Merge branch 'perf/rbtree_copy' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <uapi/linux/limits.h>
77
78 #include "audit.h"
79
80 /* flags stating the success for a syscall */
81 #define AUDITSC_INVALID 0
82 #define AUDITSC_SUCCESS 1
83 #define AUDITSC_FAILURE 2
84
85 /* no execve audit message should be longer than this (userspace limits) */
86 #define MAX_EXECVE_AUDIT_LEN 7500
87
88 /* max length to print of cmdline/proctitle value during audit */
89 #define MAX_PROCTITLE_AUDIT_LEN 128
90
91 /* number of audit rules */
92 int audit_n_rules;
93
94 /* determines whether we collect data for signals sent */
95 int audit_signals;
96
97 struct audit_aux_data {
98 struct audit_aux_data *next;
99 int type;
100 };
101
102 #define AUDIT_AUX_IPCPERM 0
103
104 /* Number of target pids per aux struct. */
105 #define AUDIT_AUX_PIDS 16
106
107 struct audit_aux_data_pids {
108 struct audit_aux_data d;
109 pid_t target_pid[AUDIT_AUX_PIDS];
110 kuid_t target_auid[AUDIT_AUX_PIDS];
111 kuid_t target_uid[AUDIT_AUX_PIDS];
112 unsigned int target_sessionid[AUDIT_AUX_PIDS];
113 u32 target_sid[AUDIT_AUX_PIDS];
114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
115 int pid_count;
116 };
117
118 struct audit_aux_data_bprm_fcaps {
119 struct audit_aux_data d;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 struct audit_cap_data old_pcap;
123 struct audit_cap_data new_pcap;
124 };
125
126 struct audit_tree_refs {
127 struct audit_tree_refs *next;
128 struct audit_chunk *c[31];
129 };
130
131 static int audit_match_perm(struct audit_context *ctx, int mask)
132 {
133 unsigned n;
134 if (unlikely(!ctx))
135 return 0;
136 n = ctx->major;
137
138 switch (audit_classify_syscall(ctx->arch, n)) {
139 case 0: /* native */
140 if ((mask & AUDIT_PERM_WRITE) &&
141 audit_match_class(AUDIT_CLASS_WRITE, n))
142 return 1;
143 if ((mask & AUDIT_PERM_READ) &&
144 audit_match_class(AUDIT_CLASS_READ, n))
145 return 1;
146 if ((mask & AUDIT_PERM_ATTR) &&
147 audit_match_class(AUDIT_CLASS_CHATTR, n))
148 return 1;
149 return 0;
150 case 1: /* 32bit on biarch */
151 if ((mask & AUDIT_PERM_WRITE) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 return 1;
154 if ((mask & AUDIT_PERM_READ) &&
155 audit_match_class(AUDIT_CLASS_READ_32, n))
156 return 1;
157 if ((mask & AUDIT_PERM_ATTR) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 return 1;
160 return 0;
161 case 2: /* open */
162 return mask & ACC_MODE(ctx->argv[1]);
163 case 3: /* openat */
164 return mask & ACC_MODE(ctx->argv[2]);
165 case 4: /* socketcall */
166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 case 5: /* execve */
168 return mask & AUDIT_PERM_EXEC;
169 default:
170 return 0;
171 }
172 }
173
174 static int audit_match_filetype(struct audit_context *ctx, int val)
175 {
176 struct audit_names *n;
177 umode_t mode = (umode_t)val;
178
179 if (unlikely(!ctx))
180 return 0;
181
182 list_for_each_entry(n, &ctx->names_list, list) {
183 if ((n->ino != -1) &&
184 ((n->mode & S_IFMT) == mode))
185 return 1;
186 }
187
188 return 0;
189 }
190
191 /*
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
199 */
200
201 #ifdef CONFIG_AUDIT_TREE
202 static void audit_set_auditable(struct audit_context *ctx)
203 {
204 if (!ctx->prio) {
205 ctx->prio = 1;
206 ctx->current_state = AUDIT_RECORD_CONTEXT;
207 }
208 }
209
210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211 {
212 struct audit_tree_refs *p = ctx->trees;
213 int left = ctx->tree_count;
214 if (likely(left)) {
215 p->c[--left] = chunk;
216 ctx->tree_count = left;
217 return 1;
218 }
219 if (!p)
220 return 0;
221 p = p->next;
222 if (p) {
223 p->c[30] = chunk;
224 ctx->trees = p;
225 ctx->tree_count = 30;
226 return 1;
227 }
228 return 0;
229 }
230
231 static int grow_tree_refs(struct audit_context *ctx)
232 {
233 struct audit_tree_refs *p = ctx->trees;
234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 if (!ctx->trees) {
236 ctx->trees = p;
237 return 0;
238 }
239 if (p)
240 p->next = ctx->trees;
241 else
242 ctx->first_trees = ctx->trees;
243 ctx->tree_count = 31;
244 return 1;
245 }
246 #endif
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250 {
251 #ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs *q;
253 int n;
254 if (!p) {
255 /* we started with empty chain */
256 p = ctx->first_trees;
257 count = 31;
258 /* if the very first allocation has failed, nothing to do */
259 if (!p)
260 return;
261 }
262 n = count;
263 for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 while (n--) {
265 audit_put_chunk(q->c[n]);
266 q->c[n] = NULL;
267 }
268 }
269 while (n-- > ctx->tree_count) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 ctx->trees = p;
274 ctx->tree_count = count;
275 #endif
276 }
277
278 static void free_tree_refs(struct audit_context *ctx)
279 {
280 struct audit_tree_refs *p, *q;
281 for (p = ctx->first_trees; p; p = q) {
282 q = p->next;
283 kfree(p);
284 }
285 }
286
287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288 {
289 #ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs *p;
291 int n;
292 if (!tree)
293 return 0;
294 /* full ones */
295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 for (n = 0; n < 31; n++)
297 if (audit_tree_match(p->c[n], tree))
298 return 1;
299 }
300 /* partial */
301 if (p) {
302 for (n = ctx->tree_count; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
305 }
306 #endif
307 return 0;
308 }
309
310 static int audit_compare_uid(kuid_t uid,
311 struct audit_names *name,
312 struct audit_field *f,
313 struct audit_context *ctx)
314 {
315 struct audit_names *n;
316 int rc;
317
318 if (name) {
319 rc = audit_uid_comparator(uid, f->op, name->uid);
320 if (rc)
321 return rc;
322 }
323
324 if (ctx) {
325 list_for_each_entry(n, &ctx->names_list, list) {
326 rc = audit_uid_comparator(uid, f->op, n->uid);
327 if (rc)
328 return rc;
329 }
330 }
331 return 0;
332 }
333
334 static int audit_compare_gid(kgid_t gid,
335 struct audit_names *name,
336 struct audit_field *f,
337 struct audit_context *ctx)
338 {
339 struct audit_names *n;
340 int rc;
341
342 if (name) {
343 rc = audit_gid_comparator(gid, f->op, name->gid);
344 if (rc)
345 return rc;
346 }
347
348 if (ctx) {
349 list_for_each_entry(n, &ctx->names_list, list) {
350 rc = audit_gid_comparator(gid, f->op, n->gid);
351 if (rc)
352 return rc;
353 }
354 }
355 return 0;
356 }
357
358 static int audit_field_compare(struct task_struct *tsk,
359 const struct cred *cred,
360 struct audit_field *f,
361 struct audit_context *ctx,
362 struct audit_names *name)
363 {
364 switch (f->val) {
365 /* process to file object comparisons */
366 case AUDIT_COMPARE_UID_TO_OBJ_UID:
367 return audit_compare_uid(cred->uid, name, f, ctx);
368 case AUDIT_COMPARE_GID_TO_OBJ_GID:
369 return audit_compare_gid(cred->gid, name, f, ctx);
370 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371 return audit_compare_uid(cred->euid, name, f, ctx);
372 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373 return audit_compare_gid(cred->egid, name, f, ctx);
374 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375 return audit_compare_uid(tsk->loginuid, name, f, ctx);
376 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->suid, name, f, ctx);
378 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->sgid, name, f, ctx);
380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381 return audit_compare_uid(cred->fsuid, name, f, ctx);
382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383 return audit_compare_gid(cred->fsgid, name, f, ctx);
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID:
386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387 case AUDIT_COMPARE_UID_TO_EUID:
388 return audit_uid_comparator(cred->uid, f->op, cred->euid);
389 case AUDIT_COMPARE_UID_TO_SUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->suid);
391 case AUDIT_COMPARE_UID_TO_FSUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID:
395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396 case AUDIT_COMPARE_AUID_TO_SUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398 case AUDIT_COMPARE_AUID_TO_FSUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428 }
429
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444 {
