Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 *
38 * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $
39 */
40
41 #if !defined(IB_VERBS_H)
42 #define IB_VERBS_H
43
44 #include <linux/types.h>
45 #include <linux/device.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/kref.h>
49 #include <linux/list.h>
50 #include <linux/rwsem.h>
51 #include <linux/scatterlist.h>
52
53 #include <asm/atomic.h>
54 #include <asm/uaccess.h>
55
56 union ib_gid {
57 u8 raw[16];
58 struct {
59 __be64 subnet_prefix;
60 __be64 interface_id;
61 } global;
62 };
63
64 enum rdma_node_type {
65 /* IB values map to NodeInfo:NodeType. */
66 RDMA_NODE_IB_CA = 1,
67 RDMA_NODE_IB_SWITCH,
68 RDMA_NODE_IB_ROUTER,
69 RDMA_NODE_RNIC
70 };
71
72 enum rdma_transport_type {
73 RDMA_TRANSPORT_IB,
74 RDMA_TRANSPORT_IWARP
75 };
76
77 enum rdma_transport_type
78 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
79
80 enum ib_device_cap_flags {
81 IB_DEVICE_RESIZE_MAX_WR = 1,
82 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
83 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
84 IB_DEVICE_RAW_MULTI = (1<<3),
85 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
86 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
87 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
88 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
89 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
90 IB_DEVICE_INIT_TYPE = (1<<9),
91 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
92 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
93 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
94 IB_DEVICE_SRQ_RESIZE = (1<<13),
95 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96 IB_DEVICE_ZERO_STAG = (1<<15),
97 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
98 IB_DEVICE_MEM_WINDOW = (1<<17),
99 /*
100 * Devices should set IB_DEVICE_UD_IP_SUM if they support
101 * insertion of UDP and TCP checksum on outgoing UD IPoIB
102 * messages and can verify the validity of checksum for
103 * incoming messages. Setting this flag implies that the
104 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
105 */
106 IB_DEVICE_UD_IP_CSUM = (1<<18),
107 IB_DEVICE_UD_TSO = (1<<19),
108 IB_DEVICE_SEND_W_INV = (1<<21),
109 };
110
111 enum ib_atomic_cap {
112 IB_ATOMIC_NONE,
113 IB_ATOMIC_HCA,
114 IB_ATOMIC_GLOB
115 };
116
117 struct ib_device_attr {
118 u64 fw_ver;
119 __be64 sys_image_guid;
120 u64 max_mr_size;
121 u64 page_size_cap;
122 u32 vendor_id;
123 u32 vendor_part_id;
124 u32 hw_ver;
125 int max_qp;
126 int max_qp_wr;
127 int device_cap_flags;
128 int max_sge;
129 int max_sge_rd;
130 int max_cq;
131 int max_cqe;
132 int max_mr;
133 int max_pd;
134 int max_qp_rd_atom;
135 int max_ee_rd_atom;
136 int max_res_rd_atom;
137 int max_qp_init_rd_atom;
138 int max_ee_init_rd_atom;
139 enum ib_atomic_cap atomic_cap;
140 int max_ee;
141 int max_rdd;
142 int max_mw;
143 int max_raw_ipv6_qp;
144 int max_raw_ethy_qp;
145 int max_mcast_grp;
146 int max_mcast_qp_attach;
147 int max_total_mcast_qp_attach;
148 int max_ah;
149 int max_fmr;
150 int max_map_per_fmr;
151 int max_srq;
152 int max_srq_wr;
153 int max_srq_sge;
154 u16 max_pkeys;
155 u8 local_ca_ack_delay;
156 };
157
158 enum ib_mtu {
159 IB_MTU_256 = 1,
160 IB_MTU_512 = 2,
161 IB_MTU_1024 = 3,
162 IB_MTU_2048 = 4,
163 IB_MTU_4096 = 5
164 };
165
166 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
167 {
168 switch (mtu) {
169 case IB_MTU_256: return 256;
170 case IB_MTU_512: return 512;
171 case IB_MTU_1024: return 1024;
172 case IB_MTU_2048: return 2048;
173 case IB_MTU_4096: return 4096;
174 default: return -1;
175 }
176 }
177
178 enum ib_port_state {
179 IB_PORT_NOP = 0,
180 IB_PORT_DOWN = 1,
181 IB_PORT_INIT = 2,
182 IB_PORT_ARMED = 3,
183 IB_PORT_ACTIVE = 4,
184 IB_PORT_ACTIVE_DEFER = 5
185 };
186
187 enum ib_port_cap_flags {
188 IB_PORT_SM = 1 << 1,
189 IB_PORT_NOTICE_SUP = 1 << 2,
190 IB_PORT_TRAP_SUP = 1 << 3,
191 IB_PORT_OPT_IPD_SUP = 1 << 4,
192 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
193 IB_PORT_SL_MAP_SUP = 1 << 6,
194 IB_PORT_MKEY_NVRAM = 1 << 7,
195 IB_PORT_PKEY_NVRAM = 1 << 8,
196 IB_PORT_LED_INFO_SUP = 1 << 9,
197 IB_PORT_SM_DISABLED = 1 << 10,
198 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
199 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
200 IB_PORT_CM_SUP = 1 << 16,
201 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
202 IB_PORT_REINIT_SUP = 1 << 18,
203 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
204 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
205 IB_PORT_DR_NOTICE_SUP = 1 << 21,
206 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
207 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
208 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
209 IB_PORT_CLIENT_REG_SUP = 1 << 25
210 };
211
212 enum ib_port_width {
213 IB_WIDTH_1X = 1,
214 IB_WIDTH_4X = 2,
215 IB_WIDTH_8X = 4,
216 IB_WIDTH_12X = 8
217 };
218
219 static inline int ib_width_enum_to_int(enum ib_port_width width)
220 {
221 switch (width) {
222 case IB_WIDTH_1X: return 1;
223 case IB_WIDTH_4X: return 4;
224 case IB_WIDTH_8X: return 8;
225 case IB_WIDTH_12X: return 12;
226 default: return -1;
227 }
228 }
229
230 struct ib_port_attr {
231 enum ib_port_state state;
232 enum ib_mtu max_mtu;
233 enum ib_mtu active_mtu;
234 int gid_tbl_len;
235 u32 port_cap_flags;
236 u32 max_msg_sz;
237 u32 bad_pkey_cntr;
238 u32 qkey_viol_cntr;
239 u16 pkey_tbl_len;
240 u16 lid;
241 u16 sm_lid;
