Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / include / uapi / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _UAPI_LINUX_PERF_EVENT_H
15 #define _UAPI_LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60 };
61
62 /*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69 enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94 };
95
96 /*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102 enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112 PERF_COUNT_SW_DUMMY = 9,
113 PERF_COUNT_SW_BPF_OUTPUT = 10,
114
115 PERF_COUNT_SW_MAX, /* non-ABI */
116 };
117
118 /*
119 * Bits that can be set in attr.sample_type to request information
120 * in the overflow packets.
121 */
122 enum perf_event_sample_format {
123 PERF_SAMPLE_IP = 1U << 0,
124 PERF_SAMPLE_TID = 1U << 1,
125 PERF_SAMPLE_TIME = 1U << 2,
126 PERF_SAMPLE_ADDR = 1U << 3,
127 PERF_SAMPLE_READ = 1U << 4,
128 PERF_SAMPLE_CALLCHAIN = 1U << 5,
129 PERF_SAMPLE_ID = 1U << 6,
130 PERF_SAMPLE_CPU = 1U << 7,
131 PERF_SAMPLE_PERIOD = 1U << 8,
132 PERF_SAMPLE_STREAM_ID = 1U << 9,
133 PERF_SAMPLE_RAW = 1U << 10,
134 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
135 PERF_SAMPLE_REGS_USER = 1U << 12,
136 PERF_SAMPLE_STACK_USER = 1U << 13,
137 PERF_SAMPLE_WEIGHT = 1U << 14,
138 PERF_SAMPLE_DATA_SRC = 1U << 15,
139 PERF_SAMPLE_IDENTIFIER = 1U << 16,
140 PERF_SAMPLE_TRANSACTION = 1U << 17,
141 PERF_SAMPLE_REGS_INTR = 1U << 18,
142
143 PERF_SAMPLE_MAX = 1U << 19, /* non-ABI */
144 };
145
146 /*
147 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
148 *
149 * If the user does not pass priv level information via branch_sample_type,
150 * the kernel uses the event's priv level. Branch and event priv levels do
151 * not have to match. Branch priv level is checked for permissions.
152 *
153 * The branch types can be combined, however BRANCH_ANY covers all types
154 * of branches and therefore it supersedes all the other types.
155 */
156 enum perf_branch_sample_type_shift {
157 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
158 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
159 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
160
161 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
162 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
163 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
164 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
165 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
166 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
167 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
168 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
169
170 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
171 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
172 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
173
174 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
175 };
176
177 enum perf_branch_sample_type {
178 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
179 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
180 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
181
182 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
183 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
184 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
185 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
186 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
187 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
188 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
189 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
190
191 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
192 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
193 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
194
195 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
196 };
197
198 #define PERF_SAMPLE_BRANCH_PLM_ALL \
199 (PERF_SAMPLE_BRANCH_USER|\
200 PERF_SAMPLE_BRANCH_KERNEL|\
201 PERF_SAMPLE_BRANCH_HV)
202
203 /*
204 * Values to determine ABI of the registers dump.
205 */
206 enum perf_sample_regs_abi {
207 PERF_SAMPLE_REGS_ABI_NONE = 0,
208 PERF_SAMPLE_REGS_ABI_32 = 1,
209 PERF_SAMPLE_REGS_ABI_64 = 2,
210 };
211
212 /*
213 * Values for the memory transaction event qualifier, mostly for
214 * abort events. Multiple bits can be set.
215 */
216 enum {
217 PERF_TXN_ELISION = (1 << 0), /* From elision */
218 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
219 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
220 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
221 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
222 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
223 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
224 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
225
226 PERF_TXN_MAX = (1 << 8), /* non-ABI */
227
228 /* bits 32..63 are reserved for the abort code */
229
230 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
231 PERF_TXN_ABORT_SHIFT = 32,
232 };
233
234 /*
235 * The format of the data returned by read() on a perf event fd,
236 * as specified by attr.read_format:
237 *
238 * struct read_format {
239 * { u64 value;
240 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
241 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
242 * { u64 id; } && PERF_FORMAT_ID
243 * } && !PERF_FORMAT_GROUP
244 *
245 * { u64 nr;
246 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
247 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
248 * { u64 value;
249 * { u64 id; } && PERF_FORMAT_ID
250 * } cntr[nr];
251 * } && PERF_FORMAT_GROUP
252 * };
253 */
254 enum perf_event_read_format {
255 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
256 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
257 PERF_FORMAT_ID = 1U << 2,
258 PERF_FORMAT_GROUP = 1U << 3,
259
260 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
261 };
262
263 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
264 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
265 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
266 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
267 /* add: sample_stack_user */
268 #define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
269 #define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
270
271 /*
272 * Hardware event_id to monitor via a performance monitoring event:
273 */
274 struct perf_event_attr {
275
276 /*
277 * Major type: hardware/software/tracepoint/etc.