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448
449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450
451 for (i = 0; i < rule->field_count; i++) {
452 struct audit_field *f = &rule->fields[i];
453 struct audit_names *n;
454 int result = 0;
455 pid_t pid;
456
457 switch (f->type) {
458 case AUDIT_PID:
459 pid = task_pid_nr(tsk);
460 result = audit_comparator(pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = task_ppid_nr(tsk);
466 result = audit_comparator(ctx->ppid, f->op, f->val);
467 }
468 break;
469 case AUDIT_UID:
470 result = audit_uid_comparator(cred->uid, f->op, f->uid);
471 break;
472 case AUDIT_EUID:
473 result = audit_uid_comparator(cred->euid, f->op, f->uid);
474 break;
475 case AUDIT_SUID:
476 result = audit_uid_comparator(cred->suid, f->op, f->uid);
477 break;
478 case AUDIT_FSUID:
479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480 break;
481 case AUDIT_GID:
482 result = audit_gid_comparator(cred->gid, f->op, f->gid);
483 if (f->op == Audit_equal) {
484 if (!result)
485 result = in_group_p(f->gid);
486 } else if (f->op == Audit_not_equal) {
487 if (result)
488 result = !in_group_p(f->gid);
489 }
490 break;
491 case AUDIT_EGID:
492 result = audit_gid_comparator(cred->egid, f->op, f->gid);
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_egroup_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_egroup_p(f->gid);
499 }
500 break;
501 case AUDIT_SGID:
502 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503 break;
504 case AUDIT_FSGID:
505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506 break;
507 case AUDIT_PERS:
508 result = audit_comparator(tsk->personality, f->op, f->val);
509 break;
510 case AUDIT_ARCH:
511 if (ctx)
512 result = audit_comparator(ctx->arch, f->op, f->val);
513 break;
514
515 case AUDIT_EXIT:
516 if (ctx && ctx->return_valid)
517 result = audit_comparator(ctx->return_code, f->op, f->val);
518 break;
519 case AUDIT_SUCCESS:
520 if (ctx && ctx->return_valid) {
521 if (f->val)
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
523 else
524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
525 }
526 break;
527 case AUDIT_DEVMAJOR:
528 if (name) {
529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 ++result;
532 } else if (ctx) {
533 list_for_each_entry(n, &ctx->names_list, list) {
534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
536 ++result;
537 break;
538 }
539 }
540 }
541 break;
542 case AUDIT_DEVMINOR:
543 if (name) {
544 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 audit_comparator(MINOR(name->rdev), f->op, f->val))
546 ++result;
547 } else if (ctx) {
548 list_for_each_entry(n, &ctx->names_list, list) {
549 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
551 ++result;
552 break;
553 }
554 }
555 }
556 break;
557 case AUDIT_INODE:
558 if (name)
559 result = audit_comparator(name->ino, f->op, f->val);
560 else if (ctx) {
561 list_for_each_entry(n, &ctx->names_list, list) {
562 if (audit_comparator(n->ino, f->op, f->val)) {
563 ++result;
564 break;
565 }
566 }
567 }
568 break;
569 case AUDIT_OBJ_UID:
570 if (name) {
571 result = audit_uid_comparator(name->uid, f->op, f->uid);
572 } else if (ctx) {
573 list_for_each_entry(n, &ctx->names_list, list) {
574 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_OBJ_GID:
582 if (name) {
583 result = audit_gid_comparator(name->gid, f->op, f->gid);
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_WATCH:
594 if (name)
595 result = audit_watch_compare(rule->watch, name->ino, name->dev);
596 break;
597 case AUDIT_DIR:
598 if (ctx)
599 result = match_tree_refs(ctx, rule->tree);
600 break;
601 case AUDIT_LOGINUID:
602 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
603 break;
604 case AUDIT_LOGINUID_SET:
605 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
606 break;
607 case AUDIT_SUBJ_USER:
608 case AUDIT_SUBJ_ROLE:
609 case AUDIT_SUBJ_TYPE:
610 case AUDIT_SUBJ_SEN:
611 case AUDIT_SUBJ_CLR:
612 /* NOTE: this may return negative values indicating
613 a temporary error. We simply treat this as a
614 match for now to avoid losing information that
615 may be wanted. An error message will also be
616 logged upon error */
617 if (f->lsm_rule) {
618 if (need_sid) {
619 security_task_getsecid(tsk, &sid);
620 need_sid = 0;
621 }
622 result = security_audit_rule_match(sid, f->type,
623 f->op,
624 f->lsm_rule,
625 ctx);
626 }
627 break;
628 case AUDIT_OBJ_USER:
629 case AUDIT_OBJ_ROLE:
630 case AUDIT_OBJ_TYPE:
631 case AUDIT_OBJ_LEV_LOW:
632 case AUDIT_OBJ_LEV_HIGH:
633 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
634 also applies here */
635 if (f->lsm_rule) {
636 /* Find files that match */
637 if (name) {
638 result = security_audit_rule_match(
639 name->osid, f->type, f->op,
640 f->lsm_rule, ctx);
641 } else if (ctx) {
642 list_for_each_entry(n, &ctx->names_list, list) {
643 if (security_audit_rule_match(n->osid, f->type,
644 f->op, f->lsm_rule,
645 ctx)) {
646 ++result;
647 break;
648 }
649 }
650 }
651 /* Find ipc objects that match */
652 if (!ctx || ctx->type != AUDIT_IPC)
653 break;
654 if (security_audit_rule_match(ctx->ipc.osid,
655 f->type, f->op,
656 f->lsm_rule, ctx))
657 ++result;
658 }
659 break;
660 case AUDIT_ARG0:
661 case AUDIT_ARG1:
662 case AUDIT_ARG2:
663 case AUDIT_ARG3:
664 if (ctx)
665 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
666 break;
667 case AUDIT_FILTERKEY:
668 /* ignore this field for filtering */
669 result = 1;
670 break;
671 case AUDIT_PERM:
672 result = audit_match_perm(ctx, f->val);
673 break;
674 case AUDIT_FILETYPE:
675 result = audit_match_filetype(ctx, f->val);
676 break;
677 case AUDIT_FIELD_COMPARE:
678 result = audit_field_compare(tsk, cred, f, ctx, name);
679 break;
680 }
681 if (!result)
682 return 0;
683 }
684
685 if (ctx) {
686 if (rule->prio <= ctx->prio)
687 return 0;
688 if (rule->filterkey) {
689 kfree(ctx->filterkey);
690 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
691 }
692 ctx->prio = rule->prio;
693 }
694 switch (rule->action) {
695 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
696 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
697 }
698 return 1;
699 }
700
701 /* At process creation time, we can determine if system-call auditing is
702 * completely disabled for this task. Since we only have the task
703 * structure at this point, we can only check uid and gid.
704 */
705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
706 {
707 struct audit_entry *e;
708 enum audit_state state;
709
710 rcu_read_lock();
711 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
712 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
713 &state, true)) {
714 if (state == AUDIT_RECORD_CONTEXT)
715 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
716 rcu_read_unlock();
717 return state;
718 }
719 }
720 rcu_read_unlock();
721 return AUDIT_BUILD_CONTEXT;
722 }
723
724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
725 {
726 int word, bit;
727
728 if (val > 0xffffffff)
729 return false;
730
731 word = AUDIT_WORD(val);
732 if (word >= AUDIT_BITMASK_SIZE)
733 return false;
734
735 bit = AUDIT_BIT(val);
736
737 return rule->mask[word] & bit;
738 }
739
740 /* At syscall entry and exit time, this filter is called if the
741 * audit_state is not low enough that auditing cannot take place, but is
742 * also not high enough that we already know we have to write an audit
743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
744 */
745 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
746 struct audit_context *ctx,
747 struct list_head *list)
748 {
749 struct audit_entry *e;
750 enum audit_state state;
751
752 if (audit_pid && tsk->tgid == audit_pid)
753 return AUDIT_DISABLED;
754
755 rcu_read_lock();
756 if (!list_empty(list)) {
757 list_for_each_entry_rcu(e, list, list) {
758 if (audit_in_mask(&e->rule, ctx->major) &&
759 audit_filter_rules(tsk, &e->rule, ctx, NULL,
760 &state, false)) {
761 rcu_read_unlock();
762 ctx->current_state = state;
763 return state;
764 }
765 }
766 }
767 rcu_read_unlock();
768 return AUDIT_BUILD_CONTEXT;
769 }
770
771 /*
772 * Given an audit_name check the inode hash table to see if they match.
