fsnotify: put inode specific fields in an fsnotify_mark in a union
[deliverable/linux.git] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7
8 struct audit_tree;
9 struct audit_chunk;
10
11 struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21 };
22
23 struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark_entry mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36 };
37
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40
41 /*
42 * One struct chunk is attached to each inode of interest.
43 * We replace struct chunk on tagging/untagging.
44 * Rules have pointer to struct audit_tree.
45 * Rules have struct list_head rlist forming a list of rules over
46 * the same tree.
47 * References to struct chunk are collected at audit_inode{,_child}()
48 * time and used in AUDIT_TREE rule matching.
49 * These references are dropped at the same time we are calling
50 * audit_free_names(), etc.
51 *
52 * Cyclic lists galore:
53 * tree.chunks anchors chunk.owners[].list hash_lock
54 * tree.rules anchors rule.rlist audit_filter_mutex
55 * chunk.trees anchors tree.same_root hash_lock
56 * chunk.hash is a hash with middle bits of watch.inode as
57 * a hash function. RCU, hash_lock
58 *
59 * tree is refcounted; one reference for "some rules on rules_list refer to
60 * it", one for each chunk with pointer to it.
61 *
62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63 * of watch contributes 1 to .refs).
64 *
65 * node.index allows to get from node.list to containing chunk.
66 * MSB of that sucker is stolen to mark taggings that we might have to
67 * revert - several operations have very unpleasant cleanup logics and
68 * that makes a difference. Some.
69 */
70
71 static struct fsnotify_group *audit_tree_group;
72
73 static struct audit_tree *alloc_tree(const char *s)
74 {
75 struct audit_tree *tree;
76
77 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 if (tree) {
79 atomic_set(&tree->count, 1);
80 tree->goner = 0;
81 INIT_LIST_HEAD(&tree->chunks);
82 INIT_LIST_HEAD(&tree->rules);
83 INIT_LIST_HEAD(&tree->list);
84 INIT_LIST_HEAD(&tree->same_root);
85 tree->root = NULL;
86 strcpy(tree->pathname, s);
87 }
88 return tree;
89 }
90
91 static inline void get_tree(struct audit_tree *tree)
92 {
93 atomic_inc(&tree->count);
94 }
95
96 static void __put_tree(struct rcu_head *rcu)
97 {
98 struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
99 kfree(tree);
100 }
101
102 static inline void put_tree(struct audit_tree *tree)
103 {
104 if (atomic_dec_and_test(&tree->count))
105 call_rcu(&tree->head, __put_tree);
106 }
107
108 /* to avoid bringing the entire thing in audit.h */
109 const char *audit_tree_path(struct audit_tree *tree)
110 {
111 return tree->pathname;
112 }
113
114 static void free_chunk(struct audit_chunk *chunk)
115 {
116 int i;
117
118 for (i = 0; i < chunk->count; i++) {
119 if (chunk->owners[i].owner)
120 put_tree(chunk->owners[i].owner);
121 }
122 kfree(chunk);
123 }
124
125 void audit_put_chunk(struct audit_chunk *chunk)
126 {
127 if (atomic_long_dec_and_test(&chunk->refs))
128 free_chunk(chunk);
129 }
130
131 static void __put_chunk(struct rcu_head *rcu)
132 {
133 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
134 audit_put_chunk(chunk);
135 }
136
137 static void audit_tree_destroy_watch(struct fsnotify_mark_entry *entry)
138 {
139 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