278 */
279 __u32 type;
280
281 /*
282 * Size of the attr structure, for fwd/bwd compat.
283 */
284 __u32 size;
285
286 /*
287 * Type specific configuration information.
288 */
289 __u64 config;
290
291 union {
292 __u64 sample_period;
293 __u64 sample_freq;
294 };
295
296 __u64 sample_type;
297 __u64 read_format;
298
299 __u64 disabled : 1, /* off by default */
300 inherit : 1, /* children inherit it */
301 pinned : 1, /* must always be on PMU */
302 exclusive : 1, /* only group on PMU */
303 exclude_user : 1, /* don't count user */
304 exclude_kernel : 1, /* ditto kernel */
305 exclude_hv : 1, /* ditto hypervisor */
306 exclude_idle : 1, /* don't count when idle */
307 mmap : 1, /* include mmap data */
308 comm : 1, /* include comm data */
309 freq : 1, /* use freq, not period */
310 inherit_stat : 1, /* per task counts */
311 enable_on_exec : 1, /* next exec enables */
312 task : 1, /* trace fork/exit */
313 watermark : 1, /* wakeup_watermark */
314 /*
315 * precise_ip:
316 *
317 * 0 - SAMPLE_IP can have arbitrary skid
318 * 1 - SAMPLE_IP must have constant skid
319 * 2 - SAMPLE_IP requested to have 0 skid
320 * 3 - SAMPLE_IP must have 0 skid
321 *
322 * See also PERF_RECORD_MISC_EXACT_IP
323 */
324 precise_ip : 2, /* skid constraint */
325 mmap_data : 1, /* non-exec mmap data */
326 sample_id_all : 1, /* sample_type all events */
327
328 exclude_host : 1, /* don't count in host */
329 exclude_guest : 1, /* don't count in guest */
330
331 exclude_callchain_kernel : 1, /* exclude kernel callchains */
332 exclude_callchain_user : 1, /* exclude user callchains */
333 mmap2 : 1, /* include mmap with inode data */
334 comm_exec : 1, /* flag comm events that are due to an exec */
335 use_clockid : 1, /* use @clockid for time fields */
336 context_switch : 1, /* context switch data */
337 __reserved_1 : 37;
338
339 union {
340 __u32 wakeup_events; /* wakeup every n events */
341 __u32 wakeup_watermark; /* bytes before wakeup */
342 };
343
344 __u32 bp_type;
345 union {
346 __u64 bp_addr;
347 __u64 config1; /* extension of config */
348 };
349 union {
350 __u64 bp_len;
351 __u64 config2; /* extension of config1 */
352 };
353 __u64 branch_sample_type; /* enum perf_branch_sample_type */
354
355 /*
356 * Defines set of user regs to dump on samples.
357 * See asm/perf_regs.h for details.
358 */
359 __u64 sample_regs_user;
360
361 /*
362 * Defines size of the user stack to dump on samples.
363 */
364 __u32 sample_stack_user;
365
366 __s32 clockid;
367 /*
368 * Defines set of regs to dump for each sample
369 * state captured on:
370 * - precise = 0: PMU interrupt
371 * - precise > 0: sampled instruction
372 *
373 * See asm/perf_regs.h for details.
374 */
375 __u64 sample_regs_intr;
376
377 /*
378 * Wakeup watermark for AUX area
379 */
380 __u32 aux_watermark;
381 __u32 __reserved_2; /* align to __u64 */
382 };
383
384 #define perf_flags(attr) (*(&(attr)->read_format + 1))
385
386 /*
387 * Ioctls that can be done on a perf event fd:
388 */
389 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
390 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
391 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
392 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
393 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
394 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
395 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
396 #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
397 #define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
398
399 enum perf_event_ioc_flags {
400 PERF_IOC_FLAG_GROUP = 1U << 0,
401 };
402
403 /*
404 * Structure of the page that can be mapped via mmap
405 */
406 struct perf_event_mmap_page {
407 __u32 version; /* version number of this structure */
408 __u32 compat_version; /* lowest version this is compat with */
409
410 /*
411 * Bits needed to read the hw events in user-space.