773 * Called holding the rcu read lock to protect the use of audit_inode_hash
774 */
775 static int audit_filter_inode_name(struct task_struct *tsk,
776 struct audit_names *n,
777 struct audit_context *ctx) {
778 int h = audit_hash_ino((u32)n->ino);
779 struct list_head *list = &audit_inode_hash[h];
780 struct audit_entry *e;
781 enum audit_state state;
782
783 if (list_empty(list))
784 return 0;
785
786 list_for_each_entry_rcu(e, list, list) {
787 if (audit_in_mask(&e->rule, ctx->major) &&
788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
789 ctx->current_state = state;
790 return 1;
791 }
792 }
793
794 return 0;
795 }
796
797 /* At syscall exit time, this filter is called if any audit_names have been
798 * collected during syscall processing. We only check rules in sublists at hash
799 * buckets applicable to the inode numbers in audit_names.
800 * Regarding audit_state, same rules apply as for audit_filter_syscall().
801 */
802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
803 {
804 struct audit_names *n;
805
806 if (audit_pid && tsk->tgid == audit_pid)
807 return;
808
809 rcu_read_lock();
810
811 list_for_each_entry(n, &ctx->names_list, list) {
812 if (audit_filter_inode_name(tsk, n, ctx))
813 break;
814 }
815 rcu_read_unlock();
816 }
817
818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
819 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
820 int return_valid,
821 long return_code)
822 {
823 struct audit_context *context = tsk->audit_context;
824
825 if (!context)
826 return NULL;
827 context->return_valid = return_valid;
828
829 /*
830 * we need to fix up the return code in the audit logs if the actual
831 * return codes are later going to be fixed up by the arch specific
832 * signal handlers
833 *
834 * This is actually a test for:
835 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
836 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
837 *
838 * but is faster than a bunch of ||
839 */
840 if (unlikely(return_code <= -ERESTARTSYS) &&
841 (return_code >= -ERESTART_RESTARTBLOCK) &&
842 (return_code != -ENOIOCTLCMD))
843 context->return_code = -EINTR;
844 else
845 context->return_code = return_code;
846
847 if (context->in_syscall && !context->dummy) {
848 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
849 audit_filter_inodes(tsk, context);
850 }
851
852 tsk->audit_context = NULL;
853 return context;
854 }
855
856 static inline void audit_proctitle_free(struct audit_context *context)
857 {
858 kfree(context->proctitle.value);
859 context->proctitle.value = NULL;
860 context->proctitle.len = 0;
861 }
862
863 static inline void audit_free_names(struct audit_context *context)
864 {
865 struct audit_names *n, *next;
866
867 list_for_each_entry_safe(n, next, &context->names_list, list) {
868 list_del(&n->list);
869 if (n->name)
870 putname(n->name);
871 if (n->should_free)
872 kfree(n);
873 }
874 context->name_count = 0;
875 path_put(&context->pwd);
876 context->pwd.dentry = NULL;
877 context->pwd.mnt = NULL;
878 }
879
880 static inline void audit_free_aux(struct audit_context *context)
881 {
882 struct audit_aux_data *aux;
883
884 while ((aux = context->aux)) {
885 context->aux = aux->next;
886 kfree(aux);
887 }
888 while ((aux = context->aux_pids)) {
889 context->aux_pids = aux->next;
890 kfree(aux);
891 }
892 }
893
894 static inline struct audit_context *audit_alloc_context(enum audit_state state)
895 {
896 struct audit_context *context;
897
898 context = kzalloc(sizeof(*context), GFP_KERNEL);
899 if (!context)
900 return NULL;
901 context->state = state;
902 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
903 INIT_LIST_HEAD(&context->killed_trees);
904 INIT_LIST_HEAD(&context->names_list);
905 return context;
906 }
907
908 /**
909 * audit_alloc - allocate an audit context block for a task
910 * @tsk: task
911 *
912 * Filter on the task information and allocate a per-task audit context
913 * if necessary. Doing so turns on system call auditing for the
914 * specified task. This is called from copy_process, so no lock is
915 * needed.
916 */
917 int audit_alloc(struct task_struct *tsk)
918 {
919 struct audit_context *context;
920 enum audit_state state;
921 char *key = NULL;
922
923 if (likely(!audit_ever_enabled))
924 return 0; /* Return if not auditing. */
925
926 state = audit_filter_task(tsk, &key);
927 if (state == AUDIT_DISABLED) {
928 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
929 return 0;
930 }
931
932 if (!(context = audit_alloc_context(state))) {
933 kfree(key);
934 audit_log_lost("out of memory in audit_alloc");
935 return -ENOMEM;
936 }
937 context->filterkey = key;
938
939 tsk->audit_context = context;
940 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
941 return 0;
942 }
943
944 static inline void audit_free_context(struct audit_context *context)
945 {
946 audit_free_names(context);
947 unroll_tree_refs(context, NULL, 0);
948 free_tree_refs(context);
949 audit_free_aux(context);
950 kfree(context->filterkey);
951 kfree(context->sockaddr);
952 audit_proctitle_free(context);
953 kfree(context);
954 }
955
956 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
957 kuid_t auid, kuid_t uid, unsigned int sessionid,
958 u32 sid, char *comm)
959 {
960 struct audit_buffer *ab;
961 char *ctx = NULL;
962 u32 len;
963 int rc = 0;
964
965 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
966 if (!ab)
967 return rc;
968
969 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
970 from_kuid(&init_user_ns, auid),
971 from_kuid(&init_user_ns, uid), sessionid);
972 if (sid) {
973 if (security_secid_to_secctx(sid, &ctx, &len)) {
974 audit_log_format(ab, " obj=(none)");
975 rc = 1;
976 } else {
977 audit_log_format(ab, " obj=%s", ctx);
978 security_release_secctx(ctx, len);
979 }
980 }
981 audit_log_format(ab, " ocomm=");
982 audit_log_untrustedstring(ab, comm);
983 audit_log_end(ab);
984
985 return rc;
986 }
987
988 /*
989 * to_send and len_sent accounting are very loose estimates. We aren't
990 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
991 * within about 500 bytes (next page boundary)
992 *
993 * why snprintf? an int is up to 12 digits long. if we just assumed when
994 * logging that a[%d]= was going to be 16 characters long we would be wasting
995 * space in every audit message. In one 7500 byte message we can log up to
996 * about 1000 min size arguments. That comes down to about 50% waste of space
997 * if we didn't do the snprintf to find out how long arg_num_len was.
998 */
999 static int audit_log_single_execve_arg(struct audit_context *context,
1000 struct audit_buffer **ab,
1001 int arg_num,
1002 size_t *len_sent,
1003 const char __user *p,
1004 char *buf)
1005 {
1006 char arg_num_len_buf[12];
1007 const char __user *tmp_p = p;
1008 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1009 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1010 size_t len, len_left, to_send;
1011 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1012 unsigned int i, has_cntl = 0, too_long = 0;
1013 int ret;
1014
1015 /* strnlen_user includes the null we don't want to send */
1016 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1017
1018 /*
1019 * We just created this mm, if we can't find the strings
1020 * we just copied into it something is _very_ wrong. Similar
1021 * for strings that are too long, we should not have created
1022 * any.
1023 */
1024 if (unlikely((len == 0) || len > MAX_ARG_STRLEN - 1)) {
1025 WARN_ON(1);
1026 send_sig(SIGKILL, current, 0);
1027 return -1;
1028 }
1029
1030 /* walk the whole argument looking for non-ascii chars */
1031 do {
1032 if (len_left > MAX_EXECVE_AUDIT_LEN)
1033 to_send = MAX_EXECVE_AUDIT_LEN;
1034 else
1035 to_send = len_left;
1036 ret = copy_from_user(buf, tmp_p, to_send);
1037 /*
1038 * There is no reason for this copy to be short. We just
1039 * copied them here, and the mm hasn't been exposed to user-
1040 * space yet.
