);
2132 else
2133 sk->sk_stamp = kt;
2134
2135 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2136 __sock_recv_wifi_status(msg, sk, skb);
2137 }
2138
2139 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2140 struct sk_buff *skb);
2141
2142 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2143 struct sk_buff *skb)
2144 {
2145 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2146 (1UL << SOCK_RCVTSTAMP))
2147 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2148 SOF_TIMESTAMPING_RAW_HARDWARE)
2149
2150 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2151 __sock_recv_ts_and_drops(msg, sk, skb);
2152 else
2153 sk->sk_stamp = skb->tstamp;
2154 }
2155
2156 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2157
2158 /**
2159 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2160 * @sk: socket sending this packet
2161 * @tsflags: timestamping flags to use
2162 * @tx_flags: completed with instructions for time stamping
2163 *
2164 * Note : callers should take care of initial *tx_flags value (usually 0)
2165 */
2166 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2167 __u8 *tx_flags)
2168 {
2169 if (unlikely(tsflags))
2170 __sock_tx_timestamp(tsflags, tx_flags);
2171 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2172 *tx_flags |= SKBTX_WIFI_STATUS;
2173 }
2174
2175 /**
2176 * sk_eat_skb - Release a skb if it is no longer needed
2177 * @sk: socket to eat this skb from
2178 * @skb: socket buffer to eat
2179 *
2180 * This routine must be called with interrupts disabled or with the socket
2181 * locked so that the sk_buff queue operation is ok.
2182 */
2183 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2184 {
2185 __skb_unlink(skb, &sk->sk_receive_queue);
2186 __kfree_skb(skb);
2187 }
2188
2189 static inline
2190 struct net *sock_net(const struct sock *sk)
2191 {
2192 return read_pnet(&sk->sk_net);
2193 }
2194
2195 static inline
2196 void sock_net_set(struct sock *sk, struct net *net)
2197 {
2198 write_pnet(&sk->sk_net, net);
2199 }
2200
2201 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2202 {
2203 if (skb->sk) {
2204 struct sock *sk = skb->sk;
2205
2206 skb->destructor = NULL;
2207 skb->sk = NULL;
2208 return sk;
2209 }
2210 return NULL;
2211 }
2212
2213 /* This helper checks if a socket is a full socket,
2214 * ie _not_ a timewait or request socket.
2215 */
2216 static inline bool sk_fullsock(const struct sock *sk)
2217 {
2218 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2219 }
2220
2221 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2222 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2223 */
2224 static inline bool sk_listener(const struct sock *sk)
2225 {
2226 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2227 }
2228
2229 /**
2230 * sk_state_load - read sk->sk_state for lockless contexts
2231 * @sk: socket pointer
2232 *
2233 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2234 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2235 */
2236 static inline int sk_state_load(const struct sock *sk)
2237 {
2238 return smp_load_acquire(&sk->sk_state);
2239 }
2240
2241 /**
2242 * sk_state_store - update sk->sk_state
2243 * @sk: socket pointer
2244 * @newstate: new state
2245 *
2246 * Paired with sk_state_load(). Should be used in contexts where
2247 * state change might impact lockless readers.
2248 */
2249 static inline void sk_state_store(struct sock *sk, int newstate)
2250 {
2251 smp_store_release(&sk->sk_state, newstate);
2252 }
2253
2254 void sock_enable_timestamp(struct sock *sk, int flag);
2255 int sock_get_timestamp(struct sock *, struct timeval __user *);
2256 int sock_get_timestampns(struct sock *, struct timespec __user *);
2257 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2258 int type);
2259
2260 bool sk_ns_capable(const struct sock *sk,
2261 struct user_namespace *user_ns, int cap);
2262 bool sk_capable(const struct sock *sk, int cap);
2263 bool sk_net_capable(const struct sock *sk, int cap);
2264
2265 extern __u32 sysctl_wmem_max;
2266 extern __u32 sysctl_rmem_max;
2267
2268 extern int sysctl_tstamp_allow_data;
2269 extern int sysctl_optmem_max;
2270
2271 extern __u32 sysctl_wmem_default;
2272 extern __u32 sysctl_rmem_default;
2273
2274 #endif /* _SOCK_H */
This page took 0.08008 seconds and 5 git commands to generate.