140 call_rcu(&chunk->head, __put_chunk);
141 }
142
143 static struct audit_chunk *alloc_chunk(int count)
144 {
145 struct audit_chunk *chunk;
146 size_t size;
147 int i;
148
149 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
150 chunk = kzalloc(size, GFP_KERNEL);
151 if (!chunk)
152 return NULL;
153
154 INIT_LIST_HEAD(&chunk->hash);
155 INIT_LIST_HEAD(&chunk->trees);
156 chunk->count = count;
157 atomic_long_set(&chunk->refs, 1);
158 for (i = 0; i < count; i++) {
159 INIT_LIST_HEAD(&chunk->owners[i].list);
160 chunk->owners[i].index = i;
161 }
162 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
163 return chunk;
164 }
165
166 enum {HASH_SIZE = 128};
167 static struct list_head chunk_hash_heads[HASH_SIZE];
168 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
169
170 static inline struct list_head *chunk_hash(const struct inode *inode)
171 {
172 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
173 return chunk_hash_heads + n % HASH_SIZE;
174 }
175
176 /* hash_lock & entry->lock is held by caller */
177 static void insert_hash(struct audit_chunk *chunk)
178 {
179 struct fsnotify_mark_entry *entry = &chunk->mark;
180 struct list_head *list;
181
182 if (!entry->i.inode)
183 return;
184 list = chunk_hash(entry->i.inode);
185 list_add_rcu(&chunk->hash, list);
186 }
187
188 /* called under rcu_read_lock */
189 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
190 {
191 struct list_head *list = chunk_hash(inode);
192 struct audit_chunk *p;
193
194 list_for_each_entry_rcu(p, list, hash) {
195 /* mark.inode may have gone NULL, but who cares? */
196 if (p->mark.i.inode == inode) {
197 atomic_long_inc(&p->refs);
198 return p;
199 }
200 }
201 return NULL;
202 }
203
204 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
205 {
206 int n;
207 for (n = 0; n < chunk->count; n++)
208 if (chunk->owners[n].owner == tree)
209 return 1;
210 return 0;
211 }
212
213 /* tagging and untagging inodes with trees */
214
215 static struct audit_chunk *find_chunk(struct node *p)
216 {
217 int index = p->index & ~(1U<<31);
218 p -= index;
219 return container_of(p, struct audit_chunk, owners[0]);
220 }
221
222 static void untag_chunk(struct node *p)
223 {
224 struct audit_chunk *chunk = find_chunk(p);
225 struct fsnotify_mark_entry *entry = &chunk->mark;
226 struct audit_chunk *new;
227 struct audit_tree *owner;
228 int size = chunk->count - 1;
229 int i, j;
230
231 fsnotify_get_mark(entry);
232
233 spin_unlock(&hash_lock);
234
235 spin_lock(&entry->lock);
236 if (chunk->dead || !entry->i.inode) {
237 spin_unlock(&entry->lock);
238 goto out;
239 }
240
241 owner = p->owner;
242
243 if (!size) {
244 chunk->dead = 1;
245 spin_lock(&hash_lock);
246 list_del_init(&chunk->trees);
247 if (owner->root == chunk)
248 owner->root = NULL;
249 list_del_init(&p->list);
250 list_del_rcu(&chunk->hash);
251 spin_unlock(&hash_lock);
252 spin_unlock(&entry->lock);
253 fsnotify_destroy_mark_by_entry(entry);
254 fsnotify_put_mark(entry);
255 goto out;
256 }
257
258 new = alloc_chunk(size);
259 if (!new)
260 goto Fallback;
261 fsnotify_duplicate_mark(&new->mark, entry);
262 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, 1)) {
263 free_chunk(new);
264 goto Fallback;
265 }
266
267 chunk->dead = 1;
268 spin_lock(&hash_lock);
269 list_replace_init(&chunk->trees, &new->trees);
270 if (owner->root == chunk) {
271 list_del_init(&owner->same_root);
272 owner->root = NULL;