1041 */
1042 if (ret) {
1043 WARN_ON(1);
1044 send_sig(SIGKILL, current, 0);
1045 return -1;
1046 }
1047 buf[to_send] = '\0';
1048 has_cntl = audit_string_contains_control(buf, to_send);
1049 if (has_cntl) {
1050 /*
1051 * hex messages get logged as 2 bytes, so we can only
1052 * send half as much in each message
1053 */
1054 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1055 break;
1056 }
1057 len_left -= to_send;
1058 tmp_p += to_send;
1059 } while (len_left > 0);
1060
1061 len_left = len;
1062
1063 if (len > max_execve_audit_len)
1064 too_long = 1;
1065
1066 /* rewalk the argument actually logging the message */
1067 for (i = 0; len_left > 0; i++) {
1068 int room_left;
1069
1070 if (len_left > max_execve_audit_len)
1071 to_send = max_execve_audit_len;
1072 else
1073 to_send = len_left;
1074
1075 /* do we have space left to send this argument in this ab? */
1076 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1077 if (has_cntl)
1078 room_left -= (to_send * 2);
1079 else
1080 room_left -= to_send;
1081 if (room_left < 0) {
1082 *len_sent = 0;
1083 audit_log_end(*ab);
1084 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1085 if (!*ab)
1086 return 0;
1087 }
1088
1089 /*
1090 * first record needs to say how long the original string was
1091 * so we can be sure nothing was lost.
1092 */
1093 if ((i == 0) && (too_long))
1094 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1095 has_cntl ? 2*len : len);
1096
1097 /*
1098 * normally arguments are small enough to fit and we already
1099 * filled buf above when we checked for control characters
1100 * so don't bother with another copy_from_user
1101 */
1102 if (len >= max_execve_audit_len)
1103 ret = copy_from_user(buf, p, to_send);
1104 else
1105 ret = 0;
1106 if (ret) {
1107 WARN_ON(1);
1108 send_sig(SIGKILL, current, 0);
1109 return -1;
1110 }
1111 buf[to_send] = '\0';
1112
1113 /* actually log it */
1114 audit_log_format(*ab, " a%d", arg_num);
1115 if (too_long)
1116 audit_log_format(*ab, "[%d]", i);
1117 audit_log_format(*ab, "=");
1118 if (has_cntl)
1119 audit_log_n_hex(*ab, buf, to_send);
1120 else
1121 audit_log_string(*ab, buf);
1122
1123 p += to_send;
1124 len_left -= to_send;
1125 *len_sent += arg_num_len;
1126 if (has_cntl)
1127 *len_sent += to_send * 2;
1128 else
1129 *len_sent += to_send;
1130 }
1131 /* include the null we didn't log */
1132 return len + 1;
1133 }
1134
1135 static void audit_log_execve_info(struct audit_context *context,
1136 struct audit_buffer **ab)
1137 {
1138 int i, len;
1139 size_t len_sent = 0;
1140 const char __user *p;
1141 char *buf;
1142
1143 p = (const char __user *)current->mm->arg_start;
1144
1145 audit_log_format(*ab, "argc=%d", context->execve.argc);
1146
1147 /*
1148 * we need some kernel buffer to hold the userspace args. Just
1149 * allocate one big one rather than allocating one of the right size
1150 * for every single argument inside audit_log_single_execve_arg()
1151 * should be <8k allocation so should be pretty safe.
1152 */
1153 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1154 if (!buf) {
1155 audit_panic("out of memory for argv string");
1156 return;
1157 }
1158
1159 for (i = 0; i < context->execve.argc; i++) {
1160 len = audit_log_single_execve_arg(context, ab, i,
1161 &len_sent, p, buf);
1162 if (len <= 0)
1163 break;
1164 p += len;
1165 }
1166 kfree(buf);
1167 }
1168
1169 static void show_special(struct audit_context *context, int *call_panic)
1170 {
1171 struct audit_buffer *ab;
1172 int i;
1173
1174 ab = audit_log_start(context, GFP_KERNEL, context->type);
1175 if (!ab)
1176 return;
1177
1178 switch (context->type) {
1179 case AUDIT_SOCKETCALL: {
1180 int nargs = context->socketcall.nargs;
1181 audit_log_format(ab, "nargs=%d", nargs);
1182 for (i = 0; i < nargs; i++)
1183 audit_log_format(ab, " a%d=%lx", i,
1184 context->socketcall.args[i]);
1185 break; }
1186 case AUDIT_IPC: {
1187 u32 osid = context->ipc.osid;
1188
1189 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1190 from_kuid(&init_user_ns, context->ipc.uid),
1191 from_kgid(&init_user_ns, context->ipc.gid),
1192 context->ipc.mode);
1193 if (osid) {
1194 char *ctx = NULL;
1195 u32 len;
1196 if (security_secid_to_secctx(osid, &ctx, &len)) {
1197 audit_log_format(ab, " osid=%u", osid);
1198 *call_panic = 1;
1199 } else {
1200 audit_log_format(ab, " obj=%s", ctx);
1201 security_release_secctx(ctx, len);
1202 }
1203 }
1204 if (context->ipc.has_perm) {
1205 audit_log_end(ab);
1206 ab = audit_log_start(context, GFP_KERNEL,
1207 AUDIT_IPC_SET_PERM);
1208 if (unlikely(!ab))
1209 return;
1210 audit_log_format(ab,
1211 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1212 context->ipc.qbytes,
1213 context->ipc.perm_uid,
1214 context->ipc.perm_gid,
1215 context->ipc.perm_mode);
1216 }
1217 break; }
1218 case AUDIT_MQ_OPEN: {
1219 audit_log_format(ab,
1220 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1221 "mq_msgsize=%ld mq_curmsgs=%ld",
1222 context->mq_open.oflag, context->mq_open.mode,
1223 context->mq_open.attr.mq_flags,
1224 context->mq_open.attr.mq_maxmsg,
1225 context->mq_open.attr.mq_msgsize,
1226 context->mq_open.attr.mq_curmsgs);
1227 break; }
1228 case AUDIT_MQ_SENDRECV: {
1229 audit_log_format(ab,
1230 "mqdes=%d msg_len=%zd msg_prio=%u "
1231 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1232 context->mq_sendrecv.mqdes,
1233 context->mq_sendrecv.msg_len,
1234 context->mq_sendrecv.msg_prio,
1235 context->mq_sendrecv.abs_timeout.tv_sec,
1236 context->mq_sendrecv.abs_timeout.tv_nsec);
1237 break; }
1238 case AUDIT_MQ_NOTIFY: {
1239 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1240 context->mq_notify.mqdes,
1241 context->mq_notify.sigev_signo);
1242 break; }
1243 case AUDIT_MQ_GETSETATTR: {
1244 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1245 audit_log_format(ab,
1246 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1247 "mq_curmsgs=%ld ",
1248 context->mq_getsetattr.mqdes,
1249 attr->mq_flags, attr->mq_maxmsg,
1250 attr->mq_msgsize, attr->mq_curmsgs);
1251 break; }
1252 case AUDIT_CAPSET: {
1253 audit_log_format(ab, "pid=%d", context->capset.pid);
1254 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1255 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1256 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1257 break; }
1258 case AUDIT_MMAP: {
1259 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1260 context->mmap.flags);
1261 break; }
1262 case AUDIT_EXECVE: {
1263 audit_log_execve_info(context, &ab);
1264 break; }
1265 }
1266 audit_log_end(ab);
1267 }
1268
1269 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1270 {
1271 char *end = proctitle + len - 1;
1272 while (end > proctitle && !isprint(*end))
1273 end--;
1274
1275 /* catch the case where proctitle is only 1 non-print character */
1276 len = end - proctitle + 1;
1277 len -= isprint(proctitle[len-1]) == 0;
1278 return len;
1279 }
1280
1281 static void audit_log_proctitle(struct task_struct *tsk,
1282 struct audit_context *context)
1283 {
1284 int res;
1285 char *buf;
1286 char *msg = "(null)";
1287 int len = strlen(msg);
1288 struct audit_buffer *ab;
1289
1290 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1291 if (!ab)
1292 return; /* audit_panic or being filtered */
1293
1294 audit_log_format(ab, "proctitle=");
1295
1296 /* Not cached */
1297 if (!context->proctitle.value) {
1298 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1299 if (!buf)
1300 goto out;
1301 /* Historically called this from procfs naming */