412 *
413 * u32 seq, time_mult, time_shift, index, width;
414 * u64 count, enabled, running;
415 * u64 cyc, time_offset;
416 * s64 pmc = 0;
417 *
418 * do {
419 * seq = pc->lock;
420 * barrier()
421 *
422 * enabled = pc->time_enabled;
423 * running = pc->time_running;
424 *
425 * if (pc->cap_usr_time && enabled != running) {
426 * cyc = rdtsc();
427 * time_offset = pc->time_offset;
428 * time_mult = pc->time_mult;
429 * time_shift = pc->time_shift;
430 * }
431 *
432 * index = pc->index;
433 * count = pc->offset;
434 * if (pc->cap_user_rdpmc && index) {
435 * width = pc->pmc_width;
436 * pmc = rdpmc(index - 1);
437 * }
438 *
439 * barrier();
440 * } while (pc->lock != seq);
441 *
442 * NOTE: for obvious reason this only works on self-monitoring
443 * processes.
444 */
445 __u32 lock; /* seqlock for synchronization */
446 __u32 index; /* hardware event identifier */
447 __s64 offset; /* add to hardware event value */
448 __u64 time_enabled; /* time event active */
449 __u64 time_running; /* time event on cpu */
450 union {
451 __u64 capabilities;
452 struct {
453 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
454 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
455
456 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
457 cap_user_time : 1, /* The time_* fields are used */
458 cap_user_time_zero : 1, /* The time_zero field is used */
459 cap_____res : 59;
460 };
461 };
462
463 /*
464 * If cap_user_rdpmc this field provides the bit-width of the value
465 * read using the rdpmc() or equivalent instruction. This can be used
466 * to sign extend the result like:
467 *
468 * pmc <<= 64 - width;
469 * pmc >>= 64 - width; // signed shift right
470 * count += pmc;
471 */
472 __u16 pmc_width;
473
474 /*
475 * If cap_usr_time the below fields can be used to compute the time
476 * delta since time_enabled (in ns) using rdtsc or similar.
477 *
478 * u64 quot, rem;
479 * u64 delta;
480 *
481 * quot = (cyc >> time_shift);
482 * rem = cyc & (((u64)1 << time_shift) - 1);
483 * delta = time_offset + quot * time_mult +
484 * ((rem * time_mult) >> time_shift);
485 *
486 * Where time_offset,time_mult,time_shift and cyc are read in the
487 * seqcount loop described above. This delta can then be added to
488 * enabled and possible running (if index), improving the scaling:
489 *
490 * enabled += delta;
491 * if (index)
492 * running += delta;
493 *
494 * quot = count / running;
495 * rem = count % running;
496 * count = quot * enabled + (rem * enabled) / running;
497 */
498 __u16 time_shift;
499 __u32 time_mult;
500 __u64 time_offset;
501 /*
502 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
503 * from sample timestamps.
504 *
505 * time = timestamp - time_zero;
506 * quot = time / time_mult;
507 * rem = time % time_mult;
508 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
509 *
510 * And vice versa:
511 *
512 * quot = cyc >> time_shift;
513 * rem = cyc & (((u64)1 << time_shift) - 1);
514 * timestamp = time_zero + quot * time_mult +
515 * ((rem * time_mult) >> time_shift);
516 */
517 __u64 time_zero;
518 __u32 size; /* Header size up to __reserved[] fields. */
519
520 /*
521 * Hole for extension of the self monitor capabilities
522 */
523
524 __u8 __reserved[118*8+4]; /* align to 1k. */
525
526 /*
527 * Control data for the mmap() data buffer.
528 *
529 * User-space reading the @data_head value should issue an smp_rmb(),
530 * after reading this value.
531 *
532 * When the mapping is PROT_WRITE the @data_tail value should be
533 * written by userspace to reflect the last read data, after issueing
534 * an smp_mb() to separate the data read from the ->data_tail store.