273 }
274
275 for (i = j = 0; j <= size; i++, j++) {
276 struct audit_tree *s;
277 if (&chunk->owners[j] == p) {
278 list_del_init(&p->list);
279 i--;
280 continue;
281 }
282 s = chunk->owners[j].owner;
283 new->owners[i].owner = s;
284 new->owners[i].index = chunk->owners[j].index - j + i;
285 if (!s) /* result of earlier fallback */
286 continue;
287 get_tree(s);
288 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
289 }
290
291 list_replace_rcu(&chunk->hash, &new->hash);
292 list_for_each_entry(owner, &new->trees, same_root)
293 owner->root = new;
294 spin_unlock(&hash_lock);
295 spin_unlock(&entry->lock);
296 fsnotify_destroy_mark_by_entry(entry);
297 fsnotify_put_mark(entry);
298 goto out;
299
300 Fallback:
301 // do the best we can
302 spin_lock(&hash_lock);
303 if (owner->root == chunk) {
304 list_del_init(&owner->same_root);
305 owner->root = NULL;
306 }
307 list_del_init(&p->list);
308 p->owner = NULL;
309 put_tree(owner);
310 spin_unlock(&hash_lock);
311 spin_unlock(&entry->lock);
312 out:
313 fsnotify_put_mark(entry);
314 spin_lock(&hash_lock);
315 }
316
317 static int create_chunk(struct inode *inode, struct audit_tree *tree)
318 {
319 struct fsnotify_mark_entry *entry;
320 struct audit_chunk *chunk = alloc_chunk(1);
321 if (!chunk)
322 return -ENOMEM;
323
324 entry = &chunk->mark;
325 if (fsnotify_add_mark(entry, audit_tree_group, inode, 0)) {
326 free_chunk(chunk);
327 return -ENOSPC;
328 }
329
330 spin_lock(&entry->lock);
331 spin_lock(&hash_lock);
332 if (tree->goner) {
333 spin_unlock(&hash_lock);
334 chunk->dead = 1;
335 spin_unlock(&entry->lock);
336 fsnotify_destroy_mark_by_entry(entry);
337 fsnotify_put_mark(entry);
338 return 0;
339 }
340 chunk->owners[0].index = (1U << 31);
341 chunk->owners[0].owner = tree;
342 get_tree(tree);
343 list_add(&chunk->owners[0].list, &tree->chunks);
344 if (!tree->root) {
345 tree->root = chunk;
346 list_add(&tree->same_root, &chunk->trees);
347 }
348 insert_hash(chunk);
349 spin_unlock(&hash_lock);
350 spin_unlock(&entry->lock);
351 return 0;
352 }
353
354 /* the first tagged inode becomes root of tree */
355 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
356 {
357 struct fsnotify_mark_entry *old_entry, *chunk_entry;
358 struct audit_tree *owner;
359 struct audit_chunk *chunk, *old;
360 struct node *p;
361 int n;
362
363 spin_lock(&inode->i_lock);
364 old_entry = fsnotify_find_mark_entry(audit_tree_group, inode);
365 spin_unlock(&inode->i_lock);
366 if (!old_entry)
367 return create_chunk(inode, tree);
368
369 old = container_of(old_entry, struct audit_chunk, mark);
370
371 /* are we already there? */
372 spin_lock(&hash_lock);
373 for (n = 0; n < old->count; n++) {
374 if (old->owners[n].owner == tree) {
375 spin_unlock(&hash_lock);
376 fsnotify_put_mark(old_entry);
377 return 0;
378 }
379 }
380 spin_unlock(&hash_lock);
381
382 chunk = alloc_chunk(old->count + 1);
383 if (!chunk) {
384 fsnotify_put_mark(old_entry);
385 return -ENOMEM;
386 }
387
388 chunk_entry = &chunk->mark;
389
390 spin_lock(&old_entry->lock);
391 if (!old_entry->i.inode) {
392 /* old_entry is being shot, lets just lie */
393 spin_unlock(&old_entry->lock);
394 fsnotify_put_mark(old_entry);
395 free_chunk(chunk);
396 return -ENOENT;
397 }
398
399 fsnotify_duplicate_mark(chunk_entry, old_entry);
400 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, 1)) {
401 spin_unlock(&old_entry->lock);