1302 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1303 if (res == 0) {
1304 kfree(buf);
1305 goto out;
1306 }
1307 res = audit_proctitle_rtrim(buf, res);
1308 if (res == 0) {
1309 kfree(buf);
1310 goto out;
1311 }
1312 context->proctitle.value = buf;
1313 context->proctitle.len = res;
1314 }
1315 msg = context->proctitle.value;
1316 len = context->proctitle.len;
1317 out:
1318 audit_log_n_untrustedstring(ab, msg, len);
1319 audit_log_end(ab);
1320 }
1321
1322 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1323 {
1324 int i, call_panic = 0;
1325 struct audit_buffer *ab;
1326 struct audit_aux_data *aux;
1327 struct audit_names *n;
1328
1329 /* tsk == current */
1330 context->personality = tsk->personality;
1331
1332 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1333 if (!ab)
1334 return; /* audit_panic has been called */
1335 audit_log_format(ab, "arch=%x syscall=%d",
1336 context->arch, context->major);
1337 if (context->personality != PER_LINUX)
1338 audit_log_format(ab, " per=%lx", context->personality);
1339 if (context->return_valid)
1340 audit_log_format(ab, " success=%s exit=%ld",
1341 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1342 context->return_code);
1343
1344 audit_log_format(ab,
1345 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1346 context->argv[0],
1347 context->argv[1],
1348 context->argv[2],
1349 context->argv[3],
1350 context->name_count);
1351
1352 audit_log_task_info(ab, tsk);
1353 audit_log_key(ab, context->filterkey);
1354 audit_log_end(ab);
1355
1356 for (aux = context->aux; aux; aux = aux->next) {
1357
1358 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1359 if (!ab)
1360 continue; /* audit_panic has been called */
1361
1362 switch (aux->type) {
1363
1364 case AUDIT_BPRM_FCAPS: {
1365 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1366 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1367 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1368 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1369 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1370 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1371 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1372 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1373 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1374 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1375 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1376 break; }
1377
1378 }
1379 audit_log_end(ab);
1380 }
1381
1382 if (context->type)
1383 show_special(context, &call_panic);
1384
1385 if (context->fds[0] >= 0) {
1386 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1387 if (ab) {
1388 audit_log_format(ab, "fd0=%d fd1=%d",
1389 context->fds[0], context->fds[1]);
1390 audit_log_end(ab);
1391 }
1392 }
1393
1394 if (context->sockaddr_len) {
1395 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1396 if (ab) {
1397 audit_log_format(ab, "saddr=");
1398 audit_log_n_hex(ab, (void *)context->sockaddr,
1399 context->sockaddr_len);
1400 audit_log_end(ab);
1401 }
1402 }
1403
1404 for (aux = context->aux_pids; aux; aux = aux->next) {
1405 struct audit_aux_data_pids *axs = (void *)aux;
1406
1407 for (i = 0; i < axs->pid_count; i++)
1408 if (audit_log_pid_context(context, axs->target_pid[i],
1409 axs->target_auid[i],
1410 axs->target_uid[i],
1411 axs->target_sessionid[i],
1412 axs->target_sid[i],
1413 axs->target_comm[i]))
1414 call_panic = 1;
1415 }
1416
1417 if (context->target_pid &&
1418 audit_log_pid_context(context, context->target_pid,
1419 context->target_auid, context->target_uid,
1420 context->target_sessionid,
1421 context->target_sid, context->target_comm))
1422 call_panic = 1;
1423
1424 if (context->pwd.dentry && context->pwd.mnt) {
1425 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1426 if (ab) {
1427 audit_log_d_path(ab, " cwd=", &context->pwd);
1428 audit_log_end(ab);
1429 }
1430 }
1431
1432 i = 0;
1433 list_for_each_entry(n, &context->names_list, list) {
1434 if (n->hidden)
1435 continue;
1436 audit_log_name(context, n, NULL, i++, &call_panic);
1437 }
1438
1439 audit_log_proctitle(tsk, context);
1440
1441 /* Send end of event record to help user space know we are finished */
1442 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1443 if (ab)
1444 audit_log_end(ab);
1445 if (call_panic)
1446 audit_panic("error converting sid to string");
1447 }
1448
1449 /**
1450 * audit_free - free a per-task audit context
1451 * @tsk: task whose audit context block to free
1452 *
1453 * Called from copy_process and do_exit
1454 */
1455 void __audit_free(struct task_struct *tsk)
1456 {
1457 struct audit_context *context;
1458
1459 context = audit_take_context(tsk, 0, 0);
1460 if (!context)
1461 return;
1462
1463 /* Check for system calls that do not go through the exit
1464 * function (e.g., exit_group), then free context block.
1465 * We use GFP_ATOMIC here because we might be doing this
1466 * in the context of the idle thread */
1467 /* that can happen only if we are called from do_exit() */
1468 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1469 audit_log_exit(context, tsk);
1470 if (!list_empty(&context->killed_trees))
1471 audit_kill_trees(&context->killed_trees);
1472
1473 audit_free_context(context);
1474 }
1475
1476 /**
1477 * audit_syscall_entry - fill in an audit record at syscall entry
1478 * @major: major syscall type (function)
1479 * @a1: additional syscall register 1
1480 * @a2: additional syscall register 2
1481 * @a3: additional syscall register 3
1482 * @a4: additional syscall register 4
1483 *
1484 * Fill in audit context at syscall entry. This only happens if the
1485 * audit context was created when the task was created and the state or
1486 * filters demand the audit context be built. If the state from the
1487 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1488 * then the record will be written at syscall exit time (otherwise, it
1489 * will only be written if another part of the kernel requests that it
1490 * be written).
1491 */
1492 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1493 unsigned long a3, unsigned long a4)
1494 {
1495 struct task_struct *tsk = current;
1496 struct audit_context *context = tsk->audit_context;
1497 enum audit_state state;
1498
1499 if (!context)
1500 return;
1501
1502 BUG_ON(context->in_syscall || context->name_count);
1503
1504 if (!audit_enabled)
1505 return;
1506
1507 context->arch = syscall_get_arch();
1508 context->major = major;
1509 context->argv[0] = a1;
1510 context->argv[1] = a2;
1511 context->argv[2] = a3;
1512 context->argv[3] = a4;
1513
1514 state = context->state;
1515 context->dummy = !audit_n_rules;
1516 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1517 context->prio = 0;
1518 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1519 }
1520 if (state == AUDIT_DISABLED)
1521 return;
1522
1523 context->serial = 0;
1524 context->ctime = CURRENT_TIME;
1525 context->in_syscall = 1;
1526 context->current_state = state;
1527 context->ppid = 0;
1528 }
1529
1530 /**
1531 * audit_syscall_exit - deallocate audit context after a system call
1532 * @success: success value of the syscall
1533 * @return_code: return value of the syscall
1534 *
1535 * Tear down after system call. If the audit context has been marked as
1536 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1537 * filtering, or because some other part of the kernel wrote an audit
1538 * message), then write out the syscall information. In call cases,
1539 * free the names stored from getname().