242 u8 lmc;
243 u8 max_vl_num;
244 u8 sm_sl;
245 u8 subnet_timeout;
246 u8 init_type_reply;
247 u8 active_width;
248 u8 active_speed;
249 u8 phys_state;
250 };
251
252 enum ib_device_modify_flags {
253 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
254 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
255 };
256
257 struct ib_device_modify {
258 u64 sys_image_guid;
259 char node_desc[64];
260 };
261
262 enum ib_port_modify_flags {
263 IB_PORT_SHUTDOWN = 1,
264 IB_PORT_INIT_TYPE = (1<<2),
265 IB_PORT_RESET_QKEY_CNTR = (1<<3)
266 };
267
268 struct ib_port_modify {
269 u32 set_port_cap_mask;
270 u32 clr_port_cap_mask;
271 u8 init_type;
272 };
273
274 enum ib_event_type {
275 IB_EVENT_CQ_ERR,
276 IB_EVENT_QP_FATAL,
277 IB_EVENT_QP_REQ_ERR,
278 IB_EVENT_QP_ACCESS_ERR,
279 IB_EVENT_COMM_EST,
280 IB_EVENT_SQ_DRAINED,
281 IB_EVENT_PATH_MIG,
282 IB_EVENT_PATH_MIG_ERR,
283 IB_EVENT_DEVICE_FATAL,
284 IB_EVENT_PORT_ACTIVE,
285 IB_EVENT_PORT_ERR,
286 IB_EVENT_LID_CHANGE,
287 IB_EVENT_PKEY_CHANGE,
288 IB_EVENT_SM_CHANGE,
289 IB_EVENT_SRQ_ERR,
290 IB_EVENT_SRQ_LIMIT_REACHED,
291 IB_EVENT_QP_LAST_WQE_REACHED,
292 IB_EVENT_CLIENT_REREGISTER
293 };
294
295 struct ib_event {
296 struct ib_device *device;
297 union {
298 struct ib_cq *cq;
299 struct ib_qp *qp;
300 struct ib_srq *srq;
301 u8 port_num;
302 } element;
303 enum ib_event_type event;
304 };
305
306 struct ib_event_handler {
307 struct ib_device *device;
308 void (*handler)(struct ib_event_handler *, struct ib_event *);
309 struct list_head list;
310 };
311
312 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
313 do { \
314 (_ptr)->device = _device; \
315 (_ptr)->handler = _handler; \
316 INIT_LIST_HEAD(&(_ptr)->list); \
317 } while (0)
318
319 struct ib_global_route {
320 union ib_gid dgid;
321 u32 flow_label;
322 u8 sgid_index;
323 u8 hop_limit;
324 u8 traffic_class;
325 };
326
327 struct ib_grh {
328 __be32 version_tclass_flow;
329 __be16 paylen;
330 u8 next_hdr;
331 u8 hop_limit;
332 union ib_gid sgid;
333 union ib_gid dgid;
334 };
335
336 enum {
337 IB_MULTICAST_QPN = 0xffffff
338 };
339
340 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF)
341
342 enum ib_ah_flags {
343 IB_AH_GRH = 1
344 };
345
346 enum ib_rate {
347 IB_RATE_PORT_CURRENT = 0,
348 IB_RATE_2_5_GBPS = 2,
349 IB_RATE_5_GBPS = 5,
350 IB_RATE_10_GBPS = 3,
351 IB_RATE_20_GBPS = 6,
352 IB_RATE_30_GBPS = 4,
353 IB_RATE_40_GBPS = 7,
354 IB_RATE_60_GBPS = 8,
355 IB_RATE_80_GBPS = 9,
356 IB_RATE_120_GBPS = 10
357 };
358
359 /**
360 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
361 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
362 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
363 * @rate: rate to convert.
364 */
365 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
366
367 /**
368 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
369 * enum.
370 * @mult: multiple to convert.
371 */
372 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
373
374 struct ib_ah_attr {
375 struct ib_global_route grh;
376 u16 dlid;
377 u8 sl;
378 u8 src_path_bits;
379 u8 static_rate;
380 u8 ah_flags;
381 u8 port_num;
382 };
383
384 enum ib_wc_status {
385 IB_WC_SUCCESS,
386 IB_WC_LOC_LEN_ERR,
387 IB_WC_LOC_QP_OP_ERR,
388 IB_WC_LOC_EEC_OP_ERR,
389 IB_WC_LOC_PROT_ERR,
390 IB_WC_WR_FLUSH_ERR,
391 IB_WC_MW_BIND_ERR,
392 IB_WC_BAD_RESP_ERR,
393 IB_WC_LOC_ACCESS_ERR,
394 IB_WC_REM_INV_REQ_ERR,
395 IB_WC_REM_ACCESS_ERR,
396 IB_WC_REM_OP_ERR,
397 IB_WC_RETRY_EXC_ERR,
398 IB_WC_RNR_RETRY_EXC_ERR,
399 IB_WC_LOC_RDD_VIOL_ERR,
400 IB_WC_REM_INV_RD_REQ_ERR,
401 IB_WC_REM_ABORT_ERR,
402 IB_WC_INV_EECN_ERR,
403 IB_WC_INV_EEC_STATE_ERR,
404 IB_WC_FATAL_ERR,
405 IB_WC_RESP_TIMEOUT_ERR,
406 IB_WC_GENERAL_ERR
407 };
408
409 enum ib_wc_opcode {
410 IB_WC_SEND,
411 IB_WC_RDMA_WRITE,
412 IB_WC_RDMA_READ,
413 IB_WC_COMP_SWAP,
414 IB_WC_FETCH_ADD,
415 IB_WC_BIND_MW,
416 IB_WC_LSO,
417 /*
418 * Set value of IB_WC_RECV so consumers can test if a completion is a
419 * receive by testing (opcode & IB_WC_RECV).
420 */
421 IB_WC_RECV = 1 << 7,
422 IB_WC_RECV_RDMA_WITH_IMM
423 };
424
425 enum ib_wc_flags {
426 IB_WC_GRH = 1,
427 IB_WC_WITH_IMM = (1<<1)
428 };
429
430 struct ib_wc {
431 u64 wr_id;
432 enum ib_wc_status status;
433 enum ib_wc_opcode opcode;
434 u32 vendor_err;
435 u32 byte_len;
436 struct ib_qp *qp;
437 __be32 imm_data;
438 u32 src_qp;
439 int wc_flags;
440 u16 pkey_index;
441 u16 slid;
442 u8 sl;
443 u8 dlid_path_bits;
444 u8 port_num; /* valid only for DR SMPs on switches */
445 int csum_ok;
446 };
447
448 enum ib_cq_notify_flags {
449 IB_CQ_SOLICITED = 1 << 0,
450 IB_CQ_NEXT_COMP = 1 << 1,
451 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
452 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
453 };
454
455 enum ib_srq_attr_mask {
456 IB_SRQ_MAX_WR = 1 << 0,
457 IB_SRQ_LIMIT = 1 << 1,
458 };
459
460 struct ib_srq_attr {
461 u32 max_wr;
462 u32 max_sge;
463 u32 srq_limit;
464 };
465
466 struct ib_srq_init_attr {
467 void (*event_handler)(struct ib_event *, void *);
468 void *srq_context;
469 struct ib_srq_attr attr;
470 };
471
472 struct ib_qp_cap {
473 u32 max_send_wr;
474 u32 max_recv_wr;
475 u32 max_send_sge;
476 u32 max_recv_sge;
477 u32 max_inline_data;
478 };
479
480 enum ib_sig_type {
481 IB_SIGNAL_ALL_WR,
482 IB_SIGNAL_REQ_WR
483 };
484
485 enum ib_qp_type {
486 /*
487 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
488 * here (and in that order) since the MAD layer uses them as
489 * indices into a 2-entry table.