402 free_chunk(chunk);
403 fsnotify_put_mark(old_entry);
404 return -ENOSPC;
405 }
406
407 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
408 spin_lock(&chunk_entry->lock);
409 spin_lock(&hash_lock);
410
411 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
412 if (tree->goner) {
413 spin_unlock(&hash_lock);
414 chunk->dead = 1;
415 spin_unlock(&chunk_entry->lock);
416 spin_unlock(&old_entry->lock);
417
418 fsnotify_destroy_mark_by_entry(chunk_entry);
419
420 fsnotify_put_mark(chunk_entry);
421 fsnotify_put_mark(old_entry);
422 return 0;
423 }
424 list_replace_init(&old->trees, &chunk->trees);
425 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
426 struct audit_tree *s = old->owners[n].owner;
427 p->owner = s;
428 p->index = old->owners[n].index;
429 if (!s) /* result of fallback in untag */
430 continue;
431 get_tree(s);
432 list_replace_init(&old->owners[n].list, &p->list);
433 }
434 p->index = (chunk->count - 1) | (1U<<31);
435 p->owner = tree;
436 get_tree(tree);
437 list_add(&p->list, &tree->chunks);
438 list_replace_rcu(&old->hash, &chunk->hash);
439 list_for_each_entry(owner, &chunk->trees, same_root)
440 owner->root = chunk;
441 old->dead = 1;
442 if (!tree->root) {
443 tree->root = chunk;
444 list_add(&tree->same_root, &chunk->trees);
445 }
446 spin_unlock(&hash_lock);
447 spin_unlock(&chunk_entry->lock);
448 spin_unlock(&old_entry->lock);
449 fsnotify_destroy_mark_by_entry(old_entry);
450 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
451 fsnotify_put_mark(old_entry); /* and kill it */
452 return 0;
453 }
454
455 static void kill_rules(struct audit_tree *tree)
456 {
457 struct audit_krule *rule, *next;
458 struct audit_entry *entry;
459 struct audit_buffer *ab;
460
461 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
462 entry = container_of(rule, struct audit_entry, rule);
463
464 list_del_init(&rule->rlist);
465 if (rule->tree) {
466 /* not a half-baked one */
467 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
468 audit_log_format(ab, "op=");
469 audit_log_string(ab, "remove rule");
470 audit_log_format(ab, " dir=");
471 audit_log_untrustedstring(ab, rule->tree->pathname);
472 audit_log_key(ab, rule->filterkey);
473 audit_log_format(ab, " list=%d res=1", rule->listnr);
474 audit_log_end(ab);
475 rule->tree = NULL;
476 list_del_rcu(&entry->list);
477 list_del(&entry->rule.list);
478 call_rcu(&entry->rcu, audit_free_rule_rcu);
479 }
480 }
481 }
482
483 /*
484 * finish killing struct audit_tree
485 */
486 static void prune_one(struct audit_tree *victim)
487 {
488 spin_lock(&hash_lock);
489 while (!list_empty(&victim->chunks)) {
490 struct node *p;
491
492 p = list_entry(victim->chunks.next, struct node, list);
493
494 untag_chunk(p);
495 }
496 spin_unlock(&hash_lock);
497 put_tree(victim);
498 }
499
500 /* trim the uncommitted chunks from tree */
501
502 static void trim_marked(struct audit_tree *tree)
503 {
504 struct list_head *p, *q;
505 spin_lock(&hash_lock);
506 if (tree->goner) {
507 spin_unlock(&hash_lock);
508 return;
509 }
510 /* reorder */
511 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
512 struct node *node = list_entry(p, struct node, list);
513 q = p->next;
514 if (node->index & (1U<<31)) {
515 list_del_init(p);
516 list_add(p, &tree->chunks);
517 }
518 }
519
520 while (!list_empty(&tree->chunks)) {
521 struct node *node;
522
523 node = list_entry(tree->chunks.next, struct node, list);