1540 */
1541 void __audit_syscall_exit(int success, long return_code)
1542 {
1543 struct task_struct *tsk = current;
1544 struct audit_context *context;
1545
1546 if (success)
1547 success = AUDITSC_SUCCESS;
1548 else
1549 success = AUDITSC_FAILURE;
1550
1551 context = audit_take_context(tsk, success, return_code);
1552 if (!context)
1553 return;
1554
1555 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1556 audit_log_exit(context, tsk);
1557
1558 context->in_syscall = 0;
1559 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1560
1561 if (!list_empty(&context->killed_trees))
1562 audit_kill_trees(&context->killed_trees);
1563
1564 audit_free_names(context);
1565 unroll_tree_refs(context, NULL, 0);
1566 audit_free_aux(context);
1567 context->aux = NULL;
1568 context->aux_pids = NULL;
1569 context->target_pid = 0;
1570 context->target_sid = 0;
1571 context->sockaddr_len = 0;
1572 context->type = 0;
1573 context->fds[0] = -1;
1574 if (context->state != AUDIT_RECORD_CONTEXT) {
1575 kfree(context->filterkey);
1576 context->filterkey = NULL;
1577 }
1578 tsk->audit_context = context;
1579 }
1580
1581 static inline void handle_one(const struct inode *inode)
1582 {
1583 #ifdef CONFIG_AUDIT_TREE
1584 struct audit_context *context;
1585 struct audit_tree_refs *p;
1586 struct audit_chunk *chunk;
1587 int count;
1588 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1589 return;
1590 context = current->audit_context;
1591 p = context->trees;
1592 count = context->tree_count;
1593 rcu_read_lock();
1594 chunk = audit_tree_lookup(inode);
1595 rcu_read_unlock();
1596 if (!chunk)
1597 return;
1598 if (likely(put_tree_ref(context, chunk)))
1599 return;
1600 if (unlikely(!grow_tree_refs(context))) {
1601 pr_warn("out of memory, audit has lost a tree reference\n");
1602 audit_set_auditable(context);
1603 audit_put_chunk(chunk);
1604 unroll_tree_refs(context, p, count);
1605 return;
1606 }
1607 put_tree_ref(context, chunk);
1608 #endif
1609 }
1610
1611 static void handle_path(const struct dentry *dentry)
1612 {
1613 #ifdef CONFIG_AUDIT_TREE
1614 struct audit_context *context;
1615 struct audit_tree_refs *p;
1616 const struct dentry *d, *parent;
1617 struct audit_chunk *drop;
1618 unsigned long seq;
1619 int count;
1620
1621 context = current->audit_context;
1622 p = context->trees;
1623 count = context->tree_count;
1624 retry:
1625 drop = NULL;
1626 d = dentry;
1627 rcu_read_lock();
1628 seq = read_seqbegin(&rename_lock);
1629 for(;;) {
1630 struct inode *inode = d_backing_inode(d);
1631 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1632 struct audit_chunk *chunk;
1633 chunk = audit_tree_lookup(inode);
1634 if (chunk) {
1635 if (unlikely(!put_tree_ref(context, chunk))) {
1636 drop = chunk;
1637 break;
1638 }
1639 }
1640 }
1641 parent = d->d_parent;
1642 if (parent == d)
1643 break;
1644 d = parent;
1645 }
1646 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1647 rcu_read_unlock();
1648 if (!drop) {
1649 /* just a race with rename */
1650 unroll_tree_refs(context, p, count);
1651 goto retry;
1652 }
1653 audit_put_chunk(drop);
1654 if (grow_tree_refs(context)) {
1655 /* OK, got more space */
1656 unroll_tree_refs(context, p, count);
1657 goto retry;
1658 }
1659 /* too bad */
1660 pr_warn("out of memory, audit has lost a tree reference\n");
1661 unroll_tree_refs(context, p, count);
1662 audit_set_auditable(context);
1663 return;
1664 }
1665 rcu_read_unlock();
1666 #endif
1667 }
1668
1669 static struct audit_names *audit_alloc_name(struct audit_context *context,
1670 unsigned char type)
1671 {
1672 struct audit_names *aname;
1673
1674 if (context->name_count < AUDIT_NAMES) {
1675 aname = &context->preallocated_names[context->name_count];
1676 memset(aname, 0, sizeof(*aname));
1677 } else {
1678 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1679 if (!aname)
1680 return NULL;
1681 aname->should_free = true;
1682 }
1683
1684 aname->ino = (unsigned long)-1;
1685 aname->type = type;
1686 list_add_tail(&aname->list, &context->names_list);
1687
1688 context->name_count++;
1689 return aname;
1690 }
1691
1692 /**
1693 * audit_reusename - fill out filename with info from existing entry
1694 * @uptr: userland ptr to pathname
1695 *
1696 * Search the audit_names list for the current audit context. If there is an
1697 * existing entry with a matching "uptr" then return the filename
1698 * associated with that audit_name. If not, return NULL.
1699 */
1700 struct filename *
1701 __audit_reusename(const __user char *uptr)
1702 {
1703 struct audit_context *context = current->audit_context;
1704 struct audit_names *n;
1705
1706 list_for_each_entry(n, &context->names_list, list) {
1707 if (!n->name)
1708 continue;
1709 if (n->name->uptr == uptr) {
1710 n->name->refcnt++;
1711 return n->name;
1712 }
1713 }
1714 return NULL;
1715 }
1716
1717 /**
1718 * audit_getname - add a name to the list
1719 * @name: name to add
1720 *
1721 * Add a name to the list of audit names for this context.
1722 * Called from fs/namei.c:getname().
1723 */
1724 void __audit_getname(struct filename *name)
1725 {
1726 struct audit_context *context = current->audit_context;
1727 struct audit_names *n;
1728
1729 if (!context->in_syscall)
1730 return;
1731
1732 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1733 if (!n)
1734 return;
1735
1736 n->name = name;
1737 n->name_len = AUDIT_NAME_FULL;
1738 name->aname = n;
1739 name->refcnt++;
1740
1741 if (!context->pwd.dentry)
1742 get_fs_pwd(current->fs, &context->pwd);
1743 }
1744
1745 /**
1746 * __audit_inode - store the inode and device from a lookup
1747 * @name: name being audited
1748 * @dentry: dentry being audited
1749 * @flags: attributes for this particular entry
1750 */
1751 void __audit_inode(struct filename *name, const struct dentry *dentry,
1752 unsigned int flags)
1753 {
1754 struct audit_context *context = current->audit_context;
1755 const struct inode *inode = d_backing_inode(dentry);
1756 struct audit_names *n;
1757 bool parent = flags & AUDIT_INODE_PARENT;
1758
1759 if (!context->in_syscall)
1760 return;
1761
1762 if (!name)
1763 goto out_alloc;
1764
1765 /*
1766 * If we have a pointer to an audit_names entry already, then we can
1767 * just use it directly if the type is correct.
1768 */
1769 n = name->aname;
1770 if (n) {
1771 if (parent) {
1772 if (n->type == AUDIT_TYPE_PARENT ||
1773 n->type == AUDIT_TYPE_UNKNOWN)
1774 goto out;
1775 } else {
1776 if (n->type != AUDIT_TYPE_PARENT)
1777 goto out;
1778 }
1779 }
1780
1781 list_for_each_entry_reverse(n, &context->names_list, list) {
1782 if (n->ino) {
1783 /* valid inode number, use that for the comparison */
1784 if (n->ino != inode->i_ino ||
1785 n->dev != inode->i_sb->s_dev)
1786 continue;
1787 } else if (n->name) {
1788 /* inode number has not been set, check the name */
1789 if (strcmp(n->name->name, name->name))
1790 continue;
1791 } else
1792 /* no inode and no name (?!) ... this is odd ... */
1793 continue;
1794
1795 /* match the correct record type */
1796 if (parent) {
1797 if (n->type == AUDIT_TYPE_PARENT ||
1798 n->type == AUDIT_TYPE_UNKNOWN)
1799 goto out;
1800 } else {
1801 if (n->type != AUDIT_TYPE_PARENT)
1802 goto out;
1803 }
1804 }
1805
1806 out_alloc:
1807 /* unable to find an entry with both a matching name and type */
1808 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1809 if (!n)
1810 return;
1811 if (name) {
1812 n->name = name;
1813 name->refcnt++;
1814 }
1815
1816 out:
1817 if (parent) {
1818 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1819 n->type = AUDIT_TYPE_PARENT;
1820 if (flags & AUDIT_INODE_HIDDEN)
1821 n->hidden = true;
1822 } else {
1823 n->name_len = AUDIT_NAME_FULL;
1824 n->type = AUDIT_TYPE_NORMAL;
1825 }
1826 handle_path(dentry);
1827 audit_copy_inode(n, dentry, inode);
1828 }
1829
1830 void __audit_file(const struct file *file)
1831 {
1832 __audit_inode(NULL, file->f_path.dentry, 0);
1833 }
1834
1835 /**
1836 * __audit_inode_child - collect inode info for created/removed objects
1837 * @parent: inode of dentry parent
1838 * @dentry: dentry being audited
1839 * @type: AUDIT_TYPE_* value that we're looking for
1840 *
1841 * For syscalls that create or remove filesystem objects, audit_inode
1842 * can only collect information for the filesystem object's parent.
1843 * This call updates the audit context with the child's information.
1844 * Syscalls that create a new filesystem object must be hooked after
1845 * the object is created. Syscalls that remove a filesystem object
1846 * must be hooked prior, in order to capture the target inode during
1847 * unsuccessful attempts.
1848 */
1849 void __audit_inode_child(const struct inode *parent,
1850 const struct dentry *dentry,
1851 const unsigned char type)
1852 {
1853 struct audit_context *context = current->audit_context;
1854 const struct inode *inode = d_backing_inode(dentry);
1855 const char *dname = dentry->d_name.name;
1856 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1857
1858 if (!context->in_syscall)
1859 return;
1860
1861 if (inode)
1862 handle_one(inode);
1863
1864 /* look for a parent entry first */
1865 list_for_each_entry(n, &context->names_list, list) {
1866 if (!n->name ||
1867 (n->type != AUDIT_TYPE_PARENT &&
1868 n->type != AUDIT_TYPE_UNKNOWN))
1869 continue;
1870
1871 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1872 !audit_compare_dname_path(dname,
1873 n->name->name, n->name_len)) {
1874 if (n->type == AUDIT_TYPE_UNKNOWN)
1875 n->type = AUDIT_TYPE_PARENT;
1876 found_parent = n;
1877 break;
1878 }
1879 }
1880
1881 /* is there a matching child entry? */
1882 list_for_each_entry(n, &context->names_list, list) {
1883 /* can only match entries that have a name */
1884 if (!n->name ||
1885 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1886 continue;
1887
1888 if (!strcmp(dname, n->name->name) ||
1889 !audit_compare_dname_path(dname, n->name->name,
1890 found_parent ?