490 */
491 IB_QPT_SMI,
492 IB_QPT_GSI,
493
494 IB_QPT_RC,
495 IB_QPT_UC,
496 IB_QPT_UD,
497 IB_QPT_RAW_IPV6,
498 IB_QPT_RAW_ETY
499 };
500
501 enum ib_qp_create_flags {
502 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
503 };
504
505 struct ib_qp_init_attr {
506 void (*event_handler)(struct ib_event *, void *);
507 void *qp_context;
508 struct ib_cq *send_cq;
509 struct ib_cq *recv_cq;
510 struct ib_srq *srq;
511 struct ib_qp_cap cap;
512 enum ib_sig_type sq_sig_type;
513 enum ib_qp_type qp_type;
514 enum ib_qp_create_flags create_flags;
515 u8 port_num; /* special QP types only */
516 };
517
518 enum ib_rnr_timeout {
519 IB_RNR_TIMER_655_36 = 0,
520 IB_RNR_TIMER_000_01 = 1,
521 IB_RNR_TIMER_000_02 = 2,
522 IB_RNR_TIMER_000_03 = 3,
523 IB_RNR_TIMER_000_04 = 4,
524 IB_RNR_TIMER_000_06 = 5,
525 IB_RNR_TIMER_000_08 = 6,
526 IB_RNR_TIMER_000_12 = 7,
527 IB_RNR_TIMER_000_16 = 8,
528 IB_RNR_TIMER_000_24 = 9,
529 IB_RNR_TIMER_000_32 = 10,
530 IB_RNR_TIMER_000_48 = 11,
531 IB_RNR_TIMER_000_64 = 12,
532 IB_RNR_TIMER_000_96 = 13,
533 IB_RNR_TIMER_001_28 = 14,
534 IB_RNR_TIMER_001_92 = 15,
535 IB_RNR_TIMER_002_56 = 16,
536 IB_RNR_TIMER_003_84 = 17,
537 IB_RNR_TIMER_005_12 = 18,
538 IB_RNR_TIMER_007_68 = 19,
539 IB_RNR_TIMER_010_24 = 20,
540 IB_RNR_TIMER_015_36 = 21,
541 IB_RNR_TIMER_020_48 = 22,
542 IB_RNR_TIMER_030_72 = 23,
543 IB_RNR_TIMER_040_96 = 24,
544 IB_RNR_TIMER_061_44 = 25,
545 IB_RNR_TIMER_081_92 = 26,
546 IB_RNR_TIMER_122_88 = 27,
547 IB_RNR_TIMER_163_84 = 28,
548 IB_RNR_TIMER_245_76 = 29,
549 IB_RNR_TIMER_327_68 = 30,
550 IB_RNR_TIMER_491_52 = 31
551 };
552
553 enum ib_qp_attr_mask {
554 IB_QP_STATE = 1,
555 IB_QP_CUR_STATE = (1<<1),
556 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
557 IB_QP_ACCESS_FLAGS = (1<<3),
558 IB_QP_PKEY_INDEX = (1<<4),
559 IB_QP_PORT = (1<<5),
560 IB_QP_QKEY = (1<<6),
561 IB_QP_AV = (1<<7),
562 IB_QP_PATH_MTU = (1<<8),
563 IB_QP_TIMEOUT = (1<<9),
564 IB_QP_RETRY_CNT = (1<<10),
565 IB_QP_RNR_RETRY = (1<<11),
566 IB_QP_RQ_PSN = (1<<12),
567 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
568 IB_QP_ALT_PATH = (1<<14),
569 IB_QP_MIN_RNR_TIMER = (1<<15),
570 IB_QP_SQ_PSN = (1<<16),
571 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
572 IB_QP_PATH_MIG_STATE = (1<<18),
573 IB_QP_CAP = (1<<19),
574 IB_QP_DEST_QPN = (1<<20)
575 };
576
577 enum ib_qp_state {
578 IB_QPS_RESET,
579 IB_QPS_INIT,
580 IB_QPS_RTR,
581 IB_QPS_RTS,
582 IB_QPS_SQD,
583 IB_QPS_SQE,
584 IB_QPS_ERR
585 };
586
587 enum ib_mig_state {
588 IB_MIG_MIGRATED,
589 IB_MIG_REARM,
590 IB_MIG_ARMED
591 };
592
593 struct ib_qp_attr {
594 enum ib_qp_state qp_state;
595 enum ib_qp_state cur_qp_state;
596 enum ib_mtu path_mtu;
597 enum ib_mig_state path_mig_state;
598 u32 qkey;
599 u32 rq_psn;
600 u32 sq_psn;
601 u32 dest_qp_num;
602 int qp_access_flags;
603 struct ib_qp_cap cap;
604 struct ib_ah_attr ah_attr;
605 struct ib_ah_attr alt_ah_attr;
606 u16 pkey_index;
607 u16 alt_pkey_index;
608 u8 en_sqd_async_notify;
609 u8 sq_draining;
610 u8 max_rd_atomic;
611 u8 max_dest_rd_atomic;
612 u8 min_rnr_timer;
613 u8 port_num;
614 u8 timeout;
615 u8 retry_cnt;
616 u8 rnr_retry;
617 u8 alt_port_num;
618 u8 alt_timeout;
619 };
620
621 enum ib_wr_opcode {
622 IB_WR_RDMA_WRITE,
623 IB_WR_RDMA_WRITE_WITH_IMM,
624 IB_WR_SEND,
625 IB_WR_SEND_WITH_IMM,
626 IB_WR_RDMA_READ,
627 IB_WR_ATOMIC_CMP_AND_SWP,
628 IB_WR_ATOMIC_FETCH_AND_ADD,
629 IB_WR_LSO,
630 IB_WR_SEND_WITH_INV,
631 };
632
633 enum ib_send_flags {
634 IB_SEND_FENCE = 1,
635 IB_SEND_SIGNALED = (1<<1),
636 IB_SEND_SOLICITED = (1<<2),
637 IB_SEND_INLINE = (1<<3),
638 IB_SEND_IP_CSUM = (1<<4)
639 };
640
641 struct ib_sge {
642 u64 addr;
643 u32 length;
644 u32 lkey;
645 };
646
647 struct ib_send_wr {
648 struct ib_send_wr *next;
649 u64 wr_id;
650 struct ib_sge *sg_list;
651 int num_sge;
652 enum ib_wr_opcode opcode;
653 int send_flags;
654 union {
655 __be32 imm_data;
656 u32 invalidate_rkey;
657 } ex;
658 union {
659 struct {
660 u64 remote_addr;
661 u32 rkey;
662 } rdma;
663 struct {
664 u64 remote_addr;
665 u64 compare_add;
666 u64 swap;
667 u32 rkey;
668 } atomic;
669 struct {
670 struct ib_ah *ah;
671 void *header;
672 int hlen;
673 int mss;
674 u32 remote_qpn;
675 u32 remote_qkey;
676 u16 pkey_index; /* valid for GSI only */
677 u8 port_num; /* valid for DR SMPs on switch only */
678 } ud;
679 } wr;
680 };
681
682 struct ib_recv_wr {
683 struct ib_recv_wr *next;
684 u64 wr_id;
685 struct ib_sge *sg_list;
686 int num_sge;
687 };
688
689 enum ib_access_flags {
690 IB_ACCESS_LOCAL_WRITE = 1,
691 IB_ACCESS_REMOTE_WRITE = (1<<1),
692 IB_ACCESS_REMOTE_READ = (1<<2),
693 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
694 IB_ACCESS_MW_BIND = (1<<4)
695 };
696
697 struct ib_phys_buf {
698 u64 addr;
699 u64 size;
700 };
701
702 struct ib_mr_attr {
703 struct ib_pd *pd;
704 u64 device_virt_addr;
705 u64 size;
706 int mr_access_flags;
707 u32 lkey;
708 u32 rkey;
709 };
710
711 enum ib_mr_rereg_flags {
712 IB_MR_REREG_TRANS = 1,
713 IB_MR_REREG_PD = (1<<1),
714 IB_MR_REREG_ACCESS = (1<<2)
715 };
716
717 struct ib_mw_bind {
718 struct ib_mr *mr;
719 u64 wr_id;
720 u64 addr;
721 u32 length;
722 int send_flags;
723 int mw_access_flags;
724 };
725
726 struct ib_fmr_attr {
727 int max_pages;
728 int max_maps;
729 u8 page_shift;
730 };
731
732 struct ib_ucontext {
733 struct ib_device *device;
734 struct list_head pd_list;
735 struct list_head mr_list;
736 struct list_head mw_list;
737 struct list_head cq_list;
738 struct list_head qp_list;
739 struct list_head srq_list;
740 struct list_head ah_list;
741 int closing;
742 };
743
744 struct ib_uobject {
745 u64 user_handle; /* handle given to us by userspace */
746 struct ib_ucontext *context; /* associated user context */
747 void *object; /* containing object */
748 struct list_head list; /* link to context's list */
749 int id; /* index into kernel idr */
750 struct kref ref;
751 struct rw_semaphore mutex; /* protects .live */
752 int live;
753 };
754
755 struct ib_udata {
756 void __user *inbuf;
757 void __user *outbuf;
758 size_t inlen;
759 size_t outlen;
760 };
761
762 struct ib_pd {
763 struct ib_device *device;
764 struct ib_uobject *uobject;
765 atomic_t usecnt; /* count all resources */
766 };
767
768 struct ib_ah {
769 struct ib_device *device;
770 struct ib_pd *pd;
771 struct ib_uobject *uobject;
772 };
773
774 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
775
776 struct ib_cq {
777 struct ib_device *device;
778 struct ib_uobject *uobject;
779 ib_comp_handler comp_handler;
780 void (*event_handler)(struct ib_event *, void *);