535 * In this case the kernel will not over-write unread data.
536 *
537 * See perf_output_put_handle() for the data ordering.
538 *
539 * data_{offset,size} indicate the location and size of the perf record
540 * buffer within the mmapped area.
541 */
542 __u64 data_head; /* head in the data section */
543 __u64 data_tail; /* user-space written tail */
544 __u64 data_offset; /* where the buffer starts */
545 __u64 data_size; /* data buffer size */
546
547 /*
548 * AUX area is defined by aux_{offset,size} fields that should be set
549 * by the userspace, so that
550 *
551 * aux_offset >= data_offset + data_size
552 *
553 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
554 *
555 * Ring buffer pointers aux_{head,tail} have the same semantics as
556 * data_{head,tail} and same ordering rules apply.
557 */
558 __u64 aux_head;
559 __u64 aux_tail;
560 __u64 aux_offset;
561 __u64 aux_size;
562 };
563
564 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
565 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
566 #define PERF_RECORD_MISC_KERNEL (1 << 0)
567 #define PERF_RECORD_MISC_USER (2 << 0)
568 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
569 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
570 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
571
572 /*
573 * Indicates that /proc/PID/maps parsing are truncated by time out.
574 */
575 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
576 /*
577 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
578 * different events so can reuse the same bit position.
579 * Ditto PERF_RECORD_MISC_SWITCH_OUT.
580 */
581 #define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
582 #define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
583 #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
584 /*
585 * Indicates that the content of PERF_SAMPLE_IP points to
586 * the actual instruction that triggered the event. See also
587 * perf_event_attr::precise_ip.
588 */
589 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
590 /*
591 * Reserve the last bit to indicate some extended misc field
592 */
593 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
594
595 struct perf_event_header {
596 __u32 type;
597 __u16 misc;
598 __u16 size;
599 };
600
601 enum perf_event_type {
602
603 /*
604 * If perf_event_attr.sample_id_all is set then all event types will
605 * have the sample_type selected fields related to where/when
606 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
607 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
608 * just after the perf_event_header and the fields already present for
609 * the existing fields, i.e. at the end of the payload. That way a newer
610 * perf.data file will be supported by older perf tools, with these new
611 * optional fields being ignored.
612 *
613 * struct sample_id {
614 * { u32 pid, tid; } && PERF_SAMPLE_TID
615 * { u64 time; } && PERF_SAMPLE_TIME
616 * { u64 id; } && PERF_SAMPLE_ID
617 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
618 * { u32 cpu, res; } && PERF_SAMPLE_CPU
619 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
620 * } && perf_event_attr::sample_id_all
621 *
622 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
623 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
624 * relative to header.size.
625 */
626
627 /*
628 * The MMAP events record the PROT_EXEC mappings so that we can
629 * correlate userspace IPs to code. They have the following structure:
630 *
631 * struct {
632 * struct perf_event_header header;
633 *
634 * u32 pid, tid;
635 * u64 addr;
636 * u64 len;
637 * u64 pgoff;
638 * char filename[];
639 * struct sample_id sample_id;
640 * };
641 */
642 PERF_RECORD_MMAP = 1,
643
644 /*
645 * struct {
646 * struct perf_event_header header;
647 * u64 id;
648 * u64 lost;
649 * struct sample_id sample_id;
650 * };
651 */
652 PERF_RECORD_LOST = 2,
653
654 /*
655 * struct {
656 * struct perf_event_header header;
657 *
658 * u32 pid, tid;
659 * char comm[];
660 * struct sample_id sample_id;
661 * };
662 */
663 PERF_RECORD_COMM = 3,
664
665 /*
666 * struct {
667 * struct perf_event_header header;
668 * u32 pid, ppid;
669 * u32 tid, ptid;
670 * u64 time;
671 * struct sample_id sample_id;
672 * };
673 */
674 PERF_RECORD_EXIT = 4,
675
676 /*
677 * struct {
678 * struct perf_event_header header;
679 * u64 time;
680 * u64 id;
681 * u64 stream_id;
682 * struct sample_id sample_id;
683 * };
684 */
685 PERF_RECORD_THROTTLE = 5,
686 PERF_RECORD_UNTHROTTLE = 6,
687
688 /*
689 * struct {
690 * struct perf_event_header header;
691 * u32 pid, ppid;
692 * u32 tid, ptid;
693 * u64 time;
694 * struct sample_id sample_id;
695 * };
696 */
697 PERF_RECORD_FORK = 7,
698
699 /*
700 * struct {
701 * struct perf_event_header header;
702 * u32 pid, tid;
703 *
704 * struct read_format values;
705 * struct sample_id sample_id;
706 * };
707 */
708 PERF_RECORD_READ = 8,
709
710 /*
711 * struct {
712 * struct perf_event_header header;
713 *
714 * #
715 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
716 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
717 * # is fixed relative to header.