1891 found_parent->name_len :
1892 AUDIT_NAME_FULL)) {
1893 if (n->type == AUDIT_TYPE_UNKNOWN)
1894 n->type = type;
1895 found_child = n;
1896 break;
1897 }
1898 }
1899
1900 if (!found_parent) {
1901 /* create a new, "anonymous" parent record */
1902 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1903 if (!n)
1904 return;
1905 audit_copy_inode(n, NULL, parent);
1906 }
1907
1908 if (!found_child) {
1909 found_child = audit_alloc_name(context, type);
1910 if (!found_child)
1911 return;
1912
1913 /* Re-use the name belonging to the slot for a matching parent
1914 * directory. All names for this context are relinquished in
1915 * audit_free_names() */
1916 if (found_parent) {
1917 found_child->name = found_parent->name;
1918 found_child->name_len = AUDIT_NAME_FULL;
1919 found_child->name->refcnt++;
1920 }
1921 }
1922
1923 if (inode)
1924 audit_copy_inode(found_child, dentry, inode);
1925 else
1926 found_child->ino = (unsigned long)-1;
1927 }
1928 EXPORT_SYMBOL_GPL(__audit_inode_child);
1929
1930 /**
1931 * auditsc_get_stamp - get local copies of audit_context values
1932 * @ctx: audit_context for the task
1933 * @t: timespec to store time recorded in the audit_context
1934 * @serial: serial value that is recorded in the audit_context
1935 *
1936 * Also sets the context as auditable.
1937 */
1938 int auditsc_get_stamp(struct audit_context *ctx,
1939 struct timespec *t, unsigned int *serial)
1940 {
1941 if (!ctx->in_syscall)
1942 return 0;
1943 if (!ctx->serial)
1944 ctx->serial = audit_serial();
1945 t->tv_sec = ctx->ctime.tv_sec;
1946 t->tv_nsec = ctx->ctime.tv_nsec;
1947 *serial = ctx->serial;
1948 if (!ctx->prio) {
1949 ctx->prio = 1;
1950 ctx->current_state = AUDIT_RECORD_CONTEXT;
1951 }
1952 return 1;
1953 }
1954
1955 /* global counter which is incremented every time something logs in */
1956 static atomic_t session_id = ATOMIC_INIT(0);
1957
1958 static int audit_set_loginuid_perm(kuid_t loginuid)
1959 {
1960 /* if we are unset, we don't need privs */
1961 if (!audit_loginuid_set(current))
1962 return 0;
1963 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1964 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1965 return -EPERM;
1966 /* it is set, you need permission */
1967 if (!capable(CAP_AUDIT_CONTROL))
1968 return -EPERM;
1969 /* reject if this is not an unset and we don't allow that */
1970 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1971 return -EPERM;
1972 return 0;
1973 }
1974
1975 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1976 unsigned int oldsessionid, unsigned int sessionid,
1977 int rc)
1978 {
1979 struct audit_buffer *ab;
1980 uid_t uid, oldloginuid, loginuid;
1981
1982 if (!audit_enabled)
1983 return;
1984
1985 uid = from_kuid(&init_user_ns, task_uid(current));
1986 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1987 loginuid = from_kuid(&init_user_ns, kloginuid),
1988
1989 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1990 if (!ab)
1991 return;
1992 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1993 audit_log_task_context(ab);
1994 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1995 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
1996 audit_log_end(ab);
1997 }
1998
1999 /**
2000 * audit_set_loginuid - set current task's audit_context loginuid
2001 * @loginuid: loginuid value
2002 *
2003 * Returns 0.
2004 *
2005 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2006 */
2007 int audit_set_loginuid(kuid_t loginuid)
2008 {
2009 struct task_struct *task = current;
2010 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2011 kuid_t oldloginuid;
2012 int rc;
2013
2014 oldloginuid = audit_get_loginuid(current);
2015 oldsessionid = audit_get_sessionid(current);
2016
2017 rc = audit_set_loginuid_perm(loginuid);
2018 if (rc)
2019 goto out;
2020
2021 /* are we setting or clearing? */
2022 if (uid_valid(loginuid))
2023 sessionid = (unsigned int)atomic_inc_return(&session_id);
2024
2025 task->sessionid = sessionid;
2026 task->loginuid = loginuid;
2027 out:
2028 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2029 return rc;
2030 }
2031
2032 /**
2033 * __audit_mq_open - record audit data for a POSIX MQ open
2034 * @oflag: open flag
2035 * @mode: mode bits
2036 * @attr: queue attributes
2037 *
2038 */
2039 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2040 {
2041 struct audit_context *context = current->audit_context;
2042
2043 if (attr)
2044 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2045 else
2046 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2047
2048 context->mq_open.oflag = oflag;
2049 context->mq_open.mode = mode;
2050
2051 context->type = AUDIT_MQ_OPEN;
2052 }
2053
2054 /**
2055 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2056 * @mqdes: MQ descriptor
2057 * @msg_len: Message length
2058 * @msg_prio: Message priority
2059 * @abs_timeout: Message timeout in absolute time
2060 *
2061 */
2062 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2063 const struct timespec *abs_timeout)
2064 {
2065 struct audit_context *context = current->audit_context;
2066 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2067
2068 if (abs_timeout)
2069 memcpy(p, abs_timeout, sizeof(struct timespec));
2070 else
2071 memset(p, 0, sizeof(struct timespec));
2072
2073 context->mq_sendrecv.mqdes = mqdes;
2074 context->mq_sendrecv.msg_len = msg_len;
2075 context->mq_sendrecv.msg_prio = msg_prio;
2076
2077 context->type = AUDIT_MQ_SENDRECV;
2078 }
2079
2080 /**
2081 * __audit_mq_notify - record audit data for a POSIX MQ notify
2082 * @mqdes: MQ descriptor
2083 * @notification: Notification event
2084 *
2085 */
2086
2087 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2088 {
2089 struct audit_context *context = current->audit_context;
2090
2091 if (notification)
2092 context->mq_notify.sigev_signo = notification->sigev_signo;
2093 else
2094 context->mq_notify.sigev_signo = 0;
2095
2096 context->mq_notify.mqdes = mqdes;
2097 context->type = AUDIT_MQ_NOTIFY;
2098 }
2099
2100 /**
2101 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2102 * @mqdes: MQ descriptor
2103 * @mqstat: MQ flags
2104 *
2105 */
2106 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2107 {
2108 struct audit_context *context = current->audit_context;
2109 context->mq_getsetattr.mqdes = mqdes;
2110 context->mq_getsetattr.mqstat = *mqstat;
2111 context->type = AUDIT_MQ_GETSETATTR;
2112 }
2113
2114 /**
2115 * audit_ipc_obj - record audit data for ipc object
2116 * @ipcp: ipc permissions
2117 *
2118 */
2119 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2120 {
2121 struct audit_context *context = current->audit_context;
2122 context->ipc.uid = ipcp->uid;
2123 context->ipc.gid = ipcp->gid;
2124 context->ipc.mode = ipcp->mode;
2125 context->ipc.has_perm = 0;
2126 security_ipc_getsecid(ipcp, &context->ipc.osid);
2127 context->type = AUDIT_IPC;
2128 }
2129
2130 /**
2131 * audit_ipc_set_perm - record audit data for new ipc permissions
2132 * @qbytes: msgq bytes
2133 * @uid: msgq user id
2134 * @gid: msgq group id
2135 * @mode: msgq mode (permissions)
2136 *
2137 * Called only after audit_ipc_obj().