781 void * cq_context;
782 int cqe;
783 atomic_t usecnt; /* count number of work queues */
784 };
785
786 struct ib_srq {
787 struct ib_device *device;
788 struct ib_pd *pd;
789 struct ib_uobject *uobject;
790 void (*event_handler)(struct ib_event *, void *);
791 void *srq_context;
792 atomic_t usecnt;
793 };
794
795 struct ib_qp {
796 struct ib_device *device;
797 struct ib_pd *pd;
798 struct ib_cq *send_cq;
799 struct ib_cq *recv_cq;
800 struct ib_srq *srq;
801 struct ib_uobject *uobject;
802 void (*event_handler)(struct ib_event *, void *);
803 void *qp_context;
804 u32 qp_num;
805 enum ib_qp_type qp_type;
806 };
807
808 struct ib_mr {
809 struct ib_device *device;
810 struct ib_pd *pd;
811 struct ib_uobject *uobject;
812 u32 lkey;
813 u32 rkey;
814 atomic_t usecnt; /* count number of MWs */
815 };
816
817 struct ib_mw {
818 struct ib_device *device;
819 struct ib_pd *pd;
820 struct ib_uobject *uobject;
821 u32 rkey;
822 };
823
824 struct ib_fmr {
825 struct ib_device *device;
826 struct ib_pd *pd;
827 struct list_head list;
828 u32 lkey;
829 u32 rkey;
830 };
831
832 struct ib_mad;
833 struct ib_grh;
834
835 enum ib_process_mad_flags {
836 IB_MAD_IGNORE_MKEY = 1,
837 IB_MAD_IGNORE_BKEY = 2,
838 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
839 };
840
841 enum ib_mad_result {
842 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
843 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
844 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
845 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
846 };
847
848 #define IB_DEVICE_NAME_MAX 64
849
850 struct ib_cache {
851 rwlock_t lock;
852 struct ib_event_handler event_handler;
853 struct ib_pkey_cache **pkey_cache;
854 struct ib_gid_cache **gid_cache;
855 u8 *lmc_cache;
856 };
857
858 struct ib_dma_mapping_ops {
859 int (*mapping_error)(struct ib_device *dev,
860 u64 dma_addr);
861 u64 (*map_single)(struct ib_device *dev,
862 void *ptr, size_t size,
863 enum dma_data_direction direction);
864 void (*unmap_single)(struct ib_device *dev,
865 u64 addr, size_t size,
866 enum dma_data_direction direction);
867 u64 (*map_page)(struct ib_device *dev,
868 struct page *page, unsigned long offset,
869 size_t size,
870 enum dma_data_direction direction);
871 void (*unmap_page)(struct ib_device *dev,
872 u64 addr, size_t size,
873 enum dma_data_direction direction);
874 int (*map_sg)(struct ib_device *dev,
875 struct scatterlist *sg, int nents,
876 enum dma_data_direction direction);
877 void (*unmap_sg)(struct ib_device *dev,
878 struct scatterlist *sg, int nents,
879 enum dma_data_direction direction);
880 u64 (*dma_address)(struct ib_device *dev,
881 struct scatterlist *sg);
882 unsigned int (*dma_len)(struct ib_device *dev,
883 struct scatterlist *sg);
884 void (*sync_single_for_cpu)(struct ib_device *dev,
885 u64 dma_handle,
886 size_t size,
887 enum dma_data_direction dir);
888 void (*sync_single_for_device)(struct ib_device *dev,
889 u64 dma_handle,
890 size_t size,
891 enum dma_data_direction dir);
892 void *(*alloc_coherent)(struct ib_device *dev,
893 size_t size,
894 u64 *dma_handle,
895 gfp_t flag);
896 void (*free_coherent)(struct ib_device *dev,
897 size_t size, void *cpu_addr,
898 u64 dma_handle);
899 };
900
901 struct iw_cm_verbs;
902
903 struct ib_device {
904 struct device *dma_device;
905
906 char name[IB_DEVICE_NAME_MAX];
907
908 struct list_head event_handler_list;
909 spinlock_t event_handler_lock;
910
911 struct list_head core_list;
912 struct list_head client_data_list;
913 spinlock_t client_data_lock;
914
915 struct ib_cache cache;
916 int *pkey_tbl_len;
917 int *gid_tbl_len;
918
919 int num_comp_vectors;
920
921 struct iw_cm_verbs *iwcm;
922
923 int (*query_device)(struct ib_device *device,
924 struct ib_device_attr *device_attr);
925 int (*query_port)(struct ib_device *device,
926 u8 port_num,
927 struct ib_port_attr *port_attr);
928 int (*query_gid)(struct ib_device *device,
929 u8 port_num, int index,
930 union ib_gid *gid);
931 int (*query_pkey)(struct ib_device *device,
932 u8 port_num, u16 index, u16 *pkey);
933 int (*modify_device)(struct ib_device *device,
934 int device_modify_mask,
935 struct ib_device_modify *device_modify);
936 int (*modify_port)(struct ib_device *device,
937 u8 port_num, int port_modify_mask,
938 struct ib_port_modify *port_modify);
939 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
940 struct ib_udata *udata);
941 int (*dealloc_ucontext)(struct ib_ucontext *context);
942 int (*mmap)(struct ib_ucontext *context,
943 struct vm_area_struct *vma);
944 struct ib_pd * (*alloc_pd)(struct ib_device *device,
945 struct ib_ucontext *context,
946 struct ib_udata *udata);
947 int (*dealloc_pd)(struct ib_pd *pd);
948 struct ib_ah * (*create_ah)(struct ib_pd *pd,
949 struct ib_ah_attr *ah_attr);
950 int (*modify_ah)(struct ib_ah *ah,
951 struct ib_ah_attr *ah_attr);
952 int (*query_ah)(struct ib_ah *ah,
953 struct ib_ah_attr *ah_attr);
954 int (*destroy_ah)(struct ib_ah *ah);
955 struct ib_srq * (*create_srq)(struct ib_pd *pd,
956 struct ib_srq_init_attr *srq_init_attr,
957 struct ib_udata *udata);
958 int (*modify_srq)(struct ib_srq *srq,
959 struct ib_srq_attr *srq_attr,
960 enum ib_srq_attr_mask srq_attr_mask,
961 struct ib_udata *udata);
962 int (*query_srq)(struct ib_srq *srq,
963 struct ib_srq_attr *srq_attr);
964 int (*destroy_srq)(struct ib_srq *srq);
965 int (*post_srq_recv)(struct ib_srq *srq,
966 struct ib_recv_wr *recv_wr,
967 struct ib_recv_wr **bad_recv_wr);
968 struct ib_qp * (*create_qp)(struct ib_pd *pd,
969 struct ib_qp_init_attr *qp_init_attr,
970 struct ib_udata *udata);
971 int (*modify_qp)(struct ib_qp *qp,
972 struct ib_qp_attr *qp_attr,
973 int qp_attr_mask,
974 struct ib_udata *udata);
975 int (*query_qp)(struct ib_qp *qp,
976 struct ib_qp_attr *qp_attr,
977 int qp_attr_mask,
978 struct ib_qp_init_attr *qp_init_attr);
979 int (*destroy_qp)(struct ib_qp *qp);
980 int (*post_send)(struct ib_qp *qp,
981 struct ib_send_wr *send_wr,
982 struct ib_send_wr **bad_send_wr);
983 int (*post_recv)(struct ib_qp *qp,
984 struct ib_recv_wr *recv_wr,
985 struct ib_recv_wr **bad_recv_wr);
986 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
987 int comp_vector,
988 struct ib_ucontext *context,
989 struct ib_udata *udata);
990 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
991 u16 cq_period);
992 int (*destroy_cq)(struct ib_cq *cq);
993 int (*resize_cq)(struct ib_cq *cq, int cqe,
994 struct ib_udata *udata);
995 int (*poll_cq)(struct ib_cq *cq, int num_entries,
996 struct ib_wc *wc);