524
525 /* have we run out of marked? */
526 if (!(node->index & (1U<<31)))
527 break;
528
529 untag_chunk(node);
530 }
531 if (!tree->root && !tree->goner) {
532 tree->goner = 1;
533 spin_unlock(&hash_lock);
534 mutex_lock(&audit_filter_mutex);
535 kill_rules(tree);
536 list_del_init(&tree->list);
537 mutex_unlock(&audit_filter_mutex);
538 prune_one(tree);
539 } else {
540 spin_unlock(&hash_lock);
541 }
542 }
543
544 static void audit_schedule_prune(void);
545
546 /* called with audit_filter_mutex */
547 int audit_remove_tree_rule(struct audit_krule *rule)
548 {
549 struct audit_tree *tree;
550 tree = rule->tree;
551 if (tree) {
552 spin_lock(&hash_lock);
553 list_del_init(&rule->rlist);
554 if (list_empty(&tree->rules) && !tree->goner) {
555 tree->root = NULL;
556 list_del_init(&tree->same_root);
557 tree->goner = 1;
558 list_move(&tree->list, &prune_list);
559 rule->tree = NULL;
560 spin_unlock(&hash_lock);
561 audit_schedule_prune();
562 return 1;
563 }
564 rule->tree = NULL;
565 spin_unlock(&hash_lock);
566 return 1;
567 }
568 return 0;
569 }
570
571 static int compare_root(struct vfsmount *mnt, void *arg)
572 {
573 return mnt->mnt_root->d_inode == arg;
574 }
575
576 void audit_trim_trees(void)
577 {
578 struct list_head cursor;
579
580 mutex_lock(&audit_filter_mutex);
581 list_add(&cursor, &tree_list);
582 while (cursor.next != &tree_list) {
583 struct audit_tree *tree;
584 struct path path;
585 struct vfsmount *root_mnt;
586 struct node *node;
587 int err;
588
589 tree = container_of(cursor.next, struct audit_tree, list);
590 get_tree(tree);
591 list_del(&cursor);
592 list_add(&cursor, &tree->list);
593 mutex_unlock(&audit_filter_mutex);
594
595 err = kern_path(tree->pathname, 0, &path);
596 if (err)
597 goto skip_it;
598
599 root_mnt = collect_mounts(&path);
600 path_put(&path);
601 if (!root_mnt)
602 goto skip_it;
603
604 spin_lock(&hash_lock);
605 list_for_each_entry(node, &tree->chunks, list) {
606 struct audit_chunk *chunk = find_chunk(node);
607 /* this could be NULL if the watch is dieing else where... */
608 struct inode *inode = chunk->mark.i.inode;
609 node->index |= 1U<<31;
610 if (iterate_mounts(compare_root, inode, root_mnt))
611 node->index &= ~(1U<<31);
612 }
613 spin_unlock(&hash_lock);
614 trim_marked(tree);
615 put_tree(tree);
616 drop_collected_mounts(root_mnt);
617 skip_it:
618 mutex_lock(&audit_filter_mutex);
619 }
620 list_del(&cursor);
621 mutex_unlock(&audit_filter_mutex);
622 }
623
624 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
625 {
626
627 if (pathname[0] != '/' ||
628 rule->listnr != AUDIT_FILTER_EXIT ||
629 op != Audit_equal ||
630 rule->inode_f || rule->watch || rule->tree)
631 return -EINVAL;
632 rule->tree = alloc_tree(pathname);
633 if (!rule->tree)
634 return -ENOMEM;
635 return 0;
636 }
637
638 void audit_put_tree(struct audit_tree *tree)
639 {
640 put_tree(tree);
641 }
642
643 static int tag_mount(struct vfsmount *mnt, void *arg)
644 {
645 return tag_chunk(mnt->mnt_root->d_inode, arg);
646 }
647
648 /* called with audit_filter_mutex */
649 int audit_add_tree_rule(struct audit_krule *rule)
650 {
651 struct audit_tree *seed = rule->tree, *tree;
652 struct path path;
653 struct vfsmount *mnt;
654 int err;
655
656 list_for_each_entry(tree, &tree_list, list) {
657 if (!strcmp(seed->pathname, tree->pathname)) {
658 put_tree(seed);
659 rule->tree = tree;
660 list_add(&rule->rlist, &tree->rules);