2138 */
2139 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2140 {
2141 struct audit_context *context = current->audit_context;
2142
2143 context->ipc.qbytes = qbytes;
2144 context->ipc.perm_uid = uid;
2145 context->ipc.perm_gid = gid;
2146 context->ipc.perm_mode = mode;
2147 context->ipc.has_perm = 1;
2148 }
2149
2150 void __audit_bprm(struct linux_binprm *bprm)
2151 {
2152 struct audit_context *context = current->audit_context;
2153
2154 context->type = AUDIT_EXECVE;
2155 context->execve.argc = bprm->argc;
2156 }
2157
2158
2159 /**
2160 * audit_socketcall - record audit data for sys_socketcall
2161 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2162 * @args: args array
2163 *
2164 */
2165 int __audit_socketcall(int nargs, unsigned long *args)
2166 {
2167 struct audit_context *context = current->audit_context;
2168
2169 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2170 return -EINVAL;
2171 context->type = AUDIT_SOCKETCALL;
2172 context->socketcall.nargs = nargs;
2173 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2174 return 0;
2175 }
2176
2177 /**
2178 * __audit_fd_pair - record audit data for pipe and socketpair
2179 * @fd1: the first file descriptor
2180 * @fd2: the second file descriptor
2181 *
2182 */
2183 void __audit_fd_pair(int fd1, int fd2)
2184 {
2185 struct audit_context *context = current->audit_context;
2186 context->fds[0] = fd1;
2187 context->fds[1] = fd2;
2188 }
2189
2190 /**
2191 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2192 * @len: data length in user space
2193 * @a: data address in kernel space
2194 *
2195 * Returns 0 for success or NULL context or < 0 on error.
2196 */
2197 int __audit_sockaddr(int len, void *a)
2198 {
2199 struct audit_context *context = current->audit_context;
2200
2201 if (!context->sockaddr) {
2202 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2203 if (!p)
2204 return -ENOMEM;
2205 context->sockaddr = p;
2206 }
2207
2208 context->sockaddr_len = len;
2209 memcpy(context->sockaddr, a, len);
2210 return 0;
2211 }
2212
2213 void __audit_ptrace(struct task_struct *t)
2214 {
2215 struct audit_context *context = current->audit_context;
2216
2217 context->target_pid = task_pid_nr(t);
2218 context->target_auid = audit_get_loginuid(t);
2219 context->target_uid = task_uid(t);
2220 context->target_sessionid = audit_get_sessionid(t);
2221 security_task_getsecid(t, &context->target_sid);
2222 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2223 }
2224
2225 /**
2226 * audit_signal_info - record signal info for shutting down audit subsystem
2227 * @sig: signal value
2228 * @t: task being signaled
2229 *
2230 * If the audit subsystem is being terminated, record the task (pid)
2231 * and uid that is doing that.
2232 */
2233 int __audit_signal_info(int sig, struct task_struct *t)
2234 {
2235 struct audit_aux_data_pids *axp;
2236 struct task_struct *tsk = current;
2237 struct audit_context *ctx = tsk->audit_context;
2238 kuid_t uid = current_uid(), t_uid = task_uid(t);
2239
2240 if (audit_pid && t->tgid == audit_pid) {
2241 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2242 audit_sig_pid = task_pid_nr(tsk);
2243 if (uid_valid(tsk->loginuid))
2244 audit_sig_uid = tsk->loginuid;
2245 else
2246 audit_sig_uid = uid;
2247 security_task_getsecid(tsk, &audit_sig_sid);
2248 }
2249 if (!audit_signals || audit_dummy_context())
2250 return 0;
2251 }
2252
2253 /* optimize the common case by putting first signal recipient directly
2254 * in audit_context */
2255 if (!ctx->target_pid) {
2256 ctx->target_pid = task_tgid_nr(t);
2257 ctx->target_auid = audit_get_loginuid(t);
2258 ctx->target_uid = t_uid;
2259 ctx->target_sessionid = audit_get_sessionid(t);
2260 security_task_getsecid(t, &ctx->target_sid);
2261 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2262 return 0;
2263 }
2264
2265 axp = (void *)ctx->aux_pids;
2266 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2267 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2268 if (!axp)
2269 return -ENOMEM;
2270
2271 axp->d.type = AUDIT_OBJ_PID;
2272 axp->d.next = ctx->aux_pids;
2273 ctx->aux_pids = (void *)axp;
2274 }
2275 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2276
2277 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2278 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2279 axp->target_uid[axp->pid_count] = t_uid;
2280 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2281 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2282 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2283 axp->pid_count++;
2284
2285 return 0;
2286 }
2287
2288 /**
2289 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2290 * @bprm: pointer to the bprm being processed
2291 * @new: the proposed new credentials
2292 * @old: the old credentials
2293 *
2294 * Simply check if the proc already has the caps given by the file and if not
2295 * store the priv escalation info for later auditing at the end of the syscall
2296 *
2297 * -Eric
2298 */
2299 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2300 const struct cred *new, const struct cred *old)
2301 {
2302 struct audit_aux_data_bprm_fcaps *ax;
2303 struct audit_context *context = current->audit_context;
2304 struct cpu_vfs_cap_data vcaps;
2305
2306 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2307 if (!ax)
2308 return -ENOMEM;
2309
2310 ax->d.type = AUDIT_BPRM_FCAPS;
2311 ax->d.next = context->aux;
2312 context->aux = (void *)ax;
2313
2314 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2315
2316 ax->fcap.permitted = vcaps.permitted;
2317 ax->fcap.inheritable = vcaps.inheritable;
2318 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2319 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2320
2321 ax->old_pcap.permitted = old->cap_permitted;
2322 ax->old_pcap.inheritable = old->cap_inheritable;
2323 ax->old_pcap.effective = old->cap_effective;
2324
2325 ax->new_pcap.permitted = new->cap_permitted;
2326 ax->new_pcap.inheritable = new->cap_inheritable;
2327 ax->new_pcap.effective = new->cap_effective;
2328 return 0;
2329 }
2330
2331 /**
2332 * __audit_log_capset - store information about the arguments to the capset syscall
2333 * @new: the new credentials
2334 * @old: the old (current) credentials
2335 *
2336 * Record the arguments userspace sent to sys_capset for later printing by the
2337 * audit system if applicable
2338 */
2339 void __audit_log_capset(const struct cred *new, const struct cred *old)
2340 {
2341 struct audit_context *context = current->audit_context;
2342 context->capset.pid = task_pid_nr(current);
2343 context->capset.cap.effective = new->cap_effective;
2344 context->capset.cap.inheritable = new->cap_effective;
2345 context->capset.cap.permitted = new->cap_permitted;
2346 context->type = AUDIT_CAPSET;
2347 }
2348
2349 void __audit_mmap_fd(int fd, int flags)
2350 {
2351 struct audit_context *context = current->audit_context;
2352 context->mmap.fd = fd;
2353 context->mmap.flags = flags;
2354 context->type = AUDIT_MMAP;
2355 }
2356
2357 static void audit_log_task(struct audit_buffer *ab)
2358 {
2359 kuid_t auid, uid;
2360 kgid_t gid;
2361 unsigned int sessionid;
2362 char comm[sizeof(current->comm)];
2363
2364 auid = audit_get_loginuid(current);
2365 sessionid = audit_get_sessionid(current);
2366 current_uid_gid(&uid, &gid);
2367
2368 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2369 from_kuid(&init_user_ns, auid),
2370 from_kuid(&init_user_ns, uid),
2371 from_kgid(&init_user_ns, gid),
2372 sessionid);
2373 audit_log_task_context(ab);
2374 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2375 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2376 audit_log_d_path_exe(ab, current->mm);
2377 }
2378
2379 /**
2380 * audit_core_dumps - record information about processes that end abnormally
2381 * @signr: signal value
2382 *
2383 * If a process ends with a core dump, something fishy is going on and we
2384 * should record the event for investigation.
2385 */
2386 void audit_core_dumps(long signr)
2387 {
2388 struct audit_buffer *ab;
2389
2390 if (!audit_enabled)
2391 return;
2392
2393 if (signr == SIGQUIT) /* don't care for those */
2394 return;
2395
2396 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2397 if (unlikely(!ab))
2398 return;
2399 audit_log_task(ab);
2400 audit_log_format(ab, " sig=%ld", signr);
2401 audit_log_end(ab);
2402 }
2403
2404 void __audit_seccomp(unsigned long syscall, long signr, int code)
2405 {
2406 struct audit_buffer *ab;
2407
2408 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2409 if (unlikely(!ab))
2410 return;
2411 audit_log_task(ab);
2412 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2413 signr, syscall_get_arch(), syscall, is_compat_task(),
2414 KSTK_EIP(current), code);
2415 audit_log_end(ab);
2416 }
2417
2418 struct list_head *audit_killed_trees(void)
2419 {
2420 struct audit_context *ctx = current->audit_context;
2421 if (likely(!ctx || !ctx->in_syscall))
2422 return NULL;
2423 return &ctx->killed_trees;
2424 }
This page took 0.152878 seconds and 6 git commands to generate.