997 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
998 int (*req_notify_cq)(struct ib_cq *cq,
999 enum ib_cq_notify_flags flags);
1000 int (*req_ncomp_notif)(struct ib_cq *cq,
1001 int wc_cnt);
1002 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1003 int mr_access_flags);
1004 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1005 struct ib_phys_buf *phys_buf_array,
1006 int num_phys_buf,
1007 int mr_access_flags,
1008 u64 *iova_start);
1009 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1010 u64 start, u64 length,
1011 u64 virt_addr,
1012 int mr_access_flags,
1013 struct ib_udata *udata);
1014 int (*query_mr)(struct ib_mr *mr,
1015 struct ib_mr_attr *mr_attr);
1016 int (*dereg_mr)(struct ib_mr *mr);
1017 int (*rereg_phys_mr)(struct ib_mr *mr,
1018 int mr_rereg_mask,
1019 struct ib_pd *pd,
1020 struct ib_phys_buf *phys_buf_array,
1021 int num_phys_buf,
1022 int mr_access_flags,
1023 u64 *iova_start);
1024 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1025 int (*bind_mw)(struct ib_qp *qp,
1026 struct ib_mw *mw,
1027 struct ib_mw_bind *mw_bind);
1028 int (*dealloc_mw)(struct ib_mw *mw);
1029 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1030 int mr_access_flags,
1031 struct ib_fmr_attr *fmr_attr);
1032 int (*map_phys_fmr)(struct ib_fmr *fmr,
1033 u64 *page_list, int list_len,
1034 u64 iova);
1035 int (*unmap_fmr)(struct list_head *fmr_list);
1036 int (*dealloc_fmr)(struct ib_fmr *fmr);
1037 int (*attach_mcast)(struct ib_qp *qp,
1038 union ib_gid *gid,
1039 u16 lid);
1040 int (*detach_mcast)(struct ib_qp *qp,
1041 union ib_gid *gid,
1042 u16 lid);
1043 int (*process_mad)(struct ib_device *device,
1044 int process_mad_flags,
1045 u8 port_num,
1046 struct ib_wc *in_wc,
1047 struct ib_grh *in_grh,
1048 struct ib_mad *in_mad,
1049 struct ib_mad *out_mad);
1050
1051 struct ib_dma_mapping_ops *dma_ops;
1052
1053 struct module *owner;
1054 struct device dev;
1055 struct kobject *ports_parent;
1056 struct list_head port_list;
1057
1058 enum {
1059 IB_DEV_UNINITIALIZED,
1060 IB_DEV_REGISTERED,
1061 IB_DEV_UNREGISTERED
1062 } reg_state;
1063
1064 u64 uverbs_cmd_mask;
1065 int uverbs_abi_ver;
1066
1067 char node_desc[64];
1068 __be64 node_guid;
1069 u8 node_type;
1070 u8 phys_port_cnt;
1071 };
1072
1073 struct ib_client {
1074 char *name;
1075 void (*add) (struct ib_device *);
1076 void (*remove)(struct ib_device *);
1077
1078 struct list_head list;
1079 };
1080
1081 struct ib_device *ib_alloc_device(size_t size);
1082 void ib_dealloc_device(struct ib_device *device);
1083
1084 int ib_register_device (struct ib_device *device);
1085 void ib_unregister_device(struct ib_device *device);
1086
1087 int ib_register_client (struct ib_client *client);
1088 void ib_unregister_client(struct ib_client *client);
1089
1090 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1091 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1092 void *data);
1093
1094 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1095 {
1096 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1097 }
1098
1099 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1100 {
1101 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1102 }
1103
1104 /**
1105 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1106 * contains all required attributes and no attributes not allowed for
1107 * the given QP state transition.
1108 * @cur_state: Current QP state
1109 * @next_state: Next QP state
1110 * @type: QP type
1111 * @mask: Mask of supplied QP attributes
1112 *
1113 * This function is a helper function that a low-level driver's
1114 * modify_qp method can use to validate the consumer's input. It
1115 * checks that cur_state and next_state are valid QP states, that a
1116 * transition from cur_state to next_state is allowed by the IB spec,
1117 * and that the attribute mask supplied is allowed for the transition.
1118 */
1119 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1120 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1121
1122 int ib_register_event_handler (struct ib_event_handler *event_handler);
1123 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1124 void ib_dispatch_event(struct ib_event *event);
1125
1126 int ib_query_device(struct ib_device *device,
1127 struct ib_device_attr *device_attr);
1128
1129 int ib_query_port(struct ib_device *device,
1130 u8 port_num, struct ib_port_attr *port_attr);
1131
1132 int ib_query_gid(struct ib_device *device,
1133 u8 port_num, int index, union ib_gid *gid);
1134
1135 int ib_query_pkey(struct ib_device *device,
1136 u8 port_num, u16 index, u16 *pkey);
1137
1138 int ib_modify_device(struct ib_device *device,
1139 int device_modify_mask,
1140 struct ib_device_modify *device_modify);
1141
1142 int ib_modify_port(struct ib_device *device,
1143 u8 port_num, int port_modify_mask,
1144 struct ib_port_modify *port_modify);
1145
1146 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1147 u8 *port_num, u16 *index);
1148
1149 int ib_find_pkey(struct ib_device *device,
1150 u8 port_num, u16 pkey, u16 *index);
1151
1152 /**
1153 * ib_alloc_pd - Allocates an unused protection domain.
1154 * @device: The device on which to allocate the protection domain.
1155 *
1156 * A protection domain object provides an association between QPs, shared
1157 * receive queues, address handles, memory regions, and memory windows.
1158 */
1159 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1160
1161 /**
1162 * ib_dealloc_pd - Deallocates a protection domain.
1163 * @pd: The protection domain to deallocate.
1164 */
1165 int ib_dealloc_pd(struct ib_pd *pd);
1166
1167 /**
1168 * ib_create_ah - Creates an address handle for the given address vector.
1169 * @pd: The protection domain associated with the address handle.
1170 * @ah_attr: The attributes of the address vector.
1171 *
1172 * The address handle is used to reference a local or global destination
1173 * in all UD QP post sends.
1174 */
1175 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1176
1177 /**
1178 * ib_init_ah_from_wc - Initializes address handle attributes from a
1179 * work completion.
1180 * @device: Device on which the received message arrived.
1181 * @port_num: Port on which the received message arrived.
1182 * @wc: Work completion associated with the received message.
1183 * @grh: References the received global route header. This parameter is
1184 * ignored unless the work completion indicates that the GRH is valid.
1185 * @ah_attr: Returned attributes that can be used when creating an address
1186 * handle for replying to the message.