718 * #
719 *
720 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
721 * { u64 ip; } && PERF_SAMPLE_IP
722 * { u32 pid, tid; } && PERF_SAMPLE_TID
723 * { u64 time; } && PERF_SAMPLE_TIME
724 * { u64 addr; } && PERF_SAMPLE_ADDR
725 * { u64 id; } && PERF_SAMPLE_ID
726 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
727 * { u32 cpu, res; } && PERF_SAMPLE_CPU
728 * { u64 period; } && PERF_SAMPLE_PERIOD
729 *
730 * { struct read_format values; } && PERF_SAMPLE_READ
731 *
732 * { u64 nr,
733 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
734 *
735 * #
736 * # The RAW record below is opaque data wrt the ABI
737 * #
738 * # That is, the ABI doesn't make any promises wrt to
739 * # the stability of its content, it may vary depending
740 * # on event, hardware, kernel version and phase of
741 * # the moon.
742 * #
743 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
744 * #
745 *
746 * { u32 size;
747 * char data[size];}&& PERF_SAMPLE_RAW
748 *
749 * { u64 nr;
750 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
751 *
752 * { u64 abi; # enum perf_sample_regs_abi
753 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
754 *
755 * { u64 size;
756 * char data[size];
757 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
758 *
759 * { u64 weight; } && PERF_SAMPLE_WEIGHT
760 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
761 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
762 * { u64 abi; # enum perf_sample_regs_abi
763 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
764 * };
765 */
766 PERF_RECORD_SAMPLE = 9,
767
768 /*
769 * The MMAP2 records are an augmented version of MMAP, they add
770 * maj, min, ino numbers to be used to uniquely identify each mapping
771 *
772 * struct {
773 * struct perf_event_header header;
774 *
775 * u32 pid, tid;
776 * u64 addr;
777 * u64 len;
778 * u64 pgoff;
779 * u32 maj;
780 * u32 min;
781 * u64 ino;
782 * u64 ino_generation;
783 * u32 prot, flags;
784 * char filename[];
785 * struct sample_id sample_id;
786 * };
787 */
788 PERF_RECORD_MMAP2 = 10,
789
790 /*
791 * Records that new data landed in the AUX buffer part.
792 *
793 * struct {
794 * struct perf_event_header header;
795 *
796 * u64 aux_offset;
797 * u64 aux_size;
798 * u64 flags;
799 * struct sample_id sample_id;
800 * };
801 */
802 PERF_RECORD_AUX = 11,
803
804 /*
805 * Indicates that instruction trace has started
806 *
807 * struct {
808 * struct perf_event_header header;
809 * u32 pid;
810 * u32 tid;
811 * };
812 */
813 PERF_RECORD_ITRACE_START = 12,
814
815 /*
816 * Records the dropped/lost sample number.
817 *
818 * struct {
819 * struct perf_event_header header;
820 *
821 * u64 lost;
822 * struct sample_id sample_id;
823 * };
824 */
825 PERF_RECORD_LOST_SAMPLES = 13,
826
827 /*
828 * Records a context switch in or out (flagged by
829 * PERF_RECORD_MISC_SWITCH_OUT). See also
830 * PERF_RECORD_SWITCH_CPU_WIDE.
831 *
832 * struct {
833 * struct perf_event_header header;
834 * struct sample_id sample_id;
835 * };
836 */
837 PERF_RECORD_SWITCH = 14,
838
839 /*
840 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
841 * next_prev_tid that are the next (switching out) or previous
842 * (switching in) pid/tid.