661 return 0;
662 }
663 }
664 tree = seed;
665 list_add(&tree->list, &tree_list);
666 list_add(&rule->rlist, &tree->rules);
667 /* do not set rule->tree yet */
668 mutex_unlock(&audit_filter_mutex);
669
670 err = kern_path(tree->pathname, 0, &path);
671 if (err)
672 goto Err;
673 mnt = collect_mounts(&path);
674 path_put(&path);
675 if (!mnt) {
676 err = -ENOMEM;
677 goto Err;
678 }
679
680 get_tree(tree);
681 err = iterate_mounts(tag_mount, tree, mnt);
682 drop_collected_mounts(mnt);
683
684 if (!err) {
685 struct node *node;
686 spin_lock(&hash_lock);
687 list_for_each_entry(node, &tree->chunks, list)
688 node->index &= ~(1U<<31);
689 spin_unlock(&hash_lock);
690 } else {
691 trim_marked(tree);
692 goto Err;
693 }
694
695 mutex_lock(&audit_filter_mutex);
696 if (list_empty(&rule->rlist)) {
697 put_tree(tree);
698 return -ENOENT;
699 }
700 rule->tree = tree;
701 put_tree(tree);
702
703 return 0;
704 Err:
705 mutex_lock(&audit_filter_mutex);
706 list_del_init(&tree->list);
707 list_del_init(&tree->rules);
708 put_tree(tree);
709 return err;
710 }
711
712 int audit_tag_tree(char *old, char *new)
713 {
714 struct list_head cursor, barrier;
715 int failed = 0;
716 struct path path1, path2;
717 struct vfsmount *tagged;
718 int err;
719
720 err = kern_path(new, 0, &path2);
721 if (err)
722 return err;
723 tagged = collect_mounts(&path2);
724 path_put(&path2);
725 if (!tagged)
726 return -ENOMEM;
727
728 err = kern_path(old, 0, &path1);
729 if (err) {
730 drop_collected_mounts(tagged);
731 return err;
732 }
733
734 mutex_lock(&audit_filter_mutex);
735 list_add(&barrier, &tree_list);
736 list_add(&cursor, &barrier);
737
738 while (cursor.next != &tree_list) {
739 struct audit_tree *tree;
740 int good_one = 0;
741
742 tree = container_of(cursor.next, struct audit_tree, list);
743 get_tree(tree);
744 list_del(&cursor);
745 list_add(&cursor, &tree->list);
746 mutex_unlock(&audit_filter_mutex);
747
748 err = kern_path(tree->pathname, 0, &path2);
749 if (!err) {
750 good_one = path_is_under(&path1, &path2);
751 path_put(&path2);
752 }
753
754 if (!good_one) {
755 put_tree(tree);
756 mutex_lock(&audit_filter_mutex);
757 continue;
758 }
759
760 failed = iterate_mounts(tag_mount, tree, tagged);
761 if (failed) {
762 put_tree(tree);
763 mutex_lock(&audit_filter_mutex);
764 break;
765 }
766
767 mutex_lock(&audit_filter_mutex);
768 spin_lock(&hash_lock);
769 if (!tree->goner) {
770 list_del(&tree->list);
771 list_add(&tree->list, &tree_list);
772 }
773 spin_unlock(&hash_lock);
774 put_tree(tree);
775 }
776
777 while (barrier.prev != &tree_list) {
778 struct audit_tree *tree;
779
780 tree = container_of(barrier.prev, struct audit_tree, list);
781 get_tree(tree);
782 list_del(&tree->list);
783 list_add(&tree->list, &barrier);
784 mutex_unlock(&audit_filter_mutex);
785
786 if (!failed) {
787 struct node *node;
788 spin_lock(&hash_lock);
789 list_for_each_entry(node, &tree->chunks, list)
790 node->index &= ~(1U<<31);
791 spin_unlock(&hash_lock);
792 } else {
793 trim_marked(tree);
794 }
795
796 put_tree(tree);
797 mutex_lock(&audit_filter_mutex);
798 }
799 list_del(&barrier);
800 list_del(&cursor);
801 mutex_unlock(&audit_filter_mutex);
802 path_put(&path1);
803 drop_collected_mounts(tagged);
804 return failed;
805 }
806
807 /*
808 * That gets run when evict_chunk() ends up needing to kill audit_tree.
809 * Runs from a separate thread.