1187 */
1188 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1189 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1190
1191 /**
1192 * ib_create_ah_from_wc - Creates an address handle associated with the
1193 * sender of the specified work completion.
1194 * @pd: The protection domain associated with the address handle.
1195 * @wc: Work completion information associated with a received message.
1196 * @grh: References the received global route header. This parameter is
1197 * ignored unless the work completion indicates that the GRH is valid.
1198 * @port_num: The outbound port number to associate with the address.
1199 *
1200 * The address handle is used to reference a local or global destination
1201 * in all UD QP post sends.
1202 */
1203 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1204 struct ib_grh *grh, u8 port_num);
1205
1206 /**
1207 * ib_modify_ah - Modifies the address vector associated with an address
1208 * handle.
1209 * @ah: The address handle to modify.
1210 * @ah_attr: The new address vector attributes to associate with the
1211 * address handle.
1212 */
1213 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1214
1215 /**
1216 * ib_query_ah - Queries the address vector associated with an address
1217 * handle.
1218 * @ah: The address handle to query.
1219 * @ah_attr: The address vector attributes associated with the address
1220 * handle.
1221 */
1222 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1223
1224 /**
1225 * ib_destroy_ah - Destroys an address handle.
1226 * @ah: The address handle to destroy.
1227 */
1228 int ib_destroy_ah(struct ib_ah *ah);
1229
1230 /**
1231 * ib_create_srq - Creates a SRQ associated with the specified protection
1232 * domain.
1233 * @pd: The protection domain associated with the SRQ.
1234 * @srq_init_attr: A list of initial attributes required to create the
1235 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1236 * the actual capabilities of the created SRQ.
1237 *
1238 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1239 * requested size of the SRQ, and set to the actual values allocated
1240 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1241 * will always be at least as large as the requested values.
1242 */
1243 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1244 struct ib_srq_init_attr *srq_init_attr);
1245
1246 /**
1247 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1248 * @srq: The SRQ to modify.
1249 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1250 * the current values of selected SRQ attributes are returned.
1251 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1252 * are being modified.
1253 *
1254 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1255 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1256 * the number of receives queued drops below the limit.
1257 */
1258 int ib_modify_srq(struct ib_srq *srq,
1259 struct ib_srq_attr *srq_attr,
1260 enum ib_srq_attr_mask srq_attr_mask);
1261
1262 /**
1263 * ib_query_srq - Returns the attribute list and current values for the
1264 * specified SRQ.
1265 * @srq: The SRQ to query.
1266 * @srq_attr: The attributes of the specified SRQ.
1267 */
1268 int ib_query_srq(struct ib_srq *srq,
1269 struct ib_srq_attr *srq_attr);
1270
1271 /**
1272 * ib_destroy_srq - Destroys the specified SRQ.
1273 * @srq: The SRQ to destroy.
1274 */
1275 int ib_destroy_srq(struct ib_srq *srq);
1276
1277 /**
1278 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1279 * @srq: The SRQ to post the work request on.
1280 * @recv_wr: A list of work requests to post on the receive queue.
1281 * @bad_recv_wr: On an immediate failure, this parameter will reference
1282 * the work request that failed to be posted on the QP.
1283 */
1284 static inline int ib_post_srq_recv(struct ib_srq *srq,
1285 struct ib_recv_wr *recv_wr,
1286 struct ib_recv_wr **bad_recv_wr)
1287 {
1288 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1289 }
1290
1291 /**
1292 * ib_create_qp - Creates a QP associated with the specified protection
1293 * domain.
1294 * @pd: The protection domain associated with the QP.
1295 * @qp_init_attr: A list of initial attributes required to create the
1296 * QP. If QP creation succeeds, then the attributes are updated to
1297 * the actual capabilities of the created QP.
1298 */
1299 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1300 struct ib_qp_init_attr *qp_init_attr);
1301
1302 /**
1303 * ib_modify_qp - Modifies the attributes for the specified QP and then
1304 * transitions the QP to the given state.
1305 * @qp: The QP to modify.
1306 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1307 * the current values of selected QP attributes are returned.
1308 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1309 * are being modified.
1310 */
1311 int ib_modify_qp(struct ib_qp *qp,
1312 struct ib_qp_attr *qp_attr,
1313 int qp_attr_mask);
1314
1315 /**
1316 * ib_query_qp - Returns the attribute list and current values for the
1317 * specified QP.
1318 * @qp: The QP to query.
1319 * @qp_attr: The attributes of the specified QP.
1320 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1321 * @qp_init_attr: Additional attributes of the selected QP.
1322 *
1323 * The qp_attr_mask may be used to limit the query to gathering only the
1324 * selected attributes.
1325 */
1326 int ib_query_qp(struct ib_qp *qp,
1327 struct ib_qp_attr *qp_attr,
1328 int qp_attr_mask,
1329 struct ib_qp_init_attr *qp_init_attr);
1330
1331 /**
1332 * ib_destroy_qp - Destroys the specified QP.
1333 * @qp: The QP to destroy.
1334 */
1335 int ib_destroy_qp(struct ib_qp *qp);
1336
1337 /**
1338 * ib_post_send - Posts a list of work requests to the send queue of
1339 * the specified QP.
1340 * @qp: The QP to post the work request on.
1341 * @send_wr: A list of work requests to post on the send queue.
1342 * @bad_send_wr: On an immediate failure, this parameter will reference
1343 * the work request that failed to be posted on the QP.
1344 */
1345 static inline int ib_post_send(struct ib_qp *qp,
1346 struct ib_send_wr *send_wr,
1347 struct ib_send_wr **bad_send_wr)
1348 {
1349 return qp->device->post_send(qp, send_wr, bad_send_wr);
1350 }
1351
1352 /**
1353 * ib_post_recv - Posts a list of work requests to the receive queue of
1354 * the specified QP.
1355 * @qp: The QP to post the work request on.
1356 * @recv_wr: A list of work requests to post on the receive queue.
1357 * @bad_recv_wr: On an immediate failure, this parameter will reference
1358 * the work request that failed to be posted on the QP.
1359 */
1360 static inline int ib_post_recv(struct ib_qp *qp,
1361 struct ib_recv_wr *recv_wr,
1362 struct ib_recv_wr **bad_recv_wr)
1363 {
1364 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1365 }
1366
1367 /**
1368 * ib_create_cq - Creates a CQ on the specified device.
1369 * @device: The device on which to create the CQ.
1370 * @comp_handler: A user-specified callback that is invoked when a
1371 * completion event occurs on the CQ.
1372 * @event_handler: A user-specified callback that is invoked when an
1373 * asynchronous event not associated with a completion occurs on the CQ.
1374 * @cq_context: Context associated with the CQ returned to the user via
1375 * the associated completion and event handlers.
1376 * @cqe: The minimum size of the CQ.
1377 * @comp_vector - Completion vector used to signal completion events.
1378 * Must be >= 0 and < context->num_comp_vectors.
1379 *
1380 * Users can examine the cq structure to determine the actual CQ size.
1381 */
1382 struct ib_cq *ib_create_cq(struct ib_device *device,
1383 ib_comp_handler comp_handler,
1384 void (*event_handler)(struct ib_event *, void *),
1385 void *cq_context, int cqe, int comp_vector);
1386
1387 /**
1388 * ib_resize_cq - Modifies the capacity of the CQ.
1389 * @cq: The CQ to resize.
1390 * @cqe: The minimum size of the CQ.
1391 *
1392 * Users can examine the cq structure to determine the actual CQ size.
1393 */
1394 int ib_resize_cq(struct ib_cq *cq, int cqe);
1395
1396 /**
1397 * ib_modify_cq - Modifies moderation params of the CQ
1398 * @cq: The CQ to modify.