843 *
844 * struct {
845 * struct perf_event_header header;
846 * u32 next_prev_pid;
847 * u32 next_prev_tid;
848 * struct sample_id sample_id;
849 * };
850 */
851 PERF_RECORD_SWITCH_CPU_WIDE = 15,
852
853 PERF_RECORD_MAX, /* non-ABI */
854 };
855
856 #define PERF_MAX_STACK_DEPTH 127
857
858 enum perf_callchain_context {
859 PERF_CONTEXT_HV = (__u64)-32,
860 PERF_CONTEXT_KERNEL = (__u64)-128,
861 PERF_CONTEXT_USER = (__u64)-512,
862
863 PERF_CONTEXT_GUEST = (__u64)-2048,
864 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
865 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
866
867 PERF_CONTEXT_MAX = (__u64)-4095,
868 };
869
870 /**
871 * PERF_RECORD_AUX::flags bits
872 */
873 #define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
874 #define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
875
876 #define PERF_FLAG_FD_NO_GROUP (1UL << 0)
877 #define PERF_FLAG_FD_OUTPUT (1UL << 1)
878 #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
879 #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
880
881 union perf_mem_data_src {
882 __u64 val;
883 struct {
884 __u64 mem_op:5, /* type of opcode */
885 mem_lvl:14, /* memory hierarchy level */
886 mem_snoop:5, /* snoop mode */
887 mem_lock:2, /* lock instr */
888 mem_dtlb:7, /* tlb access */
889 mem_rsvd:31;
890 };
891 };
892
893 /* type of opcode (load/store/prefetch,code) */
894 #define PERF_MEM_OP_NA 0x01 /* not available */
895 #define PERF_MEM_OP_LOAD 0x02 /* load instruction */
896 #define PERF_MEM_OP_STORE 0x04 /* store instruction */
897 #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
898 #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
899 #define PERF_MEM_OP_SHIFT 0
900
901 /* memory hierarchy (memory level, hit or miss) */
902 #define PERF_MEM_LVL_NA 0x01 /* not available */
903 #define PERF_MEM_LVL_HIT 0x02 /* hit level */
904 #define PERF_MEM_LVL_MISS 0x04 /* miss level */
905 #define PERF_MEM_LVL_L1 0x08 /* L1 */
906 #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
907 #define PERF_MEM_LVL_L2 0x20 /* L2 */
908 #define PERF_MEM_LVL_L3 0x40 /* L3 */
909 #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
910 #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
911 #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
912 #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
913 #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
914 #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
915 #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
916 #define PERF_MEM_LVL_SHIFT 5
917
918 /* snoop mode */
919 #define PERF_MEM_SNOOP_NA 0x01 /* not available */
920 #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
921 #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
922 #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
923 #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
924 #define PERF_MEM_SNOOP_SHIFT 19
925
926 /* locked instruction */
927 #define PERF_MEM_LOCK_NA 0x01 /* not available */
928 #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
929 #define PERF_MEM_LOCK_SHIFT 24
930
931 /* TLB access */
932 #define PERF_MEM_TLB_NA 0x01 /* not available */
933 #define PERF_MEM_TLB_HIT 0x02 /* hit level */
934 #define PERF_MEM_TLB_MISS 0x04 /* miss level */
935 #define PERF_MEM_TLB_L1 0x08 /* L1 */
936 #define PERF_MEM_TLB_L2 0x10 /* L2 */
937 #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
938 #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
939 #define PERF_MEM_TLB_SHIFT 26
940
941 #define PERF_MEM_S(a, s) \
942 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
943
944 /*
945 * single taken branch record layout:
946 *
947 * from: source instruction (may not always be a branch insn)
948 * to: branch target
949 * mispred: branch target was mispredicted
950 * predicted: branch target was predicted
951 *
952 * support for mispred, predicted is optional. In case it
953 * is not supported mispred = predicted = 0.
954 *
955 * in_tx: running in a hardware transaction
956 * abort: aborting a hardware transaction
957 * cycles: cycles from last branch (or 0 if not supported)
958 */
959 struct perf_branch_entry {
960 __u64 from;
961 __u64 to;
962 __u64 mispred:1, /* target mispredicted */
963 predicted:1,/* target predicted */
964 in_tx:1, /* in transaction */
965 abort:1, /* transaction abort */
966 cycles:16, /* cycle count to last branch */
967 reserved:44;
968 };
969
970 #endif /* _UAPI_LINUX_PERF_EVENT_H */
This page took 0.050366 seconds and 6 git commands to generate.