810 */
811 static int prune_tree_thread(void *unused)
812 {
813 mutex_lock(&audit_cmd_mutex);
814 mutex_lock(&audit_filter_mutex);
815
816 while (!list_empty(&prune_list)) {
817 struct audit_tree *victim;
818
819 victim = list_entry(prune_list.next, struct audit_tree, list);
820 list_del_init(&victim->list);
821
822 mutex_unlock(&audit_filter_mutex);
823
824 prune_one(victim);
825
826 mutex_lock(&audit_filter_mutex);
827 }
828
829 mutex_unlock(&audit_filter_mutex);
830 mutex_unlock(&audit_cmd_mutex);
831 return 0;
832 }
833
834 static void audit_schedule_prune(void)
835 {
836 kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
837 }
838
839 /*
840 * ... and that one is done if evict_chunk() decides to delay until the end
841 * of syscall. Runs synchronously.
842 */
843 void audit_kill_trees(struct list_head *list)
844 {
845 mutex_lock(&audit_cmd_mutex);
846 mutex_lock(&audit_filter_mutex);
847
848 while (!list_empty(list)) {
849 struct audit_tree *victim;
850
851 victim = list_entry(list->next, struct audit_tree, list);
852 kill_rules(victim);
853 list_del_init(&victim->list);
854
855 mutex_unlock(&audit_filter_mutex);
856
857 prune_one(victim);
858
859 mutex_lock(&audit_filter_mutex);
860 }
861
862 mutex_unlock(&audit_filter_mutex);
863 mutex_unlock(&audit_cmd_mutex);
864 }
865
866 /*
867 * Here comes the stuff asynchronous to auditctl operations
868 */
869
870 static void evict_chunk(struct audit_chunk *chunk)
871 {
872 struct audit_tree *owner;
873 struct list_head *postponed = audit_killed_trees();
874 int need_prune = 0;
875 int n;
876
877 if (chunk->dead)
878 return;
879
880 chunk->dead = 1;
881 mutex_lock(&audit_filter_mutex);
882 spin_lock(&hash_lock);
883 while (!list_empty(&chunk->trees)) {
884 owner = list_entry(chunk->trees.next,
885 struct audit_tree, same_root);
886 owner->goner = 1;
887 owner->root = NULL;
888 list_del_init(&owner->same_root);
889 spin_unlock(&hash_lock);
890 if (!postponed) {
891 kill_rules(owner);
892 list_move(&owner->list, &prune_list);
893 need_prune = 1;
894 } else {
895 list_move(&owner->list, postponed);
896 }
897 spin_lock(&hash_lock);
898 }
899 list_del_rcu(&chunk->hash);
900 for (n = 0; n < chunk->count; n++)
901 list_del_init(&chunk->owners[n].list);
902 spin_unlock(&hash_lock);
903 if (need_prune)
904 audit_schedule_prune();
905 mutex_unlock(&audit_filter_mutex);
906 }
907
908 static int audit_tree_handle_event(struct fsnotify_group *group, struct fsnotify_event *event)
909 {
910 BUG();
911 return -EOPNOTSUPP;
912 }
913
914 static void audit_tree_freeing_mark(struct fsnotify_mark_entry *entry, struct fsnotify_group *group)
915 {
916 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
917
918 evict_chunk(chunk);
919 fsnotify_put_mark(entry);
920 }
921
922 static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
923 struct vfsmount *mnt, __u32 mask, void *data,
924 int data_type)
925 {
926 return 0;
927 }
928
929 static const struct fsnotify_ops audit_tree_ops = {
930 .handle_event = audit_tree_handle_event,
931 .should_send_event = audit_tree_send_event,
932 .free_group_priv = NULL,
933 .free_event_priv = NULL,
934 .freeing_mark = audit_tree_freeing_mark,
935 };
936
937 static int __init audit_tree_init(void)
938 {
939 int i;
940
941 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
942 if (IS_ERR(audit_tree_group))
943 audit_panic("cannot initialize fsnotify group for rectree watches");
944
945 for (i = 0; i < HASH_SIZE; i++)
946 INIT_LIST_HEAD(&chunk_hash_heads[i]);
947
948 return 0;
949 }
950 __initcall(audit_tree_init);
This page took 0.049737 seconds and 6 git commands to generate.