1399 * @cq_count: number of CQEs that will trigger an event
1400 * @cq_period: max period of time in usec before triggering an event
1401 *
1402 */
1403 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1404
1405 /**
1406 * ib_destroy_cq - Destroys the specified CQ.
1407 * @cq: The CQ to destroy.
1408 */
1409 int ib_destroy_cq(struct ib_cq *cq);
1410
1411 /**
1412 * ib_poll_cq - poll a CQ for completion(s)
1413 * @cq:the CQ being polled
1414 * @num_entries:maximum number of completions to return
1415 * @wc:array of at least @num_entries &struct ib_wc where completions
1416 * will be returned
1417 *
1418 * Poll a CQ for (possibly multiple) completions. If the return value
1419 * is < 0, an error occurred. If the return value is >= 0, it is the
1420 * number of completions returned. If the return value is
1421 * non-negative and < num_entries, then the CQ was emptied.
1422 */
1423 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1424 struct ib_wc *wc)
1425 {
1426 return cq->device->poll_cq(cq, num_entries, wc);
1427 }
1428
1429 /**
1430 * ib_peek_cq - Returns the number of unreaped completions currently
1431 * on the specified CQ.
1432 * @cq: The CQ to peek.
1433 * @wc_cnt: A minimum number of unreaped completions to check for.
1434 *
1435 * If the number of unreaped completions is greater than or equal to wc_cnt,
1436 * this function returns wc_cnt, otherwise, it returns the actual number of
1437 * unreaped completions.
1438 */
1439 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1440
1441 /**
1442 * ib_req_notify_cq - Request completion notification on a CQ.
1443 * @cq: The CQ to generate an event for.
1444 * @flags:
1445 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1446 * to request an event on the next solicited event or next work
1447 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1448 * may also be |ed in to request a hint about missed events, as
1449 * described below.
1450 *
1451 * Return Value:
1452 * < 0 means an error occurred while requesting notification
1453 * == 0 means notification was requested successfully, and if
1454 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1455 * were missed and it is safe to wait for another event. In
1456 * this case is it guaranteed that any work completions added
1457 * to the CQ since the last CQ poll will trigger a completion
1458 * notification event.
1459 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1460 * in. It means that the consumer must poll the CQ again to
1461 * make sure it is empty to avoid missing an event because of a
1462 * race between requesting notification and an entry being
1463 * added to the CQ. This return value means it is possible
1464 * (but not guaranteed) that a work completion has been added
1465 * to the CQ since the last poll without triggering a
1466 * completion notification event.
1467 */
1468 static inline int ib_req_notify_cq(struct ib_cq *cq,
1469 enum ib_cq_notify_flags flags)
1470 {
1471 return cq->device->req_notify_cq(cq, flags);
1472 }
1473
1474 /**
1475 * ib_req_ncomp_notif - Request completion notification when there are
1476 * at least the specified number of unreaped completions on the CQ.
1477 * @cq: The CQ to generate an event for.
1478 * @wc_cnt: The number of unreaped completions that should be on the
1479 * CQ before an event is generated.
1480 */
1481 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1482 {
1483 return cq->device->req_ncomp_notif ?
1484 cq->device->req_ncomp_notif(cq, wc_cnt) :
1485 -ENOSYS;
1486 }
1487
1488 /**
1489 * ib_get_dma_mr - Returns a memory region for system memory that is
1490 * usable for DMA.
1491 * @pd: The protection domain associated with the memory region.
1492 * @mr_access_flags: Specifies the memory access rights.
1493 *
1494 * Note that the ib_dma_*() functions defined below must be used
1495 * to create/destroy addresses used with the Lkey or Rkey returned
1496 * by ib_get_dma_mr().
1497 */
1498 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1499
1500 /**
1501 * ib_dma_mapping_error - check a DMA addr for error
1502 * @dev: The device for which the dma_addr was created
1503 * @dma_addr: The DMA address to check
1504 */
1505 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1506 {
1507 if (dev->dma_ops)
1508 return dev->dma_ops->mapping_error(dev, dma_addr);
1509 return dma_mapping_error(dma_addr);
1510 }
1511
1512 /**
1513 * ib_dma_map_single - Map a kernel virtual address to DMA address
1514 * @dev: The device for which the dma_addr is to be created
1515 * @cpu_addr: The kernel virtual address
1516 * @size: The size of the region in bytes
1517 * @direction: The direction of the DMA
1518 */
1519 static inline u64 ib_dma_map_single(struct ib_device *dev,
1520 void *cpu_addr, size_t size,
1521 enum dma_data_direction direction)
1522 {
1523 if (dev->dma_ops)
1524 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1525 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1526 }
1527
1528 /**
1529 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1530 * @dev: The device for which the DMA address was created
1531 * @addr: The DMA address
1532 * @size: The size of the region in bytes
1533 * @direction: The direction of the DMA
1534 */
1535 static inline void ib_dma_unmap_single(struct ib_device *dev,
1536 u64 addr, size_t size,
1537 enum dma_data_direction direction)
1538 {
1539 if (dev->dma_ops)
1540 dev->dma_ops->unmap_single(dev, addr, size, direction);
1541 else
1542 dma_unmap_single(dev->dma_device, addr, size, direction);
1543 }
1544
1545 /**
1546 * ib_dma_map_page - Map a physical page to DMA address
1547 * @dev: The device for which the dma_addr is to be created
1548 * @page: The page to be mapped
1549 * @offset: The offset within the page
1550 * @size: The size of the region in bytes
1551 * @direction: The direction of the DMA
1552 */
1553 static inline u64 ib_dma_map_page(struct ib_device *dev,
1554 struct page *page,
1555 unsigned long offset,
1556 size_t size,
1557 enum dma_data_direction direction)
1558 {
1559 if (dev->dma_ops)
1560 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1561 return dma_map_page(dev->dma_device, page, offset, size, direction);
1562 }
1563
1564 /**
1565 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1566 * @dev: The device for which the DMA address was created
1567 * @addr: The DMA address
1568 * @size: The size of the region in bytes
1569 * @direction: The direction of the DMA
1570 */
1571 static inline void ib_dma_unmap_page(struct ib_device *dev,
1572 u64 addr, size_t size,
1573 enum dma_data_direction direction)
1574 {
1575 if (dev->dma_ops)
1576 dev->dma_ops->unmap_page(dev, addr, size, direction);
1577 else
1578 dma_unmap_page(dev->dma_device, addr, size, direction);
1579 }
1580
1581 /**
1582 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1583 * @dev: The device for which the DMA addresses are to be created
1584 * @sg: The array of scatter/gather entries
1585 * @nents: The number of scatter/gather entries
1586 * @direction: The direction of the DMA
1587 */
1588 static inline int ib_dma_map_sg(struct ib_device *dev,
1589 struct scatterlist *sg, int nents,
1590 enum dma_data_direction direction)
1591 {
1592 if (dev->dma_ops)
1593 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1594 return dma_map_sg(dev->dma_device, sg, nents, direction);
1595 }
1596
1597 /**
1598 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1599 * @dev: The device for which the DMA addresses were created
1600 * @sg: The array of scatter/gather entries
1601 * @nents: The number of scatter/gather entries
1602 * @direction: The direction of the DMA
1603 */
1604 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1605 struct scatterlist *sg, int nents,
1606 enum dma_data_direction direction)
1607 {
1608 if (dev->dma_ops)
1609 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1610 else
1611 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1612 }
1613
1614 /**
1615 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1616 * @dev: The device for which the DMA addresses were created
1617 * @sg: The scatter/gather entry
1618 */
1619 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1620 struct scatterlist *sg)
1621 {
1622 if (dev->dma_ops)
1623 return dev->dma_ops->dma_address(dev, sg);
1624 return sg_dma_address(sg);
1625 }
1626
1627 /**
1628 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1629 * @dev: The device for which the DMA addresses were created
1630 * @sg: The scatter/gather entry
1631 */
1632 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1633 struct scatterlist *sg)
1634 {
1635 if (dev->dma_ops)
1636 return dev->dma_ops->dma_len(dev, sg);
1637 return sg_dma_len(sg);
1638 }
1639
1640 /**
1641 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1642 * @dev: The device for which the DMA address was created
1643 * @addr: The DMA address
1644 * @size: The size of the region in bytes
1645 * @dir: The direction of the DMA
1646 */
1647 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1648 u64 addr,
1649 size_t size,
1650 enum dma_data_direction dir)
1651 {
1652 if (dev->dma_ops)
1653 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1654 else
1655 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1656 }
1657
1658 /**
1659 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1660 * @dev: The device for which the DMA address was created
1661 * @addr: The DMA address
1662 * @size: The size of the region in bytes
1663 * @dir: The direction of the DMA
1664 */
1665 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1666 u64 addr,
1667 size_t size,
1668 enum dma_data_direction dir)
1669 {
1670 if (dev->dma_ops)
1671 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1672 else
1673 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1674 }
1675
1676 /**
1677 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1678 * @dev: The device for which the DMA address is requested
1679 * @size: The size of the region to allocate in bytes
1680 * @dma_handle: A pointer for returning the DMA address of the region
1681 * @flag: memory allocator flags
1682 */
1683 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1684 size_t size,
1685 u64 *dma_handle,
1686 gfp_t flag)
1687 {
1688 if (dev->dma_ops)
1689 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1690 else {
1691 dma_addr_t handle;
1692 void *ret;
1693
1694 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1695 *dma_handle = handle;
1696 return ret;
1697 }
1698 }
1699
1700 /**
1701 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1702 * @dev: The device for which the DMA addresses were allocated
1703 * @size: The size of the region
1704 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1705 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1706 */
1707 static inline void ib_dma_free_coherent(struct ib_device *dev,
1708 size_t size, void *cpu_addr,
1709 u64 dma_handle)
1710 {
1711 if (dev->dma_ops)
1712 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1713 else
1714 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1715 }
1716
1717 /**
1718 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1719 * by an HCA.
1720 * @pd: The protection domain associated assigned to the registered region.
1721 * @phys_buf_array: Specifies a list of physical buffers to use in the
1722 * memory region.
1723 * @num_phys_buf: Specifies the size of the phys_buf_array.
1724 * @mr_access_flags: Specifies the memory access rights.
1725 * @iova_start: The offset of the region's starting I/O virtual address.
1726 */
1727 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1728 struct ib_phys_buf *phys_buf_array,
1729 int num_phys_buf,
1730 int mr_access_flags,
1731 u64 *iova_start);
1732
1733 /**
1734 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1735 * Conceptually, this call performs the functions deregister memory region
1736 * followed by register physical memory region. Where possible,
1737 * resources are reused instead of deallocated and reallocated.
1738 * @mr: The memory region to modify.
1739 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1740 * properties of the memory region are being modified.
1741 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1742 * the new protection domain to associated with the memory region,
1743 * otherwise, this parameter is ignored.
1744 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1745 * field specifies a list of physical buffers to use in the new
1746 * translation, otherwise, this parameter is ignored.
1747 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1748 * field specifies the size of the phys_buf_array, otherwise, this
1749 * parameter is ignored.
1750 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1751 * field specifies the new memory access rights, otherwise, this
1752 * parameter is ignored.
1753 * @iova_start: The offset of the region's starting I/O virtual address.
1754 */
1755 int ib_rereg_phys_mr(struct ib_mr *mr,
1756 int mr_rereg_mask,
1757 struct ib_pd *pd,
1758 struct ib_phys_buf *phys_buf_array,
1759 int num_phys_buf,
1760 int mr_access_flags,
1761 u64 *iova_start);
1762
1763 /**
1764 * ib_query_mr - Retrieves information about a specific memory region.
1765 * @mr: The memory region to retrieve information about.
1766 * @mr_attr: The attributes of the specified memory region.
1767 */
1768 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1769
1770 /**
1771 * ib_dereg_mr - Deregisters a memory region and removes it from the
1772 * HCA translation table.
1773 * @mr: The memory region to deregister.
1774 */
1775 int ib_dereg_mr(struct ib_mr *mr);
1776
1777 /**
1778 * ib_alloc_mw - Allocates a memory window.
1779 * @pd: The protection domain associated with the memory window.
1780 */
1781 struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1782
1783 /**
1784 * ib_bind_mw - Posts a work request to the send queue of the specified
1785 * QP, which binds the memory window to the given address range and
1786 * remote access attributes.
1787 * @qp: QP to post the bind work request on.
1788 * @mw: The memory window to bind.
1789 * @mw_bind: Specifies information about the memory window, including
1790 * its address range, remote access rights, and associated memory region.
1791 */
1792 static inline int ib_bind_mw(struct ib_qp *qp,
1793 struct ib_mw *mw,
1794 struct ib_mw_bind *mw_bind)
1795 {
1796 /* XXX reference counting in corresponding MR? */
1797 return mw->device->bind_mw ?
1798 mw->device->bind_mw(qp, mw, mw_bind) :
1799 -ENOSYS;
1800 }
1801
1802 /**
1803 * ib_dealloc_mw - Deallocates a memory window.
1804 * @mw: The memory window to deallocate.
1805 */
1806 int ib_dealloc_mw(struct ib_mw *mw);
1807
1808 /**
1809 * ib_alloc_fmr - Allocates a unmapped fast memory region.
1810 * @pd: The protection domain associated with the unmapped region.
1811 * @mr_access_flags: Specifies the memory access rights.
1812 * @fmr_attr: Attributes of the unmapped region.
1813 *
1814 * A fast memory region must be mapped before it can be used as part of
1815 * a work request.
1816 */
1817 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1818 int mr_access_flags,
1819 struct ib_fmr_attr *fmr_attr);
1820
1821 /**
1822 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
1823 * @fmr: The fast memory region to associate with the pages.
1824 * @page_list: An array of physical pages to map to the fast memory region.
1825 * @list_len: The number of pages in page_list.
1826 * @iova: The I/O virtual address to use with the mapped region.
1827 */
1828 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
1829 u64 *page_list, int list_len,
1830 u64 iova)
1831 {
1832 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
1833 }
1834
1835 /**
1836 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
1837 * @fmr_list: A linked list of fast memory regions to unmap.
1838 */
1839 int ib_unmap_fmr(struct list_head *fmr_list);
1840
1841 /**
1842 * ib_dealloc_fmr - Deallocates a fast memory region.
1843 * @fmr: The fast memory region to deallocate.
1844 */
1845 int ib_dealloc_fmr(struct ib_fmr *fmr);
1846
1847 /**
1848 * ib_attach_mcast - Attaches the specified QP to a multicast group.
1849 * @qp: QP to attach to the multicast group. The QP must be type
1850 * IB_QPT_UD.
1851 * @gid: Multicast group GID.
1852 * @lid: Multicast group LID in host byte order.
1853 *
1854 * In order to send and receive multicast packets, subnet
1855 * administration must have created the multicast group and configured
1856 * the fabric appropriately. The port associated with the specified
1857 * QP must also be a member of the multicast group.
1858 */
1859 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
1860
1861 /**
1862 * ib_detach_mcast - Detaches the specified QP from a multicast group.
1863 * @qp: QP to detach from the multicast group.
1864 * @gid: Multicast group GID.
1865 * @lid: Multicast group LID in host byte order.
1866 */
1867 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
1868
1869 #endif /* IB_VERBS_H */
This page took 0.068267 seconds and 6 git commands to generate.